184 research outputs found

    Segmentation of Brain MRI

    Get PDF

    A large margin algorithm for automated segmentation of white matter hyperintensity

    Get PDF
    Precise detection and quantification of white matter hyperintensity (WMH) is of great interest in studies of neurological and vascular disorders. In this work, we propose a novel method for automatic WMH segmentation with both supervised and semi-supervised large margin algorithms provided by the framework. The proposed algorithms optimize a kernel based max-margin objective function which aims to maximize the margin between inliers and outliers. We show that the semi-supervised learning problem can be formulated to learn a classifier and label assignment simultaneously, which can be solved efficiently by an iterative algorithm. The model is learned first via the supervised approach and then fine-tuned on a target image by using the semi-supervised algorithm. We evaluate our method on 88 brain fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) images from subjects with vascular disease. Quantitative evaluation of the proposed approach shows that it outperforms other well known methods for WMH segmentation

    Brain Tumor Segmentation from Multi-Spectral Magnetic Resonance Image Data Using an Ensemble Learning Approach

    Get PDF
    The automatic segmentation of medical images represents a research domain of high interest. This paper proposes an automatic procedure for the detection and segmentation of gliomas from multi-spectral MRI data. The procedure is based on a machine learning approach: it uses ensembles of binary decision trees trained to distinguish pixels belonging to gliomas to those that represent normal tissues. The classification employs 100 computed features beside the four observed ones, including morphological, gradients and Gabor wavelet features. The output of the decision ensemble is fed to morphological and structural post-processing, which regularize the shape of the detected tumors and improve the segmentation quality. The proposed procedure was evaluated using the BraTS 2015 train data, both the high-grade (HG) and the low-grade (LG) glioma records. The highest overall Dice scores achieved were 86.5% for HG and 84.6% for LG glioma volumes
    • 

    corecore