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ABSTRACT

BRAIN SEGMENTATION USING ENDOGENOUS CONTRAST MECHANISM
USING BREATH HOLDING FMRI SIGNAL FOR TISSUE

CHARACTERIZATION

by

Samata Mukesh Kakkad

MRI has fast become the modality of choice for the analysis of the complexity of the

human brain. MRI is a non-invasive method and gives high spatial resolution maps of

the brain with soft tissue contrast. Conventional MRI technique modified to be used to

image the functionality at high temporal resolution is known as fMRI. In fMRI the

BOLD signal we measure is the hemodynamic response to neuronal and vascular

changes at rest or in response to a stimulus where the various tissue types will have a

different response.

While fMRI has been traditionally been used to detect and identify eloquent

regions of the cortex corresponding to specific tasks/stimulus, a number of groups have

also used fMRI to study cerebrovascular changes and its consequence on the BOLD

signal. A number of different perturbation methods including breath holding,

hypercapnia, inhalation of various gas mixtures, and injection of acetozolamyde has

been used to study spatio-temporal changes in the fMRI signal intensity.

Spatiotemporal changes corresponding to changes in cerebral blood flow (CBF),

cerebral blood volume (CBV), oxygen extraction fraction (OEF), and other

physiological factors are then estimated and differences between diseased regions and

healthy regions are then elucidated.
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CHAPTER 1

INTRODUCTION

1.1 Background Information

MRI has become the modality of choice for the analysis of the complexity of the human

brain. It is a non-invasive method and gives high resolution spatial maps of the brain with

soft tissue contrast [1-4]. Conventional MRI technique modified to be used to image the

functionality at high temporal resolution is known as functional magnetic resonance

imaging (fMRI) [5-8]. In fMRI, the BOLD signal we measure is the hemodynamic

response to neuronal and vascular changes (at rest or) in response to a stimulus where

various tissues have a varying response [9].

In addition to providing high resolution images with superior contrast between

gray matter, white matter, and CSF, MRI images can be obtained using a number of

different contrasts using T1 , T2, proton density, and chemical shift imaging [10-11] . As a

consequence, imaging parameters can be optimized to obtain images with certain

weightings to highlight specific contrasts in specific tissue types. A number of different

image processing algorithms including edge detection, boundary tracing, voxel based

thresholding, seed growing, and template models [12-15] are then applied to the MR

image. Processed image(s) obtained are then segmented using supervised, semi-

automated, or automated methods to determine the regions of interest [16-18].

For a number of applications, however, the choice of finding imaging parameters

that will give optimal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) are

not straight forward and depend on a number of parameters including field strength, the

pulse sequence being used, the organ being imaged. As a result, several groups have used

1
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an alternative strategy whereby instead of a single image with the desired

contrast, a set or a series of images are obtained each with different weightings [19-20].

These images are then used together to decompose them into a set of images each with a

specific contrast (Ti vs T2 vs PD) and consequently segment the images with better

demarcation between the regions of interest than obtained using a single image [21]. Such

methods have been used to segment ischemic regions after a stroke, from other gray

matter and white matter regions [22-24].

Rosen et al [25] first introduced the use of contrast agents to study cerebral

perfusion. The technique known as dynamic susceptibility contrast (DSC-MRI) involves

the injection of a bolus of MR contrast agent (typically 0.1 to 0.3 mmol/kg body weight),

which causes spin dephasing (i.e., decrease in T2 and T2*) during its fast passage through

the tissue [26] which is measured as a loss in the MRI signal. This provides an enhanced

Ti contrast with additional information about different physiological parameters related

to cerebral blood flow (CBF), cerebral blood volume (CBV) and the mean transit time

(MTT) of blood through the voxel. The contrast agent produces a significant drop in the

MR signal resulting in compartmentalization even though the vascular space is a small

fraction of the total tissue volume (-5% in the human brain). This effect due to

susceptibility extends beyond the vascular space [26-27] and dominates over the T 1

relaxation enhancement. In regions where the blood brain barrier has been compromised,

the contrast agent escapes from the intravascular space resulting in a decrease in the

susceptibility effects, resulting in an increase in the MR signal. Since the transit time of

the bolus is only a few seconds (and even shorter in animal models), high temporal

resolution is required to sequentially obtain images before, during, and after the contrast
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injection. The practicability of DSC-MRI has greatly increased with improvement in

hardware and software development that has enabled the widespread availability of fast

acquisition pulse sequences including echo planar imaging (EPI).

Perfusion and other physiologically relevant parameters have been used

extensively to segment different tissue types and to differentiate healthy from diseased

tissues (25). Dynamic susceptibility imaging using T1-weighted contrast has typically

been used to characterize and quantify various physiological parameters including blood

flow, transit time, time to peak, etc (30, 31). These methods have been used extensively

in a number of clinical populations including tumor (32) and stroke (33).

Recently, Kao et al (34) used independent component analysis (ICA),

thresholding, and Bayesian estimation to concurrently segment different tissues, i.e.,

artery, gray matter, white matter, vein and sinus, choroid plexus, and cerebral spinal

fluid, with corresponding signal-time curves on perfusion images of five normal

volunteers. Spatiotemporal hemodynamics, sequential passage and microcirculation of

contrast-agent particles in these tissues were decomposed and analyzed.

Considerable effort has been directed towards optimizing the detection of MR signal

changes following sensory, motor, and cognitive stimulus paradigms [5-8]. Under

optimal conditions, the task-induced (or activation) signal increases by 5-10% above the

mean baseline (or resting) signal intensity [35]. Most fMRI studies are conducted using

T2*-weighted pulse sequences that are sensitive to blood oxygenation level dependent

(BOLD) signal changes. The premise of the BOLD fMRI paradigm is that the neuronal

activation leads to vasodilation, with a concomitant increase in CBF, CBV and oxygen

delivery. Since the relative CBF changes exceed the CBV changes, and the
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accompanying oxygen extraction changes only by a small amount, the total amount of

paramagnetic deoxyhemoglobin in the blood decreases with activation. This increase in

the net difference between the oxyhemoglobin and deoxyhemoglobin concentrations in

the blood reduces the tissue-blood susceptibility difference, which leads to less intravoxel

dephasing, resulting in an increase in the T2*-weighted MR signal intensity [8]. This

increase in the T2*-weighted signal during neuronal activation has been modeled as an

increase in neuronal activity convolved with the intrinsic hemodynamic response [36-37].

Consequently, variations in the temporal characteristics of the MR signal may be

attributable either to differences in the neuronal activity or to the intrinsic hemodynamic

response. The conventional approach in fMRI studies has been to present a subject with

a task and then look for activation-induced changes (typically 5-10%) in the MR signal,

relative to a resting state. Typically in fMRI protocols, blocks of images obtained during

rest are alternated with blocks of images obtained during the stimulus condition. This

paradigm is repeated several times so that a robust response might be computed.

While fMRI has been traditionally been used to detect and identify eloquent

regions of the cortex corresponding to specific tasks/stimulus, a number of groups have

also used fMRI to study cerebrovascular changes and its consequence on the BOLD

signal. A number of different perturbation methods including breath holding (38-42),

hypercapnia (43-44), inhalation of various gas mixtures, and injection of acetazolamide

(45) have been used to study spatio-temporal changes in the fMRI signal intensity.

Spatiotemporal changes corresponding to changes in CBF, CBV, OEF, and other

physiological factors are then estimated and differences between diseased regions and

healthy regions are then elucidated (46-48).
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The increase in task induced signal intensity is determined by the increase in

neural activity convolved with the intrinsic vascular sensitivity. Thus, the signal intensity

in a voxel can increase either due to an increase in neuronal activity or intrinsic vascular

sensitivity. Correlation methods that are commonly used in fMRI studies detect absolute

signal changes between control and activation conditions. Thus, if two different voxels

that, during rest, have signal intensities of, say, 100 and 1000 change to 150 and 1050

during task activation (assuming the same noise levels), they would have the same

correlation with expected signal change. While calculating the percent signal-change

compared to the resting-state baseline condition might overcome the problem of

correlation, it still cannot quantify and separate the effects of neural activation from those

of intrinsic vascular sensitivity. To differentiate between neuronal activities versus

intrinsic vascular effects, a number of groups have used moderate hypercapnic response

in addition to task induced signal changes to quantify signal changes [43 44]. Recently, it

has been shown that moderate respiratory hypercapnia by breathing a gas mixture (5%

CO2, 20% 02 and 75% N2) is similar to breath-holding and subsequently employed

breath holding to scale task induced signal changes in fMRI data sets [49]. In the study,

the absolute change of task activation was divided by the absolute change with

hypercapnic signal change during breath holding to obtain a hemodynamically scaled

activation response on a voxel-by-voxel basis.
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1.2 Objective

The aim of this study was to use physiological perturbation methods like breath holding

in conjunction with gamma-variate fit parameters to estimate various physiological

relevant parameters and then use these parameters to differentiate between various tissue

types including gray matter, white matter, and large vessels. A comparison between the

segmentation of gray matter, and white matter using two different methods i.e., gamma-

variate parameters obtained from the breath holding studies and the high resolution

anatomy demonstrated a significant overlap between the two methods.

1.3 Outline of the project

This Thesis is organized as follows: Chapter 2 describes MRI based tissue segmentation.

In this chapter different methods and procedures implemented in segmentation are

discussed. The following chapter, Chapter 3 describes dynamic imaging and how it is

used for tissue segmentation is described. Various pre-processing strategies involved in

fMRI are included. Chapter 4 explains the experimental paradigm used in this study

along with the imaging methods and the data analysis methods. Chapter 5 holds the

results of the project. The last chapter, Chapter 6 is the concluding chapter which

discusses the advantages and disadvantages of the proposed study. Future experiments

that can be done to improve the efficacy of the study have also been described.



CHAPTER 2

MRI BASED SEGMENTATION

2.1 Magnetic Resonance Imaging

The principle behind Magnetic Resonance Imaging (MRI) is placing protons in a

magnetic field and examining their behavior by varying the magnetic fields. Protons have

two kinds of motions. Motion in an orbit around the nucleus is called orbital rotation. The

proton also spins about an axis, this motion is called spinning. The rotational motion of a

body is described by its Angular momentum. Both orbital and spinning of the proton

have different angular momentums associated with them. The atom always tries to attain

a stable state by the arranging its protons in anti-parallel state (spin up and spin down);

that is their angular momentums are in the opposite directions. This is called spin pairing.

Therefore, the resultant angular momentum of the nucleus would be the total spin of the

unpaired neutron and proton and their orbital momentum.

The motions of protons also have an associated Magnetic Dipole

Moment (MDM). MDM of the protons of an element indicates how fast they align

themselves along an external magnetic field. It is this characteristic of the element that is

detectable in MRI.

When the protons are placed in an external magnetic field their axes which were

initially randomly oriented align themselves at an angle with respect to the magnetic

field. Due to this orientation they spin about the magnetic field see figure 2.1, this

spinning is called precession.

7



Figure 2.1 A spinning Nucleus precessing about Bo, Bo is the strength of the applied
magnetic field

The frequency of precession is called the Lar mor frequency which is given by

Where VL is Lannor frequency, γ=gyromagnetic ratio, H=magnetic field.

Gyromagnetic ratio is the ratio of the MDM and the spin angular momentum;

Where y is the gyromagnetic ratio, u is MDM, I*h is spin angular momentum I is nuclear

spin, h is planks constant *2*pi.

The gyromagnetic ratio shows that there is a unique value of Larmor frequency for

different nuclei. The magnetic induction and the gyromagnetic ratio produce the Lan -nor

frequency of precession. This forms the basis of medical imaging of the protons. Since

we have a unique Larmor frequency for different nuclei this process is able to distinguish

between different nuclei. Also a same nucleus will have a different Larmor frequency

when placed in different external magnetic fields. MR imaging is done using hydrogen

protons as 80% of the human body contains water. Varying the Larmor frequency for the

imaging proton gives the ability to recognize the nucleus in 3D space. This gives a

different signal from the gray matter, white matter, cerebral spinal fluid (CSF) acquiring

high resolution anatomical map.

8



9

Contrast characteristics in images are obtained by imaging parameters like T1 ,

T2, proton density and chemical shift of the protons, according to the application. Image

processing on these MR images is done to emphasize on the desired characteristic.

Segmentation now performed on the processed images will group separately regions

having the same characteristics. A single contrast image or multiple contrast images can

be used to improve on the segmentation of the regions.

2.2 Segmentation

Preprocessing before segmentation is very important and the noise that's present can

influence the segmentation results significantly. After performing various preprocessing

procedures feature extraction is done. Feature extraction involves selecting only a certain

characteristics from the image dataset. Instead of performing segmentation on the dataset

as a whole, segmentation is done on a feature or more depending on the application.

Image features can be simply the pixel intensity or some calculated feature like edge

pattern or blood flow. Feature selection will decide the success rate of the segmentation.

It plays an important role when dimensionality is of computational weigh down.

Figure 2.2 A schematic for segmentation procedure.

2.2.1 Feature Selection

Segmentation is applied on the basis of feature selection which provides the feature

vector that is used for grouping.
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Pixel intensity-based feature:  Here the input is pixel intensity which is the gray

scale value from either a single image, volume of dataset or a multispectral dataset.

Multispectral dataset is collected from multi-echo image acquisition or multi-sequence

image acquisition. The additional dataset are simply added together to form an N

dimensional feature vector.

Calculated pixel intensity-based feature:  This feature is sensitive to noise and

does not provide a stable segmentation results. Therefore, this feature extraction is

implemented only of an operator defined region. Advantage of this feature extraction is

that it is less sensitive to image non-uniformity. Calculated pixel-intensity has increased

with the advances in Dynamic imaging. Parameters calculated are cerebral blood flow,

blood volume, oxygenation or metrics relating to flow of contrast material.

Edges and texture-based feature:  The non-uniform nature of MR images makes it

unreliable to use a global threshold; an additional feature is needed for stable

segmentation. Edge detection method has been implemented using either the Marr-

Hildreth operator [54] or the Canny edge detector [55]. Edge detection method [56] has

not proven to have shown reliable results. Texture based feature selection has been used

but for classification and not to demarcation of regions. Moreover for texture-based

features is applied using a large dataset or an alternate statistical texture feature where

pixel intensity from the 8 neighbor is considered. No reports on the quality of

segmentation using this method have been reported. Texture feature can be applied and

after performing discrimination analysis the most relevant feature can be selected or to

label smaller region as region of interest.
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In this project calculated pixel-based feature is used for brain tissue segmentation.

The parameters used here include from the calculation by gamma variate to fit the fMRI

response to breathe holding paradigm like time to initiate response (to), time to maximum

signal intensity (Tmax), signal area under the curve (Sarea), etc.

2.2.2 Segmentation

Segmentation is essentially divided into which include the signal gray scale image

segmentation which uses a single 2D or 3D image and the multispectral image

segmentation which uses multiple MR images with different gray scale contrasts. These

two groups are further divided as shown in the figure 2.4.

Gray Scale Single Image Segmentation: A single image is used for the

segmentation procedure. Following are the types of single image segmentation-

• Thresholding-based segmentation method. A global threshold is applied on the

dataset to distinguish between two regions. The problem with this method is to

find the ideal threshold value, which makes this method subjective. One way of

selecting the threshold is by plotting the histogram of the image. As seen in

Figure 2.3 the histogram shows two distinct frequency peaks called bimodal

distribution. A threshold value could now easily be selected to demarcate out

one region from the other.
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Figure 2.3 A- Brain map using MRI; B-histogram of the brain map.

The threshold value is calculated from the 'goodness function' with the objective, that the

region can be distinguished from its environment. Local threshold could be applied.

Thresholding has limited application due to the variability in the MR data and noise.

• Edge-based segmentation method. This detects the high frequency edges to

segment between the regions. A pixel is selected and is compared to the

neighboring pixels to determine a gradient and trace a boundary. However in

presence of noise the pick of the initial pixel is critical. In addition, this method

can be only be used to trace boundaries of large region and cannot be used for

tissue segmentation.

• Seed growing segmentation. A seed and a threshold are selected by the user. The

algorithm grows around the seeds by comparing the seed with the neighboring

pixels. If the neighboring pixel is within the threshold then it is included in that

region and this pixel then becomes the new seed.

Gray scale single image segmentation has limited application and can be used only for

simple structures.
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Gray scale single image segmentation has limited application and can be used

only for simple structures.

Multi-spectral Image Segmentation: This method of segmentation uses additional

images which would hold different unique characteristics of that image. Multi-spectral is

further divided into the following-

• Supervised Segmentation Method. Pattern recognition and Algebraic approaches

require some kind of operator supervision during the segmentation method and

are classified as supervised segmentation (see figure 2.4). Pattern recognition

either segments the dataset depending on its pattern by using parametric

methods where there is an assumption of certain feature distribution or non-

parametric method where k nearest neighbor is rely on actual distribution trained

themselves. Algebraic method can deal with partial volume effect and are well

suited for images which clearly identified signature vectors. Since the

supervised methods have some kind of dependency on the operator there will be

inter and intra operator variability.

• Unsupervised Segmentation Method. This technique is also known as

`Clustering'. Clusters are formed automatically containing a feature without the

operator's interference in the segmentation method. K-mean and fuzzy c-means

are employed for MR image segmentation. ISODATA clustering method is an

extension of k-means. Unlike the feature-space database where the features

obtained are compared to a table ISODATA automatically detects the number of

clusters. In this project ISODATA is used for the brain tissue segmentation on
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the breath holding fMRI datasets. The ISODATA segmentation algorithm is

explained in the following subsection.

Figure 2.4 Classification Image segmentation methods.

2.2.3 Clustering ISODATA

Clustering is the classification of the dataset into smaller dataset (clusters), in a way that

these clusters contain datasets that have common characteristics. An unsupervised

classification method, the ISODATA technique was used to segment the gray matter and

white matter. ISODATA stands for Iterative Self-Organizing Data Analysis Techniques.

It follows the K-mean algorithm. The advantage of this technique is that it allows the

categorization and selecting the number of clusters. Five to ten clusters are usually

chosen; a single voxel does not classify as an individual tissue type. Mean values of

clusters are compared thus using a soft thresholding method. Neighboring clusters tissue

influence the categorization. Equation for mean squared error (MSE) is shown in

equation 3.
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Since it is unsupervised segmentation method the algorithm is more sophisticated which

allows the number of clusters to be automatically adjusted during the iteration by

merging similar clusters and splitting clusters with large standard deviations. The

algorithm is initiated by defining various parameters. K = number of clusters desired; I =

maximum number of iterations allowed; P = maximum number of pairs of cluster which

can be merged; theta-S = a threshold value for minimum number of samples in each

cluster can have which is used for discarding clusters; theta-SD = a threshold value for

standard deviation which is used for split operation = a threshold value for pair wise

distances which is also used for merge operation.

Steps involved in the algorithm of ISODATA clustering: Initialization is done by

selecting N number of the number of cluster that are of interests. The algorithm then

selects N random clusters center called centroid. By calculating distance from the

centroid and voxels were assigned to a cluster. If the number of voxels in a cluster is less

than a predefined threshold then the cluster is discarded. Mean and standard deviation of

the cluster is calculated and a new centroid is assigned to each cluster. If the number of

clusters is less than number assigned N, then the cluster is split according to the standard

deviation and the actual distance. If the number of clusters is more than N, then clusters

are merged considering the same factor. Again the mean and standard deviation is

calculated and the centroid is reassigned. The whole procedure is repeated till 1 the

initialized number of iterations is completed.
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DYNAMIC MRI

3.1 Functional Magnetic Resonance Imaging (FMRI)

Oxygenated blood behaves as diamagnetic while deoxygenated blood behave as a

paramagnetic as it has four free electrons in the outermost shell. A paramagnet will vary

the local magnetic susceptibility to the surrounding, resulting in decrease in the T2 and

T2* times. When any kind of neuronal activity takes place there is consumption of the

energy and an increase in demand for oxygenated blood. This increase in demand for

oxygenated blood is met by the increase in blood flow and blood volume with

vasodilation. The decrease in oxygen level in the blood resultant to the neuronal activity

is comparatively less to the increased level of oxygen in response to the requirement of

oxygenated blood. The net oxygen level in blood is an increase in the oxy-hemoglobin.

This reduced the susceptibility gradient that was present between the oxygenated blood

and the surrounding tissue in the absence of the neural activity. Whenever a task is

performed, the region in the brain responsible for the control of the task will perform

some kind of neuronal activity and thus there is an increase in oxygen supply to that

region. A stronger MR signal is received from that region, see figure 3.1. This technique

of imaging is also called Blood Oxygen Level Dependent (BOLD) imaging.
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Figure 3.1 An increase in oxyhemoglobin is seen at the region of neural activity.
Increased level of MRI signal is acquired from that region.

FMRI was first proposed by Seiji Ogawa in 1990 for the functional mapping of the

human brain. It has provided a technique to compare a functional region with high

resolution spatial maps.

3.2 Dynamic Susceptibility Contrast (DSC)

Magnetic susceptibility is the ability of matter to vary the external magnetic field to

induce a change in the effective magnetic field within and on its surrounding. Injecting a

MR contrast agent like Gadolinium (Gd) variation in the magnetic susceptibility of the

surrounding structure is achieved to improve the contrast resolution. The introduction of

gadolinium changes the local relaxation times of the structure in comparison with the

surrounding structures as the contrast agent passes through.

3.3 Indicator Dilution Theory

Circulation function: Blood flow is controlled according to the tissue requirement. Blood

flow does not increase throughout the body when there is a high requirement need by a

tissue. The local blood vessels play a role by vasodilation or vasoconstriction in

accordance to the need of the underlying tissue. Carbon dioxide, oxygen, waste products
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and other nutrients control the local activity along with the nervous system. Cardiac

output, neuronal and hormonal controls maintain the blood pressure.

Blood flow through a vessel is determined by the pressure gradient present across

the blood vessel and the impedance offered by it. Therefore blood flow (Q)

[by ohm's law] blood flow is the amount of blood flowing over a known time duration.

When a contrast agent or dye is injected it is introduced into the circulation

system. The concentration of the contrast agent is measured over a period of time in a

blood vessel distant from the point of entry. Following a rise in the concentration curve to

a peak value, it then falls immediately. In all the cases, the concentration curve rises

again by a small amount compared to the first increase and falls again due to

recirculation. For calculating the blood flow, the concentration curve is extrapolated to

zero after its first peak and the area under the curve is estimated, to obtain the mean

concentration of the contrast agent over a known duration. The distribution of the contrast

agent characterizes the properties of the vascular vessel in which it flows. The

concentration-time curve of the first pass of the contrast agent is then used for the

evaluation of various physiological parameters.

Dynamic imaging is done with MRI using MR contrast agent, besides having a

high resolution it is a non-invasive method.
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3.4 Gamma-Variate

The gamma variate follows a gamma distribution, which is a 2-parametric family of

probability distribution function (PDF). It involves a shape factor (r) and a scale factor

(b); these factors follow a wide range. The constant Q compensates for the range of the

shape and scale factors. Comparing the gamma variate with the indicator dilution theory

and the concentration-time curve; for the vasculature, the conductance of the vessel is the

scale factor and the distensibility is the shape factor [50].

The development of faster acquisition pulse sequences has allowed imaging of

concentration time curves of intravascular bolus injection of a paramagnetic MRI tracer.

Various physiological parameters like CBV, CBF are then calculated from these

concentration time curves. Once the bolus of a non-diffusible tracer has been introduced

into a feeding vessel the particles of the tracer flow in a different path and the distribution

of their transit time is characterized by the vascular structure and the blood flow.

Therefore,

where h(t) is the probability density function of the transit times, C a is the arterial input

and Cv is the concentration of the tracer at the venous output.

and

where MTT is the mean transit time. By central volume theorem we have,
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where Ft is the tissue flow. The fraction of tracer present at time t define the residue

function R(t),

Therefore, R(0)=1 and R(t) is positive, decreasing function of time. The concentration

within the volume of interest in terms of residue function is given by,

The central equation states that the initial height of the deconvolved concentration time

curve equals the flow, F(t). There are two techniques of deconvolve this equation. 1)

Model dependent technique where the residue function is constraint by a defined

function. This technique assumes the prior knowledge of the underlying vasculature.

Disadvantage of this technique is that it will not predict a good flow if the underlying

residue is not uniform. 2) Model independent techniques. Here the residue functions and

the tissue flow is determined experimentally. Non-parametric deconvolution can be

achieved by transform or the algebraic approach. Since convolution in time domain is

multiplication in the frequency domain the residue function can be easily be calculated

as,

Also the frequency domain separates out the frequency distribution of the data, the noise

characterized the high frequency while the physiological parameters comprised of the

low frequencies. Since this approach is very sensitive to noise, the noise can be filtered

out. The algebraic approach reformulates the convolution integrals into matrices in the

form of A.b=c.
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Ostergaard et al [30-31] have compared the errors of estimating CBF using

parametric and non-parametric deconvolution techniques. They had modified these

techniques by using nonparametric singular value decomposition (SVD) to obtain a better

estimate of the flow parameters. The proposed method using non-parametric SVD gave

comparable flow independent underlying vascular structure. Several other methods have

been proposed to get more accurate and reliable perfusion estimates

Breath hold task of fMRI does not involve any kind of neuronal activity and has been

used for scaling purpose of the fMRI data.

3.5 Preprocessing

Preprocessing of the MRI data is very important as the percentage signal change during

task/stimulus activation is about 3-5%. Physiological noise can easily amount up to 1-2%.

However, in the presence of head motion, signal changes due to the movement of head

can be more than 10%, in which case the noise could either be mislead to activation or

noise could suppress activation. MR is sensitive to the noise factor and it is required to

improve the Signal to Noise Ratio (SNR) before performing any kind of analysis on the

dataset. The various sources of noise could be from free electron collision resulting in

thermal noise, scanner generated drift or gradient field non-uniformity resulting in system

noise, noise from head motion and physiological parameters like heat beat, respiration

which results in motion and physiological noise.

Preprocessing is mainly done to remove the variability of the signal, to increase

the signal to noise ratio and to prepare the dataset for further statistical analysis.
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3.5.1 Slice acquisition time correction

In echo planner imaging (EPI) technique of image acquisition an interleaved form of

acquisition of data is done to avoid the influence of the neighboring slice since EPI is a

fast imaging technique. Therefore here first the odd number slices are collected followed

by the acquisition of the even number slices, see figure 3.2. Since interleaved acquisition

technique is adopted it misses the actual shape of the hemodynamic response. This error

is corrected by using a modified predicted hemodynamic response which is compared to

each slice with slightly different timings. The amplitude of the MR response is estimated

by interpolation of intensity of the slice in the time domain.

Figure 3.2 A- shows the interleaved acquisition; B-data acquired from slice 15, 16, 17. It
can be seen from B that the hemodynamic response shape is missed by the
interleaved acquisition.

3.5.2 Head motion correction

The fMRI data acquired represents a unique data from every voxel mapping of the brain.

A slight motion in the head of the subject results in the averaging of signal from two or

more neighboring voxels. Also if the adjacent voxels have a very different property there

will be a large change in signal. Motion error can be minimized by subject compliance,

making the subject comfortable in the scanner. Foam padding should be placed to
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minimize the involuntary head motion due to certain tasks. Motion correction is applied it

follows: the image volume is aligned to a reference volume for co-registration of the

dataset. This process is done using rigid body transform where the co-registration is done

by translation and rotation is three dimensions. A cost function checks for how well the

co-registered images match with each other. A simple cost function would involve

calculating the sum of squared intensity differences between the image and the reference.

Now spatial interpolation is performed to construct the images as there was no motion

using the co-registration parameters. The interpolation can be linear where each

interpolated point is the weighted sum of the adjacent points, the other interpolation

technique can be a sinc or a spline.

3.5.3 Normalization

Normalization is performed for inter subject comparison for a better understanding of the

brain functioning. The functional maps have a very low spatial resolution of the brain are

co-registered with the high anatomical maps using rigid body transformation to

understand the region of interest. In normalization, co-registration of the brain maps is

performed to a standard for the stereotactic space like the Talairach space. It considers

the overall size of the brain and also the anatomical feature. Normalization allows inter

subject and inter study comparison.

3.5.4 Spatial and Temporal smoothing

FMRI data has noise added due to physiological parameters like heart beat and

respiration. Since we know the frequency of these physiological parameters they can be
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filtered out. Also the high frequency spatial component which results in the blurring of

the image is filtered out normally using a Gaussian filter.

3.6 Data Analysis

Data analysis is the examination of the data and summarizing data to extract important

information. For fMRI data analysis various methodologies are adopted. Without much

prior information activation due to the task performed can be identified by correlation

method and thresholding. Figure 3.3 shows a schematic diagram of fMRI functioning and

data processing.

Figure 3.3 Schematic diagram of fMRI functioning and data processing.
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3.6.1 Correlation

For the functional mapping of the brain a task is performed and fMRI data is acquired.

The task performed by the subject corresponding to a stimulus/task. The assumption with

most fMRI studies is that corresponding to the task/stimulus presentation, task induced

signal changes in the brain changes in a similar fashion. Thus, correlation analysis

assumes that the activation response is a scaled version of the stimulus response.

Correlation of the reference stimuli/task is performed with for every voxel. Voxels

showing a high correlation value corresponds to the region in the brain that was involve

in the task performance.

3.6.2 Thresholding

In any data analysis procedure like a simple correlation a threshold value is used to

classify the dataset into different regions. For correlation between the stimuli/task

paradigms with the dataset a threshold value of about 0.4 is applied. Therefore, any

region with a correlation coefficient value greater 0.4 was considered as active.
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METHOD

4.1 Subjects

Five healthy volunteers (4 males, 1 female) between 23-38 years of age, with no history

of head trauma or neurological disease were scanned for this study. Written informed

consent was obtained from all volunteers and all protocols approved by the local

Institutional Review Board. Volunteers were recruited from an academic setting.

Subjects were positioned supine on the scanner gantry with their head located at the coil

midline. Foam padding was used to limit head motion, and subjects were provided with

earplugs to attenuate scanner noise.

4.2 Experimental Paradigm

All five subjects performed two paradigms namely finger tapping and breath-holding.

Each experiment started with a 25 second rest period followed by three repetitions of 75

second paradigm. The finger tapping and breath hold paradigm consisted of a block

design of alternating periods of 25 seconds of respective task with periods of 50 seconds

of rest. In two additional subjects, the duration of the breath holding was varied. Three

scans were collected for which the period of breath holding consisted of 10, 20, and 25

seconds respectively. For the finger tapping task, subjects tapped their thumb with the

other fingers in each hand in a self paced sequential manner for both hands. For the

breath holding task, subjects performed an end-inspirational breath-holding. Stimulus

instructions were given to the subjects through a microphone in the console room. The

26
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finger tapping task was collected to test a different hypothesis and was not used for the

study.

Figure 4.1 Task Paradigm: The subjects were asked to hold their breath during the ON
period which was followed by a rest period, representing OFF in the diagram.

4.3 MRI Acquisition

All data were collected using a 3 Tesla Siemens Allegra MRI system (Siemens Medical

System, Erlegen, Germany) specially equipped with a fixed asymmetric, balanced torque

three-axis head gradient coil and a shielded end-capped quadrature transmit/receive RF

coil. Subjects were positioned in a supine position on the gantry with head in a midline

location in the coil. Foam padding and a pillow were used to minimize head motion.

The imaging procedure for each subject was as follows: Localizer images were obtained

in the axial and sagittal planes using conventional gradient echo sequence (256 x 256,

TR = 600 ms, TE = 10 ms, FOV = 20 cm). On the basis of these images, six axial slices

passing through the sensorimotor cortex were selected for functional imaging. T1-

weighted anatomical images were obtained across the motor cortex with a FOV of 200

mm2, matrix size of 256X256, TR/TE = 380/14 msec, slice thickness = 7 mm, and a

receiver bandwidth of 125 kHz. This resulted in a spatial resolution of 0.78 mm x 0.78

mm x 7mm. Gradient recalled echo—EPI images were obtained during finger tapping, and

during breath-holding. The imaging parameters were: FOV of 20 x 20 cm2, matrix size of

64X64, TR/TE = 1000/30 msec, slice thickness of 7mm, flip angle of 80 degrees, and a
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receiver bandwidth of 125 kHz. This resulted in a spatial resolution of 3.125 mm x 3.125

mm x 7 mm. 250 EPI images were obtained during both finger tapping, and during

breath-holding.

4.4 Data Analysis

All fMRI data sets were preprocessed using AFNI [51]. The EPI images were corrected

for motion using a rigid-body volume registration algorithm available in AFNI. All data

sets that exhibited head motion were corrected prior to further analysis or discarded

motion-induced artifact exceeded one voxel-shift. Analysis was done only on the voxels

that represented the brain tissue. All the data sets were corrected for linear trends.

Standard deviation (SD) of the voxel time course was used as a measure of signal

variability. It was obtained on a voxel wise basis for the entire brain for each of the

subjects for all paradigms. Maps of the SD were obtained during breath-holding,

4.4.1 Functional MRI Analyses

An idealized time-course representing an "ON/OFF" stimulus was used as a reference

waveform for cross-correlation analysis to identify stimulus-locked responses [35].

Inherent to the cross-correlation technique is the assumption that neuronal activity and

the fMRI signal vary synchronously with the stimulus paradigm — an assumption valid

for the paradigm utilized in this study. Cross-correlation analyses identified voxels that

had a shape similar to that of the reference waveform. If we represent the reference

waveform (with a mean value of μ r) by r iand the voxel time-course (with a mean value
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of li t) by t„ where i = 1,2,3 	 N are the number of data points, the correlation-coefficient

between the reference waveform r, and the voxel time course t, may be written as [35]:

For each scan, a histogram of the cross-correlation coefficients throughout the

entire brain during rest was used to select a threshold coefficient for a valid response.

Typically, only those correlation values were considered which were five times greater

than the standard deviation of the resting state cross-correlation coefficient distribution.

Using this criterion, a threshold correlation coefficient 0.4 guaranteed statistical

significance (p<0.001) after including a correction for multiple comparisons.

4.4.2 Gamma -Variate Analyses

The breath holding data was fitted using the gamma-variate model on a voxel wise basis.

The gamma-variate fit was optimized for each voxel time course. As a consequence,

different gamma-variate fit parameters were obtained for each voxel in the brain. The

onset time of the breath holding signal to was determined from a gamma-variate fit to the

image data on a voxel-wise basis (Fig. 3). The gamma-variate function is defined as:
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Where S(t) is the MR signal intensity, Q, r, b are fit constants, t is the time after

injection, and to is the appearance time of the tracer [28-29]. The to value was

determined for all voxels in the cortex, resulting in the generation of a to map. In a

similar fashion, Q, r, b, S max, Tmax, and SArea maps were also generated for each of the

subjects. The breath hold paradigm in this study was assumed to follow the tracer

kinetics model. Recently, Cohen [52] has used a gamma-variate model to fit the fMRI

impulse response function and correlated with the behavioral conditions to obtain a better

prediction of the fMRI response. In their study, a very brief visual stimulus (for one

second) was presented several times and fMRI response was averaged to obtain the

impulse response function. Similarly, in this study the breath hold response was fitted to

the gamma variate model, and several parameters including to, t etc were considered as

the onset time of the fMRI response following the stimulus, while t represented the

sampling rate. Non-linear regression was used to estimate the gamma-variate fit

parameters using AFNI. Briefly it estimated the gamma-variate fit parameter using a

predefined number (set as 1000 for this study) with signal and noise constraints. From the

1000 values of the parameters obtained, values from the five best fit parameters were

selected.

To calculate the reliability of the estimation of the gamma-variate fit parameters,

the breath holding data sets containing the three ON/OFF cycles were broken into three

scans with one breath holding epoch in each of the data set. Identical gamma-variate

analysis was performed for each of three data sets and the gamma-variate fit parameters

were compared. A correlation analysis was performed between each of the gamma-

variate fit parameter from the first data set with the corresponding parameter in the
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second data sets. A bootstrap resampling method was used to test the reliability and

confidence interval of the gamma-variate fit parameters. The parameters obtained from

each of the three `psuedo" runs were randomly selected to compute the correlation

coefficient between the parameters. This process was repeated one thousand times.

4.4.3 ISODATA Clustering

A multi-parametric method, Iterative Self-Organizing Data Analysis Techniques

(ISODATA) [22-23], was used to segment the tissue types into the gray matter, and white

matter. As noted, the ISODATA technique is an unsupervised classification method that

allows for categorization of an open-ended number of clusters, or tissue classes. The

ability to adjust the number of potential dissociable clusters is the primary advantage of

the ISODATA method because it requires no knowledge a priori of the exact number of

clusters or their locations prior to segmentation. Similar multi-parametric methods have

been used in stroke studies (both in animal models and human subjects) to demonstrate

evolving heterogeneity within lesions [22-24]. In the ISODATA method, the minimum

number of voxels for each cluster can be predetermined (i.e., cluster size is typically set

at about 5-10 so that a single anomalous voxel cannot be its own tissue class). Each

voxel in the image is then compared to the average value of the cluster to which it

belongs. A mean cluster value is determined for all voxels from each of the clusters and

the number of potential clusters, or tissue classes, is extracted from the data by the

algorithm. This procedure is repeated for each tissue class until the Mean Squared Error

(MSE) is minimized in each of the clusters (see Equation 3). The ISODATA algorithm

thus allows for measurement of subtle, within-subject differences in voxel intensity,
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which can then be used to identify the gray matter and white matter in an unbiased

fashion. Moreover, the ISODATA method used here does not differentiate clusters

through the use of an absolute hard threshold, which increases its flexibility and permits

detection of subtle distinctions in tissue classes. ISODATA thus uses a soft threshold for

clustering and a weighting strategy that incorporates information about the immediate

environment of any cluster (e.g., cluster surrounded by similar or dissimilar tissue).

Another reason for using ISODATA was that it could segment the gray matter or white

matter using a single or multiple images.

The equation for calculating Mean Squared Error each of the clusters is:

where x = a single voxel, c(x) is the mean value of cluster c, N is the number of

voxels, and C is the number of clusters. For each of Gamma-variate fit parameters,

ISODATA analysis was performed on each of the individual amps as well.
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RESULTS

Motion parameters were calculated for each subject during run. For each run, motion was

estimated for each image with respect to a reference image (say image number 5) along

all the six planes (x, y, z, xy, yz, xz). The calculated mean and standard deviation is

shown in Table 1. It was seen that the motion was not significant during any of the runs

in any of the subjects.

Table 5.1 Motion Parameters

Subject
Number

X Y Z XY XZ YZ

1 0.1237 0.0145 0.0193 0.2709 0.1412 0.0555
±0.1565 ±0.1223 ±0.0534  ±0.2639 ±0.1658 ±0.1892

2 0.0538 -0.0281 0.0073 0.1234 0.0652 0.0917
±0.0477 ±0.0115  ±0.0126  ±0.0594 ±0.0807 ±0.0355

3 -0.0088 -0.0195 -0.0571 -0.0208 -0.4870 -0.0414
±0.0329 ±0.0219 ±0.0325 ±0.0330 ±0.1771 ±0.0326

4 -0.0695 0.0122 -0.0452 -0.0052 -0.1610 -0.0154
±0.0586 ±0.0761 ±0.0444 ±0.0826 ±0.1290 ±0.1746

BH -0.1567 0.6038 0.0535 -0.3368 -0.1611 -0.0212
10 ±0.0934 ±0.3180 ±0.0516 ±0.1869 ±0.0873 ±0.0162

BH -0.0250 -.0996 0.0038 0.5098 -0.1061 -0.0250
5 20 ±0.0856 ±0.1412 ±0.0775 ±0.1994 ±0.0758 ±0.0234

BH -0.2016 -0.0104 0.0551 0.1652 -0.2957 0.0195
25 ±0.1110 ±0.1197  ±0.0486 ±0.1047 ±0.1055 ±0.0214
BH 0.1364 0.1234 0.0132 0.0917 0.3011 -0.1251
16 ±0.0242 ±0.0861 ±0.0941 ±0.1896 ±0.0672 ±0.0953

6 BH -0.0269 0.0833 -0.0402 0.0126 -0.1550 -0.1220
20 ±0.0438 ±0.0404 ±0.0522 ±0.0580 ±0.0690 ±0.0871
BH -0.0197 -0.0725 -0.0423 0.1458 0.0575 -0.0123
30 ±0.0485 ±0.0767 ±0.0783 ±0.1069 ±0.0838 ±0.0444

Note: The motion parameters from all the four subjects during the breath hold scan is tabulated. Motion
was estimated using a 3D volume registration method. Motion parameters were estimated along all the six
parameters. The motion parameters were found not to be significant in any of the subjects during the breath
hold scan. The mean and standard deviation of the motion parameters are listed for each of the subjects
along all the six regions.
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Significant amount of signal changes was observed in all the subjects during breath

holding. After breath holding, increase in signal intensity was observed. The signal

increased after an onset of about 15 seconds following breath holding. An idealized input

waveform corresponding to the ON/OFF paradigm was shifted by 15 seconds (to account

for the delay in response) and correlated with every voxel time series in the brain. All

voxels with a correlation coefficient greater than 0.4 were considered active and

classified as gray matter. The percent change in gray was significantly higher than in

white matter region. The mean percent change in the gray matter from the first four

subjects was 0.1864±0.2719, 0.1938±0.2756, 0.1987±0.2983, 0.3756±0.2675

respectively. However, there was a significant reduction in the mean percent change in

white matter regions in all the four subjects compared to the gray matter regions. The

mean percent change in the white matter for the four subjects were 0.0632±0.2287,

0.1412±0.2293, 0.0245±0.2391, 0.1491±0.2307 respectively. Figure 1A shows a

representative voxel time courses from the gray matter regions. It can be seen that the

signal changes corresponding to changes in the stimulus was observed in those voxels

from the gray matter. Figure 1B shows corresponding maps of images that correlated

significantly with the idealized reference Box-car function representing the breath

holding timing.



35

Figure 5.1 Breathe hold activation maps, ideal box paradigm with time series. A
representative spatial map (A) showing voxels with significant changes during
breath holding time series (B) is shown. During breath holding a significant
change was observed in the gray matter region. Significantly less number of
voxel from the white matter regions passed the threshold. The time series
shows signal intensity changes in the gray matter during breath holding. It was
typically seen that, the voxel time series from the gray matter changed by
about 2.386 %. In the white matter though, a significantly lower amount of
0.945 %change was also observed.
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The gamma-variate analysis was then used to fit every voxel time series in the brain.

Each of the fit parameters was then estimated. Figure 2 shows representative voxel time

series along with the gamma-variate fit parameters. Maps of the onset time (to), time to

peak (Tmax), maximum signal amplitude (Smax), and total area covered by the signal

during the stimulus (SArea), r, and b. Figure 3 shows spatial maps of each of the

parameters from 2 representative subjects. A number of gamma-variate fit parameters

including S „ ax, SArea, to, Tmax, r, and b showed good demarcation between the gray matter

region, the white matter regions. In a few cases regions from large vessels could be

demarcated.

Figure 5.2 Gamma-variate fit. The gamma-variate fit parameters were calculated on a
voxel-by-voxel basis for the entire brain. All the fit parameters including to, a,
b, r were then computed on a voxel by voxel basis. A 3x3 window of
neighboring voxel time series along with the gamma-variate fit is shown. As
can be seen the gamma-variate fit was able model the actual response from
each of the epochs. Also, in the voxel time series where there was no signal
change during breath hold task, the gamma-variate fit gave a good fit i.e. a
straight line.
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Figure 5.3 Maps of various gamma-variate fit parameters. The various parameters
calculated through the gamma-variate fit including to, Smax, Tmax, b, r, SArea;
were then used to show the activation maps. to, SMax gave the better results
compared to the other parameters. The parameters reflect the physiological
characteristics of the underlying tissue. Representative images from two
subjects are shown. It can be seen that the various parameters had differences
between the gray matter and white matter regions. As can be seen the maps
obtained from various parameters including to, Smax, SArea resulted in good
demarcation between the gray matter and the white matter regions.
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Table 5.2 Gamma-variate parameters

Gray 17.57 69.80 0.34 2.05 43.44 15.71 1084.73
Matter ±7.28 ±253.31 ±0.20 ± 1.22 ±8.15 ±7.28 ±713.3

1-sathe White 11.82 22.29±2 0.24	 ]I 1.53 39.46 5.73 396.12
Matter  ±6.28 57.3 ±0.19 ±0.19 ±6.67 ±3. 41 ±218.0
Gray 11.30 80.14 0.29 3.15 26.89 13.76 102.43

2-chan Matter ±6.27 ±238.18 ±0.21 ± 0.97 ±5.68 ±7.87 ±114.8

White 8.32 68.32 0.21 1.79 25.88 6.28 54.73
Matter ±5.37 ±213.64 ±0.19 ±1.10 ±4.50 ±5.69 ±64.43
Gray 17.83 109.54 0.31 2.01 41.79 18.74 978.38

3- Matter ±8.16 ±261.58 ±0.18 ±1.07 ±8.78  ±7.92 ±675.2
biswal White 12.96 32.96 0.22 1.67 38.48 11.38 298.27

Matter ± 7.62 ±248.82 ±0.18 ±0.98 ±7.21 ±6.23 ± 117.2
Gray 16.58 97.42 0.29 1.98 42.23 12.19 782.76

Matter ± 8.79 ±260.71 ±0.19 ±1.13
±8.19

±6.51 ±452.9
4-jaya White 7.91 15.31 0.20 1.36 39.16 7.37 198.32

Matter ±7.18 ±223.56 ±0.15 ±0.85 ±5.74 ±8.12 ± 178.1
Gray 14.35 594.53 0.492 1.98 42.75 9.73 178.21

Matter ±4.72 ±430.55 ±0.17 ± 1.34 ±8.02 ±4.61 ± 132.8
BH White 12.27 331.73 0.35

1.32 38.18 6.36 70.27

10 Matter ±3.73 ±349.12 ±0.15 ±0.86 ± 2.46 ±3.61 ±39.12
Gray 13.08 598.13 0.47 2.01 45.64 10.72 198.54

Matter ±5.04 ±342.83 ±0.19 ±1.22 ± 6.31 ±3.87 ±143.7
BH White 11.62± 287.18± 0.33 1.41 41.62 7.21 67.27
20 Matter 3.675 362.21 ±0.14 ±0.97 ±2.71 ±2.91 ±48.72
BH Gray 12.02 613.26 0.52 2.13 47.51 9.67 187.28
25 Matter ±3.92 ±263.65 ±0.17 ± 1.13 ±5.09 ±3.82 ± 128.8

5 White 11.63 387.65 .31 1.34 41.76 5.65 73.29

Matter ±3.92 ±283.83
1
±0.15 ±0.96 ±12.762.76 ±3.16 ±36.28

Gray 13.77 671 0.40 2.31 39.72 11.83 74.26
Matter ±3.28 ±365 ±0.27 ± 1.27 ±7.36 ± 5.67 ±39.27

BH White 11.25 452 0.31 1.46 34.14 7.78 35.21
10 Matter ±4.08 ± 198 ±0.22 ± 1.01 ±5.65 ±3.65 ±27.54

Gray 13.58 597 0.44 2.10 43.87 12.17 148.63
Matter ±3.86 ±237 ±0.28 ± 1.16 ±6.63 ±5.28 ±79.26

BH
20

White 11.76 287 0.39 1.56 38.72 8.19 8.19 69.46
6 0 Matter ±4.18 ± 1 82 ±0.19 ±1.23 ±5.365	 111+.±4.98 ± 56.52

Gray 12.79 548 0.42 2.18 52.29
52.29 11.87 163.17

Matter ± 3.92 ±199 ±0.23 ±1.13 ±6.78 ± 6.21 ±86.17
BH White 10.59 392 0.37 1.63 40.18 7.36 89.53
30 Matter ±4.09 ±178 ±0.18 ± 1.28 ±5.87 ±3.98 ±54.92

Note: Spatial overlap was computed between the manually traced white matter regions with the white
matter computed using the breath holding based segmentation method. In a similar fashion, the spatial
overlap for the gray matter region was also calculated between the manually traced and the breath holding
based segmentation based method.

Parameters
Subjects

To Amp R b Signal
Tmax

Signal
Smax

Signal
Area
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Table 2 shows the mean of the various gamma-variate fit parameters including to, amp, r,

b, etc in the gray matter and white matter regions for each of the subjects. Statistical

comparisons were made between the gray matter, white matter region, and large vessels.

Significant difference was observed between the gray matter, white matter, and large

vessels values for various parameters. Signal area (SArea) and to showed the greatest

difference between the two regions. The ratio between the gray matter and white matter

for signal areas varied between 3.11 and 2.09 with a mean value of 2.56.

For the two subjects, from which three different breath hold periods was used, no

significant differences between the gamma variate fit parameters were observed. The to

fit parameters during the three breath holding period for the two subjects were 14.35,

13.08, 12.02, and 13.77, 13.58, and 12.79 respectively. Similarly, the variations between

other fit parameters were also minimal. Table 2 shows the fit parameters for the two

subjects.

5.1 Reliability of Gamma -Variate parameters

To calculate the reliability of the estimation of the gamma-variate fit parameters, data sets

containing the three ON/OFF cycles were broken into three scans with one breath holding

epoch in each of the data set. Identical analysis was performed for each of the three data

sets and the gamma-variate fit parameters compared. A correlation analysis was

performed between each of the gamma-variate fit parameters from the first data set with

the corresponding parameter in the second data sets. The correlation coefficient for a

representative subject (#2) was found to be 0.8804±0.0110. Figure 4 shows a

representative scatter plot between the signal areas that was computed for the first run
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compared with the signal area from the corresponding voxel in the second run. A

significant overlap between the two with R2= 0.7533 was found.

Figure 5.4 Test-Retest Reliability of Gamma-variate fit Parameters. The scan containing
three breath hold paradigms was broken into three "pseudo" runs, each run
consisting of one breath holding task. The gamma-variate fit parameters were
calculated for each of the runs on a voxel wise basis. This figure shows the
signal area computed for the first run compared with the signal area from the
corresponding voxel in the second run. A significant overlap (R2=0.7533) was
observed between the two. Comparison between the first and third, and second
and third also showed significant correlations (mean value and standard
deviation of 0.8804+0.0110).

Images representing the gamma-variate fit parameters were then clustered using

ISODATA. For this study six clusters were used to take into account gray matter, and

white matter and other noise sources. In every subject, two distinct classes of clusters

representing the gray matter, and the white matter were observed. The other clusters in

some subjects represented edges of the brain, large vessels, and other noise sources.

Figure 5 shows comparison of gray matter, white matter segmentation using high
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resolution image with segmentation obtained using gamma-variate fit parameters

obtained during breath holding.

Figure 5.5 Anatomical clustering: As a validation, high resolution anatomical images
were processed in an identical fashion as that obtained from parameters
obtained from data during the breath holding using the gamma-variate fit. In
addition to using the same ISODATA algorithm, the region of interest, the
numbers of clusters were also kept the same. High resolution images (A) along
with the clustered image using (B) the gamma-variate fit parameters are
shown.

The high resolution anatomical data obtained from each of the subjects were also

clustered using ISODATA. Identical clustering parameters as used by the gamma-variate

fit parameter data was also used for this study. The same parameters were used to arrive

at the same number tissue types. Using ISODATA, in every subject, unique clusters

corresponding to the gray matter and the white matter were seen. A significant correlation

of 0.88 was observed between the region identified by the ISODATA as gray matter and

manually traced gray matter. Similar results were also observed in the white matter also.



CHAPTER 6

DISCUSSION AND FUTURE WORK

This study demonstrates the use of breath hold as a novel method for segmenting tissue

types. Using data sets obtained during breath holding in each of the subject, segmentation

between gray matter, and white matter was achieved. A substantial overlap with the gray

matter and white matter from high resolution MRI images with the corresponding voxels

determined using breath holding data was found. Further, the breath holding data could

identify large vessels present in the time series data sets.

The use of breath hold as an alternative to traditional contrast agent studies

provides a numerous advantages. For example, using Gadolinium (Gd) only a certain

volume of contrast agent can be given to a subject. If the images obtained during this

time were contaminated by imaging artifacts or patient motion, the data set can not be

used for the gamma-variate fit, since it would lead to errors in the estimates. In contrast,

for breath holding studies, several scans can be obtained without having to worry about

the dosage level, since an additional breath holding scan can easily be obtained. The

effects of recirculation in breath holding will also be minimal compared to that obtained

using contrast agent. Further, recent studies have shown that contrast agents may have

deleterious effects in certain patient populations, especially patients with kidney diseases.

With the wide spread use of fMRI, the origins of the signals and ways to quantify the

signal is becoming important. A number of groups including [40-42] have demonstrated

using breath holding that the task induced fMRI signal can be normalized to account for

regional differences in cerebro-vascular reactivity. As a result, there are several groups

that are currently performing breath holding studies in addition to functional and

42
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anatomical scanning. Therefore, using an experimental breath hold paradigm in

addition to calibrating the fMRI signal, tissue segmentation can be performed to

differentiate between tissue types. Thus, using a simple procedure like breath holding

tissue segmentation especially between gray matter and white matter can be performed in

addition to calibrating the fMRI response.

The segmentation obtained in this study was generated using various

physiological parameters including to, Tmax, Smax, SArea etc. The various physiological

factors were obtained using an fMRI scan. This study suggests that each of those

parameters can be used to segment the fMRI data into gray matter, and white matter

regions. In a few subjects with slices containing large vessels, differences in the gamma

variate fit parameters (compared with gray matter and white matter) was observed. In this

study, the to, and SArea parameters from each data set had the greatest demarcation

between the gray matter and white matter regions. We are currently investigating the use

of parameters that can be used to optimize the tissue segmentation. It is quite possible,

that for clinical patients, some of the above parameters can be used to differentiate

between healthy and diseased tissue types.

Although a good overlap between the gray matter and white matter was obtained

from the fMRI response during the BOLD imaging, a direct comparison between the gray

matter and the white matter using DSC was not done in this study. A direct comparison

between the two methods will provide further validation and differences between the two

methods and the sensitivity between the tissue types. We are currently evaluating a direct

comparison between DSC using Gd and the breath holding method presented here.
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The segmentation method presented here may prove useful in a number of clinical

environments. For example, tumor detection and gradation may be obtained using breath

holding. Similarly in patients with stroke, lesion detection may be accomplished using

breath hold based segmentation. For clinical patients, where physiological parameters

including cerebral blood flow and cerebral blood volume have been compromised, an

investigation of these physiological parameters may provide clinically relevant

information. In addition to using a combination of these parameters, specific parameters

can be used to differentiate between healthy and diseased tissue types. However, if the

diseased region is from an area where the underlying neurovasculature has not been

affected it is likely that breath holding will not be able to differentiate the diseased region

from the healthy tissues.

With the growing recognition of fMRI, a large number of studies are currently

being performed in patient populations. For example, in presurgical mapping, in addition

to obtaining the functionally relevant regions surrounding the tumour, the underlying

characteristics of the tumor are also collected with high resolution anatomical imaging.

High resolution anatomical imaging on an average take several minutes to complete, and

more than one type of sequences are typically collected. With fMRI, from a single breath

hold scan which would take about 2 minutes, various gamma variate fit parameters could

be obtained to segment the images. Further, with the increasing use of breath holding and

other vasodilation methods including hypercapnia to normalize the fMRI task activation

signal, the data set collected during the breath holding scan may further be utilized for

tissue segmentation.
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All the data obtained for this study was obtained used gradient echo EPI images.

The gradient echo EPI images are known to be sensitive to medium and large

vasculature, and are not very sensitive to small size vasculature [53]. As a result, the

signal obtained is selectively modulated based on the underlying vasculature. As a

consequence, high signal to noise was obtained from regions with gray matter and large

vessels, thus making signal detection and differentiation possible compared to the white

matter regions. Alternative pulse sequences including spin echo EPI method which is

more sensitive to small and medium size vessels could be used for the breath hold, and

the gamma variate fit parameters compared between the gradient echo and spin echo EPI

images.

For this study, three different breath holding durations of 10, 20, and 25 seconds

were used in two subjects, to determine the variability of the gamma variate fit

parameters and the corresponding segmentation of gray matter and white matter. It was

found that the 20 second breath holding gave the best parameters. It is possible that this is

because, while 10 seconds was too short for the breath hold induced signal response to

reach peak amplitude and good signal to noise ratio, resulting in suboptimal estimates of

the gamma variate fit parameters. Because not statistical differences between the gamma

variate fit parameters was observed between the 20 second and 25 second breath holding,

20 seconds could be used in future studies since, it would cause less discomfort (and

probably less head motion) compared to longer breath holds.

Various physiological estimates including CBF, CBV, and MTT have not been measured

and validated for this study. We are currently in the process of conducting studies where

both the Gd and breath holding data is obtained in the same subject under identical
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imaging parameter during same session. Such a study could then be used to validate the

physiological parameters obtained during the paradigms. Nonetheless, the current study

demonstrates the use of breath holding as a way of differentiating and segmenting

between gray matter, white matter, and large vessels.

Although Gamma variate fit parameters were used for this study, it is quite likely

that other analysis methods could be used to obtain parameters that could be used to

segment tissue types. For example, standard deviation of the time series data could be

used to obtain some level of differentiation albeit not as robust as the gamma variate fit

parameters. For example, Kao et al, (34) have recently used ICA in conjunction with

Bayesian estimation to differentiate between tissue types from data obtained using the

contrast injection. Such methods could be modified to be used for the existing study.

Other curve fit strategies including methods developed for pharmacokinetic models could

probably give a better fit to the fMRI hemodynamic response. We are currently exploring

the use of various data driven as well model driven method to obtain robust tissue

differentiation types.

To segment the gray matter and the white matter, the gamma-variate parameters

were segmented using Euclidian distance. The clustering algorithm used k-means

algorithm to identify and segment the regions into a number of different types. The k-

means algorithm uses a number of assumptions including the Gaussian nature of noise,

etc. If these parameters were violated, the segmentation may not be optimal. While

Euclidean distance was computed for this study, other metrics including independent or

correlated parameters are currently being investigated.
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One limitation of using breath holding is that subject compliance is required. It is

possible that in several clinical or special patient populations, breath holding is either

very difficult or not possible. For example, in aging or pediatrics population breath

holding is very difficult to achieve, and compliance to it also becomes an issue without

external monitoring. Further, in patient populations in intensive care, breath holding will

be difficult. However, as an alternative to breathe holding, other hypercapnic stimulation

methods including, breathing of 2% - 5% CO2 gas mixture could be used. Further, with

some patient training such studies may become easier to perform.
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