776 research outputs found

    The application of innovative virtual world technologies to enhance healthcare education

    Get PDF
    The World Wide Web has evolved leading to the development of three- dimensional virtual worlds. These are online, accessible environments through which a user may engage, communicate and interact via their digital self, known as their avatar. These virtual worlds offer the opportunity for further content to be generated in order to provide new environments and simulations. This research work explores the potential of virtual worlds in providing an educational platform for healthcare professionals. In order to establish this, the effectiveness of a virtual world environment was determined through the use of a custom-built virtual world operating theatre, which was utilised to train operating theatre novices in preparation for the real-life environment. Following the application of a virtual world environment, this research explored the development of a virtual patient scenario for training healthcare professionals. The virtual patient scenario focused on the management of adverse events associated with medical infusion devices with a nurse user group assessing the simulation face validity. The next step was to devise a methodology to develop a series of immersive virtual patients. This involved the use of allied web technologies to produce a robust, reproducible method of 3D virtual patient generation. Three virtual patients were constructed, with distinct surgical pathologies at three levels of increasing complexity. Subsequently the face, content and construct validity of the virtual patients was established to differentiate surgeons of different training grades. Finally the virtual patients were utilised to emulate real clinical situations, in which handoff of patient information occurred. The virtual patients were used to establish if the quality of handoff impacted on the subsequent patient management in a simulated setting. Overall this research has demonstrated the efficacy of virtual world environments and simulations in providing an alternative educational platform for healthcare professionals.Open Acces

    Splenic nerve bundle stimulation in acute and chronic inflammation

    Get PDF
    Splenic neurovascular bundle stimulation holds potential to treat acute and chronic inflammatory conditions. In the first part of the thesis, the available literature on the interactions between the immune system and nervous system in the intestine is summarized. Then, it is shown that a specialized T-cell, that can produce the neurotransmitter acetylcholine, resides in the gut an plays a dual role in the development of experimental colitis in mice. Furthermore, electrical splenic neurovascular bundle stimulation ameliorated the outcomes of colitis in mice and reversed transcriptomic changes in the gut that were induced by colitis. The second part of the thesis focused on the translation of splenic neurovascular bundle stimulation to the human situation. It is shown that there are significant changes between murine and human innervation of the spleen. Using computed tomography (CT) images the course and the characteristics of the splenic artery were described. These data were used to develop a cuff electrode that could be used for electrical stimulation of the splenic neurovascular bundle in humans. Finally, it was demonstrated that splenic neurovascular bundle stimulation in humans was safe and feasible in a pilot study with patients that underwent esophagectomy

    Splenic nerve bundle stimulation in acute and chronic inflammation

    Get PDF
    Splenic neurovascular bundle stimulation holds potential to treat acute and chronic inflammatory conditions. In the first part of the thesis, the available literature on the interactions between the immune system and nervous system in the intestine is summarized. Then, it is shown that a specialized T-cell, that can produce the neurotransmitter acetylcholine, resides in the gut an plays a dual role in the development of experimental colitis in mice. Furthermore, electrical splenic neurovascular bundle stimulation ameliorated the outcomes of colitis in mice and reversed transcriptomic changes in the gut that were induced by colitis. The second part of the thesis focused on the translation of splenic neurovascular bundle stimulation to the human situation. It is shown that there are significant changes between murine and human innervation of the spleen. Using computed tomography (CT) images the course and the characteristics of the splenic artery were described. These data were used to develop a cuff electrode that could be used for electrical stimulation of the splenic neurovascular bundle in humans. Finally, it was demonstrated that splenic neurovascular bundle stimulation in humans was safe and feasible in a pilot study with patients that underwent esophagectomy

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Context-aware learning for robot-assisted endovascular catheterization

    Get PDF
    Endovascular intervention has become a mainstream treatment of cardiovascular diseases. However, multiple challenges remain such as unwanted radiation exposures, limited two-dimensional image guidance, insufficient force perception and haptic cues. Fast evolving robot-assisted platforms improve the stability and accuracy of instrument manipulation. The master-slave system also removes radiation to the operator. However, the integration of robotic systems into the current surgical workflow is still debatable since repetitive, easy tasks have little value to be executed by the robotic teleoperation. Current systems offer very low autonomy, potential autonomous features could bring more benefits such as reduced cognitive workloads and human error, safer and more consistent instrument manipulation, ability to incorporate various medical imaging and sensing modalities. This research proposes frameworks for automated catheterisation with different machine learning-based algorithms, includes Learning-from-Demonstration, Reinforcement Learning, and Imitation Learning. Those frameworks focused on integrating context for tasks in the process of skill learning, hence achieving better adaptation to different situations and safer tool-tissue interactions. Furthermore, the autonomous feature was applied to next-generation, MR-safe robotic catheterisation platform. The results provide important insights into improving catheter navigation in the form of autonomous task planning, self-optimization with clinical relevant factors, and motivate the design of intelligent, intuitive, and collaborative robots under non-ionizing image modalities.Open Acces

    Recent Advances in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery has become a common term in visceral as well as gynecologic surgery. It has almost evolved into its own surgical speciality over the past 20 years. Today, being firmly established in every subspeciality of visceral surgery, it is now no longer a distinct skillset, but a fixed part of the armamentarium of surgical options available. In every indication, the advantages of a minimally invasive approach include reduced intraoperative blood loss, less postoperative pain, and shorter rehabilitation times, as well as a marked reduction of overall and surgical postoperative morbidity. In the advent of modern oncologic treatment algorithms, these effects not only lower the immediate impact that an operation has on the patient, but also become important key steps in reducing the side-effects of surgery. Thus, they enable surgery to become a module in modern multi-disciplinary cancer treatment, which blends into multimodular treatment options at different times and prolongs and widens the possibilities available to cancer patients. In this quickly changing environment, the requirement to learn and refine not only open surgical but also different minimally invasive techniques on high levels deeply impact modern surgical training pathways. The use of modern elearning tools and new and praxis-based surgical training possibilities have been readily integrated into modern surgical education,which persists throughout the whole surgical career of modern gynecologic and visceral surgery specialists
    • …
    corecore