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Abstract 

With the growing needs of improving building sustainability, an increasing number of existing buildings need renovation to meet 
the expectation of the stakeholders. In the pre-design phase, it is very critical to have the best decision made to satisfy both the 
project budget and the performance standard. For a new buildings, a whole building energy simulation analysis is very helpful for 
this decision making process because it can provide the stakeholders the evaluation results of all alternative solutions. How ever, 
for existing buildings, the as-built data required for the building energy modeling process is not always available, and its manual 
collection process is time-consuming and error prone. This paper first reviews the state-of-the-art methods of automated data 
collection, and then introduces the automatic as-built BIM model creation process through a case study. This study also 
successfully demonstrated the interoperability between the created as-built model and a typical energy simulation tool.  At last, a 
discussion is made about the limitations and challenges of the current state of practice to enlighten the future direction. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of organizing committee of the International Conference on Sustainable Design, Engineering 
and Construction 2015. 
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1. Introduction 

Improving Energy efficiency has been a popular subject for the whole world  since the energy crisis in  the late 
1970’s [1]. Build ings account for 16 percent of world energy consumption [2], with a higher share in developed 
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economies (nearly 42 percent of total energy use in the United States) [3]. While roughly two percent of commercial 
floors pace are newly  constructed each year, and a comparable amount renovated, the majority  of opportunities to 
improve efficiency over the next several decades will be in existing building stock. Thus existing buildings represent 
the greatest opportunity to improve build ing energy efficiency and reduce environmental impacts. However, a large 
number of decision makers lack sufficient information or tools for measuring their building’s energy performance, 
and they are faced with a dizzy ing array of expensive products and services for energy efficiency retrofit (e.g., as -
built 3D modeling services, modeling software, energy simulation software, energy audit services, etc.) with long, 
uncertain payback periods. The energy retrofit p rocesses could be improved greatly if more reliable information was 
made available. 

The design, construction, and operations of a successful energy retrofit begin with the owner’s init ial dedicat ion 
to the project. Build ing owners and companies must utilize a clear decision process to analyze and justify  energy 
conservation investments. The decision process contains important steps for gathering and analyzing information. 

The disconnection between existing high performance build ing products and the willingness of decision makers 
to choose those products is likely due to the complexity  of both the marketplace and building sys tems, as well as the 
lack of adequate feedback loops between decision makers and the outcomes associated with the different stages of 
the building lifecycle. To fill these remaining gaps, this paper introduces a framework and decision support system 
to assist decision makers on existing building energy retrofits. 

The following sections will first present a background of this study, and then a framework of retrofit  decision 
support system will be illustrated. Following that, the system processing procedure will be presented with a case 
study on one residential house. 

2. Decision Support Systems 

For existing build ings, several decision support systems have 
been designed by researchers. Rosenfeld and Shohet [4] designed 
a decision support model for semi-automated selection of 
renovation alternatives. A preliminary survey was revealed to 
evaluate the condition of the existing build ings, and then 
different recommendations were made based on the evaluation 
result. Recently, a new decision support system was proposed to 
find the most optimized solution in terms of the trade-off 
between improved quality and investing cost for existing 
buildings renovation [5]. The solution of this system was 
determined by a hybrid approach combining A* and genetic 
algorithms. A lthough different decision support systems were 
designed, no one can provide decision makers the informat ion 
about which part of the building should be renovate based on the 
results of energy analysis. 

BIM has been widely  applied in architecture, engineering, and 

construction (AEC) industry, and it can be analyzed in energy 
analysis software to conduct building energy simulat ion. 
However, BIM is not available for most of the current existing 
buildings. Even though some existing buildings may have BIM, it could not represent the current building 
conditions since the buildings keep being  renovated. The preparation for new BIM is usually labor-intensive, costly 
and slow. In addit ion, it is inevitable that different modelers could create different models even though modeling the 
same building using the same software [6]. Nowadays, this problem can be easily solved using the valuable laser 
scanning technology due to its ability to acquire building  spatial data in three d imensions with h igh fidelity and low 
processing time. The output of the laser scanning is an as -is point cloud which is composed of millions of individual 
points in which each point has its 3D relative coordinate informat ion. Studies have b een made on how to create as-is 

Fig. 1. Framework of the proposed retrofit 
decision support system. 



904   Chao Wang and Yong K. Cho  /  Procedia Engineering   118  ( 2015 )  902 – 908 

BIM based on point cloud. However it still needs labor-intensive manual processes to create a BIM out of point 
clouds. 

3. Overview of The Proposed Method 

Although much work has been done on the processing of 
point cloud data for progress in construction and safety 
monitoring [7], performance visualization [8], and bridge 
management [9, 10], not much work has been done to 
facilitate simulat ion of build ing performance. Further, as 
regards practicability, the current point clouds processing 
technologies are still in the very early stages. 

The overall framework of the proposed retrofit decision 
support system is shown in  Fig. 1. First, a hybrid  data 
collection system (Fig. 2) developed in this research 
simultaneously collects point clouds and temperature data 
from the envelope of existing buildings [11]. Then thermal resistance value is estimated according to the collected 
temperature data and the user input. Temperature data and the es timated thermal resistance value are automatically  
fused with corresponding points during the data collection process. After registering all indiv idual thermal point 
clouds, a building envelope recognition algorithm is applied to automat ically create an  as -is 3D geometric model. 
The as-is model can be imported into energy analysis software through being saved as an industry standard file  
format. Finally, the feasibility of the proposed method is validated through testing on a residential house.                      

3.1. Thermal Point Cloud Collection 

A robotic hybrid  thermal modeling approach was identified  to 
directly fuse the temperature values, other than RGB values, with  
corresponding point cloud data to create a high-resolution 3D thermal 
model that overcomes the low-resolution characteristics of an IR camera. 
To generate complete thermal information about the building envelope, 
the missing points on glazing areas need to be virtually created. 

The test on a Zero Net Energy Testing Home (ZNETH) was 
conducted. Multiple thermal and laser scans were made to cover the 
whole building  (ZNETH) envelope. The captured thermal data were 
automatically reg istered and stored to point clouds on the building 
surface. After all the point clouds with thermal data were registered, they 
were rendered by different colors according to the normalized  
temperature value that was calculated by projecting lowest -highest 
temperature to 0-1. Here, 0 stands for blue, 1 stands for red. A simple 
mouse click on any point in the point clouds from the GUI shows x-y-z  
coordinates and temperature value.  For example, a hot point selected in 

Fig. 3 shows 39.566 C. 

3.2. Geometry Model Extraction 

The collected point cloud data contain the x, y, z coordinates of each point. The proposed method comprises four 
main steps: first, the collected raw data is pre -processed by removing noise data and downsizing the data. On  the 
complet ion of data pre-processing, the region growing plane segmentation algorithm is applied to divide the raw 
data into segments of point cloud which are located at the same plane. Then, a boundary detection algorithm is 

Fig. 2. Robotic Hybrid Data Collection System. 

Fig. 3. 3D thermal point cloud rendered by 
different colors based on normalized temperature 

values 
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introduced to recognize boundary points in each segment of point cloud. Further, all the detected boundary points 
are categorized into their own building component category and building geometry is successfully extracted.  

The same residential house (ZNETH) mentioned in last section was used as a test subject. The collected raw  data 
(Fig. 4(a)) containing 1,061,637 points were first processed by the data downsizing algorithm. By utilizing data 
downsizing algorithm, the data size was decreased to 541,003 points which is about half size of the raw data. The 
decreased data size can significantly reduce the processing time in the following processes. Then, the downsized 
point cloud data were segmented into a set of plane clusters (Fig . 4(b)). For each  segmented point cloud cluster, the 
inner and outer boundary points were extracted by a boundary and edge points detection algorithm.  

The output of the boundary points detection algorithm was a set of outer and inner boundary surfaces. Then, the 
rule-based building envelope component classification algorithm followed to categorize each b oundary surface into 
its corresponding category. Fig. 4(c) shows the results of the proposed method. There were total 2 door components, 
39 window components, 4 roof components, 1 underground wall component, 1 raised floor component, and 10 
exterior wall components being recognized as individual object from the set of boundary surfaces (Fig . 4(e)). 
 

Fig. 4. Extracted semantic model from the thermal point cloud (a) Raw data; (b) Segmented data; (c) Extracted 
boundary points; (d) Geometry size fitting; (e) Component categorizing. 

3.3. Envelope Thermal Resistance Estimation 

In this research, the temperature data is co llected to estimate the thermal resistance value which is also fused with  
the corresponding point in the point cloud data. Since it is not the scope o f this study, the method of estimating the 
thermal resistance value is briefly demonstrated in the following, and the details of the method and validation test 
results can be found in the previous research effort [12]. 

Based on the advanced heat transfer principle, the envelope thermal resistance value can be acquired from 
Equation 1, where Rw is thermal resistance of the wall, Ro  is exterior wall surface resistance, dominated by the 
external convection capability,

 
Ts,i is inside surface temperature, Ts,o is outside surface temperature, To is outside air 

temperature, ho is heat transfer coefficient and can be calcu lated according to Equation 2 and Table 1. In  Equation 2, 
Vz is Local wind speed, and D, E , F  is material roughness coefficients. The inside surface temperature Ti may be 
approximately replaced by inside air temperature fo r simplified calculation. Ts,o can be measured from the IR 
camera, and the other input parameters can be obtained from other sensors equipped in the system and the user 
input. 
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Table 1: Roughness coefficients 

Roughness Index D E F Example Material 

1 (Very Rough) 11.58 5.894 0 Stucco 

2 (Rough) 12.49 4.065 0.028 Brick 

3 (Smooth) 10.22 3.1 0 Smooth Plaster 

4 (Very Smooth) 8.23 3.33 -0.036 Glass 

 

 
Fig. 5: The gbXML schema of the elements used in data exchange.  

3.4. Data Conversion 

The output of the build ing component classification algorithm was a set of boundary points of the envelope 
components. For each individual component, all its boundary po ints were saved in a text file in which the first line 
of data was its surface ID, and followed by its surface type and thermal resistance value on the same line. The 
thermal resistance value of each envelope component was estimated by averaging the therma l resistance value of all 
the points located on this component surface. Starting from the second line, there were three columns of data on 
each line, and they represented one point’s x, y, and z coordinates. To be useful for energy simulation, the file has  to 
be converted to another file format that can be imported. In this research, the Green Building XML (gbXML) open 
schema was chosen to help facilitate the transfer of the data to engineering analysis tools. Fig .5 is a structure chart of 
element “Surface” in gbXML schema (Version 5.0.1). This element was used to interpret the extracted components. 
Each surface requires a unique ID, surface type, and geometry. Surface type includes interior wall, exterior wall, 
roof, ceiling, and etc. In this paper, exterior wall and roof were assigned to corresponding surface. PlannarGeometry  
specifies the location of the surface, and lists all vertexes of the surface to define a loop. Attribute “Opening” is 
added if there is any opening in the surface. In addition to the building geometry data, the estimated thermal 
resistance value is also attached in the gbXML file. In each segmented point cloud cluster, every point has its 
corresponding estimated thermal resistance value. The average thermal resistance value of all the p oints in one 
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cluster was used to represent the thermal resistance value of the corresponding recognized building envelope 
components. In gbXML schema, the “Construction” element is a combination of layers, such as a wall or a roof. The 
calculated thermal resistance value can be attached to its attribute “U-value”. Then, the id of the “Construction” 
element needs to be bonded with corresponding surface. The ext racted as -is data were first saved as text  files, as 
shown in Fig. 6, and then were converted into gbXML file according to the corresponding gbXML schema. 

4. Feasibility Validation 

In previous sections, this study discussed about how to collect  3D thermal point cloud data, and how to 
automatically extract building envelope geometry from the point cloud data. The output from the previous sections 
was an auto-generated gbXML file. The mot ivation of this research was to reduce labor-intensive and time-
consuming trad itional processes to measure as -is conditions of building envelops including geometry and thermal 
value, thus saving significant time and efforts for the data and information preparation which are required for 
building energy analyses and simulation. The intent of this section was to validate the feasibility of using the auto -
generated gbXML file as an input in the energy simulation tools. Fig. 7 shows the preliminary result that the auto -
generated gbXML file of the tested ZNETH was successfully imported into a building energy simulation tool 
(Autodesk Ecotect Analysis 2011 was tested for validation in this study.). 
 

 
Fig. 6: Data exchange from text data (left) to gbXML data (right).  

5. Conclusion and Future Work 

This research proposed and demonstrated a framework for automatic gbXML building model generation from the 
thermal point clouds collected from the custom developed hybrid data collection system. In the proposed method, 
the thermal resistance value were estimated based on the collected temperature data of the build ing envelope and 
other sensor data. A semantic building geometry model was extracted from the raw data. Together with the 
geometry and thermal data, a gbXML model was created based on the gbXML schema, and this generated gbXML 
model can be successfully imported into the building energy simulation tool. The  preliminary case study shows the 
feasibility of the proposed method and the potential of automating the thermal model preparat ion process. The future 
work will extend this research to develop a cloud-based service system that can utilize this generated gbXML model 
for sustainable decision making. 
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Fig. 7: Auto-generated gbXML file imported into Autodesk Ecotect  
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