3,602 research outputs found

    Automatic 3-D Building Model Reconstruction from Very High Resolution Stereo Satellite Imagery

    Get PDF
    Recent advances in the availability of very high-resolution (VHR) satellite data together with efficient data acquisition and large area coverage have led to an upward trend in their applications for automatic 3-D building model reconstruction which require large-scale and frequent updates, such as disaster monitoring and urban management. Digital Surface Models (DSMs) generated from stereo satellite imagery suffer from mismatches, missing values, or blunders, resulting in rough building shape representations. To handle 3-D building model reconstruction using such low-quality DSMs, we propose a novel automatic multistage hybrid method using DSMs together with orthorectified panchromatic (PAN) and pansharpened data (PS) of multispectral (MS) satellite imagery. The algorithm consists of multiple steps including building boundary extraction and decomposition, image-based roof type classification, and initial roof parameter computation which are prior knowledge for the 3-D model fitting step. To fit 3-D models to the normalized DSM (nDSM) and to select the best one, a parameter optimization method based on exhaustive search is used sequentially in 2-D and 3-D. Finally, the neighboring building models in a building block are intersected to reconstruct the 3-D model of connecting roofs. All corresponding experiments are conducted on a dataset including four different areas of Munich city containing 208 buildings with different degrees of complexity. The results are evaluated both qualitatively and quantitatively. According to the results, the proposed approach can reliably reconstruct 3-D building models, even the complex ones with several inner yards and multiple orientations. Furthermore, the proposed approach provides a high level of automation by limiting the number of primitive roof types and by performing automatic parameter initialization

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    MAMUD : contribution of HR satellite imagery to a better monitoring, modeling and understanding of urban dynamics

    Get PDF
    In this treatise the discussion of a methodology and results of semi-automatic city DSM extrac-tion from an Ikonos triplet, is introduced. Built-up areas are known as being complex for photogrammetric purposes, partly because of the steep changes in elevation caused by buildings and urban features. To make DSM extraction more robust and to cope with the specific problems of height displacement, concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from the centre of Istanbul to the urban fringe is chosen. Research will concentrate, in first phase on the development of methods to optimize the extraction of photogrammetric products from the bundled Ikonos triplet. Optimal methods need to be found to improve the radiometry and geometry of the imagery, to improve the semi-automatically derivation of DSM’s and to improve the postprocessing of the products. Secondly we will also investigate the possibilities of creating stereo models out of images from the same sensor taken on a different date, e.g. one image of the stereo pair combined with the third image. Finally the photogrammetric products derived from the Ikonos stereo pair as well as the products created out of the triplet and the constructed stereo models will be investigated by comparison with a 3D reference. This evaluation should show the increase of accuracy when multi-imagery is used instead of stereo pairs

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec
    • …
    corecore