399 research outputs found

    Probabilistic partial volume modelling of biomedical tomographic image data

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The influence of catchment characteristics on river flow variability

    Get PDF
    Hydrology is yet to fully understand the role that catchment characteristics have in determining a river’s response to precipitation variability. This thesis assesses the influence that catchment characteristics have on modulating a river’s response to changes in precipitation throughout the UK. Central to this aim is the concept of the precipitation- to-flow relationship (the transformation of precipitation into river flow), which is characterised using the Variogram, a way of indexing temporal dependence (i.e. the average relationship between river flow on a given day and river flow on the previous days). Firstly, 116 catchments were grouped into four clusters, based on the shape of their variogram, which significantly differed in their catchment characteristics demonstrating that catchment characteristics control how, on average, precipitation is transformed into river flow. Furthermore, over 70% of un-gauged catchments could be clustered correctly using information about their soil type, slope and the percentage of arable land. Secondly, a new method which identifies the changes in the variogram parameters over 5-year overlapping moving windows was developed to investigate temporal changes in the variogram parameters. This method was successfully demonstrated to detect changes in multiple aspects of artificially perturbed river flow time series (e.g. seasonality, linear changes and variability). On average >70% of the variability in the catchment variogram parameters was explained by the precipitation characteristics, although there was large variability between catchments. Finally, the influence that the catchment characteristics have on the temporal changes in the variogram parameters was analysed, demonstrating that rivers in relatively impermeable upland catchments have a relationship with precipitation which is closer to linear and less variable than lowland, permeable catchments. This thesis contributes significant new knowledge that can be used for both assessing how individual catchments are likely to respond to projected changes in precipitation and in informing data transfer to un-gauged catchments

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Modelling 3D voxel slope for partial volume quantification

    Get PDF

    Automatic Bootstrapping and Tracking of Object Contours

    Get PDF
    This work introduces a new fully automatic object tracking and segmentation framework. The framework consists of a motion based bootstrapping algorithm concurrent to a shape based active contour. The shape based active contour uses a finite shape memory that is automatically and continuously built from both the bootstrap process and the active contour object tracker. A scheme is proposed to ensure the finite shape memory is continuously updated but forgets unnecessary information. Two new ways of automatically extracting shape information from image data given a region of interest are also proposed. Results demonstrate that the bootstrapping stage provides important motion and shape information to the object tracker
    corecore