63 research outputs found

    Computerized Approaches for Retinal Microaneurysm Detection

    Get PDF
    The number of diabetic patients throughout the world is increasing with a very high rate. The patients suffering from long term diabetes have a very high risk of generating retinal disorder called Diabetic Retinopathy(DR). The disease is a complication of diabetes and may results in irreversible blindness to the patient. Early diagnosis and routine checkups by expert ophthalmologist possibly prevent the vision loss. But the number of people to be screen exceeds the number of experts, especially in rural areas. Thus the computerized screening systems are needed which will accurately screen the large amount of population and identify healthy and diseased people. Thus the workload on experts is reduced significantly. Microaneurysms(MA) are first recognizable signs of DR. Thus early detection of DR requires accurate detection of Microaneurysms. Computerized diagnosis insures reliable and accurate detection of MA's. The paper overviews the approaches for computerized detection of retinal Microaneurysms

    Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening.

    Get PDF
    Regular eye screening is essential for the early detection and treatment of the diabetic retinopathy. This paper presents a novel automatic screening system for diabetic retinopathy that focuses on the detection of the earliest visible signs of retinopathy, which are microaneurysms. Microaneurysms are small dots on the retina, formed by ballooning out of a weak part of the capillary wall. The detection of the microaneurysms at an early stage is vital, and it is the first step in preventing the diabetic retinopathy. The paper first explores the existing systems and applications related to diabetic retinopathy screening, with a focus on the microaneurysm detection methods. The proposed decision support system consists of an automatic acquisition, screening and classification of diabetic retinopathy colour fundus images, which could assist in the detection and management of the diabetic retinopathy. Several feature extraction methods and the circular Hough transform have been employed in the proposed microaneurysm detection system, alongside the fuzzy histogram equalisation method. The latter method has been applied in the preprocessing stage of the diabetic retinopathy eye fundus images and provided improved results for detecting the microaneurysms

    Detection of microaneurysms in retinal images using an ensemble classifier

    Get PDF
    This paper introduces, and reports on the performance of, a novel combination of algorithms for automated microaneurysm (MA) detection in retinal images. The presence of MAs in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR) which is one of the leading causes of blindness amongst the working age population. An extensive survey of the literature is presented and current techniques in the field are summarised. The proposed technique first detects an initial set of candidates using a Gaussian Matched Filter and then classifies this set to reduce the number of false positives. A Tree Ensemble classifier is used with a set of 70 features (the most commons features in the literature). A new set of 32 MA groundtruth images (with a total of 256 labelled MAs) based on images from the MESSIDOR dataset is introduced as a public dataset for benchmarking MA detection algorithms. We evaluate our algorithm on this dataset as well as another public dataset (DIARETDB1 v2.1) and compare it against the best available alternative. Results show that the proposed classifier is superior in terms of eliminating false positive MA detection from the initial set of candidates. The proposed method achieves an ROC score of 0.415 compared to 0.2636 achieved by the best available technique. Furthermore, results show that the classifier model maintains consistent performance across datasets, illustrating the generalisability of the classifier and that overfitting does not occur

    Incorporating spatial information for microaneurysm detection in retinal images

    Get PDF
    The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working population worldwide. This paper introduces a novel algorithm that combines information from spatial views of the retina for the purpose of MA detection. Most published research in the literature has addressed the problem of detecting MAs from single retinal images. This work proposes the incorporation of information from two spatial views during the detection process. The algorithm is evaluated using 160 images from 40 patients seen as part of a UK diabetic eye screening programme which contained 207 MAs. An improvement in performance compared to detection from an algorithm that relies on a single image is shown as an increase of 2% ROC score, hence demonstrating the potential of this method

    Microaneurysms detection using a novel neighborhood analysis

    Get PDF
    The earliest sign of the diabetic retinopathy is the appearance of small red dots in retinal fundus images, designated by microaneurysms. In this paper a scale-space based method is proposed for the microaneurysms detection. Initially, the method performs a segmentation of the retinal vasculature and defines a global set of microaneurysms candidates, using both coarser and finer scales. Using the finer scales, a set of microaneurysms candidates are analysed in terms of shape and size. Then, a set of gaussian-shaped matched filters are used to reduce the number of false microaneurysms candidates. Each candidate is labeled as a true microaneurysm using a new neighborhood analysis method. The proposed algorithm was tested with the training Retinopathy Online Challenge (ROC) dataset, revealing a 47% Sensitivity with an average number of 37.9 false positives per image
    corecore