7 research outputs found

    An improved level set method for vertebra CT image segmentation

    Full text link

    Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    Get PDF
    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55 approximately 90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18 approximately 96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5 approximately 18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness.published_or_final_versio

    Brain segmentation using endogenous contrast mechanism using breath holding fMRI signal for tissue characterization

    Get PDF
    MRL has fast become the modality of choice for the analysis of the complexity of the human brain. MRJ is a non-invasive method and gives high spatial resolution maps of the brain with soft tissue contrast. Conventional MRI technique modified to be used to image the functionality at high temporal resolution is known as fMRI. In fMRI the BOLD signal we measure is the hemodynamic response to neuronal and vascular changes at rest or in response to a stimulus where the various tissue types will have a different response. While fMRI has been traditionally been used to detect and identify eloquent regions of the cortex corresponding to specific tasks/stimulus, a number of groups have also used tMRI to study cerebrovascular changes and its consequence on the BOLD signal. A number of different perturbation methods including breath holding, hypercapnia, inhalation of various gas mixtures, and injection of acetozolamyde has been used to study spatio-temporal changes in the fMRI signal intensity. Spatiotemporal changes corresponding to changes in cerebral blood flow (CBF), cerebral blood volume (CBV), oxygen extraction fraction (OEF), and other physiological factors are then estimated and differences between diseased regions and healthy regions are then elucidated

    Slantlet transform-based segmentation and α -shape theory-based 3D visualization and volume calculation methods for MRI brain tumour

    Get PDF
    Magnetic Resonance Imaging (MRI) being the foremost significant component of medical diagnosis which requires careful, efficient, precise and reliable image analyses for brain tumour detection, segmentation, visualisation and volume calculation. The inherently varying nature of tumour shapes, locations and image intensities make brain tumour detection greatly intricate. Certainly, having a perfect result of brain tumour detection and segmentation is advantageous. Despite several available methods, tumour detection and segmentation are far from being resolved. Meanwhile, the progress of 3D visualisation and volume calculation of brain tumour is very limited due to absence of ground truth. Thus, this study proposes four new methods, namely abnormal MRI slice detection, brain tumour segmentation based on Slantlet Transform (SLT), 3D visualization and volume calculation of brain tumour based on Alpha (α) shape theory. In addition, two new datasets along with ground truth are created to validate the shape and volume of the brain tumour. The methodology involves three main phases. In the first phase, it begins with the cerebral tissue extraction, followed by abnormal block detection and its fine-tuning mechanism, and ends with abnormal slice detection based on the detected abnormal blocks. The second phase involves brain tumour segmentation that covers three processes. The abnormal slice is first decomposed using the SLT, then its significant coefficients are selected using Donoho universal threshold. The resultant image is composed using inverse SLT to obtain the tumour region. Finally, in the third phase, four original ideas are proposed to visualise and calculate the volume of the tumour. The first idea involves the determination of an optimal α value using a new formula. The second idea is to merge all tumour points for all abnormal slices using the α value to form a set of tetrahedrons. The third idea is to select the most relevant tetrahedrons using the α value as the threshold. The fourth idea is to calculate the volume of the tumour based on the selected tetrahedrons. In order to evaluate the performance of the proposed methods, a series of experiments are conducted using three standard datasets which comprise of 4567 MRI slices of 35 patients. The methods are evaluated using standard practices and benchmarked against the best and up-to-date techniques. Based on the experiments, the proposed methods have produced very encouraging results with an accuracy rate of 96% for the abnormality slice detection along with sensitivity and specificity of 99% for brain tumour segmentation. A perfect result for the 3D visualisation and volume calculation of brain tumour is also attained. The admirable features of the results suggest that the proposed methods may constitute a basis for reliable MRI brain tumour diagnosis and treatments
    corecore