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ABSTRACT 

This paper introduces, and reports on the performance of, a novel combination of algorithms 
for automated microaneurysm (MA) detection in retinal images. The presence of MAs in 
retinal images is a pathognomonic sign of Diabetic Retinopathy (DR) which is one of the 
leading causes of blindness amongst the working age population. An extensive survey of the 
literature is presented and current techniques in the field are summarised. The proposed 
technique first detects an initial set of candidates using a Gaussian Matched Filter and then 
classifies this set to reduce the number of false positives. A Tree Ensemble classifier is used 
with a set of 70 features (the most commons features in the literature). A new set of 32 MA 
groundtruth images (with a total of 256 labelled MAs) based on images from the MESSIDOR 
dataset is introduced as a public dataset for benchmarking MA detection algorithms. We 
evaluate our algorithm on this dataset as well as another public dataset (DIARETDB2) and 
compare it against the best available alternative. Results show that the proposed classifier is 
superior in terms of eliminating false positive MA detection from the initial set of candidates. 
The proposed method achieves an ROC score of 0.415 compared to 0.2636 achieved by the 
best available technique. Furthermore, results show that the classifier model maintains 
consistent performance across datasets, illustrating the generalisability of the classifier and 
that overfitting does not occur. 

Keywords: Image processing, Medical Image Analysis, Retinal Imaging, Microaneurysm 
Detection, Tree Ensemble, Diabetic Retinopathy. 

1. INTRODUCTION 

Retinal Image Analysis (RIA) is an active area of research due to its application in screening 
programs for Diabetic Retinopathy (DR) – one of the leading causes of blindness in the 
developed world. During the screening process, fundus images of the retina are captured for 
the purpose of detection of diabetic retinopathy. The presence of microaneurysms (MAs) in 
retinal images is an early indicator of DR (Figure 1). The automated detection of MAs from 
retinal images can aid in screening programs for DR diagnosis. Several algorithms have been 
proposed for the detection of MA, however, MA detection is still a challenging problem due 
to the variance in appearance of MAs in retinal images [1]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

2 

 

Through our review of MA detection in the literature, we have identified three main stages in 
MA detection algorithms: 1) preprocessing 2) MA candidate detection and 3) candidate 
classification. Preprocessing corrects non-uniform illumination in retinal images and 
enhances the contrast of MAs in the image. MA candidate detection seeks to detect an initial 
set of candidate regions where MAs are likely to exist. MA candidate classification applies 
machine learning techniques in order to improve the specificity of the algorithm by filtering 
out false positives from the candidate detection phase. Some of the proposed methods in the 
literature are unsupervised methods, which means they do not require the third classification 
stage [1]–[7]. A summary of MA candidate detection algorithms presented in the literature is 
listed in Table 1. For each algorithm the table describes image type, the initial candidates 
method, the classifier used, and the reported performance for each classifier. Most of the 
literature has differences in the method used to evaluate their algorithms or the dataset used, 
which makes it difficult to compare any 2 algorithms together. One of the earliest proposed 
techniques for MA detection was applied to fluorescein angiograms [8]. A Gaussian matched 
filter was used to detect the initial set of candidates. Finally, each initial candidate was 
classified as either a true candidate or a spurious one using some features, producing the final 
classification result. Cree [9] applied Spencer’s technique [8] to multiple longitudinal 
florescence images in order to detect the ‘MA turnover’ – the appearance or disappearance of 
MA objects over time. 

 
Figure 1 Examples of various microaneurysms with varying appearances and locations. 

More recent techniques have tackled the problem of MA detection in colour fundus images. 
The main reason for this is that colour images are more common in screening programs and 
are also non-invasive to capture, unlike fluorescein images. The following methods are all 
based on MA detection in colour fundus images. 

A number of techniques have adapted Spencer’s approach in terms of applying 
morphological vessel removal followed by a Gaussian matched filter. Hipwell [10] performed 
a modification of Cree [9] in order to apply the algorithm to colour fundus images. Streeter 
[11] used a method based on Cree [9]. However, during the classification phase, 80 features 
are extracted and Linear Discriminant Analysis (LDA) was used to perform the classification. 
Feature Selection was performed to filter the features down to 16 features. Feature Selection 
is a process to reduce redundant features in order to reduce computational time and decrease 
chances of overfitting. Another Spencer-based approach was introduced in Fleming [12]. 
This technique introduced a novel region-growing step based on gradient values, rather than a 
simple threshold. In addition a paraboloid was fitted to each candidate using a parameter 
optimization process. The paraboloid parameters are used to compute many of the features 
used in the candidate classification phase. Instead of using a single Gaussian matched filter, 
Zhang [13] applied multiple Gaussian filters at multiple scales and computed the maximum 
response to produce a probability map of the likelihood of presence of MA candidates. This 
probability map was then thresholded to produce the initial set of MA candidates. Finally a 
rule-based classifier using 30 features was used to perform the final classification. Li [4] used 
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an unsupervised method based on a Multi-orientation Sum of Matched Filter (MSMF). This 
filter is a modification of the classical Gaussian Matched filter. This modified filter is 
anisotropic in nature and is applied in multiple directions. Hence, this filter is better at 
suppressing responses to blood vessels than the Gaussian Matched filter. Wu [14] modified 
the MSMF filter to take into account the varying size of MAs. 

Sánchez used a mixture model-based clustering technique to detect the initial MA candidate 
regions [7]. The technique fits three normal distribution histograms to the retinal image 
histogram. These histograms correspond to foreground, background and outliers. The 
foreground histogram pixels are considered as the initial set of MA candidate regions. 
Finally, logistic regression was used to classify each MA region as belonging to either a 
foreground or background region. Quellec [15] based his technique on wavelet transforms 
applied in different sub-bands of the colour image. 

A double-ring filter was used in Mizutani [16] to detect the initial candidates. The filter used 
the property that MAs are dark circular regions within a brighter region to detect the MA 
candidates. It consists of an inner ring and an outer ring. A given pixel is considered to be a 
MA pixel if the average intensity of the inner ring is smaller than the average intensity of the 
outer ring. After the initial candidates are detected, classification is performed using 12 
extracted features and an Artificial Neural Network (ANN). 

Initial candidates were detected using simple thresholding in Giancardo [5], [6]. A novel 
Radon-based transform was used to extract the features of the initial candidates and a Support 
Vector Machine (SVM) classifier was used to perform the final classification. An initial set 
of 31 features were computed for classification. The dimensionality of the features was 
reduced to 10 dimensions using Principle Component Analysis (PCA), and this reduced 
representation was used to perform the classification. A reduced dimension for the features 
reduces the risk of overfitting and also makes the classification more computationally 
efficient. 

Sinthanayothin [17] used a ‘moat operator’ to enhance red lesions in the image and then these 
regions were segmented. Vessel regions were then removed to produce the final set of 
candidates. Note that this method detected both MAs and haemorrhages. The moat operator 
was not defined in the paper and we were unable to find the exact definition in the literature. 

AbdelAzeem [18] used a Hessian matrix in order to detect the initial MA candidate set. A 
rule based classifier is then used to detect false MA detections. The rule is simply based on 
the candidate ‘energy’. The exact definition of the computed ‘energy’ was not mentioned in 
the paper, however, it is likely to be the same definition as in Fleming [12]. Inoue [19] relied 
on a Hessian matrix in order to detect the initial candidates and an Artificial Neural Network 
(ANN) was used to classify the features. A group of 126 features were fed into the ANN for 
classification. However this group of features was reduced using Principle Component 
Analysis (PCA) in order to reduce computational complexity and avoid overfitting. 
Moreover, Srivastava [20] used the eigenvalues of the hessian matrix in order to detect the 
initial candidates. Recently, Adal  has used a hessian matrix in order to detect the initial set of 
MA candidates. A combination of SURF, Radon and scale-space features were extracted 
from the initial candidates. Multiple classifiers (Support Vector Machines, K-Nearest-
Neighbours, Naive Bayes and Random Forest) were also experimented with in this technique. 
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An adaptation of Spencer [8] and Frame [22] is presented in Niemeijer [22]. Two main 
contributions were added: A pixel based classification system for the initial candidate 
detection phase and an extended set of features used for pixel classification.  

Table 1. Summary of MA detection algorithms in the literature. The performance superscripts are defined as follows: a) 
Lesion-based measure b) Image-based measure c) Pixel-based measure. Key: AUC – Area Under the Curve, FP/image - False 

positives per image, PPV – Positive Predictive Value.  

Paper Image Type Initial candidates method Classifier used 
Reported Performance 

Dataset Performance 

Spencer, 1995 [8] Florescence Gaussian Filter  Rule-based 
Private dataset 
(4 images) 

Sensitivitya: 0.25 
FP/imagea: 1.0 

Cree, 1997 [9] Florescence Gaussian Filter Rule-based 
Private dataset 
(20 images) 

Sensitivitya: 0.6 
FP/imagea: 1.0 

Hipwell, 2000 [10] Colour Basic Thresholding Rule-based 
Private dataset 
(3783 images) 

Sensitivitya: 0.6  
FP/imagea: 1.0 

Sinthanayothin, 2002 
[17] 

Colour Moat operator N/A 
Private dataset 
(14 images) 

Sensitivityb: 0.885 
Specificityb: 0.997 

AbdelAzeem, 2002 [18] Florescence Hough transform Rule-based 
Private dataset 
(3 images) 

Sensitivitya: o.6  
FP/imagea: 17.67 

Streeter, 2003 [11] Colour Gaussian filter 
Linear Discriminant 
Analysis 

Private dataset 
Sensitivitya: 0.3 
FP/imagea: 1.0 

Niemeijer, 2005 [21] Colour 
Gaussian Filter pixel 
classification 

K-Nearest-Neighbours 
Private dataset 
(100 images) 

Sensitivitya: 0.83 
FP/imagea: 1.0 
Sensitivityb: 1 .0 
Specificityb: 0.5 

Fleming, 2006 [12] Colour Gaussian Filter K-Nearest-Neighbours 
Private dataset 
(1441 images) 

Sensitivitya: 0.51  
FP/imagea: 1.0  
Sensitivityb: 0.91 
Specificityb: 0.5 

Quellec, 2008 [15] Colour N/A N/A ROC dataset 
Sensitivityc: 0.90 
Specificityc: 0.89 

Mizutani, 2009 [16] Colour double-ring filter Neural network ROC dataset 
Sensitivityc: 0.15 
PPVc: 1.0 

Sánchez, 2009 [7] Colour 
Mixture model-based 
clustering 

N/A ROC dataset 
ROC score: 0.332 
Sensitivitya: 0.30 
FP/imagea: 1.0 

Zhang, 2010 [13] Colour Multiscale Gaussian Rule-based ROC dataset 
Sensitivitya: 0.11 
FP/imagea: 1.0 
ROC: 0.201 

Giancardo, 2010 [5] Colour Basic Thresholding N/A ROC dataset Sensitivitya: 0.22 

Lazar, 2011 [2] Colour Local Maxima scanlines N/A ROC dataset 
Sensitivitya: 0.38 
FP/imagea: 1.0 
ROC score: 0.355 

Sopharak, 2011 [23] Colour extended-minima Naïve Bayes 
Private dataset 
(45 images) 

Sensitivityc: 0.816 
Specificityc:  0.99 

Giancardo, 2011 [6] Colour Basic Thresholding N/A ROC dataset 
Sensitivitya: 0.43  
FP/imagea: 1.0 
ROC: 0.375 

Lazar, 2013 [1] Colour Local Maxima scanlines N/A ROC dataset 
Sensitivitya: 0.41 
FP/imagea: 1.0 
ROC: 0.423 

Rocha, 2012 [24] Colour N/A 
Support Vector 
Machine 

DIARETDB2  
Sensitivityc: 0.91 
Specificityc: 0.5  

MESSIDOR 
Sensitivityc: 0.93 
Specificityc: 0.5  

Sopharak, 2013 [25] Colour extended-minima  Bayesian 
Private dataset 
(80 images) 

Sensitivityc: 0.86 
Specificityc: 0.99  

Li, 2013 [4] Colour 
Multi-orientation Gaussian 
(MSMF) 

N/A ROC dataset 
Sensitivitya: 0.05 
FP/imagea: 1.0 

Junior, 2013 [3] Colour Extended Minima N/A DAIRETDB1 
Sensitivityc: 0.87 
Specificityc: 0.92 
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Inoue, 2013 [19] Colour 
Hessian Matrix 
Eigenvalues 

Neural network ROC dataset 
Sensitivitya: 0.18 
FP/imagea: 1.0 

Adal, 2014 [21] Colour 
Hessian Matrix 
Eigenvalues 

Support Vector 
Machines, K-Nearest-
Neighbours, Naïve 
Bayes, Random Forest 

ROC dataset 
ROC score: 0.363 
Sensitivitya: 0.364 
FP/imagea: 1.0 

Ram, 2015  [26] Colour 
Morphological 
reconstruction 

K-Nearest-Neighbours 

ROC dataset 
Sensitivitya: 0.31 
FP/imagea: 1.0 

DIARETDB2 
Sensitivitya: 0.73 
FP/imagea: 1.0 

Private dataset 
Sensitivitya: 0.18 
FP/imagea: 8.0 

Wu, 2015 [14] Colour 
Multiscale Multi-
orientation Gaussian 
(MMMF) 

Support Vector 
Machines, K-Nearest-
Neighbours, Linear 
Discriminant Analysis 

ROC dataset 

Sensitivitya: 0.23 
FP/imagea: 1.0 
Sensitivityc: 0.92 
Specificityc: 0.50 

Srivastava, 2015 [20] Colour Frangi-based filters 
Support Vector 
Machines 

MESSIDOR+ 
DIARETDB2 

Sensitivityc: 1.00 
Specificityc: 0.50 

Romero, 2015 [27] Colour Hit-or-miss transform Neural networks 

DIARETDB2  
Sensitivityc: 0.93 
Specificityc: 0.94 

ROC dataset 
Sensitivityc: 0.88 
Specificityc: 0.97 

Haloi, 2015 [28] Colour N/A 
Nearest-mean 
classifier 

DIARETDB2 
Sensitivityc: 0.88 
Specificityc: 0.97 

ROC dataset AUCc: 0.98  

 

A unique method was introduced in Lazar [1], [2] since it is an unsupervised technique that 
does not require any training or classification steps. Moreover the reported results of this 
technique are comparable to other supervised methods, which make it a promising method. 
The essence of this technique is to discriminate between vessels and MAs by using a 1D 
scanline at different directions for each pixel. While a MA will have local minima in all 
directions of the rotated scanlines, a vessel will have only one minima corresponding to when 
the scanline is perpendicular to the vessel. Hence, using this property, a probability map is 
produced at each pixel and then simple thresholding is applied to produce the final set of 
candidates. 

Garcia [29] compared the accuracy of four neural network variants: Multilayer Perceptron 
(MP), Radial Basis Function (RBF), Support Vector Machine (SVM) and Majority Voting 
(MV). The initial candidates were detected using a local thresholding technique based on the 
mean pixels of the entire image compared to mean intensity in a small window around a 
pixel. According to their experiments, the RBF was suggested as the preferred classifier 
among all 4. An interesting approach that relies on visual dictionaries was presented in Rocha 
[24]. The use of visual dictionaries (bag of words) makes this approach more generizable 
since it does not rely on specific features during the classification. Therefore, the same 
approach can be used to perform detection of lesions other than MAs as well. The 
disadvantage of this is that it requires a larger training set. Haloi [28]  recently applied deep 
neural networks to detect MAs in colour images. Deep neural networks have gained 
popularity in the field of computer vision in the recent years since they do not require manual 
feature engineering (selection of features). Moreover, algorithms based on deep learning have 
produced results that out-perform other state-of-the-art algorithms in other computer vision 
applications. However, deep learning requires massive datasets for training [30] and such 
large labelled datasets are not yet available for retinal images. 
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Ram [26] used a dual classifier in order classify the initial candidates. The initial candidates 
were detected using a simple thresholding operation after preprocessing.  Two classification 
stages are then applied. The first classification stage was applied in order to separate MAs 
from vessels. The features used for this purpose are a second derivative Gaussian at multiple 
orientations, difference of Gaussians and inverted Gaussians. The second classification stage 
was applied in order to further separate MAs from other types of noise.  

Unlike the aforementioned algorithms Sopharak [23], [25], [31] performs the MA 
classification on a pixel level rather than at a candidate level. This means that each pixel gets 
classified as either an MA or not, rather than each initial candidate as a whole. After 
preprocessing, the extended-minima transform is used to detect the initial candidates, and a 
Bayesian classifier was used to perform the pixel-based MA classification. Similarly, Junior 
[3] presents the same technique as Sopharak, but does not apply a classification stage. 

The objective of the present work is as follows: 1) to present a new technique for MA 
detection based on an ensemble classifier for classification. 2) Introduce 70 of the most 
common features used in the literature and perform feature ranking in order to identify the 
features that are most important for discriminating MA candidates from spurious objects. 3) 
To introduce a new groundtruth dataset for MA detection based on the MESSIDOR dataset. 

Section 2 describes the methodology of the proposed algorithm. In Section 3, a new dataset 
of MA groundtruth images is introduced and the experiments performed to evaluate the 
algorithm are discussed and the results presented. A final discussion is presented in Section 4 
and concluding remarks are presented in Section 5. 

2. METHODOLOGY 

The proposed method is based on the method suggested by Fleming [12]. The main 
modifications that were made to Fleming’s algorithm will be stated throughout the 
methodology section. This work is an extension of the algorithm published in [32] and 
includes a more extensive evaluation as well as detailed feature analysis. The proposed 
methodology consists of three phases: 1) preprocessing 2) MA Candidate Detection and 3) 
MA Candidate Classification. During the preprocessing stage non-uniform illumination is 
removed from the image using background subtraction. Noise removal is also performed 
during this stage. In the MA Candidates Detection phase an initial set of MA candidates are 
detected. Ideally all the candidates in the image should be detected with as few false positives 
as possible. Most of these false positives should then be removed during the Candidate 
Classification phase. The three stages of the proposed algorithm will be explained in the 
following sections.  

Despite being published in 2006, Fleming’s reported per-lesion performance on a large 
private dataset is comparable to recently published methods. This makes it reasonable to use 
Fleming as a baseline for comparison with the proposed technique. These methods include 
Wu (2015) [28], Adal (2014) [27], Inoue (2013) [20] and Li (2013) [14]. This is also 
illustrated in Table 1, and discussed in Section 5.1. 
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2.1. Preprocessing 

The preprocessing steps are as follows: Given a colour retinal image (Figure 2a) the green 
channel is extracted (Figure 2b) since MA candidates appear with high contrast in this 
channel. Salt-and-pepper noise is removed by applying 3x3 median filter. Contrast-Limited 
Adaptive Histogram Equalisation (CLAHE) [33] is applied in order to improve the contrast in 
the image. Further noise removal is performed by applying a 3x3 Gaussian filter to the image. 
Let the resulting of the previous operations be ������. Shade correction (������ ) is performed 
by dividing the image by an estimate of the background: 

 ������ = ������/��� (1) 

Where ��� is the background estimate calculated by applying a 68x68 median filter to ������. 
The filter size is chosen to be large enough in order to eliminate vessels and other features in 
the image. Finally, global contrast normalization is performed on the resulting image by 
dividing it by its standard deviation: 

 
��� =

������

���(������)
 

(2) 

Where ���(������) represents the standard deviation of the shade corrected image. The result 
of these operations is illustrated in Figure 2(c). Following these operations we need to detect 
an initial set of MA candidates from the preprocessed image. This is described in the 
following section.  

 

Figure 2 An example of the preprocessing stage. a) The colour image, b) the green channel image, c) the preprocessed 
image. 

2.2. MA Candidate Detection 

After performing noise removal and shade correction, an initial set of MA candidates can be 
detected. The method used is based on that proposed by Fleming [12]. A Gaussian matched 
filter (� = 1) is used in order to enhance circular dark regions in the image. Since blood 
vessel cross-sections have intensity profiles similar to MAs, they need to be removed before 
applying the Gaussian matched filter. The following morphological operations are applied for 
vessel removal. 
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A closing operation is applied using a linear structuring element at multiple directions. The 
minimum of the application of closing operation at multiple operations was then subtracted 
from the shade corrected image [12]. 

 ������� = ������ − min
���..�

(I!"#$% ∘ strel(πi/8, n)) (3) 

Where strel(x,n) represents a linear structuring element at an angle of x degrees and of length 
n. The size of the structuring element should be chosen to be larger than the largest vessel in 
the images (in our case a size of 11 pixels was selected through direct measurement in the 
images).  This operation causes vessels to be removed from the image while retaining circular 
objects which resemble the shape of MAs (Figure 2 (a) and Figure 2(b)).  

A Gaussian matched filter (� = 1.0) is then convoluted with  ������� in order to enhance 
circular dark regions ���0�� = ������� ∗ 234��(1.0) (Figure 2(c)). The resulting response 
probability is then thresholded as follows: 

 ���5��� = �ℎ78�ℎ(���0��, 5:) (4) 

The value of : is chosen to be the threshold value at which the top 5 percent of pixels are 
selected [12]. A region growing operation based on Fleming [12] is performed in order to 
enhance the shapes of the detected MA candidates. The set of initial candidates are used as 
input. The procedure involves iteratively growing along the 8-connected pixels from the 
minimum intensity pixel of the candidate until a stopping condition. In our case, the stopping 
condition is when a maxima point of the “energy function” is reached. The energy function is 
defined as the average value of the gradients around the boundary of the grown region. All 
the parameters at this stage have been kept the same except the maximum grown size.  

Table 2 Features list. The symbols below (G,t,seed,c,σ) are defined in Section  2.3. Key: std - standard deviation, max - 
maximum, min - minimumç 

Category Index Description Parameters Feature 
count 

Fleming 

1 Number of peaks N/A 1 

2 Major Axis length N/A 1 

3 Mean of minor and major axis N/A 1 

4 Eccentricity N/A 1 

5 Depth of candidate in the original image N/A 1 

6 Depth of candidate in the preprocessed image N/A 1 

7 Energy N/A 1 

8 candidate depth / mean diameter of MA 
candidate 

N/A 1 

9 Energy with depth correction N/A 1 

Moment 
Invariants 

10 7 moment invariant features N/A 7 

Shape features 
11 Aspect ratio N/A 1 
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12 Major axis length N/A 1 

13 Minor axis length N/A 1 

14 Perimeter N/A 1 

15 Area N/A 1 

16 Eccentricity N/A 1 

17 Compactness N/A 1 

Gaussian features 

18 Gaussian seed pixel response:   G<(seed(c)) 

� = 1 

1 

19 mean
(@,A)∈C

(G<(x, y)) 1 

20 std
(@,A)∈C

(G<(x, y)) 1 

Gaussian Features 
1D 

21 Max 1D Gaussian response at various angles: 

max
F∈G

(GH,F
HI(x, y)) 

θ ∈ {0,10,20,… ,180} 

1 

22 Min 1D Gaussian response at various angles: 

min
F∈G

(GH,F
HI(x, y)) 

1 

23 Mean 1D Gaussian response at various angles: 

mean
F∈G

(GH,F
HI(x, y)) 

1 

24 Std of 1D Gaussian response at various 
angles: 

std
�∈O

(PH,�
HQ(R, S)) 

1 

25 1D gaussian response at angle perpendicular 
to the maximum response (30) 

N/A 1 

26 max ( 29,33 ) N/A 1 

Intensity features 

27 Sum of candidate intensities 

Applied to red, blue, 
green, hue, saturation, 
value and 
preprocessed 
channels. 

7 

28 mean candidate intensity 7 

29 standard deviation of the candidate intensity 7 

30 Range (Max - min candidate value) 7 

31 candidate contrast 7 

Morphological 
features 

32 maximum candidate response of the morph 
close ratio 

N/A 1 

33 minimum candidate response of the morph 
close ratio 

N/A 1 

34 mean  candidate response of the morph close 
ratio 

N/A 1 

TOTAL 70 
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Through our experiments it was found that the maximum grown size of 3000 pixels 
suggested by Fleming resulted in large blood vessel regions being falsely identified. We 
empirically found that a value of 100 pixels was a more suitable value for the maximum area 
and this parameter modification decreased the number of false positives appreciably, while 
achieving almost the same sensitivity. The value was chosen to be over twice the size of the 
average MA size in the groundtruth images (Figure 3 (d)). The region growing operation 
causes the intensity profile of the boundary to be detected more accurately. 

 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 3 An example of the candidate detection phase a) The preprocessed image, b) The 
result of the bottomhat operation, c) the Gaussian filter response d) The thresholded image e) 
the result of the region growing operation. The highlighted region is a true microaneurysm. 

2.3. MA Candidate Classification 

The initial candidate detection phase will inevitably produce false positives. The main 
reasons for this are: 1) vessel cross sections or vessels that were not removed before the 
Gaussian filter and 2) noise in the image that looks similar to MAs. For these reasons a 
classification phase was required in order to reduce the number of false positives that were 
detected during the candidate detection phase. 

The proposed method uses a Tree Ensemble classifier for classification. A Tree Ensemble 
classifier is an ensemble classifier based on decision tree learning. An ensemble classifier 
combines the decisions of multiple weak classifiers. Our main motivation for the use of this 
classifier are: 1) Successful application in other fields [34], [35], 2) it can rank features while 
performing classification, giving insights about the most important features, and 3) 
robustness to outliers and the ability to cope with small training sets [36].  

Given a training set T consisting of data {(S�, R�), U = 1 … , V} where y represents the 
classification label (1 or 0 in our case), a given CART (Classification And Regression 
Trees) classifier W(R, T) will predict S given unlabeled data R. 

However, in the case of an ensemble of trees we are given a sequence of training sets 
{TX, Y = 1 … , Z} and a sequence of classifiers {WX(R, TX)} is produced. The [�� classifier 
W\(R, T\) in the set will produce a label S\. The set of labels {SX} produced by the K classifiers 

need to be aggregated to produce a final label S for unlabelled data R. In our case a majority 
vote of the set of class labels {SX} is used to produce the final classification S. It has been 
shown that combining the results of a set of week classifiers {WX(R, TX)} often outperforms 
using a single classifier on the whole training set W(R, T) [37]. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

The final point that needs to be addressed is that given a training set T, how can we produce a 
set of training sets {TX} that will be used to train each tree classifier W\(R, T\). A sampling 

technique known as Bootstrap aggregation (or bagging) [37] was used in order to sample the 
training data during the training process. In bagging, the [�� training set T\ is obtained by 

drawing ] samples (with replacement) from the set of V training data, T (where ] ≤ 	V). In 
practice, in order to produce T\ a set of M random numbers {7̀ ; 7̀ ≤ V, b = 1 … ]}, and 

then T\ is drawn using T\ = {(S5c , R5c)}. There is no restriction that the generated random 

numbers are unique and therefore each sample in the set {(S�, R�}) may be used more than 
once or not at all in T\. After producing Z training sets from T, there will be a set of samples 

in T that have not been drawn in any of the samples in the [�� classifer T\. These unused 

features can be used to estimate the classification error (out-of-bag-error) for each tree and 
also estimate the “importance” of each feature (based on each tree and then averaged over all 
trees) [38].  The bagging approach is used to increase the diversity of training samples across 
the trees, which leads to increased prediction accuracy for unstable classifiers (including 
decision trees) [37], [39]. 

We have extended Fleming’s [12] feature set of 10 features to include a set of 70 features. 
These were based on the features that have been reported in the literature. Table 2 displays a 
list of the 70 features that were fed into the classifier. These features are explained below in 
the same order of appearance as Table 2: 

• Fleming’s features: These are the features introduced by Fleming in his technique 
[12]. These features rely on fitting a paraboloid to each candidate’s intensity profile in 
order to estimate some parameters from the paraboloid. These features are based on 
both the shape and intensity of the object. A detailed explanation of these features can 
be found in the original paper [12]. 

• Shape features & Moment Invariants: These features describe various shape 
properties of the detected candidates. Moment Invariants (10) are 7 features that 
represent various shape properties of an object [40]. Other shape features include 
Aspect Ratio (major axis length / minor axis length), major axis length, minor axis 
length, Perimeter, Area, Eccentricity, Compactness. Some of these are common to 
Fleming’s features, however these are calculated at a pixel level rather than after 
fitting a paraboloid to the candidate. To elaborate, Fleming estimates a paraboloid for 
each candidate and then computes the values of eccentricity and major & minor-axis 
length from the paraboloid. In contrast, these features are calculated from the binary 
image. 

•  Gaussian Features: Features that are based on Gaussian filters have been 
extensively used in the literature [12]–[14], [25], [29]. In our case we have 
experimented with features that rely on	� = 1 since that is parameter used during the 
initial candidates detection phase. Some definitions related to these features will 
follow. The symbols mentioned below also appear in Table 2. Let ������ be the shade 
corrected image (Section ) and: 
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 Pd = ������ ∗ 234��(�) (5) 

be the Gaussian filter response for sigma = � and Pd(R, S) be the filter response at 
coordinates (R, S). Let f̅ be a set of initial candidates detected (after region growing). 
Each candidate (h) is a set of coordinates (Ri, Si). Let �88�(h) be the coordinates 
(R�, S�) of the minimum intensity defined as follows: 

 �88�(h) = (R�, S�) = argmin
(j,k)∈

(������(R, S)) (6) 

A 1-Dimensional Gaussian is a special case of Pd applied linearly in one direction. 
P�,�

HQ(R, S) is the 1D Gaussian applied at angle � and a scale (standard deviation) of �. 
In our case we have applied the 1D Gaussian at a constant scale (� = 1). Let the set l 
be the set of angles applied at each coordinate. In our experiments: 

 l ∈ {li ∶ li = 10 ∗ n; 			n = [0. .18]} (7) 

• Intensity Features: These are calculated directly from the intensity in the image at 
multiple bands: the red (R), blue (B), green (G) band in the RGB colour space; the 
Hue (H), saturation (S) and value (V) bands of the HSV space [13]. 

• Morphological Features: These three features are based on applying a linear 
morphological close operator (15 px size has been empirically chosen to be larger 
than the largest vessel in the dataset) at different angles (l ∈ {li ∶ li = 22.5 ∗ n; 			n =
[0. .7]}) and are aimed at discriminating vessels from MAs. This is because the linear 
structures of vessels would respond differently to different angles of the linear 
operator, while the circular nature of MA objects would cause the response of the 
morphological operator to be more uniform. 

3. EXPERIMENTS 

This section explains the methodology that has been followed in order to evaluate the 
proposed algorithm. An overview of the publically available datasets for microaneurysm 
detection is presented in Section 3.1. An MA groundtruth dataset based on a subset of the 
MESSIDOR dataset [41] is also introduced in this section. Details of the evaluation method 
are explained in Section 3.2. 

3.1. Dataset 

To the best of our knowledge, there are two public datasets for MA detection: the 
Retinopathy Online Challenge dataset (ROC dataset) [1] and the DIARETDB2 dataset [42]. 
The ROC dataset contains 100 images split into 50 training images and 50 test images. 
Groundtruths are only available for the training set. The test set groundtruths are not public 
since the contest organizers used those to evaluate submissions. Moreover, the groundtruth of 
this dataset has generated discussion in the literature [6], [16] due to the fact that many of the 
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MA candidates marked in the groundtruth are invisible to the viewers or could not be seen by 
other expert observers. This made it difficult to rely on this dataset as a benchmarking dataset 
for MA algorithms. The DIARETDB2 dataset is a general-purpose dataset for the detection 
of diabetic retinopathy (DR) from retinal images. The dataset includes groundtruths for 
various lesions in the image including MAs, haemorrhages and exudates, as labelled by 4 
experts. However, in order to reduce the bias in labelling, the experts were not instructed to 
mark a specific shape for each lesion. Hence, some of the experts marked large regions 
around a group of MAs as groundtruths and others did not. Thus, labelling of some of the 
MAs resulted in unusual shapes after the 4 expert labels were fused together (Figure 4). To 
address the shortcomings in the current public datasets we introduced a new public dataset of 
MA groundtruths for the purpose of benchmarking MA detection algorithms. This is 
described in the next section. 

 
Figure 4 Examples of DIARETDB2 gorundtruth candidates that do not correspond to the microaneurysm shape in the 

orignal image. The first row shows patches MA groundtruth in the dataset. The second row shows corresponding patches 
from the retinal images. The retinal image patches have been enhanced to improve MA contrast. 

Due to the reasons mentioned above, as well as to add more variety to the existing datasets, 
we have produced a new public MA groundtruth set based on the MESSIDOR database1 [41]. 
Thirty-two images were selected from the MESSIDOR dataset to cover a wide range of 
retinopathy. A summary of the images in dataset in terms of retinopathy grade and number of 
MAs included in the set is shown in Table 3. The grade is predominantly based on the 
number of MAs (the presence of haemorrhages and new vessels is also factored in) [41]. We 
have included 16 healthy images (without MAs) in order to maintain a balanced dataset while 
performing per-image MA evaluation (evaluating whether or not an MA candidate exists for 
each image). A summary of the distribution of retinopathy grade in the 32 images is 
presented in Table 3. The images belonged to the same resolution of 1440 x 960 px. 

The images were groundtruthed by an expert grader. The dataset has also been made publicly 
available 1. All the visible MAs were marked during the process. A circular marker was used 
rather than pixel-based marker [43]. The main reason for the use of a circular marker is that 
majority of the literature has relied on lesion-based metrics to measure the accuracy of 
detection. Using lesion-based metrics makes the results more sensible since the measure is 
informative of the amount of MA candidates that were detected by a given algorithm. In 
contrast, reliance on pixel-based metrics can be misleading due to the imbalance in 
proportion between very few MA pixels and a large number of background pixels. 

                                                 

1 The groundtruth dataset can be downloaded using the following link: 
http://blogs.kingston.ac.uk/retinal/?p=311  
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Table 3 Distribution of DR grades (a) and resolutions (b) of images in the dataset. 

Retinopathy Grade Number of 
Microaneurysms 

No. of images 
(training) 

No. of images 
(test) 

DR0 0 8 8 

DR1 1-5 3 4 

DR2 6-14 3 3 

DR3 >15 2 1 

 TOTAL 16 16 

Motivated by the Retinopathy Online Challenge [43], each MA candidate was labelled using 
one of the following categories: Obvious, Regular or Subtle and Close-to-Vessel (Figure 1). 
The labels Obvious, Regular or Subtle are based on the relative visibility and/or local contrast 
of the corresponding MA in the image. Close-to-Vessel is a label given to MA candidates that 
lie close to a blood vessel. A detailed explanation of each category is mentioned in [43]. 

3.2. Evaluation 

We have used the public MESSIDOR dataset mentioned in the previous section to train and 
validate the classifier model. Hence we have built our models using the training images in the 
set and measured the accuracy of the model using the 16 test images in the MESSIDOR set 
(the cross validation error). In order to ensure that our model is not overfitting the 
MESSIDOR dataset we have performed testing on the DIARETDB2 test set by further 
measuring the performance of our models on this set (the cross-validation error). In case of an 
overfit model the cross-validation error would be greater than the test error [35]. We have 
ensured that the cross-validation error was similar to the testing error for our model. The 
following procedure was followed in order to perform the evaluation on the dataset: 

• The dataset was split into 16 images for training and 16 images for testing (Table 3).  
• The procedure outlined in Section 2.3 was used to generate the 70 features. The 

training groundtruth was used to label the features. These features were used to train 
the Tree Ensemble classifier and generate the model. Note that the training set was 
undersampled in order to maintain a balance between the positive and negative 
samples. One parameter that needs to be set for the Tree Ensemble classifier is the 
number of generated trees (V). Figure 5 shows the out-of-bag (OOB) classification 
error as a function of the number of trees in the Tree Ensemble classifier. We have 
selected a value of V = 40 based on Figure 5. This is also within the range 
recommended by Brieman [37]. The value of V is chosen from the plot at the point 
where there is no more significant decrease in the OOB error. 

• For each image in the test set, the procedure outlined in Section 2.2 was used to find 
the set of candidates and their corresponding features. Each candidate feature vector 
was then fed into the classifier in order to classify it as a true candidate or a false 
positive. 

• The final classified set of candidates was then compared against the test set ground 
truths in order to perform the evaluation. 

In addition to the proposed algorithm, we have also implemented Fleming’s algorithm [12] in 
order to compare it against the proposed technique. Fleming uses a K-Nearest-Neighbours 
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classifier with 9 features. We call this the “basic feature set”. In addition, we have also used 
the K-Nearest-Neighbours classifier with all 70 features, and we call this the “extended 
feature set”. 

 
Figure 5 Out of bag (OOB) classification error as a function of the number of trees in the Tree Ensemble classifier. 

 

In order to measure the accuracy of the algorithm, we measured the sensitivity of the 
proposed method [8]. Given image �i in a test set (for n = [1. . �], where � is the number of 
images in the test set), let Pi be the set of true MA objects (groundtruth) for image �i and fi 
be the set of detected candidates after classification (Section II C) for image �i. The 
sensitivity is defined as: 

 

s8U�n�ntn�S =
∑ │Pi ∩ fi│�

i�H

∑ │Pi│�
i�H

 (8) 

Where |R| represents set cardinality of x. Thus the sensitivity is the proportion of true 
candidates detected in proportion to the total number of true candidates. A candidate h ∈ f is 
considered to be equivalent to  2 ∈ P if the pixel coordinates of g and c overlap by at least 1 
pixel (Figure 6). Note that we are measuring the sensitivity at a candidate level rather than at 
a pixel level (lesion-based sensitivity). Since we cannot determine the number of true 
negatives, we used a Free Receiver Operating Curve (FROC) rather than a traditional ROC 
curve [9]. In an FROC curve, the x-axis is replaced with the average number of false positive 
candidates per image instead of the specificity. Figure 9 shows FROC curves for both the 
proposed method (using the Tree Ensemble classifier) (solid) and Fleming’s method (using 
K-Nearest Neighbours) (dotted) for multiple categories in the dataset. Each curve was 
generated by evaluating the trained model on the test set. The dotted curve represents the 
performance of Fleming’s state-of-the-art algorithm on the MESSIDOR dataset, the dashed 
curve represents the performance of Fleming’s algorithm (using the K-Nearest-Neighbours 
classifier) with the extended feature set. A value of Z = 15 was used for the K-Nearest-

Figure 6 An example of a candidate (dotted circle) that is considered to match a groundtruth (solid circle). There is a match 
since the centre of the candidate lies within the groundtruth region.3 
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Neighbours classifier [12]. Each classifier produces a probability value (y) between 0 and 1 
representing the likelihood of a candidate belonging to 0 or 1. We use a threshold value y� to 
produce the final classification (i.e. class= 0 if  y ≤ y�, otherwise class= 1) . The value of 
y� was varied in order to generate the FROC curve. Tree Ensembles generate trees at random 
and generates the attribute splits at random as well [34], [35]. Due to this feature of the 
classifier, every run produces results with slightly different accuracy (Figure 7). To overcome 
the varying results, we have applied the Random Forest classifier multiple times and, for each 
run in the curve, we calculate the Area Under each Curve. Finally we display the curve with 
the median AUC value. This helps reduce the variability in the FROC curve. For our 
experiments we found that applying the classifier 11 times was sufficient to reduce the 
variability in the results. In an experiment run on the MESSIDOR dataset the Tree Ensemble 
classifier was run 100 times and the average mean squared error (MSE) for all the curves was 
found to be 0.0124, which shows that the variability in the classifier can be considered 
negligible. 

 
Figure 7 An example of variability in results everytime a Tree ensemble model is built for classification. In this example the 

Tree ensemble classifier was run 11 times and the maximum, minimum and median results are displayed. 

4. RESULTS 

In this section experimental results of the proposed algorithms are presented. Both visual and 
quantitiative results are presented. Section 4.1 presents patches of the algorithm which show 
detections of microaneurysms and the classification results. The patches are compared to both 
Fleming and an extended version of Fleming. Section 4.2 will present some quantitative 
results for both the MESSIDOR and DIARETDB2 datasets. An analysis of the features and 
the discriminative ability of each feature will be listed in Section 4.3. 

4.1. Visual Results 

Figure 8 shows example patches from the MESSIDOR images for the three methods 
mentioned in Section 3.2. The figure shows several patches from multiple colour images. The 
patches are scaled by 200% and for each patch the groundtruth, the MA candidates (after 
region growing) and the result of the classification have been highlighted. For the purpose of 
comparison the results are shown for the proposed method, Fleming’s algorithm with the 
basic feature set, and Fleming’s algorithm with the extended feature set.  
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Figure 8 Examples of microaneurysm detection algorithms applied to the MESSIDOR dataset. The first column shows the 
colour image patch. Columns 2-4 show the preprocessed image with the algorithm results highlighted. The blue circle 

represents the groundtruth labeled microaneurysm. The green circle represents an MA candidate detected by the algorithm. 
The red circle represents an  MA  candidate that was detected as a candidate MA but classified as a false positive by the 

classifier.The yellow boundaries shows the vessel regions detected by the QUARTZ software [44]. 

(a) 

               (colour image)         (Tree ensemble)        (Fleming basic)      (Fleming extended) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 
 
 

(f) 

 

(g) 
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The colour codes of the labels in Figure 8 are as follows: The blue circle represents the 
groundtruth labeled microaneurysm. The green circle represents an MA candidate detected by 
the algorithm. The red circle represents an  MA  candidate that was detected as a candidate 
MA but classified as a false positive by the classifier. An analysis of these patches will be 
presented in Section 4.1. 

4.2. Quantitative Results 

Figure 9 shows the FROC curves for the three algorithms: Tree ensemble, Fleming (basic 
feature set) and Fleming (extended feature set). The model was built using the training set of 
the MESSIDOR dataset. The first FROC curve in Figure 9 was generated by evaluating the 
classification model performance on the test set (16 images, 128 microaneurysms) after 
training using the entire set of MA labels in the training set (16 images, 128 
microaneurysms). 

a) MESSIDOR - All Candidates 

 

b) MESSIDOR - Obvious Candidates 

 

c) MESSIDOR - Regular Candidates 

 

d) MESSIDOR - Subtle Candidates 

 

e) MESSIDOR - Close-to-vessel Candidates 

 

f) Test set - DIARETDB2 

 

Figure 9 Free-Receiver operating curve (FROC) for all microaneurysm candidates in the test set. In f) the gray lines 
represent the performance of each respective model on the DIARETDB2 test set by training on the DIARETDB2 training 

set, while the black represents the performance of each model on the DIARETDB2 test set after training on the MESSIDOR 
training set.  
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In addition, evaluations for the subsets of the MESSIDOR groundtruths are also presented: 
obvious candidates, regular candidates, subtle candidates and close-to-vessel candidates. 
Each reported performance for a subset of the MESSIDOR dataset was trained on the 
respective subset of microaneurysms in the dataset. This was done to highlight the variation 
in performance for each category of microaneurysms. Finally, the classification models were 
tested on the test set of the DIARETDB2 set. In order to demonstrate the overfitting process, 
we generate two models for each classifier: once by training on the MESSIDOR dataset and 
the second by training on the DIARETDB2 dataset. The models are then evaluated on the the 
test set of the DIARETDB2 dataset (61 images, 169 microaneurysms). In Figure 9(f) the gray 
lines represent the performance of each respective model on the DIARETDB2 test set by 
training on the DIARETDB2 training set (28 images, , while the black represents the 
performance of each model on the DIARETDB2 test set after training on the MESSIDOR 
training set. It is observed that the Tree Ensemble classifier is the most generalizable since 
the performance does not deteriorate significantly even when the classifier is trained on a 
different dataset (model built on MESSIDOR and tested on DIARETDB2). This is not the 
case for the KNN classifier which is not capable of generalizing across datasets.  

In order to quantify the results further, we present the ROC Scores for each method in Table 
4. The ROC Score [43] calculates the average sensitivity of the curve at multiple False 
Positive Rate intervals (1/8, 1/4, 1/2, 1, 2, 4, 8). In other words, the ROC score measures 
the average sensitivity of a technique at low False Positive rates. The ROC score simply 
captures the first section of the FROC curve (until 8 FP/image) as a simple quantifiable 
result. The ROC score focuses on the algorithm performance at low false positive rates. An 
extended discussion of the quantitative results will be presented in Section 5.1. 

Table 4 ROC scores for multiple categories in the set 

Category Method 

 Fleming 
(basic feature set) 

Fleming  
(extended feature set) 

Proposed method 
(Tree ensemble) 

MESSIDOR - All candidates 0.2636 0.332 0.415 
MESSIDOR (Obvious Only) 0.5312 0.6098 0.6355 
MESSIDOR (Regular Only) 0.2052 0.2784 0.3133 
MESSIDOR (Subtle Only) 0.1271 0.0711 0.0948 
MESSIDOR (Close-to-vessel Only) 0.0387 0.1487 0.2104 
DIARETDB2 (test set) 0.0868 0.0717 0.1700 

Tests were performed to measure the computational performance on the two datasets. The 
machine used for the tests was a core i5-4590 @ 3.30GHz CPU with 8GB RAM and an SSD 
hard drive. The average time required by the algorithm for each image in the MESSIDOR 
dataset was 166 seconds, while the average time per image in the DIARETDB2 dataset was 
65 seconds. The algorithm’s average performance on the DIARETDB2 dataset is around 40 
percent of the time required for the MESSIDOR dataset. The main reason for this 
discrepancy is that the number of microaneurysms labelled per image in the DIARETDB2 is 
2.85 (89 images and 254 labelled candidates) compared to 8 microaneurysms per image for 
MESSIDOR (32 images and 256 labelled microaneurysms). Intuitively this implies that less 
initial candidates will be detected per image in the DIARETDB2 dataset, which results in less 
computation for region growing and feature computation, since this needs to be computed for 
less candidates on average in DIARETDB2. 
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4.3. Feature Analysis 

Since a large number of features are used in the proposed algorithm a presentation of the 
discriminative ability of each feature would be insightful to understand the most impactful 
feature and also for other researchers developing microaneurysm detection algorithms. Figure 
10 shows the feature importance of the features in the same order of appearance as in Table 1. 
The features are categorised by type. This performance was measured based on the trees 
generated from the tree ensemble classifier. A rough visual analysis of the chart shows that 
there are some important features for each category of features. A more detailed analysis of 
the chart is described in detail in Section 5.2. 

 

Figure 10 Feature importance measured using the MESSIDOR dataset 

5. DISCUSSION 

5.1. Visual and Quantitative Results 

Fleming [12] is used as a baseline for comparison with the proposed technique . Fleming’s 
reported per-lesion performance on a large private dataset is comparable to recently published 
methods. This makes it reasonable to use it as a baseline for comparison. Recent methods 
which are comparable to Fleming include Wu (2015) [28], Adal (2014) [27], Inoue (2013) 

[20] and Li (2013) [14]. While it is difficult to compare 2 FROC curves for 2 methods, the 
per-lesion sensitivities in Table 1 are all reported based at a value of 1 False positive / Image. 
This value was chosen since it is the median value of the 8 samples used while computing the 
ROC Score [43]. Using this value of 1 False Positives / Image makes it possible to compare 
between Fleming and other methods that have reported lesion-based sensitivity. The 
sensitivities for these methods at 1 FP/image are: Fleming (2006) 0.51, Wu (2015) 0.23, Adal 
(2014) 0.36, Inoue (2013) 0.23. In this section both a quantitative and visual analysis of the 
proposed method results is discussed. 
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In order to further analyse the results, we can understand the FROC curves in Figure 9 by 
observing the patches in Figure 8. An observation of the patches in Figure 8 will help us 
understand the FROC curves in Figure 9. It is observed that the Tree ensemble classifier is 
superior to the K-Nearest-Neighbours classifier in terms of eliminating the false positives in 
the image. This is observed more evidently in rows (e), (g) and (f), since the second column 
shows more red circles that do not intersect with a true candidate (blue circle). To elaborate, a 
red circle which does not intersect with a blue circle is a true negative. A blue circle which 
intersects with a green circle is a true positive. A blue circle which intersects with a red 
circle, or does not intersect with anything is a false negative. 

The patches show that most of the time, the three methods equally detect the true positive 
candidates in the image. In fact, Figure 8(c) shows that the proposed method has marked a 
true candidate MA as a false positive while the K-Nearest-Neighbours classifier correctly 
marked it as a true candidate. The conclusion drawn is that all methods are almost equivalent 
in terms of maintaining true positive candidates while the proposed method is superior in 
terms of eliminating false positives. This is important from a clinical perspective since a 
reduction in the number of false positives while maintaining the same sensitivity will avoid 
over-referral of the patients. One more interesting observation is that of Figure 8(d) which 
shows an example of a close-to-vessel candidate. The figure shows that during the 
preprocessing phase the candidate merges with the vessel and therefore remains undetected as 
a candidate. This indicates why the performance of close-to-vessel candidates is very low for 
all methods. 

The analysis of the patches in the previous paragraph will help us explain the FROC curves in 
Figure 9. The FROC curves show that the proposed method performs better when all 
candidates are considered. In addition, it is also better at distinguishing close-to-vessel 
candidates. However, the curves intersect in the case of Obvious, Regular and Subtle 
candidates. This makes it difficult to judge which method performs better.  For this purpose 
we needed a numerical measure in order to compare the curves in a more objective manner.  

The ROC Score [43] calculates the average sensitivity of the curve at multiple False Positive 
Rate intervals (1/8, 1/4, 1/2, 1, 2, 4, 8). Table 4 shows the ROC scores for the 
corresponding ROC curves in Figure 9. As illustrated by the FROC curves, the ROC score 
for the proposed method is better in terms of all candidates and close-to-vessel candidates. It 
also achieves a better score for regular candidates. However, the score of the subtle 
candidates for the proposed method is slightly worse than the score of the Fleming algorithm 
with the basic feature set. This can also be seen in the FROC curves of Figure 9 (MESSIDOR 
– subtle), since the FROC curve for Fleming is better than the proposed method FROC. Since 
in general, the model built by the K-Nearest-Neighbours classifier does not eliminate all the 
false positives, it will perform better at detecting the subtle candidates (since a lot of the 
subtle candidates resemble the noise in the image). 

Figure 9(f) shows that the proposed method can build a model that is generalizable across 
datasets. In this figure the gray lines represent the performance of each respective model on 
the DIARETDB2 test set by training on the DIARETDB2 training set, while the black 
represents the performance of each model on the DIARETDB2 test set after training on the 
MESSIDOR training set. It can be seen that the proposed method is much more generalizable 
than the Fleming technique since the performance does not deteriorate significantly even 
when the classifier is trained on a different dataset (training on MESSIDOR and testing 
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DIARETDB2). This fact increases the confidence that overfitting does not occur on the 
model that was trained on the MESSIDOR dataset. 

5.2. Feature Analysis 

The extended feature set of 70 features that we have used is based on features that have been 
applied in the literature. We have attempted to collect the most common features that were 
present in the literature.  

However, a question which arises is whether all of the features are important features that 
contribute to the performance of the Tree ensemble classifier [45]. Some features may not 
contribute much information to the classifier and hence may be ignored. We have performed 
an experiment to rank the features according to the Predictor Importance. The Predictor 
Importance for a given attribute is calculated by computing the entropy (or Information Gain) 
for each tree in the Tree ensemble and then computing the average entropy for each tree. The 
predictor importance can be computed while building the Tree ensemble model and provides 
an indication of the importance of features. Figure 10 shows the measured predictor 
importance for the 70 features in Figure 10. We observe that there is varying importance for 
the features in the dataset. 

In general by visualizing the graph it is observed that there are some important features for 
each category of features. It is observed that the Gaussian 1D and the Shape features are in 
general less important than the rest of features (though visual observation). This does not 
imply that they should be ignored, however, since to decide which features need to be 
removed a feature selection method should be utilized, and this step is left for future work 
46]. 

The top 5 and least 5 features in terms of discriminative ability are listed in Table 5. Some 
interesting observations can be made based on this table.  Firstly, it is observed that intensity 
features appear twice in the most discriminative list and also twice in the least discriminative 
list. The intensity features that appear in the most discriminative list are computed from the 
processing channel, suggesting that computing features from this channel will help produce 
discriminative features. Another observation is that 2 of 9 Fleming features appear as most 
discriminative. The minor axis length feature also appears to be in the list of most 
discriminative features. Interestingly, there is another Major axis length feature that appears 
in the shape feature category (feature 18). The difference between the major axis length in 
Fleming (2) and the shape feature list (18) is that the first is measured after fitting a 
paraboloid to each candidate whereas the latter does not fit a paraboloid. It is observed that 
feature 18 is ranked low in the graph whereas feature 2 is among the most discriminative 
features. This raises the question about whether they are both correlated features which 
causes the feature to be ranked high while the other being underranked [46]. If that is the 
case, then one may utilize this fact and eliminate some of the Fleming features by substituting 
them with shape features that are more efficient since they are calculated at the pixel level.  

A final remark about the least discriminative features is that 3 out of the least 5 discriminative 
features are moment features, which suggests that the use of moment features does not help in 
the classification process. The process of experimenting with feature elimination and 
selecting a smaller set of the 70 features is left for future work. 
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Table 5 The 5 most (a) and least (b) discriminative features according to the bagging feature importance measure. 

(a) 

Feature 
number 

Feature description Category 

65 The intensity range 
in the value 
channel 

Intensity 

66 Intensity range in 
the preprocessing 
channel 

Intensity 

6 Depth of candidate 
in the preprocessed 
image 

Fleming 

19 minor axis length Shape 

2 Major axis length Fleming 
 

(b) 

Feature 
number 

Feature description Category 

46 Mean candidate 
intensity in red 
channel 

Intensity 

36 Range in the hue 
channel 

Intensity 

12 3rd moment 
invariant 

Moment 

14 5th moment 
invariant 

Moment 

15 6th moment 
invariant 

Moment 

 

6. CONCLUSION 

In this work a new approach for MA detection is proposed. The new approach is based on 
Fleming’s method. The proposed method relies on using a Tree ensemble classifier 
(ensemble classifier with bagging). The proposed method uses an extensive set of 70 features 
in order to perform the classification. A new public dataset of MA groundtruths is introduced 
based on the public MESSIDOR dataset. This set of groundtruths for 32 images is 
categorised according to MA appearance and closeness to blood vessels. The proposed 
method is evaluated using two datasets: including the new MESSIDOR dataset and 
DIARETDB2 dataset. The proposed method is compared to Fleming’s method and another 
variant of Fleming. Results show that the proposed method is superior in terms of eliminating 
false positives (while maintaining the same sensitivity as the other methods) from the images 
and this is reflected in the plotted Free-Receiver Operating Curves (FROC). Furthermore, 
results show that the Tree ensemble classifier produces a model that is generalisable across 
datasets – this if verified by measuring the cross-validation error of the MESSIDOR dataset 
on the DIARETDB2 dataset.  The importance of the features is discussed to identify the most 
discriminative features among the 70 features. Feature selection for the reduction of the 
feature set is left for future work. The purpose of feature selection would be to increase the 
algorithm efficiency and reduce the chances of classifier overfitting. A summary of the 
performance of the algorithm on both MESSIDOR and DIARETDB2 is presented and areas 
which can be optimized are discussed.  
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