259 research outputs found

    A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling

    Get PDF
    The industrial sector accounts for 17% of end-use energy in the United Kingdom, and 54% globally. Therefore, there is substantial scope to accurately simulate and efficiently assess potential energy retrofit options for industrial buildings to lower end use energy. Due to potentially years of facility renovation and expansion Building Energy Modelling, also called Building Energy Simulation, applied to industrial buildings poses a complex challenge; but it is an important opportunity for reducing global energy demand especially considering the increase of readily available computational power compared with a few years ago. Large and complex industrial buildings make modelling existing geometry for Building Energy Modelling difficult and time consuming which impacts analysis workflow and assessment options available within reasonable budgets. This research presents a potential framework for quickly capturing and processing as-built geometry of a factory, or other large scale buildings, to be utilised in Building Energy Modelling by storing the geometry in a green building eXtensible Mark-up Language (gbXML) format, which is compatible with most commercially available Building Energy Modelling tools. Laser scans were captured from the interior of an industrial facility to produce a Point Cloud. The existing capabilities of a Point Cloud processing software and previous research were assessed to identify the potential development opportunities to automate the conversion of Point Clouds to building geometry for Building Energy Modelling applications. This led to the novel identification of a framework for storing the building geometry in the gbXML format and plans for verification of a future Point Cloud processing solution. This resulted in a sample Point Cloud, of a portion of a building, being converted into a gbXML model that met the validation requirements of the gbXML definition schema. In conclusion, an opportunity exists for increasing the speed of 3D geometry creation of existing industrial buildings for application in BEM and subsequent thermal simulation

    Application of As-built Data in Building Retrofit Decision Making Process

    Get PDF
    AbstractWith the growing needs of improving building sustainability, an increasing number of existing buildings need renovation to meet the expectation of the stakeholders. In the pre-design phase, it is very critical to have the best decision made to satisfy both the project budget and the performance standard. For a new buildings, a whole building energy simulation analysis is very helpful for this decision making process because it can provide the stakeholders the evaluation results of all alternative solutions. However, for existing buildings, the as-built data required for the building energy modeling process is not always available, and its manual collection process is time-consuming and error prone. This paper first reviews the state-of-the-art methods of automated data collection, and then introduces the automatic as-built BIM model creation process through a case study. This study also successfully demonstrated the interoperability between the created as-built model and a typical energy simulation tool. At last, a discussion is made about the limitations and challenges of the current state of practice to enlighten the future direction

    Analysis on automatic generation of BEPS model from BIM model

    Get PDF
    The interlinking of enriched BIM data to Building Energy Performance Simulation (BEPS) models facilitates the data flow throughout the building life cycle. This seamless data transfer from BIM to BEPS models increases design efficiency. To investigate the interoperability between these models, this paper analyses different data transfer methodologies along with input data requirements for the simulation process. Based on the analysed knowledge, a methodology is adopted and demonstrated to identify the quality of the data transfer process. Furthermore, discussions are provided on identified efficiency gaps and future work.:Abstract Introduction and background Methodology Methodology demonstration Creation and export of BIM data Verification of OpenBIM meta-data BEPS model generation and validation Import statics Model Geometry and Orientation Construction details Thermal Profile Results and discussion Summary and future work Reference

    BIM enabled building energy modelling: development and verification of a GBXML to IDF conversion method

    Get PDF
    As part of the Design4Energy retrofit scenario a methodology is developed that uses Building Information Modelling (BIM) of existing domestic buildings to assess their energy performance using a Building Energy Modelling (BEM) technique. The focus is on the conversion process from gbXML BIM export file to an idf file for EnergyPlusTM. The conversion process is broken down into six steps of progressive addition of idf objects to enable verification. The measured operational data are used to assess the adequacy of the defaults being used

    Simulation and Visualization of Thermal Metaphor in a Virtual Environment for Thermal Building Assessment

    Get PDF
    La référence est présente sur HAL mais est incomplète (il manque les co-auteurs et le fichier pdf).The current application of the design process through energy efficiency in virtual reality (VR) systems is limited mostly to building performance predictions, as the issue of the data formats and the workflow used for 3D modeling, thermal calculation and VR visualization. The importance of energy efficiency and integration of advances in building design and VR technology have lead this research to focus on thermal simulation results visualized in a virtual environment to optimize building design, particularly concerning heritage buildings. The emphasis is on the representation of thermal data of a room simulated in a virtual environment (VE) in order to improve the ways in which thermal analysis data are presented to the building stakeholder, with the aim of increasing accuracy and efficiency. The approach is to present more immersive thermal simulation and to project the calculation results in projective displays particularly in Immersion room (CAVE-like). The main idea concerning the experiment is to provide an instrument of visualization and interaction concerning the thermal conditions in a virtual building. Thus the user can immerge, interact, and perceive the impact of the modifications generated by the system, regarding the thermal simulation results. The research has demonstrated it is possible to improve the representation and interpretation of building performance data, particularly for thermal results using visualization techniques.Direktorat Riset dan Pengabdian Masyarakat (DRPM) Universitas Indonesia Research Grant No. 2191/H2.R12/HKP.05.00/201
    • …
    corecore