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ABSTRACT

This paper introduces, and reports on the perfocmaf a novel combination of algorithms
for automated microaneurysm (MA) detection in ra@timages. The presence of MAs in
retinal images is a pathognomonic sign of DiabRetinopathy (DR) which is one of the
leading causes of blindness amongst the workingpagalation. An extensive survey of the
literature is presented and current techniquekarfield are summarised. The proposed
technique first detects an initial set of candidatsing a Gaussian Matched Filter and then
classifies this set to reduce the number of fatsstives. A Tree Ensemble classifier is used
with a set of 70 features (the most commons featuréne literature). A new set of 32 MA
groundtruth images (with a total of 256 labelled $)Adased on images from the MESSIDOR
dataset is introduced as a public dataset for beadking MA detection algorithms. We
evaluate our algorithm on this dataset as welhasheer public dataset (DIARETDB2) and
compare it against the best available alternaResults show that the proposed classifier is
superior in terms of eliminating false positive M&tection from the initial set of candidates.
The proposed method achieves an ROC score of @athpared to 0.2636 achieved by the
best available technique. Furthermore, results ghaithe classifier model maintains
consistent performance across datasets, illusiyrétm generalisability of the classifier and
that overfitting does not occur.

Keywords: Image processing, Medical Image Analysis, Retimaging, Microaneurysm
Detection, Tree Ensemble, Diabetic Retinopathy.

1.INTRODUCTION

Retinal Image Analysis (RIA) is an active areaedaarch due to its application in screening
programs for Diabetic Retinopathy (DR) — one of ldaing causes of blindness in the
developed world. During the screening process, dgnohages of the retina are captured for
the purpose of detection of diabetic retinopathye presence of microaneurysms (MAS) in
retinal images is an early indicator of DR (Figije The automated detection of MAs from
retinal images can aid in screening programs fordiignosis. Several algorithms have been
proposed for the detection of MA, however, MA détatis still a challenging problem due
to the variance in appearance of MAs in retinalgesa[1].



Through our review of MA detection in the literagywe have identified three main stages in
MA detection algorithms: 1) preprocessing 2) MA digiate detection and 3) candidate
classification Preprocessing corrects non-uniform illumination in retinal imagand

enhances the contrast of MAs in the imagéa candidate detection seeks to detect an initial
set of candidate regions where MAs are likely tsteMA candidate classification applies
machine learning techniques in order to improvesthexificity of the algorithm by filtering

out false positives from the candidate detectiosmsph Some of the proposed methods in the
literature are unsupervised methods, which meassdb not require the third classification
stage [1]-[7]A summary of MA candidate detection algorithms preaed in the literature is
listed in Table 1. For each algorithm the tablecdbss image type, the initial candidates
method, the classifier used, and the reported padnce for each classifier. Most of the
literature has differences in the method used &buate their algorithms or the dataset used,
which makes it difficult to compare any 2 algorithiogether. One of the earliest proposed
techniques for MA detection was applied to fluoes@ngiograms [8]. A Gaussian matched
filter was used to detect the initial set of caatiés. Finally, each initial candidate was
classified as either a true candidate or a spuoesusing some features, producing the final
classification result. Cree [9] applied Spenceztshnique [8] to multiple longitudinal
florescence images in order to detect the ‘MA tuarb— the appearance or disappearance of
MA objects over time.

obvious subtle

regular regular, close to vessel

Figure 1 Examples of various microaneurysms wittying appearances and locations.

More recent techniques have tackled the problemMAfletection in colour fundus images.
The main reason for this is that colour imagesamee common in screening programs and
are also non-invasive to capture, unlike fluorasamiages. The following methods are all
based on MA detection in colour fundus images.

A number of techniques have adapted Spencer’s agipiia terms of applying

morphological vessel removal followed by a Gaussmatched filter. Hipwell [10] performed
a modification of Cree [9] in order to apply thgailithm to colour fundus images. Streeter
[11] used a method based on Cree [9]. Howeverndultie classification phase, 80 features
are extracted and Linear Discriminant Analysis (DD¥as used to perform the classification.
Feature Selection was performed to filter the festwlown to 16 features. Feature Selection
Is a process to reduce redundant features in tsdeduce computational time and decrease
chances of overfitting. Another Spencer-based ambrevas introduced in Fleming [12].

This technique introduced a novel region-growiregpdiased on gradient values, rather than a
simple threshold. In addition a paraboloid wa®étto each candidate using a parameter
optimization process. The paraboloid parametersised to compute many of the features
used in the candidate classification phase. Instéading a single Gaussian matched filter,
Zhang [13] applied multiple Gaussian filters at tipé scales and computed the maximum
response to produce a probability map of the lil@d of presence of MA candidates. This
probability map was then thresholded to producertitial set of MA candidates. Finally a
rule-based classifier using 30 features was useéiorm the final classification. Li [4] used
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an unsupervised method based on a Multi-orienté&iom of Matched Filter (MSMF). This
filter is a modification of the classical GaussMatched filter. This modified filter is
anisotropic in nature and is applied in multipleedtions. Hence, this filter is better at
suppressing responses to blood vessels than thesi@awMatched filter. Wu [14] modified
the MSMF filter to take into account the varyingesof MAs.

Sanchez used a mixture model-based clustering itpadito detect the initial MA candidate
regions [7]. The technique fits three normal dmition histograms to the retinal image
histogram. These histograms correspond to foregrdosckground and outliers. The
foreground histogram pixels are considered asriti@liset of MA candidate regions.
Finally, logistic regression was used to classdgleMA region as belonging to either a
foreground or background region. Quellec [15] bassdechnique on wavelet transforms
applied in different sub-bands of the colour image.

A double-ring filter was used in Mizutani [16] tetect the initial candidates. The filter used
the property that MAs are dark circular regiongwmita brighter region to detect the MA
candidates. It consists of an inner ring and aerairg. A given pixel is considered to be a
MA pixel if the average intensity of the inner rirggsmaller than the average intensity of the
outer ring. After the initial candidates are degelctclassification is performed using 12
extracted features and an Artificial Neural NetwORRIN).

Initial candidates were detected using simple tiolbng in Giancardo [5], [6]. A novel
Radon-based transform was used to extract therésatdi the initial candidates and a Support
Vector Machine (SVM) classifier was used to perfdha final classification. An initial set

of 31 features were computed for classificatiore @imensionality of the features was
reduced to 10 dimensions using Principle CompoAeatysis (PCA), and this reduced
representation was used to perform the classifinath reduced dimension for the features
reduces the risk of overfitting and also makescthssification more computationally
efficient.

Sinthanayothin [17] used a ‘moat operator’ to ermeared lesions in the image and then these
regions were segmented. Vessel regions were tmeoved to produce the final set of
candidates. Note that this method detected both &&kshaemorrhages. The moat operator
was not defined in the paper and we were unatfiaddahe exact definition in the literature.

AbdelAzeem [18] used a Hessian matrix in orderdtedt the initial MA candidate set. A
rule based classifier is then used to detect fdl&aletections. The rule is simply based on
the candidate ‘energy’. The exact definition of toenputed ‘energy’ was not mentioned in
the paper, however, it is likely to be the sameénitedn as in Fleming [12]. Inoue [19] relied
on a Hessian matrix in order to detect the intehdidates and an Artificial Neural Network
(ANN) was used to classify the features. A groui 2 features were fed into the ANN for
classification. However this group of features wetuced using Principle Component
Analysis (PCA) in order to reduce computational ptexrity and avoid overfitting.

Moreover, Srivastava [20] used the eigenvalueb®hiessian matrix in order to detect the
initial candidates. Recently, Adal has used aibrgsatrix in order to detect the initial set of
MA candidates. A combination of SURF, Radon andesspace features were extracted
from the initial candidates. Multiple classifieSupport Vector Machines, K-Nearest-
Neighbours, Naive Bayes and Random Forest) weoeexigerimented with in this technique.



An adaptation of Spencer [8] and Frame [22] isgmé=d in Niemeijer [22]. Two main
contributions were added: A pixel based classificasystem for the initial candidate
detection phase and an extended set of featurdSarspgixel classification.

Table 1. Summary of MA detection algorithms in ikerature. The performance superscripts are défagefollows?
Lesion-based measuPémage-based measu?®ixel-based measure. Key: AUC — Area Under the CliRémage - False
positives per image, PPV — Positive Predictive ¥alu

Reported Performance

Paper Image Type | Initial candidates method Classifier used Dataset Performance
. ) Private dataset | Sensitivity: 0.25
Spencer, 1995 [8] Florescence Gaussian Filter -Raed (4 images) FP/imagé 1.0
c 1997 [9 = G ian Filt Ruled Private dataset | Sensitivity: 0.6
ree, [9] orescence aussian Filter uledbas (20 images) FP/imagé 1.0
. . ) Private dataset | Sensitivity: 0.6
Hipwell, 2000 [10] Colour Basic Thresholding Rulased (3783 images) | FP/imagé 1.0
Sinthanayothin, 2002 Private dataset | Sensitivity: 0.885
[17] Colour Moat operator N/A (14 images) Specificity’: 0.997
Private dataset | Sensitivity: 0.6
AbdelAzeem, 2002 [18]| Florescence Hough transform ulefdased (3 images) FP/imagé 17.67
o Linear Discriminant s Sensitivity: 0.3
Streeter, 2003 [11] Colour Gaussian filter Analysis Private dataset FP/imagé 1.0
Sensitivity: 0.83
; - Gaussian Filter pixel . Private dataset | FP/imagé& 1.0
Niemeijer, 2005 [21] Colour classification K-Nearest-Neighbourg (100 images) Sensitivity: 1.0
Specificity: 0.5
Sensitivity: 0.51
Fleming. 2006 112 Col G ian Filt K-Neaissiahb Private dataset | FP/imagé 1.0
eming, [12] olour aussian Fiiter e 9noOUTS | 1441 images) | Sensitivity: 0.91
Specificity’: 0.5
Sensitivity: 0.90
Quellec, 2008 [15] Colour N/A N/A ROC dataset Specificity: 0.89
. . L Sensitivity: 0.15
Mizutani, 2009 [16] Colour double-ring filter Neuirzetwork ROC dataset PPV 1 0);
) del-based ROC score: 0.332
Sanchez, 2009 [7] Colour Mixture mod@gpase N/A ROC dataset | Sensitivity: 0.30
clustering )
FP/imagé 1.0
Sensitivity: 0.11
Zhang, 2010 [13] Colour Multiscale Gaussian Ruledoh ROC dataset FP/imag& 1.0
ROC: 0.201
Giancardo, 2010 [5] Colour Basic Thresholding N/A ROC dataset Sensitivity0.22
Sensitivity: 0.38
Lazar, 2011 [2] Colour Local Maxima scanlines N/A ROC dataset FP/imag& 1.0
ROC score: 0.355
Sopharak. 2011 [23 Col tended-mini Nai Private dataset | Sensitivity: 0.816
opharak, [23] olour extended-minima aiveeBa (45 images) Specificity’: 0.99
Sensitivity: 0.43
Giancardo, 2011 [6] Colour Basic Thresholding N/A ROC dataset FP/imagé 1.0
ROC: 0.375
Sensitivity: 0.41
Lazar, 2013 [1] Colour Local Maxima scanlines N/A ROC dataset FP/imagé 1.0
ROC: 0.423
Support Vet oREToRz | S 0
upport Vector -0
Rocha, 2012 [24] Colour N/A Machine MESSIDOR Sensitivity: 0.93
Specificity: 0.5
Sopharak. 2013 [25 Col tended-mini B . Private dataset | Sensitivity: 0.86
opharak, [25] olour extended-minima ayesia (80 images) Specificity’: 0.99
: Multi-orientation Gaussian Sensitivity: 0.05
Li, 2013 [4] Colour (MSMF) N/A ROC dataset FP/imagé 1.0
Sensitivity: 0.87
Junior, 2013 [3] Colour Extended Minima N/A DAIRETDB1 y

Specificity”: 0.92
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i i Sensitivity: 0.18
Inoue, 2013 [19] Colour H_eSS|an Matrix Neural network ROC dataset ISV y
Eigenvalues FP/imagé 1.0
, ) Support Vector ROC score: 0.363
Adal, 2014 [21] Colour Hessian Matrix Machines, K-Nearest-| poc gataset | Sensitivity: 0.364
Eigenvalues Neighbours, Naive P/ &10
Bayes, Random Foregt Image: 1.
Sensitivity: 0.31
ROC dataset | tp/image 1.0
i Sensitivity: 0.73
Ram, 2015 [26] Colour Morpholog|pal K-Nearest-Neighbourg DIARETDB2 ) y
reconstruction FP/imag& 1.0
. Sensitivity: 0.18
Private dataset FP/imagé 8.0
Sensitivity: 0.23
Multiscale Multi- hsﬂizﬁ?r::e;/eliﬁlrearest— FP/ imaggl.o
Wu, 2015 [14] Colour orientation Gaussian Neighbours, Linear ROC dataset Sensitivity: 0.92
(MMMF) 9L . o
Discriminant Analysis Specificity”: 0.50
. - . Support Vector MESSIDOR+ Sensitivity: 1.00
Srivastava, 2015 [20] Colour Frangi-based filters Machines DIARETDB2 Specificity: 0.50
DIARETDR2 | Sensitvity: 0.93
) ) Specificity”: 0.94
Romero, 2015 [27] Colour Hit-or-miss transform Naluretworks ——
ROC dataset Sensitivity: 0.88
Specificity”: 0.97
Sensitivity: 0.88
_ DIARETDB2 e
Haloi, 2015 [28] Colour N/A ’C\‘Izzfi’ﬁs;rmea“ Specificity’: 0.97
ROC dataset AUE0.98

A unique method was introduced in Lazar [1], [2]c& it is an unsupervised technique that
does not require any training or classificatiorpstéMoreover the reported results of this
technique are comparable to other supervised methddch make it a promising method.
The essence of this technique is to discriminatedxen vessels and MAs by using a 1D
scanline at different directions for each pixel. \&la MA will have local minima in all
directions of the rotated scanlines, a vesselhaille only one minima corresponding to when
the scanline is perpendicular to the vessel. Hamsiag this property, a probability map is
produced at each pixel and then simple thresholdilagplied to produce the final set of
candidates.

Garcia [29] compared the accuracy of four neuravaek variants: Multilayer Perceptron
(MP), Radial Basis Function (RBF), Support Vectardfline (SVM) and Majority Voting
(MV). The initial candidates were detected usiigaal thresholding technique based on the
mean pixels of the entire image compared to me@msity in a small window around a

pixel. According to their experiments, the RBF wsaggested as the preferred classifier
among all 4. An interesting approach that relievisoal dictionaries was presented in Rocha
[24]. The use of visual dictionaries (bag of wordskes this approach more generizable
since it does not rely on specific features dutirgclassification. Therefore, the same
approach can be used to perform detection of lesatimer than MAs as well. The
disadvantage of this is that it requires a larggning set. Haloi [28] recently applied deep
neural networks to detect MAs in colour images. [peeural networks have gained
popularity in the field of computer vision in thecent years since they do not require manual
feature engineering (selection of features). Moeepalgorithms based on deep learning have
produced results that out-perform other state-efdft algorithms in other computer vision
applications. However, deep learning requires mas$atasets for training [30] and such
large labelled datasets are not yet availablednal images.



Ram [26] used a dual classifier in order classify initial candidates. The initial candidates
were detected using a simple thresholding operatiten preprocessing. Two classification
stages are then applied. The first classificattageswas applied in order to separate MAs
from vessels. The features used for this purpasea aecond derivative Gaussian at multiple
orientations, difference of Gaussians and inve@adssians. The second classification stage
was applied in order to further separate MAs frahreotypes of noise.

Unlike the aforementioned algorithms Sopharak [£Z3], [31] performs the MA
classification on a pixel level rather than at adidate level. This means that each pixel gets
classified as either an MA or not, rather than aatlal candidate as a whole. After
preprocessing, the extended-minima transform id tséetect the initial candidates, and a
Bayesian classifier was used to perform the piesiead MA classification. Similarly, Junior
[3] presents the same technique as Sopharak, lestrau apply a classification stage.

The objective of the present work is as followstdlpresent a new technique for MA
detection based on an ensemble classifier forititzson. 2) Introduce 70 of the most
common features used in the literature and perfeature ranking in order to identify the
features that are most important for discriminatitly candidates from spurious objects. 3)
To introduce a new groundtruth dataset for MA diedecbased on the MESSIDOR dataset.

Section 2 describes the methodology of the propakgatithm. In Section 3, a new dataset
of MA groundtruth images is introduced and the expents performed to evaluate the
algorithm are discussed and the results preseAtédal discussion is presented in Section 4
and concluding remarks are presented in Section 5.

2.METHODOLOGY

The proposed method is based on the method sudd®stdeming [12]. The main
modifications that were made to Fleming’s algorittwiti be stated throughout the
methodology section. This work is an extensiorhefalgorithm published in [32] and
includes a more extensive evaluation as well aailddtfeature analysis. The proposed
methodology consists of three phases: 1) preproge3 MA Candidate Detection and 3)
MA Candidate Classification. During the preprocegstage non-uniform illumination is
removed from the image using background subtrachimmse removal is also performed
during this stage. In the MA Candidates Detectibage an initial set of MA candidates are
detected. Ideally all the candidates in the imdgrikl be detected with as few false positives
as possible. Most of these false positives shdwdd be removed during the Candidate
Classification phase. The three stages of the gepalgorithm will be explained in the
following sections.

Despite being published in 2006, Fleming’s repopedlesion performance on a large
private dataset is comparable to recently publishethods. This makes it reasonable to use
Fleming as a baseline for comparison with the psegdechnique. These methods include
Wu (2015)[28], Adal (2014)[27], Inoue (2013]20] and Li (2013)14]. This is also

illustrated in Table 1, and discussed in Sectidn 5.



2.1. Preprocessing

The preprocessing steps are as follows: Given@ucoktinal image (Figure 2a) the green
channel is extracted (Figure 2b) since MA candslafgear with high contrast in this
channel. Salt-and-pepper noise is removed by appl§x3 median filter. Contrast-Limited
Adaptive Histogram Equalisation (CLAHE) [33] is digpl in order to improve the contrast in
the image. Further noise removal is performed Iphyapg a 3x3 Gaussian filter to the image.
Let the resulting of the previous operationd hg,.. Shade correction,,q4. ) is performed
by dividing the image by an estimate of the backg

Ishage = Iadapt/lbg (1)

Wherel,, is the background estimate calculated by applgiegx68 median filter td,;4,;
The filter size is chosen to be large enough ireotd eliminate vessels and other features in
the image. Finally, global contrast normalizatismperformed on the resulting image by
dividing it by its standard deviation:

i — Ishade (2)
con std ([shade)

Wherestd (I5,440) represents the standard deviation of the shadeated image. The result
of these operations is illustrated in Figure 2k@llowing these operations we need to detect
an initial set of MA candidates from the preproegessnage. This is described in the
following section.

(a) (b) (@

Figure 2 An example of the preprocessing stag€hea)colour image, b) the green channel image,eptbprocessed
image.

2.2. MA Candidate Detection

After performing noise removal and shade correctEoninitial set of MA candidates can be
detected. The method used is based on that projpyseéieming [12]. A Gaussian matched
filter (o = 1) is used in order to enhance circular dark regioriee image. Since blood
vessel cross-sections have intensity profiles sintd MAs, they need to be removed before
applying the Gaussian matched filter. The followmgrphological operations are applied for
vessel removal.



A closing operation is applied using a linear dintiag element at multiple directions. The
minimum of the application of closing operatiomailtiple operations was then subtracted
from the shade corrected image [12].

Ipothat = Ishade — igloig(lshade o strel(mi/8,n)) (3)

Where strel(x,n) represents a linear structuriegneint at an angle of x degrees and of length
n. The size of the structuring element should lmseh to be larger than the largest vessel in
the images (in our case a size of 11 pixels wasctal through direct measurement in the
images). This operation causes vessels to be exhfoomn the image while retaining circular
objects which resemble the shape of MAs (Figura)ad Figure 2(b)).

A Gaussian matched filteo (= 1.0) is then convoluted with}, 4+ In Order to enhance
circular dark regions; q,ss = Ipotnar * gauss(1.0) (Figure 2(c)). The resulting response
probability is then thresholded as follows:

Ithresn = threSh(lgauss: 57) (4)

The value ofr is chosen to be the threshold value at whichdpebtpercent of pixels are
selected [12]. A region growing operation basedrleming [12] is performed in order to
enhance the shapes of the detected MA candidatessét of initial candidates are used as
input. The procedure involves iteratively growirlgrag the 8-connected pixels from the
minimum intensity pixel of the candidate until agbing condition. In our case, the stopping
condition is when a maxima point of the “energydiion” is reached. The energy function is
defined as the average value of the gradients drthenboundary of the grown region. All
the parameters at this stage have been kept the esezept the maximum grown size.

Table 2 Features list. The symbols below (G,t,sg€dare defined in Sectio2.3. Key: std - standard deviation, max -
maximum, min - minimumg¢

Category Index | Description Parameters Feature
count

1 Number of peaks N/A 1

2 Major Axis length N/A 1

3 Mean of minor and major axis N/A 1

4 Eccentricity N/A 1
Fleming 5 Depth of candidate in the original image N/A 1

6 Depth of candidate in the preprocessed image  N/A 1

7 Energy N/A 1

8 candidate depth / mean diameter of MA N/A 1

candidate

9 Energy with depth correction N/A 1
Moment 10 7 moment invariant features N/A 7
Invariants
Shape features 11 Aspect ratio N/A 1




12 Major axis length N/A 1
13 Minor axis length N/A 1
14 Perimeter N/A 1
15 Area N/A 1
16 Eccentricity N/A 1
17 Compactness N/A 1
18 Gaussian seed pixel response;(seed(c)) 1
Gaussian features oc=1
19 mean(Gy(x,y)) 1
(xy)ec
20 std (Gg(%,¥)) 1
(xy)€c
21 Max 1D Gaussian response at various angles: 1
1D
%%X(Gu xy)
22 Min 1D Gaussian response at various angles: 1
)
min(Gre o)) 0 € {0,10,20, ...,180}
Gaussian Features| 23 Mean 1D Gaussian response at various angles: 1
1D 1D
mean(Gy (%, y))
24 Std of 1D Gaussian response at various 1
angles:
1D
?gg(al,t (x,¥))
25 1D gaussian response at angle perpendiculaN/A 1
to the maximum response (30)
26 max ( 29,33) N/A 1
27 Sum of candidate intensities 7
28 mean candidate intensity Applied to red, blue, | 7
Intensity features | 29 standard deviation of the candidate intensity 9"¢€": hue, saturatior,
value and
30 Range (Max - min candidate value) preprocessed
channels.
31 candidate contrast 7
32 maximum candidate response of the morph N/A 1
close ratio
Morphological 33 minimum candidate response of the morph| N/A 1
features )
close ratio
34 mean candidate response of the morph clgsal/A 1
ratio
TOTAL | 70




Through our experiments it was found that the maxmgrown size of 3000 pixels
suggested by Fleming resulted in large blood vasggbns being falsely identified. We
empirically found that a value of 100 pixels wasare suitable value for the maximum area
and this parameter modification decreased the nuoflfalse positives appreciably, while
achieving almost the same sensitivity. The valus @rasen to be over twice the size of the
average MA size in the groundtruth images (Figué)8 The region growing operation
causes the intensity profile of the boundary taléected more accurately.

Figure 3 An example of the candidate detection @l@d he preprocessed image, b) The
result of the bottomhat operation, c) the Gaussitn response d) The thresholded image €)
the result of the region growing operation. Thehhighted region is a true microaneurysm.

2.3. MA Candidate Classification

The initial candidate detection phase will ineviyglroduce false positives. The main
reasons for this are: 1) vessel cross sectionessels that were not removed before the
Gaussian filter and 2) noise in the image that $ogiknilar to MAs. For these reasons a
classification phase was required in order to redhie number of false positives that were
detected during the candidate detection phase.

The proposed method uses a Tree Ensemble clagdsifidassification. A Tree Ensemble
classifier is an ensemble classifier based on mectsee learning. An ensemble classifier
combines the decisions of multiple weak classifiéngr main motivation for the use of this
classifier are: 1) Successful application in offrelds [34], [35],2) it can rank features while
performing classification, giving insights aboug ttnost important features, and 3)
robustness to outliers and the ability to cope witfall training sets [36].

Given a training selt consisting of daté(y,,, x,),n = 1..., N} where y represents the
classification label (1 or O in our case), a gi®RRT (Classification And Regression
Trees)classifierT (x, L) will predicty given unlabeled data

However, in the case of an ensemble of trees wgiaea a sequence of training sets

{L,k = 1...,K} and a sequence of classifi¢Fs (x, L)} is produced. Th¢" classifier

Ti(x, L;) in the set will produce a labg]. The set of label§y,} produced by the K classifiers
need to be aggregated to produce a final lakdet unlabelled data. In our case a majority
vote of the set of class labglg, } is used to produce the final classificatiart has been
shown that combining the results of a set of wdagsifiers{T, (x, L)} often outperforms
using a single classifier on the whole trainingTaet, L) [37].
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The final point that needs to be addressed isgivah a training set, how can we produce a
set of training setfl } that will be used to train each tree classifigi, L;). A sampling
technique known as Bootstrap aggregation (or bagdBv] was used in order to sample the
training data during the training process. In baggthej* training setl; is obtained by
drawingM samples (with replacement) from the seNdfaining datal (whereM < N). In
practice, in order to produdg a set of M random numbefg,;,, < N,m =1.. M}, and
thenL; is drawn usind,; = {(y,, ., x, )}. There is no restriction that the generated random

numbers are unique and therefore each sample setf@,, x,,}) may be used more than
once or not at all ih;. After producingk training sets frond,, there will be a set of samples

in L that have not been drawn in any of the sampléseijf" classiferL;. These unused
features can be used to estimate the classificatiam (out-of-bag-error) for each tree and
also estimate the “importance” of each featuredtda®s each tree and then averaged over all
trees) [38]. The bagging approach is used to asgehe diversity of training samples across
the trees, which leads to increased predictionracguor unstable classifiers (including
decision trees) [37], [39].

We have extended Fleming’s [12] feature set ofeHlures to include a set of 70 features.
These were based on the features that have beerea@n the literature. Table 2 displays a
list of the 70 features that were fed into the siféey. These features are explained below in
the same order of appearance as Table 2:

* Fleming’s features:These are the features introduced by Fleming ineaisnique
[12]. These features rely on fitting a parabola@cach candidate’s intensity profile in
order to estimate some parameters from the parabdlbese features are based on
both the shape and intensity of the object. A tedagxplanation of these features can
be found in the original paper [12].

» Shape features & Moment Invariants: These features describe various shape
properties of the detected candidates. Moment iants (10) are 7 features that
represent various shape properties of an obje¢t @t@er shape features include
Aspect Ratio (major axis length / minor axis ler)gthajor axis length, minor axis
length, Perimeter, Area, Eccentricity, Compactn8ssne of these are common to
Fleming's features, however these are calculatedpatel level rather than after
fitting a paraboloid to the candidate. To elabgr&teming estimates a paraboloid for
each candidate and then computes the values afiteictty and major & minor-axis
length from the paraboloid. In contrast, theseuiest are calculated from the binary
image.

* Gaussian Features Features that are based on Gaussian filters Hzeen
extensively used in the literature [12]-[14], [29R9]. In our case we have
experimented with features that rely®n= 1 since that is parameter used during the
initial candidates detection phase. Some defirstioelated to these features will

follow. The symbols mentioned below also appearable 2. Letly;,,4. be the shade
corrected image (Section ) and:
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Go = Ishage * gauss(o) (5)

be the Gaussian filter response digma = o andG,(x, y) be the filter response at
coordinategx, y). LetC be a set of initial candidates detected (afteioregrowing).
Each candidatec] is a set of coordinat€s;, y;). Letseed(c) be the coordinates
(x5, y5) of the minimum intensity defined as follows:

seed(c) = (x5,¥s) = argmin(Ispqqe(x,y)) (6)

(x,y)ec

A 1-Dimensional Gaussian is a special cas&ofipplied linearly in one direction.
G¢? (x,y) is the 1D Gaussian applied at anglend a scale (standard deviation)sof
In our case we have applied the 1D Gaussian abstaiut scales(= 1). Let the se®
be the set of angles applied at each coordinatur®experiments:

* Intensity Features: These are calculated directly from the intensityhia image at
multiple bands: the red (R), blue (B), green (Ghda the RGB colour space; the
Hue (H), saturation (S) and value (V) bands ofHli$/ space [13].

* Morphological Features: These three features are based on applying a linear
morphological close operator (15 px size has beepirecally chosen to be larger
than the largest vessel in the dataset) at diffexrgles @ € {0, : 6; = 22.5*i; i =
[0..7]}) and are aimed at discriminating vessels from MASs is because the linear
structures of vessels would respond differentlydtfierent angles of the linear
operator, while the circular nature of MA objectsuld cause the response of the
morphological operator to be more uniform.

3. EXPERIMENTS

This section explains the methodology that has baléeowed in order to evaluate the
proposed algorithm. An overview of the publicalisadable datasets for microaneurysm
detection is presented in Section 3.1. An MA grduurtt dataset based on a subset of the
MESSIDOR dataset [41] is also introduced in thidis@. Details of the evaluation method
are explained in Section 3.2.

3.1. Dataset

To the best of our knowledge, there are two puldatasets for MA detection: the
Retinopathy Online Challenge dataset (ROC datg§sp8nd the DIARETDB2 dataset [42].
The ROC dataset contains 100 images split intor&iihg images and 50 test images.
Groundtruths are only available for the trainingy Jde test set groundtruths are not public
since the contest organizers used those to evadubtaissions. Moreover, the groundtruth of
this dataset has generated discussion in thetliterg], [16] due to the fact that many of the
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MA candidates marked in the groundtruth are inlstb the viewers or could not be seen by
other expert observers. This made it difficultétyron this dataset as a benchmarking dataset
for MA algorithms. The DIARETDB2 dataset is a gaalgyurpose dataset for the detection
of diabetic retinopathy (DR) from retinal imagesheT dataset includes groundtruths for
various lesions in the image including MAs, haerages and exudates, as labelled by 4
experts. However, in order to reduce the bias laellang, the experts were not instructed to
mark a specific shape for each lesion. Hence, soimthe experts marked large regions
around a group of MAs as groundtruths and othetsndi. Thus, labelling of some of the
MAs resulted in unusual shapes after the 4 expbelé were fused together (Figure 4). To
address the shortcomings in the current publicsgégave introduced a new public dataset of
MA groundtruths for the purpose of benchmarking Mi&tection algorithms. This is
described in the next section.

Figure 4 Examples of DIARETDB2 gorundtruth candiddbeg do not correspond to the microaneurysm shagiee
orignal image. The first row shows patches MA grdimth in the dataset. The second row shows casreipg patches
from the retinal images. The retinal image patdiese been enhanced to improve MA contrast.

Due to the reasons mentioned above, as well addarere variety to the existing datasets,
we have produced a new public MA groundtruth seebaon the MESSIDOR databafél].
Thirty-two images were selected from the MESSIDOd&adet to cover a wide range of
retinopathy. A summary of the images in dataségims of retinopathy grade and number of
MAs included in the set is shown in Table 3. Thadgr is predominantly based on the
number of MAs (the presence of haemorrhages andveesgels is also factored in) [41]. We
have included 16 healthy images (without MAs) idesrto maintain a balanced dataset while
performing per-image MA evaluation (evaluating wiegtor not an MA candidate exists for
each image). A summary of the distribution of regiathy grade in the 32 images is
presented in Table 3. The images belonged to tie sasolution of 1440 x 960 px.

The images were groundtruthed by an expert grdder.dataset has also been made publicly
available 1. All the visible MAs were marked duritig process. A circular marker was used
rather than pixel-based marker [43]. The main nedeo the use of a circular marker is that
majority of the literature has relied on lesiondxhanetrics to measure the accuracy of
detection. Using lesion-based metrics makes thaltsemore sensible since the measure is
informative of the amount of MA candidates that eveletected by a given algorithm. In
contrast, reliance on pixel-based metrics can bsleanling due to the imbalance in
proportion between very few MA pixels and a largenber of background pixels.

! The groundtruth dataset can be downloaded usiéptlowing link:
http://blogs.kingston.ac.uk/retinal/?p=311
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Table 3 Distribution of DR grades (a) and resolwui@n) of images in the dataset.

Retinopathy Grade | Number of No. of images No. of images
Microaneurysms (training) (test)

DRO 0 8 8

DR1 1-5 3 4

DR2 6-14 3 3

DR3 >15 2 1
TOTAL 16 16

Motivated by the Retinopathy Online Challenge [42ch MA candidate was labelled using
one of the following categories: Obvious, RegulaiSabtle and Close-to-Vessel (Figure 1).
The labels Obvious, Regular or Subtle are basaderelative visibility and/or local contrast
of the corresponding MA in the image. Close-to-\éss a label given to MA candidates that
lie close to a blood vessel. A detailed explanatibeach category is mentioned in [43].

3.2. Evaluation

We have used the public MESSIDOR dataset mentiondte previous section to train and
validate the classifier model. Hence we have lmuiltmodels using the training images in the
set and measured the accuracy of the model using@liest images in the MESSIDOR set
(the cross validation error). In order to ensugd thur model is not overfitting the
MESSIDOR dataset we have performed testing on tARBETDB2 test set by further
measuring the performance of our models on thigtsetcross-validation error). In case of an
overfit model the cross-validation error would veajer than the test error [35]. We have
ensured that the cross-validation error was sinildhe testing error for our model. The
following procedure was followed in order to perfothe evaluation on the dataset:

* The dataset was split into 16 images for trainind 46 images for testing (Table 3).

* The procedure outlined in Section 2.3 was usectete the 70 features. The
training groundtruth was used to label the featufegse features were used to train
the Tree Ensemble classifier and generate the mNd& that the training set was
undersampled in order to maintain a balance betwezpositive and negative
samples. One parameter that needs to be set fareleeEnsemble classifier is the
number of generated treds)( Figure 5 shows the out-of-bag (OOB) classifmati
error as a function of the number of trees in theeTEnsemble classifier. We have
selected a value &f = 40 based on Figure 5. This is also within the range
recommended by Brieman [37]. The valueVois chosen from the plot at the point
where there is no more significant decrease ir0@& error.

» For each image in the test set, the procedurenedtiin Section 2.2 was used to find
the set of candidates and their corresponding fflesititach candidate feature vector
was then fed into the classifier in order to clfyssias a true candidate or a false
positive.

* The final classified set of candidates was thengamed against the test set ground
truths in order to perform the evaluation.

In addition to the proposed algorithm, we have atgalemented Fleming’s algorithm [12] in
order to compare it against the proposed technigleeing uses a K-Nearest-Neighbours
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classifier with 9 features. We call this the “bafgature set”. In addition, we have also used
the K-Nearest-Neighbours classifier with all 70téeas, and we call this the “extended
feature set”.

0.03
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0.026

0.022

0.018 ! !
0 50 100 150

Number of Grown Trees

Figure 5 Out of bag (OOB) classification error darection of the number of trees in the Tree Ensenchidssifier.

.
.
>

Figure 6 An example of a candidate (dotted cirta} is considered to match a groundtruth (solide). There is a match
since the centre of the candidate lies within tleeigdtruth region.3

In order to measure the accuracy of the algorithenmeasured the sensitivity of the
proposed method [8]. Given imagen a test set (for = [1..t], wheret is the number of
images in the test set), I&t be the set of true MA objects (groundtruth) foagel; andC;
be the set of detected candidates after classidficébection Il C) for imagé. The
sensitivity is defined as:

Y |6

Where|x| represents set cardinality af Thus the sensitivity is the proportion of true
candidates detected in proportion to the total remolb true candidates. A candidate C is
considered to be equivalent g€ G if the pixel coordinates gf andc overlap by at least 1
pixel (Figure 6). Note that we are measuring thesgizity at a candidate level rather than at
a pixel level (lesion-based sensitivity). Sincesa@not determine the number of true
negatives, we used a Free Receiver Operating GER@C) rather than a traditional ROC
curve [9]. In an FROC curve, the x-axis is replac4ith the average number of false positive
candidates per image instead of the specificityufé 9 shows FROC curves for both the
proposed method (using the Tree Ensemble claggigelid) and Fleming’'s method (using
K-Nearest Neighbours) (dotted) for multiple categ®in the dataset. Each curve was
generated by evaluating the trained model on thtestt. The dotted curve represents the
performance of Fleming’s state-of-the-art algoritomthe MESSIDOR dataset, the dashed
curve represents the performance of Fleming’s dlgar(using the K-Nearest-Neighbours
classifier) with the extended feature set. A vali€ = 15 was used for the K-Nearest-

(8)

Sensitivity =
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Neighbours classifier [12]. Each classifier produagrobability valueR) between 0 and 1
representing the likelihood of a candidate beloggmO or 1. We use a threshold vaRjeo
produce the final classification (i.e. clas® if P < P, otherwise class- 1) . The value of

P, was varied in order to generate the FROC curvee Ensembles generate trees at random
and generates the attribute splits at random dq3vg| [35]. Due to this feature of the
classifier, every run produces results with sligldifferent accuracy (Figure 7). To overcome
the varying results, we have applied the Randorestalassifier multiple times and, for each
run in the curve, we calculate the Area Under &aatve. Finally we display the curve with
the median AUC value. This helps reduce the vdriglim the FROC curve. For our
experiments we found that applying the classiftetithes was sufficient to reduce the
variability in the results. In an experiment runtbe MESSIDOR dataset the Tree Ensemble
classifier was run 100 times and the average mgaarsd error (MSE) for all the curves was
found to be 0.0124, which shows that the variahititthe classifier can be considered
negligible.
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Figure 7 An example of variability in results eviéme a Tree ensemble model is built for classifaatin this example the
Tree ensemble classifier was run 11 times and #émum, minimum and median results are displayed.

4.RESULTS

In this section experimental results of the propdacalgorithms are presented. Both visual and
guantitiative results are presented. Section 4L%qnts patches of the algorithm which show
detections of microaneurysms and the classificatsnlts. The patches are compared to both
Fleming and an extended version of Fleming. Secti@rwill present some quantitative
results for both the MESSIDOR and DIARETDB2 datas@n analysis of the features and
the discriminative ability of each feature will h&ted in Section 4.3.

4.1. Visual Results

Figure 8 shows example patches from the MESSIDO&@n for the three methods
mentioned in Section 3.2. The figure shows seymatdhes from multiple colour images. The
patches are scaled by 200% and for each patchrdbedfruth, the MA candidates (after
region growing) and the result of the classificati@mve been highlighted. For the purpose of
comparison the results are shown for the propossttiod, Fleming’s algorithm with the
basic feature set, and Fleming’s algorithm witheéktended feature set.
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Figure 8 Examples of microaneurysm detection allgots applied to the MESSIDOR dataset. The firstroolshows the
colour image patch. Columns 2-4 show the preprodassage with the algorithm results highlighted. Thee circle
represents the groundtruth labeled microaneury$ra.green circle represents an MA candidate detdutele algorithm.
The red circle represents an MA candidate thatdetected as a candidate MA but classified atse fmsitive by the

classifier.The yellow boundaries shows the vessgibns detected by the QUARTZ software [44].
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The colour codes of the labels in Figure 8 areolevi's: The blue circle represents the
groundtruth labeled microaneurysm. The green cnegeesents an MA candidate detected by
the algorithm. The red circle represents an MAdodate that was detected as a candidate
MA but classified as a false positive by the clfsisiAn analysis of these patches will be
presented in Section 4.1.

4.2. Quantitative Results

Figure 9 shows the FROC curves for the three algos: Tree ensemble, Fleming (basic
feature set) and Fleming (extended feature sef.mdel was built using the training set of
the MESSIDOR dataset. The first FROC curve in Fegisvas generated by evaluating the
classification model performance on the test sefirflages, 128 microaneurysms) after
training using the entire set of MA labels in thening set (16 images, 128
microaneurysms).
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Figure 9 Free-Receiver operating curve (FROC) fomattoaneurysm candidates in the test set. In fgtag lines
represent the performance of each respective noodile DIARETDB?2 test set by training on the DIARETD®B&ining
set, while the black represents the performan@acii model on the DIARETDB?2 test set after trainingree MESSIDOR
training set.
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In addition, evaluations for the subsets of the MEBOR groundtruths are also presented:
obvious candidates, regular candidates, subtleidates and close-to-vessel candidates.
Each reported performance for a subset of the MBO®I dataset was trained on the
respective subset of microaneurysms in the datdhet.was done to highlight the variation
in performance for each category of microaneurystimally, the classification models were
tested on the test set of the DIARETDB2 set. Ireotd demonstrate the overfitting process,
we generate two models for each classifier: oncedying on the MESSIDOR dataset and
the second by training on the DIARETDB2 dataset ifodels are then evaluated on the the
test set of the DIARETDB2 dataset (61 images, 1&9o0aneurysms). In Figure 9(f) the gray
lines represent the performance of each respetiodel on the DIARETDB2 test set by
training on the DIARETDB2 training set (28 image#hile the black represents the
performance of each model on the DIARETDB2 testfier training on the MESSIDOR
training set. It is observed that the Tree Enserolalssifier is the most generalizable since
the performance does not deteriorate significaeign when the classifier is trained on a
different dataset (model built on MESSIDOR andadsin DIARETDBZ2). This is not the
case for the KNN classifier which is not capablgemeralizing across datasets.

In order to quantify the results further, we prégsha ROC Scores for each method in Table
4. The ROC Score [43] calculates the average sahsitf the curve at multiple False
Positive Rate intervald (8, 1/4,1/2, 1, 2, 4, 8). In other words, the ROC score measures
the average sensitivity of a technique at low FRIssitive rates. The ROC score simply
captures the first section of the FROC curve (&#P/image) as a simple quantifiable
result. The ROC score focuses on the algorithnmopadnce at low false positive rates. An
extended discussion of the quantitative resultsbveilpresented in Section 5.1.

Table 4 ROC scores for multiple categories in the set

Category Method

Fleming Fleming Proposed method

(basic feature set)| (extended feature set)(Tree ensemble)
MESSIDOR - All candidates 0.2636 0.332 0.415
MESSIDOR (Obvious Only) 0.5312 0.6098 0.6355
MESSIDOR (Regular Only) 0.2052 0.2784 0.3133
MESSIDOR (Subtle Only) 0.1271 0.0711 0.0948
MESSIDOR (Close-to-vessel Only) 0.0387 0.1487 0.2104
DIARETDB2 (test set) 0.0868 0.0717 0.1700

Tests were performed to measure the computati@rédnonance on the two datasets. The
machine used for the tests was a core i5-4590 @G342 CPU with 8GB RAM and an SSD
hard drive. The average time required by the algarifor each image in the MESSIDOR
dataset was 166 seconds, while the average timenpge in the DIARETDB2 dataset was
65 seconds. The algorithm’s average performande@DIARETDB?2 dataset is around 40
percent of the time required for the MESSIDOR dattaBhe main reason for this
discrepancy is that the number of microaneurysimsllied per image in the DIARETDB2 is
2.85 (89 images and 254 labelled candidates) cadgar8 microaneurysms per image for
MESSIDOR (32 images and 256 labelled microaneurysimgiitively this implies that less
initial candidates will be detected per image & ENARETDB2 dataset, which results in less
computation for region growing and feature compatatsince this needs to be computed for
less candidates on average in DIARETDB?2.

19




4.3. Feature Analysis

Since a large number of features are used in ty@oged algorithm a presentation of the
discriminative ability of each feature would beigtgful to understand the most impactful
feature and also for other researchers developingpbameurysm detection algorithms. Figure
10 shows the feature importance of the featuréisarsame order of appearance as in Table 1.
The features are categorised by type. This perfocemavas measured based on the trees
generated from the tree ensemble classifier. Alousual analysis of the chart shows that
there are some important features for each categfdeatures. A more detailed analysis of
the chart is described in detail in Section 5.2.
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Figure 10 Feature importance measured using theSMIESR dataset

5. DISCUSSION

5.1. Visual and Quantitative Results

Fleming [12] is used as a baseline for comparisith the proposed technique . Fleming’s
reported per-lesion performance on a large pridataset is comparable to recently published
methods. This makes it reasonable to use it aseliba for comparison. Recent methods
which are comparable to Fleming include Wu (2028), Adal (2014)[27], Inoue (2013)

[20] and Li (2013)14]. While it is difficult to compare 2 FROC curves b methods, the
per-lesion sensitivities in Table 1 are all repdbased at a value of 1 False positive / Image.
This value was chosen since it is the median valuike 8 samples used while computing the
ROC Scorg43]. Using this value of 1 False Positives / Image @sakpossible to compare
between Fleming and other methods that have reptasgon-based sensitivity. The
sensitivities for these methods at 1 FP/imageResning (2006) 0.51, Wu (2015) 0.23, Adal
(2014) 0.36, Inoue (2013) 0.23. In this sectiorhltuantitative and visual analysis of the
proposed method results is discussed.
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In order to further analyse the results, we carewstdnd the FROC curves in Figure 9 by
observing the patches in Figure 8. An observatich@patches in Figure 8 will help us
understand the FROC curves in Figure 9. It is ategkthat the Tree ensemble classifier is
superior to the K-Nearest-Neighbours classifigiems of eliminating the false positives in
the image. This is observed more evidently in r@)s(g) and (f), since the second column
shows more red circles that do not intersect wittua candidate (blue circle). To elaborate, a
red circle which does not intersect with a blueleiis a true negative. A blue circle which
intersects with a green circle is a true positAvdlue circle which intersects with a red

circle, or does not intersect with anything is lad¢anegative.

The patches show that most of the time, the threthaads equally detect the true positive
candidates in the image. In fact, Figure 8(c) shthasthe proposed method has marked a
true candidate MA as a false positive while the &ahest-Neighbours classifier correctly
marked it as a true candidate. The conclusion diawvimat all methods are almost equivalent
in terms of maintaining true positive candidateslevthe proposed method is superior in
terms of eliminating false positives. This is imiamit from a clinical perspective since a
reduction in the number of false positives whilemtaining the same sensitivity will avoid
over-referral of the patients. One more interestibgervation is that of Figure 8(d) which
shows an example of a close-to-vessel candidatefigiare shows that during the
preprocessing phase the candidate merges witregg=lband therefore remains undetected as
a candidate. This indicates why the performanadasfe-to-vessel candidates is very low for
all methods.

The analysis of the patches in the previous papégnall help us explain the FROC curves in
Figure 9. The FROC curves show that the proposetodeerforms better when all
candidates are considered. In addition, it is bBitter at distinguishing close-to-vessel
candidates. However, the curves intersect in tee cdObvious, Regular and Subtle
candidates. This makes it difficult to judge whiolkethod performs better. For this purpose
we needed a numerical measure in order to compareurves in a more objective manner.

The ROC Score [43] calculates the average sergib¥ithe curve at multiple False Positive
Rate intervals/8, 1/4,1/2, 1, 2, 4, 8). Table 4 shows the ROC scores for the
corresponding ROC curves in Figure 9. As illustldtg the FROC curves, the ROC score
for the proposed method is better in terms of afididates and close-to-vessel candidates. It
also achieves a better score for regular candideit@sever, the score of the subtle
candidates for the proposed method is slightly edinan the score of the Fleming algorithm
with the basic feature set. This can also be seémei FROC curves of Figure 9 (MESSIDOR
— subtle), since the FROC curve for Fleming isdydtian the proposed method FROC. Since
in general, the model built by the K-Nearest-Neigins classifier does not eliminate all the
false positives, it will perform better at detegtithe subtle candidates (since a lot of the
subtle candidates resemble the noise in the image).

Figure 9(f) shows that the proposed method cardlauihodel that is generalizable across
datasets. In this figure the gray lines repredemperformance of each respective model on
the DIARETDB2 test set by training on the DIARETDBAining set, while the black
represents the performance of each model on th&kRBTADB?2 test set after training on the
MESSIDOR training set. It can be seen that the gsed method is much more generalizable
than the Fleming technique since the performanes dot deteriorate significantly even
when the classifier is trained on a different detgsaining on MESSIDOR and testing

21



DIARETDB2). This fact increases the confidence tharfitting does not occur on the
model that was trained on the MESSIDOR dataset.

5.2. Feature Analysis

The extended feature set of 70 features that we bsed is based on features that have been
applied in the literature. We have attempted tétecokhe most common features that were
present in the literature.

However, a question which arises is whether alheffeatures are important features that
contribute to the performance of the Tree ensemibksifier [45]. Some features may not
contribute much information to the classifier amhte may be ignored. We have performed
an experiment to rank the features according td’tiedictor Importance. The Predictor
Importance for a given attribute is calculated bynputing the entropy (or Information Gain)
for each tree in the Tree ensemble and then conptltie average entropy for each tree. The
predictor importance can be computed while buildhmgTree ensemble model and provides
an indication of the importance of features. Figl®eshows the measured predictor
importance for the 70 features in Figure 10. Weeolasthat there is varying importance for
the features in the dataset.

In general by visualizing the graph it is obsertieat there are some important features for
each category of features. It is observed thaGi#essian 1D and the Shape features are in
general less important than the rest of featuremi@h visual observation). This does not
imply that they should be ignored, however, sircddcide which features need to be
removed a feature selection method should be edijiand this step is left for future work
46].

The top 5 and least 5 features in terms of discrative ability are listed in Table 5. Some
interesting observations can be made based otatties Firstly, it is observed that intensity
features appear twice in the most discriminatigednd also twice in the least discriminative
list. The intensity features that appear in thetrdescriminative list are computed from the
processing channel, suggesting that computing fesafuom this channel will help produce
discriminative features. Another observation id thaf 9 Fleming features appear as most
discriminative. The minor axis length feature agpears to be in the list of most
discriminative features. Interestingly, there istlwer Major axis length feature that appears
in the shape feature category (feature 18). THerdifice between the major axis length in
Fleming (2) and the shape feature list (18) is thaffirst is measured after fitting a
paraboloid to each candidate whereas the lattes dogfit a paraboloid. It is observed that
feature 18 is ranked low in the graph whereas fedus among the most discriminative
features. This raises the question about whetlegrdhe both correlated features which
causes the feature to be ranked high while ther tiiag underranked [46]. If that is the
case, then one may utilize this fact and elimisatae of the Fleming features by substituting
them with shape features that are more efficientesthey are calculated at the pixel level.

A final remark about the least discriminative featuis that 3 out of the least 5 discriminative
features are moment features, which suggestshbatse of moment features does not help in
the classification process. The process of expetimg with feature elimination and

selecting a smaller set of the 70 features iddeffuture work.
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Table 5 The 5 most (a) and least (b) discriminaf@agures according to the bagging feature impoganeasure.

(a) (b)

Feature | Feature description Category Feature | Feature description Category
number number
65 The intensity range Intensity 46 Mean candidate Intensity
in the value intensity in red
channel channel
66 Intensity range in | Intensity 36 Range in the hue | Intensity
the preprocessing channel
channel
12 3 moment Moment
6 Depth of candidate Fleming invariant
in the preprocesse(d
'mage 14 5" moment Moment
invariant
19 minor axis length Shape
15 6" moment Moment
2 Major axis length Fleming invariant
6. CONCLUSION

In this work a new approach for MA detection isgyeed. The new approach is based on
Fleming’'s method. The proposed method relies omguaiTree ensemble classifier
(ensemble classifier with bagging). The proposethoteuses an extensive set of 70 features
in order to perform the classification. A new pgldataset of MA groundtruths is introduced
based on the public MESSIDOR dataset. This setafrgltruths for 32 images is
categorised according to MA appearance and closaodsood vessels. The proposed
method is evaluated using two datasets: includiegiew MESSIDOR dataset and
DIARETDB2 dataset. The proposed method is comparédeming’s method and another
variant of Fleming. Results show that the propasethod is superior in terms of eliminating
false positives (while maintaining the same sevigitas the other methods) from the images
and this is reflected in the plotted Free-Rece@perating Curves (FROC). Furthermore,
results show that the Tree ensemble classifierymesla model that is generalisable across
datasets — this if verified by measuring the cnagdation error of the MESSIDOR dataset
on the DIARETDB2 dataset. The importance of tleuees is discussed to identify the most
discriminative features among the 70 features.ufeaelection for the reduction of the
feature set is left for future work. The purposdeaiture selection would be to increase the
algorithm efficiency and reduce the chances ofstii@s overfitting. A summary of the
performance of the algorithm on both MESSIDOR andRETDB?2 is presented and areas
which can be optimized are discussed.
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