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1 INTRODUCTION

1 Introduction

Temperature measurement is a daily routine in medicine to either be used for diagnosis or to
monitor the course of a disease. Classical means to measure the body temperature include
thermometers which provide knowledge of the general body temperature. When more insight
into the temperature and its distribution over the body parts is needed, more advanced mea-
surement techniques are necessary. Infrared thermography describes the process of imaging an
object’s surface temperature by detecting the electromagnetic radiation emitted by an object
in the infrared spectrum. Thermal cameras, which are relatively common these days, were first
used in the 1960s. The early models provided only a very limited number of imaging elements
(<10) and had a low temperature and spatial resolution of 0.5 K and 5 mm, respectively [RA12].
The scanning rates of up to 16 images per second were lower compared to modern systems as
well although not as limited as the other properties. Additionally, the detectors needed active
cooling using e.g. nitrogen making these systems bulky and difficult to move and use. These
factors limited the applicability for medical uses but enabled the first investigations on how
the temperature of body parts is affected by diseases. Over the years, the temperature and
spatial resolution improved leading to thermal cameras with 2048 x 1536 pixel resolution and
thermal sensitivity of less than 10 mK. The devices became smaller resulting in very compact
and lightweight cameras and improved scanning times of up to 120 images per second to enable
dynamic temperature analysis.

The technological advancements of thermal cameras improved the overall usability making
thermal cameras a vastly used imaging technique for medical applications [Lah12]. Thermog-
raphy has been used to reveal pathologies or to monitor the treatment, but the analysis of the
temperature measurements was mainly performed manually by the investigator. Tools assisting
the application of thermography in clinical settings are lacking. Hence, the field of research in
this work investigated technological improvements in thermography and previously uncovered
applications for use in surgical environments.

The high sensitivity of thermal cameras enables the detection of very small temperature
differences like these caused by blood vessels. In the literature, infrared thermography was used
to detect blood vessels of microvascular tissue in reconstructive surgery. Infrared thermography
was used to visually locate the perforator vessels of the deep inferior epigastric perforator (DIEP)
flap by qualitative assessment of the skin temperature distribution [dWWM12a]. However, the
results of this manual approach are impacted by the skill of the examining clinician as reading
and interpreting thermographic images requires training. The perforator vessels cause a local
temperature maximum as shown by de Weerd, but the temperature differences between a local
minimum and a local maximum are quite small (∼ 0.5 K) which leads to a low contrast image.
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The objective of this work was the development and evaluation of a system that is capable
of detecting local temperature maxima by analyzing the variations of the skin temperature to
automatically identify the positions of the perforators in the thermogram and, therefore, make
this method more reliable (article 1, section 2.1).

Imaging temperature can also be used to distinguish between live and inanimate objects
which enables new applications for technical support systems in the operating room (OR).
Operating rooms represent the most complex and expensive units of hospitals because a high
percentage of hospital admissions is due to surgical interventions [GG11]. Providing technical
assistance for complex manual tasks has the potential to increase the efficiency and efficacy
of clinical processes. Ideally, assistance needs to be provided without interfering with the es-
tablished treatment processes [SvdH06]. Hereby, the term workflow assistance was established
which is explained here briefly and more detailed in section 1.2. Workflow assistance describes
the process of automating manually performed tasks that can be tedious and repetitive for the
staff. In a surgical context, manual tasks include, for example, setting up and configuring devices
according to the type of intervention or even specifically for each patient. Thus, the team spends
a reasonable amount of time on secondary tasks instead of the actual procedure. Workflow as-
sistance provides a means to mitigate these effects. To provide workflow assistance, information
on the ongoing processes is needed. State-of-the-art approaches to recognize surgical activities
utilize visual cameras or additional sensors, but thermography hasn’t been investigated for the
recognition of surgical activities. The objective of this work was the development and evaluation
of a system for the recognition of low-level tasks by analyzing thermal instead of visual data to
simplify the extraction of regions of interest (article 2, section 2.2).

During the performed investigations, the limited depth of field of thermal cameras which is
only in the range of some millimeters became evident. Additionally, due to the properties of
the spectral range, typical thermal cameras don’t provide automatic focus as known from visual
cameras (see section 1.1.2). Some models providing an autofocusing feature are available, but
these models rely on range measurement and are intended for technical temperature measure-
ments. The manual focusing is cumbersome and limits usability, especially during intraoperative
use because sterility needs to be maintained. Furthermore, out-of-focus images negatively im-
pact the accuracy of the temperature measurements due to the effects of blurring. This resulted
in the objective to develop a thermographic system that acquires thermal images at varying
focal planes and combines the measurements to reconstruct an all-in-focus image to improve the
surface temperature measurement. This system enables a correct measurement of temperatures
over a wide range of focal depths which can subsequently be used for image analysis (article 3,
section 2.3). .
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Structure of the work

Section 1.1 gives a brief introduction to thermography including the foundations, technical
limitations, and medical applications. An introduction to workflow assistance as well as why
and how thermography can improve workflow assistance is given in section 1.2. The articles are
included in section 2. Section 3 summarizes and discusses the articles included in this work and
gives a brief outlook.

1.1 Thermography

Thermography describes the imaging process of an object’s surface temperature. Thermographic
cameras are able to detect electromagnetic radiation in the long-infrared range (8 µm .. 14 µm
).

Every object having a temperature above absolute zero (0 K; −273.15 ◦C) is emitting elec-
tromagnetic radiation proportional to its temperature. Figure 1 shows the dependency of the
spectral radiance with the wavelength for objects of different temperatures (Planck’s law). With
increasing temperature, the peak radiance shifts to a shorter wavelength. By integrating over
the whole spectrum, the emitted radiation can be obtained according to the Stefan Boltzmann
law. It states that the total emitted radiation M of a black body is directly proportional to the
fourth power of the black body’s temperature T:

M = σ ∗ T 4 (1)

A black body is an idealized physical object which absorbs all electromagnetic radiation,
hence it is neither reflective nor transmissive. Therefore, this object emits the maximum possible
radiation. Natural objects are described as gray bodies that emit far less radiation than a
black body at the same temperature. The properties of a gray body can be described by the
relation between the actual emitted radiation and that of a black body, called emissivity. Other
properties are reflectivity, which describes how much radiation is reflected from the surroundings,
and transmissivity, describing how radiation is passing through the object. The sum of emissivity
ε, reflection ρ, and transmissivity τ is constant and equals one:

ε+ ρ+ τ = 1 (2)

Because most materials do not show transmissivity in the infrared spectrum, the following
applies:

ε+ ρ = 1 (3)
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Figure 1: Planck’s law describing the black-body radiation. The wavelength emitted radiation
depends on the temperature of the object. Common thermal cameras measure the emitted
radiation between 8 µm .. 14 µm to calculate the object’s temperature.

The detected radiation of an object is the sum of the emitted and reflected radiation, and
therefore impacts the temperature measurement. For example, surgical instruments made of
metal have a low emissivity and a high reflectivity yielding wrong temperature measurements
highly impacted by the temperature of the environment (Figure 2).

The object temperature can be calculated from the detected radiation using the Stefan
Boltzmann law. The signal of the detector U is as follows:

U ∼ ε ∗ T 4
obj (4)

As stated above, the reflected ambient temperature Tamb, as well as the temperature of the
device Tdev, impacts the measurement, the formula changes as follows:

U ∼ ε ∗ T 4
obj + (1 − ε) ∗ T 4

amb − T 4
dev (5)

The measured object temperature depends on its emissivity and the captured reflected am-
bient radiation. The emissivity is different for each material and may vary by temperature
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Figure 2: Surgical instrument made of steel. The reflectivity of the material results in false
temperature measurements. The object reflects the radiation of the environment which results
in inaccurate temperature measurement. On the left mostly the background was reflected,
whereas on the right some warm object was reflected (indicated by the green arrows).

and wavelength. Deviance of the emissivity directly impacts the accuracy of the absolute tem-
perature measurement, e.g. estimating the body core temperature by measuring the forehead
temperature as used in fever thermometers. Steketee showed that the spectral emissivity of the
skin is independent of the wavelength and equal to 0.98 ± 0.01 [Ste73]. Togawa investigated the
emissivity of the skin for the forehead, forearm, palm, and back of the hand, and showed that the
emissivity of the skin is independent of the region and equal to 0.971 ± 0.005 [Tog89]. Because
this work is focused on temperature measurements of various body parts and only temperature
differences are analyzed, the impact of different emissivities is omitted.

1.1.1 Infrared thermal cameras

Infrared detectors convert the absorbed electromagnetic radiation into an electrical signal pro-
portional to the temperature of the object. The majority of optical detectors can be classified
into two broad categories: photon detectors (also called quantum detectors) and thermal detec-
tors [Rog12]. Photon detectors absorb the radiation, and the photo effect causes the electrons
inside the semiconductor material to go into a higher energy level. When the electrons fall back
to their natural energy level, an electrical signal is generated. Photon detectors exhibit a very
fast response and good signal-to-noise ratio. To achieve this, the detectors must be cryogeni-
cally cooled to prevent the thermal generation of charge carriers, also known as Johnson-Nyquist
noise, or thermal noise. Thermal detectors also absorb the incoming radiation. But in contrast
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to photon detectors, the absorbed radiation changes the temperature of the detector material
resulting in the change of physical properties to generate an electrical signal. Three approaches
using different physical properties have been mainly used. Thermopiles (radiation thermocou-
ples) generate a voltage, pyroelectric detectors change their electrical charge, and bolometers
change their electrical resistance proportional to the temperature. Thermal detectors don’t
need to be cooled although cooled versions exist to increase the performance of the temperature
measurement. Due to advancements in semiconductor technology in the last decades, thermal
cameras using bolometers are most common for mobile devices. The imaging sensor consists of
a focal plane array (FPA) of microbolometers and read-out circuitry. More detailed information
on the different types of detectors and operation principles can be found in [Kru01; SJC58].

Currently, microbolometer-based thermal cameras provide spatial resolutions of up to 1024 x
768 pixels and thermal sensitivities of about 0.03 K. These thermal cameras can acquire images
as fast as 80 frames per second making them suitable even for highly dynamic applications. The
accuracy of the absolute temperature measurement mainly depends on the calibration effort.
Commonly, vendors provide cameras with an accuracy of about 1 ◦C.

As stated above, the temperature measurement is impacted by the temperature of the device.
When using an uncooled device its temperature will change over time caused by the self-heating
of the electronic components. Therefore, a self-calibration is performed to compensate for the
temperature drift over time. During this time (∼ 1 s), temperature measurement isn’t possible.
After the self-calibration process, the temperature of the measured objects may leap depending
on the temperature drift. This behavior needs to be considered and accounted for when mea-
suring and analyzing the temperature over time. To mitigate these effects, the thermal camera
needs to be in a thermally steady state. For measurements in the OR, this can be achieved by
turning on the device well before measurement (at least 30 minutes) and by avoiding changing
environmental conditions, e.g. moving the camera in and out of the laminar flow in the OR.

1.1.2 Benefits and limitations for medical applications

Thermal imaging is a contactless, passive and non-invasive imaging technique. The tissue doesn’t
need to be stimulated using external light or heat sources and no contrast agent needs to be
administered. Therefore, thermal imaging doesn’t need to deal with side effects. The property of
being a contactless method provides advantages when used intraoperatively, where the sterility
of instruments and devices is one of the main priorities. Modern thermal cameras provide
real-time image acquisition enabling processing and analyzing temperature information over
time. The high sensitivity makes thermal cameras suitable for the analysis of even the smallest
temperature differences (< 100 mK).
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The use of thermal cameras is limited when an accurate absolute temperature measurement
is needed, especially when using uncooled devices. The accuracy of 1 ◦C could be improved
by placing an object of known temperature into the field of view and using this information as
a reference for the recalibration of the device. This approach is very cumbersome, especially
in an intraoperative setting. Endoscopic temperature measurement using thermal cameras is
currently not available. Since thermal detectors operate in the long infrared range (8 µm to
17 µm) special materials are required to focus and guide the radiation through the endoscope
to the imaging unit. Devices with the sensor located at the tip are possible, but the pixels of a
microbolometer array are quite large (∼ 17 µm × 17 µm) due to physical constraints compared
to visual imaging sensors (∼ 1.4 µm × 1.4 µm).

These large imaging sensors combined with a fixed large aperture result in a small depth of
field (DOF), especially at small distances between camera and object. The DOF describes the
distance between the farthest object and the nearest object that are acceptably sharp [SSZ09].
In the case of thermal cameras, blurred objects lead to a loss of information which results
in incorrect temperature measurement and impacts the quality of subsequent image analysis.
Various methods are available to acquire sharp images. The focusing solutions of classical
RGB cameras are not applicable because thermal images might not show sharp edges, especially
when depicting tissue. As the focus depends on the distance between camera and object, devices
measuring the distance to an object via laser are available. This auto-focusing method improves
the ease of use but objects out of the focal plane are still blurred. As the depth of field increases
with the distance to the object, one solution is to measure the object at a greater distance.
In return, this decreases the resolution of the pixels and might therefore not be applicable.
Algorithms to extend the DOF exist but are highly dependent on the parameters of the image
pre-processing [Sol12].

1.1.3 Medical applications of thermography

The human body is homeothermic and thus is generating heat and regulating the body’s core
temperature to stay stable at close to 37 ◦C. Whereas the body core temperature is relatively
stable, the surface tissue, i.e. skin, forms part of the thermo-regulatory process. Changes in
metabolic activity lead to changes in the surface temperature either locally or globally. There-
fore, thermal imaging has been subject to numerous clinical studies investigating medical appli-
cations to reveal a possible pathology [Lah12]. For example, infrared thermography was used in
medical applications for monitoring the skin temperature [Cha15], to detect a change in blood
flow due to a clinical abnormality [RA12], skin cancer [HP11], inflammation [Den10; Pol17] and
vascular disorders [Bag09; LEP17].
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Physicians used the signs of inflammatory arthritis, like stiffness, pain, swelling, and heat,
for diagnosis. The temperature increase of acutely inflamed joints is high enough to be easily
detected by palpation. However, changes in temperature over time can be subtle depending on
the course of the disease. Thermography can be used to objectively measure even the smallest
temperature changes to assess the efficacy of treatment. Thermography was already used in
the 1970s to objectively assess the duration and degree of reduction in inflammation during
medication-assisted treatment [BRB79; Ess78]. Recently, Spalding et al. used thermal imaging
to analyze the temperature distribution of arthritic joints and calculate a heat distribution
index to create a quantifiable measure corresponding to changes in symptoms and physical
exam findings [Spa08].

Infrared thermal imaging has been widely investigated for use in breast cancer screening
[Ger14; Omr16; Vre13]. Malignant tumors are causing a localized increase in temperature which
is visualized as spots or vascular patterns in breast infrared thermograms [Tan08]. Commercially
available thermal cameras provided an increased thermal and spatial resolution over the last
decades and the methodology of processing and analyzing the thermograms got more complex
[Ger16]. Nonetheless, reports of low sensitivity and specificity conclude that there is currently
insufficient evidence to recommend the use of these technologies for breast cancer screening
[Vre13]. For the identification of brain tumors, studies revealed tumoral hypothermia in gliomas
[Fio18; Nay17] which is expected to be caused by the decreased metabolism and lower density
in tumor microvessels [Gor04].

Intraoperative imaging techniques enable an early analysis of the operation outcome. For
example, indocyanine green (ICG) angiography is widely used to assess the reperfusion after
anastomosis. Infrared thermography has been investigated for intra- and postoperative use
to monitor microvascular free flaps following oropharyngeal reconstruction [Jus15]. Static and
dynamic temperature analysis was used to assess the flap perfusion and detect perfusion failure.
Infrared thermography has also been investigated for the evaluation of head tissue perfusion
compared to ICG angiography during cranioplasty [Rat18]. A dynamic approach was chosen,
by cold-challenging the investigated region of the skin and measuring the temperature over time.
Parameters to assess the skin perfusion were defined for infrared thermography and compared
to ICG perfusion parameters. A similarity between the parameters of both imaging techniques
was shown.

In reconstructive surgery, the transfer of microvascular tissue is used to cover defects from
tumor removal or malformations. A microvascular free flap usually consists of the skin, the sub-
cutaneous layer, and muscle (Figure 3). The deep vessels branch into smaller vessels perforating
the muscle and subcutaneous layer hence called perforator vessels. These further branch into a
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Figure 3: Representation of the anatomical skin model and the expected temperature distribu-
tion at the skin surface.

fine vessel system in the skin and can be made visible with thermal imaging, due to the blood’s
temperature being higher than its surrounding tissue. For a positive outcome of the procedure,
the contour of the transplant must match the blood vessel network. Therefore, the location of
the blood vessels supplying the transplant needs to be known during the planning of the skin
harvesting. Hence, thermal imaging can be used to shorten pre-operative assessment and the
detection of a matching donor area.

1.2 Workflow Assistance

Workflow assistance describes the process of automating manually performed tasks which can
be used to relieve the surgical staff of tedious and repeating tasks. To automate tasks, the
preceding, current, and predicted future situation in the OR needs to be known for reliable
and intelligent system behavior [FMN15]. To enable this kind of behavior, the situation and
activities in the OR need to be measured and matched to pre-existing workflow models. The
course of surgical interventions can be described with surgical process models [Neu09]. This
model represents only a specific procedure. A statistical mean of many models of the same
intervention can be transformed into a generic surgical process model that describes one type of
intervention [Neu11]. This model can be used to trigger automated tasks based on the progress
of the intervention. The recognition of the progress in the OR is based on information acquired
from the sources available in the OR. Information sources can be either medical devices, sensor
data, or human input. Information from medical devices limits the assessment of the situation
in the OR to device-related conditions, like the use of a microscope, endoscope, high-frequency
devices, etc. Accessing information from medical devices is highly vendor-dependent and the
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provided interfaces. Because this approach is quite limited in regards to which information can
be obtained acquiring sensor data was more broadly investigated.

During a surgical procedure, the workflow is defined by tasks that are once or repeatedly
executed in a specific order. One of the essential information is which task the surgeon is
performing, as it provides direct knowledge of the progress of the procedure. Since many tasks
involve manual instruments which don’t provide information on their use or how it’s being
used per se, approaches on how additional sensors can be introduced to acquire the required
information were investigated. The goal is the automatic identification of surgical instruments
which closely relate to the tasks performed by the surgeon. Hand-held surgical instruments
were outfitted with radio frequency identification (RFID) tags to detect instruments used in the
situs [BJD09; Kra12; MN12; NM12; Van09]. RFID technology was also used to detect which
instruments are used in laparoscopic surgeries for the recognition of surgical workflows [Miy09;
Kra13].

To further get information on how the instrument is being used, inertial measurement units
were attached to surgical instruments or the hands of the surgeon. This enables precise mea-
suring and analyzing of the movements of the hands to classify the performed surgical task
[Ahm08; Les05; NM12; Mei14]. The introduction of additional sensors simplifies the informa-
tion acquisition from a technical point of view but requires the modification of instruments,
which in turn impacts the commercial availability, and affects the usability and user experience.
Hence, methods that don’t require the modification of instruments are investigated.

Glaser et. al. proposed a multi-sensor table to detect instrument usage during a surgical
procedure without the need to modify the instruments [GDN15]. Because almost all instruments
are transferred to and from the table of the scrub nurse, it was modified with a digital scale
and two cameras (visual and infrared) to automatically track instruments. This approach relied
on visual information to recognize and track instruments. Because visual information is widely
available, it provides a natural source of information about the situation in the OR. The surgical
staff relies heavily on visual cues and, therefore, vision-based recognition is an obvious approach
to acquire and process readily available information. Furthermore, vision-based approaches are
also appealing because they are contact-less, cheap, and widely applicable.

In particular, vision-based human activity recognition has been an important area of research
for many years as tasks and interactions in the OR are almost always human-related. Human
activities can be categorized into four different levels with increasing complexity: gestures,
actions, interactions, and group activities [AR11]. Gestures are the least complex and describe
elementary movements of a person’s body part that carry some meaning, like ’hand waving’,
or ’making an incision’. The combination of multiple gestures in a temporary order is called
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an action, e.g. ’passing an instrument’, or ’suturing’. Interactions are actions that involve
two or more persons and/or objects, for example ’exchanging an instrument’, or ’operating a
device’. Group activities are the most complex activity and are performed by more than two
persons and may involve objects, for example, ’the surgical team performing a procedure’. For
the recognition of surgical tasks, the detection of low-level activities gestures and actions are
most relevant. Therefore, the recognition of surgical instruments and the performed activities
have been widely investigated. The video data of endoscopic and microscopic procedures were
analyzed to determine low-level tasks [BFN10; Bou17; HZV12; Kla08; Lal13; Lal11].

In computer vision, the desired information can’t be measured directly. Instead, the informa-
tion provided by the sensor of the camera needs to be processed. The processing of information,
called computer vision, includes major steps like segmentation, feature extraction and represen-
tation, and activity classification [BAH17]. Computer vision deals with challenges like changing
brightness, occlusion, execution rate, background clutter, and camera motion which make each
of the aforementioned steps more than trivial. Segmentation is a fundamental step in image
processing to distinguish between the foreground and the background. The foreground con-
tains regions of relevant information, like the person or surgical instrument. In contrast, the
background contains no relevant information and needs to be filtered before applying image
analysis. Hence, the correct segmentation of the image directly impacts the recognition per-
formance. Image segmentation has been widely investigated and advanced over the years from
simple region-based over model-based techniques to complex neural networks [Kha13]. The ad-
vances were founded on the various challenges that are encountered in computer vision. Due to
changes in environmental conditions, the image of the same object may change over time. This
might be caused by intentionally changing the brightness of the room lighting, shadowing due
to occlusion of lights, or variation of daylight over time. Further difficulties arise from reflection
which is often encountered in medical environments due to the usage of metallic instruments or
light-colored devices. These various challenges caused the methods to become more and more
complex to improve the robustness by covering all possible effects on the image.

Computer vision is widely focused on processing visual images. Extending the used informa-
tion by expanding the spectral range to the non-visual infrared spectrum may further improve
image processing and, therefore, the recognition of surgical tasks. Using the non-visible infrared
spectrum enables contactless measurement of temperature, which is described in more detail in
section 1.1. Knowledge of the temperature distribution within a scene enables distinguishing
between live and inanimate objects. The region of interest for the recognition of gestures or
actions can be more easily obtained by extracting the parts of the image which show an elevated
temperature with respect to the background. Hence, the image segmentation process may be
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further improved. Thermography has been used for human-computer interaction to recognize
and classify hand gestures [App09] and for the recognition of facial expressions for people with
severe motor impairments [MVC09]. But thermography hasn’t been used for the recognition of
surgical activities.

In conclusion, the recognition of low-level tasks is the first step of higher-level assistance
systems based on workflow recognition. Although the information on the low-level tasks can be
easily acquired via the introduction of additional sensors, the need to modify existing medical
devices hampers the translation of this research. Methods that don’t require additional sensors
provide advantages in that respect. The recognition of low-level tasks via commonly used visual
cameras is a complex topic, especially when dealing with changing environmental conditions. A
novel approach of low-level task recognition based on methods of machine learning to analyze
thermal instead of visual data was proposed which simplifies the extraction of regions of inter-
est by analyzing alternative imaging modalities (see article: Development and evaluation of a
method to recognize surgical tasks - section 2.2).
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Abstract
Purpose Knowing the location of the blood vessels supplying the skin and subcutaneous tissue is a requirement during
the planning of tissue transfer in reconstructive surgery. Commonly used imaging techniques such as computed tomography
angiography and indocyanine green angiography expose the patient to radiation or a contrast agent, respectively. Infrared
thermal imaging was evaluated with success as a non-invasive alternative. To support the interpretation of thermograms, a
method to automatically detect the perforators was developed and evaluated.
Methods A system consisting of a thermal camera, a PC and custom software was developed. The temperature variations
of the skin surface were analysed to extract the perforator locations. A study was conducted to assess the performance of the
algorithm by comparing the detection results of the algorithm with manually labelled thermal images by two clinicians of the
deep inferior epigastric perforator flap of 20 healthy volunteers.
Results The F measure, precision and recall were used to evaluate the system performance. The median F measure is 0.833,
the median precision is 0.80, and the median recall is 0.907.
Conclusion The results of this study showed that it is possible to automatically and reliably detect the skin perforators in
thermograms despite their weak temperature signature. Infrared thermal imaging is a non-invasive and contactless approach
suitable for intraoperative use. Combined with a computer-assisted tool for the automatic detection of perforator vessels, it is
a relevant alternative intraoperative imaging method to the standard indocyanine green angiography.

Keywords Non-invasive imaging · Automatic segmentation · Operation planning · Skin transplant

Introduction

Reconstructive surgery restores lost functionalities of body
parts, for example, caused by injuries, tumour removal or
malformations. Transfer of microvascular tissue has become
a routine method for covering these defects [1]. These trans-
plants, called flaps, include skin, subcutaneous tissue, and
blood vessels. Main arteries and veins branch off into smaller
blood vessels of diameter less than 1 mm which perforate
subcutaneous tissue perpendicular to the skin surface. Hence,
these vascular structures are called perforator vessels. After
selection and extraction, the donor flap is transferred to the
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damaged area and revascularised using microsurgery. Hence,
knowledge of the anatomy of blood vessels is essential for
an optimal flap selection.

The anatomy of blood vessels is individual for each
patient. Therefore, several imaging techniques for the visual-
isation of perforator vessels exist. Digital subtraction angiog-
raphy (DSA), computed tomography angiography (CTA)
and magnetic resonance angiography (MRA) are used pre-
operatively. They offer images of highest quality but require
the administration of a contrast agent. Moreover, CTA and
DSA expose the patient to radiation. Suitable perforators
are still commonly annotated manually by a radiologist by
interpreting the reconstructed imaging data [2,3], although
computer-aided tools for the semi-automatic segmentation
and report generation are emerging [4,5].

Furthermore, the flap selection will be made during the
intervention in the operating room (OR), because the flap size
depends on the actual defect [6]. Hence, additional intraop-
erative imaging techniques are required. Doppler ultrasound
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(Doppler-US) and indocyanine green angiography (ICG-A)
are commonly used. Doppler-US is a non-invasive tech-
nique for locating blood vessels, but its quality depends on
device settings and the skill of the surgeon [7]. Furthermore,
Doppler-US is prone to false positives, because even small
vessels unsuitable for supplying the transplant are detected
[8]. ICG-A is currently the standard procedure for intraoper-
ative imaging. ICG is a fluorescent dye which is administered
intravenously. The perforator vessels and its branching ves-
sels are made visible with an infrared camera by exciting the
dye using a light source. Because of the half-life of the dye
of 3–4 min, repeated imaging is only possible after approxi-
mately 20 min. Although the incident rates of ICG are very
low, it is not a risk-free procedure [9].

Infrared thermography (IRT) is a contactless imaging
technique used to visualise the surface temperature of
objects. Because physiological processes have an impact on
the tissue temperature, thermography is widely used in med-
ical applications to reveal a possible pathology [10]. For
example, IRT was used in medical applications for moni-
toring the skin temperature [11], to detect skin cancer [12] ,
breast tumours [13–15], inflammation [16,17] and vascular
disorders [18,19].

The vascular system transports energy in the form of heat
from the inner body to the surface. Thus, thermography can
be used to detect perforator vessels in the skin. De Weerd used
infrared thermography to visually locate perforator vessels
by qualitative assessment of thermograms of the deep inferior
epigastric perforator (DIEP) flap [20]. However, reading and
interpreting thermographic images require training. There-
fore, the quality of the analysis depends on the experience
of the clinician conducting the examination. The perforator
positions are detectable as local temperature maxima. How-
ever, the temperature differences at the skin surface are low
and thus lead to low contrast in the thermogram. A tool to
automatically identify the positions of the perforators in the
thermogram would make this method more reliable.

Therefore in this paper, we propose an algorithm to locate
perforator vessels of a free flap automatically. The output of
the algorithm was compared to manually labelled images of
two clinicians for the DIEP flap.

Material andmethods

System design

An imaging system consisting of a thermal camera PI 450
(Optris GmbH, Berlin, Germany), a computer and custom-
developed software was developed. The prototypical system
is depicted in Fig. 1. The thermal camera is connected to
the computer via USB and provides a spatial resolution of
382×288 pixels. The thermal sensitivity (NETD) of the cam-

IR camera PI 450

Computer

Hardware So�ware

U
SB

Custom so�ware

Firmware

PI Connect 2.10

IPC

C++ 14
OpenCV 3.10

Fig. 1 Overview of the system components

era is 40 mK. By using optics with a field of view (FOV) of
13◦×10◦, the pixel size (IFOV) is 0.6 mm at a given distance
of 1 m between camera and object, and the measurement area
is approximately 234 mm×175 mm.

The thermal camera comes with imaging software (PI
Connect version 2.10) which handles the device communi-
cation and image acquisition. Radiation emitted by objects is
captured by the camera. Via a calibration done by the manu-
facturer, these radiation values are converted into temperature
values.

To correctly measure the temperature of an object, its
emissivity needs to be known. The emissivity describes
how much energy is emitted as thermal radiation at a given
object temperature. If the emissivity is not set correctly, the
measured temperature values differ from the real object tem-
perature. Steketee [21] showed that the emissivity of skin
tissue is nearly constant. Therefore, a constant emissivity of
0.98 was used. Although the emissivity depends on the angle
between object and camera [22], Schmidt et al. showed that
the temperature error induced by the viewing angle could be
neglected for angles up to 45◦ to the surface normal [23].

Perforator detection algorithm

Figure 2 shows the image processing steps to detect and visu-
alise the perforators.

Data acquisition

The thermal camera only provides information about the
energy emitted by the object in its field of view. The conver-
sion of these radiometric data into temperature information
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Data Acquisis�on

Data Conversion

Extrac�on of ROI

Perforator Detec�on

Visualiza�on

Fig. 2 Image processing steps for the automatic detection of perforator
locations

is done by the vendor software PI connect. To retrieve the
temperature values, our custom software is communicating
with the vendor software using a dynamic link library (DLL).

Data conversion

Because some of the used computer vision functions require
8-bit greyscale images, the image is saved in that format.
As a consequence of this, the temperature range needs to be
reduced to preserve the thermal resolution. Thus, the tem-
perature data are stored in an 8-bit greyscale image covering
a temperature range of 25.8–38 ◦C at a thermal resolution of
50 mK.

Extraction of the region of interest (ROI)

The ROI describes the area which contains the perforators
of the donor flap. The clinician defines the ROI by applying
markers to the skin, which are visible in the visual image
as well as in the thermal image. Surgical strips coated with
metallic ink were used to provide visual cues in both image
modalities while specifying the ROI.

Perforator detection

A perforator can be described by its centre and the supplied
region of the skin. De Weerd et al. [20] showed that perfo-
rators correspond to hot spots in the thermal image. Hence,
finding the perforator locations corresponds to finding the
local temperature maxima in an image.

The image is preprocessed by applying a Gaussian blur
filter to reduce noise. The kernel size (aperture size) of this
filter has an impact on the perforator detection. A small value
may lead to false positives because of noise induced by the
imaging sensor, whereas a large value prevents the detection

Fig. 3 System set-up in the OR. The volunteer laid on the OR table.
The thermal camera was directed at the DIEP flap. A laptop computer
was used for the image acquisition

of small perforator vessels. Therefore, choosing an optimal
value determines the detection result of the algorithm by sup-
pressing false positives while being sensitive enough to detect
small perforators.

A local maximum is defined as one or more adjacent pix-
els having a higher value than their neighbours. To find the
local maxima, the intensity values of the image are sorted.
A breadth-first search approach was used to iterate over the
pixels sorted by intensities. Beginning with the highest value,
the pixel and its neighbours of the same value are labelled as a
possible candidate for a local maximum. If no neighbours (8
connectivity) having higher intensity exists, then the pixels
belong to a regional maximum. If a neighbour has a higher
value, it is part of another hot spot.

In conclusion, the kernel size of the Gaussian filter is the
unique parameter of the algorithm. Its value will influence
the number of detected perforator centres.

Study design

An evaluation study, which was approved by the ethics com-
mittee, was conducted under intraoperative conditions at
the Leipzig University Hospital. The participants were posi-
tioned on the operating table (see Fig. 3). The laminar flow
of the OR’s air conditioning was used to induce slight exci-
tation of the skin temperature and enhance the contrast in the
thermogram. This procedure was proposed by de Weerd et
al. as a mild cold challenge [20].
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Fig. 4 The visual image of the
abdomen (left) and the
corresponding thermal image
(right). Dark colours correspond
to cold temperatures, whereas
bright colours correspond to
warm temperatures. Markings
on the skin denote the pelvic
bone as an anatomical landmark

The deep inferior epigastric perforator (DIEP) is one of
the most commonly used free flaps in reconstructive surgery.
Therefore, the algorithm was evaluated using this region. As
an example, Fig. 4 shows the temperature distribution as well
as the corresponding visual image.

Five markers arranged in a convex polygon were used to
define the ROI. Pixels outside this area were set to black to
be ignored by the detection algorithm as well as during the
manual labelling by the clinician.

Labelling of perforators

The acquired images were labelled by clinicians to evaluate
the algorithm performance. Two clinicians, one experienced
in reconstructive surgery and one medical student, labelled
the perforator centres inside the ROI for each image. Fig-
ure 5c shows an example for the labelled perforators.

A tool for the annotation of the image data was imple-
mented with ImageJ. Because of the small temperature
variances, the clinicians could adjust the brightness and con-
trast of each data set.

Result classification

For result classification, the perforator centres automatically
provided by the algorithm were compared to the man-
ual labelling performed by the clinicians. If the distance
between the manually labelled perforator centre and the
centre detected by the algorithm was less than 10 pixel
(approximately 6 mm), the result was classified as true posi-
tive. Otherwise, the result was classified as false positive if a
perforator centre was detected by the algorithm but was not
manually labelled within this radius. Equivalently, the result
was classified as false negative if a perforator centre was
manually labelled but no centre detected by the algorithm
was within this radius.

Manually labelled and automatically detected centres,
which were closer to the border of the ROI than half of the
kernel size, were ignored during classification because the
actual temperature maximum might be located outside of the
ROI.

Composition of participants

Twenty participants were included in this study, ten males
and ten females. The mean age was 27, ranging from 21
to 45. The mean body mass index was 21.95, ranging from
18.14 to 25.95.

Six participants were smokers. The mean amount was 6.8
pack-years, ranging from 1.5 pack-years to 15 pack-years.
Ten participants noted they were doing sports regularly.

Results

The algorithm performance was evaluated using the F mea-
sure, recall, and precision. Moreover, the algorithm was
tested with varying values of the kernel size ranging from
9 to 31 pixel to assess its effect on the results (Fig. 6).

The algorithm performance and body mass index for each
volunteer are shown in Fig. 7. No significant correlation
between BMI and algorithm performance was measured.

Discussion

The automatic detection of perforator vessel can subse-
quently support the surgeon during reconstructive surgery.
The visual identification of locations containing perforators
in the thermograms requires a learning process. Moreover,
depending on surrounding conditions, different physiolog-
ical or anatomical conditions of the patients, the images
show low contrast and are difficult to interpret. Therefore,
analysing the temperature distribution in an area of interest
and presenting the perforator location can support the sur-
geon during the flap selection. A study was conducted to
evaluate the system performance by comparing the detection
algorithm to perforator locations labelled by clinicians for
different values of the kernel size of the Gaussian filter.

The F measure, which is defined as the harmonic mean
of precision and recall, was used to evaluate the system per-
formance. The best median score of 0.833 was reached for a
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Fig. 5 Post-processing steps.
Thermal image acquired by the
camera (a). Extracted region of
interest (b). Annotated
perforators (c). Classification
result (d). A green cross denotes
the centre labelled by the
clinician, and a red cross
denotes the centre found by the
algorithm. A green circle
denotes true positive
classification, a blue circle
corresponds to a false negative
classification, and a red circle
denotes a false positive
classification. The size of the
circle shows the radius used for
true positive classification. A
plus denotes ignored recognition
results due to close proximity to
the ROI border

9 11 13 15 17 19 21 23 25 27 29 31
kernel size

0.4

0.6

0.8

1
F-measure

9 11 13 15 17 19 21 23 25 27 29 31
kernel size

0.4

0.6

0.8

1
Recall

9 11 13 15 17 19 21 23 25 27 29 31
kernel size

0.2

0.4

0.6

0.8

1
Precision

Fig. 6 Algorithm performance for the DIEP region of both clinicians. The best F measure (top) of 0.833 (median) is reached for a kernel size of
17. For this parameter value, the median recall is 0.907 (middle) and the median precision is 0.80 (bottom)

kernel size of 17. Smaller kernel sizes lead to the detection
of more positives caused by the reduced filtering. Thus, the
recall, which is defined as the proportion of correctly detected
perforators over all perforators labelled by the clinicians, is
higher for smaller kernel sizes at the cost of increased detec-

tion of false positives. In contrast, choosing a bigger kernel
size leads to detecting fewer positives. Hence, the precision,
which is defined as the proportion of correctly detected perfo-
rators over all perforators detected by the algorithm, is better
for bigger kernel sizes. Therefore, the sensitivity of the sys-
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Fig. 7 Algorithm performance for each volunteer using a kernel size
of 17 (top) sorted by body mass index (bottom). Each data set includes
the left and right DIEP flap

tems can be adjusted by varying the kernel size. This enables
the clinician to choose an optimal value depending on the
specific patient and the region under examination. Although
the algorithm performance varies, the current number of vol-
unteers enrolled in the study, it is not enough to highlight
statistically significant differences regarding specific param-
eters such as gender, age or daily sport activity. Currently,
the algorithm was only evaluated for the region of the DIEP
flap. More studies are needed to assess the performance of
typical donor flap regions.

Furthermore, the algorithm was compared to images
manually labelled by clinicians, which provides an initial
indication whether a thermography-based system is suitable
for the detection of perforator vessels. However, by using the
manually labelled images as a gold standard, the results are
affected by the skills and experience of the clinician. Hence,
the system performance needs to be further evaluated by com-
paring the detection results of the algorithm with a second
imaging technique. For example, CT angiography is used
pre-operatively during reconstructive surgery and is there-
fore suitable for comparing the perforator locations detected
by the algorithm with the actual position of the blood vessels.

At the current development stage, the algorithm facilitates
the perforator identification because no manual adjustment
of brightness and contrast is needed. In particular, images
with low contrast are harder to interpret and manual analysis
requires more time. The main goal in the intraoperative work-
flow is to find the main perforator(s). Perforators with low
perfusion are not suitable as a donor and should be excluded.
One approach could be the exclusion of detected perforators
with a small temperature difference of less than e.g. 200 mK.
The impact of the usability, user acceptance and impact on
the clinical workflow must be investigated further.

Conclusion

A system consisting of a thermal camera and custom software
was developed to detect perforator vessels. This approach is
usable for pre- and intraoperative imaging. In contrast to CT
and MR angiography as well as ICG angiography, it is a
non-invasive technique. No contrast agent is necessary for
imaging, and therefore the examination can be repeated as
needed. This characteristic enables on-demand imaging in
the operating room which might offer advantages in case of
changing requirements for the donor flap due to changes in
the tumour resection process.

Only static thermal images were analysed to detect the
locations of the perforator vessels. Multiple static images
can be combined to improve the recognition robustness over
time. Dynamic thermograms are a promising approach in
the early detection of breast cancer [24,25], and therefore
might improve the perforator detection. By cooling the skin
surface and analysing its reheating, the strength of underly-
ing vessels can be estimated. A study investigating dynamic
analysis needs to be conducted to assess the feasibility and
performance of this approach.
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Abstract
Purpose Surgical processes are complex entities character-
ized by expressive models and data. Recognizable activi-
ties define each surgical process. The principal limitation
of current vision-based recognition methods is inefficiency
due to the large amount of information captured during a
surgical procedure. To overcome this technical challenge,
we introduce a surgical gesture recognition system using
temperature-based recognition.
Methods An infrared thermal camera was combined with a
hierarchical temporal memory and was used during surgi-
cal procedures. The recordings were analyzed for recogni-
tion of surgical activities. The image sequence information
acquired included hand temperatures. This datum was ana-
lyzed to perform gesture extraction and recognition based on
heat differences between the surgeon’s warm hands and the
colder background of the environment.
Results The system was validated by simulating a functional
endoscopic sinus surgery, a common type of otolaryngologic
surgery. The thermal camera was directed toward the hands of
the surgeon while handling different instruments. The system
achieved an online recognition accuracy of 96% with high
precision and recall rates of approximately 60%.
Conclusion Vision-based recognition methods are the current
best practice approaches for monitoring surgical processes.
Problems of information overflow and extended recogni-
tion times in vision-based approaches were overcome by
changing the spectral range to infrared. This change enables
the real-time recognition of surgical activities and provides

M. Unger (B) · C. Chalopin · T. Neumuth
Innovation Center Computer Assisted Surgery, University of Leipzig,
Semmelweisstr. 14, Leipzig 04103, Germany
e-mail: michael.unger@medizin.uni-leipzig.de

online monitoring information to surgical assistance systems
and workflow management systems.

Keywords Computer-assisted surgery · Workflow ·
Surgical process model · Intraoperative monitoring ·
Surgical activity recognition · Thermal imaging

Introduction

Modern operating rooms (ORs) are sophisticated techni-
cal systems that rely on various technologies and manifold
processes [1,2]. Complex medical devices are used to sup-
port surgical actions and to improve patient safety. How-
ever, the increasing use of technology also makes it neces-
sary to interact with a variety of devices and to process the
large amount of information provided by the surgical assis-
tance systems. To design technical infrastructure in the OR to
appropriately support the surgical team and to make improve-
ments in healthcare processes, precise workflow models are
required. This requirement drives the need to acquire infor-
mation about the surgical processes themselves [3].

Surgical activities are complex processes that need models
to describe them. In recent years, methods of modeling and
analyzing processes have been developed [4,5]. These meth-
ods are capable of describing surgical workflows, despite the
high complexity and variation of surgical tasks.

A surgical intervention is usually structured in interven-
tional phases. The phases denote sections within an opera-
tion that end with a certain goal. A phase consists of multi-
ple sequences of surgical activities that are identified using
sensor data. The identification of the surgical activities is
an important step in modeling the workflow of the surgery.
The applications are surgical workflow management sys-
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Fig. 1 Visual image and the corresponding thermal image (with red color denoting warm areas and blue color denoting cold areas)

tems that provide robust guidance for surgical activities [6].
These workflow management systems may trigger devices
and automate the documentation of surgical procedures or the
estimation of operation end times [7]. Furthermore, knowl-
edge of ongoing interventional phases [8] and operation end
times exceeding their estimated duration is needed in the field
of anesthesia [10].

Several strategies exist to identify surgical activities. If
surgical interventions are performed using robotic systems,
mechanical tracking information can be used to acquire infor-
mation about the movements of the robot without the need
to alter the technical systems or instruments. Therefore, a
surgical process can be analyzed based on these trajectories
without biasing the process. It has been shown that motion
data generated during robotic surgery can be used to recog-
nize surgical activities and to evaluate the skills of a surgeon
[11–13].

When no robotic systems are used in an intervention, addi-
tional sensors must be brought into the process. Radio fre-
quency identification (RFID) is used to track the use of sur-
gical instruments and the presence of personnel in the OR
[14–18]. Using accelerometers, it is possible to recognize the
activities performed by the surgeon [19,20]. Recognition of
the use of surgical instruments using RFID is accurate but has
the drawback of necessary modification of the instruments. If
the surgeon has to wear accelerometers, this feature can lead
to constraints in motion and affect the quality of the work.

To overcome this problem, vision-based approaches can
be used to identify surgical processes based on video data
[21–25]. It has been shown that methods based on video data
performed equally well as approaches based on kinematic
data.

The main limitation of vision-based methods for the auto-
matic recognition of surgical activities in the surgical work-
flow is the extraction of objects of interest. Video images of
the operating field include a large amount of information,
such as information about the surgeon’s hands, the surgical
instruments, or the patient. The image quality and contrast

are not always optimal because of the specific lighting in the
OR. The segmentation task, which has to be automatic due
to the large dataset, is therefore complex.

The use of thermographic information acquired by
infrared thermal cameras can overcome this problem. Fur-
thermore, the temperature measurements provide unique
information, in contrast to approaches using conventional
visual images (see Fig. 1). We propose a system combining
an infrared thermal camera with an object recognition system
for the automatic online identification of surgical activities.
We show that the use of thermal data has advantages over
conventional video data and is suitable for the recognition of
surgical activities. This article presents the approach needed
to develop a system that is capable of recognizing surgical
activities online.

System design

Activity recognition system overview

Thermography has been successfully used to recognize and
classify hand gestures [26]. Information on hand temper-
atures enables easier extraction of gestures than in video
images under good acquisition conditions. Our system con-
sists of a thermal camera as the imaging modality and of
software for surgical gesture recognition (see Fig. 2).

The camera acquires thermal images from the surgi-
cal scene. Subsequently, segmentation, object detection,
and gesture recognition are performed. The segmentation
removes the background from each image. The object detec-
tion provides information about the position of possible ges-
tures. This information is used to extract sub-images of the
original thermal image. These images are used by the gesture
recognition algorithm to identify surgical activities.

The software was developed in C++. The OpenCV soft-
ware library provided algorithms for processing the images
from the thermal camera.
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Fig. 2 Structure of the system

Thermal imaging modality

The infrared camera measures the thermal radiation emit-
ted by the objects and bodies in a scene. The radiation data
are converted into temperature values based on a calibration
process. Software provided by the manufacturer handles the
communication with the camera and provides the tempera-
ture data via an API.

We used the thermal camera PI160 from the company
Optris1 (see Fig. 3). The camera works on a spectral range
of 8–14µm. The thermal resolution or noise equivalent tem-
perature difference (NETD) is 100mK, and the resolution
of the images is 160 × 120 pixels. Images are acquired at
up to 120 frames per second. The accuracy is ±2 ◦C. The
given parameters of the optics (23 ◦ × 17◦, 10mm) and the
distance of 1.5m to the surgical scene yield a field of view
of 0.60 × 0.44m.

The acquired thermal images were retrieved from the cam-
era software using a DLL that was provided by the system
vendor.

Segmentation

A segmentation step was performed to remove the back-
ground and to segment the surgeon’s hands as regions of
interest. Figure 4 shows images acquired during a simu-
lated surgery, and Fig. 5 depicts the segmentation results.
The image was scaled to a range of 20–40 ◦C. The colors
are grayscale representations (values of 0 to 255) of the tem-
perature of the pixels. Dark colors denote cold objects (here,
the background, the patient, and the surgical instruments),
whereas light colors denote warm objects (here, the surgeon
and, more specifically, the surgeon’s hands). The images were

1 http://www.optris.com/.

Fig. 3 Thermal camera Optris PI160

thresholded using a temperature value of 32 ◦C, keeping only
the hands, with a surface temperature of 32–35 ◦C, in the
images.

Object detection

Next, the thresholded images were processed by a blob detec-
tion algorithm. The algorithm creates areas of connected
components for the pixels masked by the thresholding. The
given blobs are regarded as objects that will be classified.
Small blobs are rejected to remove noise. In the study, we
used a minimal pixel count of 80 to robustly detect the hands
of the surgeon and to reject noised caused by other warm parts
of the body. Using the position of the blobs, sub-images of
50×50 pixels, which included gestures, were extracted from
the original thermal image (see Fig. 6).

Gesture recognition

We used hierarchical temporal memory (HTM) to classify
the data. HTM was developed to model the structural and
functional properties of the human neocortex [27,28]. This
model allows the classification of unknown images into cate-
gories by combining the principles of Bayesian networks and
clustering algorithms. HTM has already been used to clas-
sify hand shapes under large variation in hand rotation [29].
Furthermore, another study [30] showed that it is possible to
use HTM to recognize signed words. Both approaches are
vision based.

HTM is hierarchically organized into multiple levels. Each
level contains a certain number of so-called nodes. The low-
est layer is connected to the sensor data. In our case, the sen-
sor data are images showing a surgical gesture. Each node
receives its input data from one or more nodes of a lower
level and transmits its output data to a node of a higher level.
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Fig. 4 Surgeon handling a
blakesley (a), a suction tool (b),
and an elevator (c)

Fig. 5 Segmentation of Fig. 4

Fig. 6 Extracted sub-images
corresponding to the images in
Fig. 5

Two different types of nodes exist: spatial and tempo-
ral nodes. In spatial nodes, reoccurring spatial patterns form
coincidences, whereas temporal nodes recognize a correla-
tion in sequences of spatial patterns. The coincidences are
the output of nodes of lower order and the input of nodes
of higher order. Thus, the details of an object are stored in
the lower nodes, whereas the higher nodes recognize objects
based on the composition of the objects’ details.

The use of HTM requires two steps: a training phase and
an inference phase. In the training phase, the network learns
to recognize different categories based on images belonging
to known categories that are provided by the user. Thus, each
layer of the network needs to be trained successively. Begin-
ning with the lower levels, each node is presented with input
data and thus learns coincidences. The last step is the training
of the classifier. Therefore, supervised learning is required to
feed the classifier both input data and the corresponding cat-

egories. In our application, the categories represent different
surgical gestures. In the inference phase, the network is able
to classify an unknown image into a category.

We used the HTM implementation of NuPIC open-source
software.2 For the recognition of gestures, a seven-layer net-
work was used. The first level was a thermal image of 50×50
pixels. A Gabor filter was used for edge detection in the input
image. Two layers of spatial nodes and two layers of tempo-
ral nodes were used to recognize coincidences. Classifica-
tion of the data was performed using the k-nearest neighbor
algorithm (KNN). The KNN is a relatively simple classi-
fier, and its disadvantage is that a high computational effort
is needed when using large training sets. However, as men-
tioned before, recognition is performed in multiple layers.
Thus, the KNN only needs to be trained to classify coin-

2 http://www.numenta.org/.
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Fig. 7 Experimental setup of the simulated surgeries

cidences at the underlying level. Therefore, only a limited
number of coincidences need to be trained. The amount of
data is reduced, and therefore, the computational effort is
moderate. The parameter k = 1 yielded optimal classifica-
tion results for our data.

Evaluation study

Study design

Simulated clinical datasets

For system validation and accuracy estimation, a simulated
functional endoscopic sinus surgery (FESS) was performed
and recorded with a thermal camera. Students acting as the
surgeon and an assistant performed the simulated surgery on
a phantom.

The surgical scripts were based on the workflows of pre-
viously recorded real surgeries. The activities forming the
intervention were announced to the actors by a recorded
voice. Thus, a steady workflow was ensured throughout mul-
tiple passes. Three different workflows representing different
operations were recorded four times each. Therefore, a total
of 12 videos were recorded. The length of a single workflow
was approximately 20min, and all workflows contained 734
surgical activities. The study setup is shown in Fig. 7.

Recognition training and validation

During the surgical intervention, different activity types were
performed by the surgeon. These activities were removal of
tissue, movement of tissue, endoscopic imaging, documen-
tation, cleaning of the endoscope, suction, injection of anes-

thetic, and disinfection. Additionally, a ninth category, no
gesture, was introduced. The activities were classified as no
gesture when the surgeon performed none of the eight sur-
gical activities. For example, the handing of an instrument
from the assistant to the surgeon and vice versa was classified
as no gesture.

The videos were processed using a frame rate of two
frames per second. The gold standard was defined by man-
ual classification of each object recognized by the software.
This step consists of the following procedure. The software is
used to process the video data and to extract the gestures into
sub-images. The sub-images are manually classified into one
of the nine categories described above. The result is a dataset
of gestures for each of the 12 videos, categorized into nine
categories.

For validation, leave-one-out cross-validation was chosen.
Gestures from 11 simulated operations were used to train the
HTM network, whereas the gestures from the 12th simu-
lated operation were classified. This procedure was repeated
12 times by changing the video of the operation used for clas-
sification each time. The output of the software was a vector
of classified gestures that were compared with the previously
defined gold standard.

Study results

During the processing of the 12 videos, a total of 60,199
gesture frames were classified. Binary classification was used
to measure the performance of our system. We used accuracy,
precision, and recall as measures. Accuracy denotes the true
positives and true negatives among all gestures. Precision
describes the true positives among all positives classified.
Recall measures the true positives among all true gestures.
The recognition results of our system are listed in Table 1.
The column listing occurrence values gives an overview of
how often a gesture occurred during the 12 interventions.

The results showed a high overall accuracy (between 89
and 99%) and a low standard deviation (between 0 and 6%).
The precision values varied between 23 and 98% and showed
a standard deviation between 8 and 28%. The recall rate
ranged from 29 to 99%, and the standard deviation was
between 1 and 26%.

Figure 8 shows the confusion matrix of the true and pre-
dicted categories. Given a perfect prediction result, only ele-
ments on the diagonal should be different from deep blue,
which represents no coincidence. The more red an element
is, the higher is the coincidence of the predicted and true cat-
egories. The classification results were normalized to a range
of 0–1.

The confusion matrix shows that some movements in all
categories were falsely classified as another category. The
gesture of moving tissue was classified as suction in 38% of
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Table 1 Gesture recognition
results for the 734 surgical
activities

The accuracy was calculated for
each of the N = 12
interventions and the mean and
standard deviation (SD) of the
accuracies is reported

Gesture Accuracy in
% Mean (SD)

Precision in
% Mean (SD)

Recall in % Mean
(SD)

No. of gesture
frames in the test
data

Removal of tissue 89 (6) 89 (8) 52 (24) 12,052

Movement of tissue 96 (3) 31 (25) 39 (18) 1,162

Endoscopic monitoring 99 (2) 98 (2) 99 (1) 26,796

Documentation 99 (0) 47 (21) 74 (26) 496

No gesture 93 (4) 81 (15) 83 (15) 13,127

Cleaning 98 (1) 66 (10) 59 (19) 1,247

Suction 90 (4) 37 (19) 59 (17) 4,041

Injection of anesthetic 98 (2) 23 (28) 29 (25) 606

Disinfection 99 (0) 48 (25) 51 (23) 672

Mean 96 58 60

Median 97 53 59

Standard deviation 3 19 14

Fig. 8 Confusion matrix
showing the predicted and true
categories, with red denoting a
high coincidence and blue
denoting a low coincidence
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cases. Injection of anesthetic was recognized as suction in
47% of cases.

Discussion

The recognition of surgical activities is a key step in the
recognition of a surgical process. This concept is the basis for
procedure time estimation, documentation, and automated
triggering of devices. The recognition of activities is achieved

by acquiring and processing sensor data. To circumvent the
need to modify instruments, a vision-based approach was
chosen. We used an infrared thermal camera combined with
an HTM network to classify the activities of surgical work-
flows.

Our system can be used to recognize surgical activities in
real time. Using a standard Windows-based desktop PC, we
were able to process the images and to classify the surgical
activities in approximately 0.3 s. Therefore, this system can
be used to recognize surgical activities online and to pro-
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vide input data to surgical assistance systems and workflow
management systems.

Our study demonstrated the recognition of surgical activi-
ties in infrared thermal images. We achieved a mean accuracy
of 96% and a mean recall rate of 60%. Certain categories
had a high recall rate, reaching up to 98%, whereas other cat-
egories had rates as low as 27%. The main divergence was
between the categories of movement of tissue, suction, and
injection of anesthetic. A probable cause is the limited resolu-
tion of the thermal camera. The extracted images containing
the hand of the surgeon were only 50 × 50 pixels in size.
This limited resolution is challenging for object recognition
in general. In our project, it was difficult even for a human
to distinguish between certain similar categories, e.g., eleva-
tor and suction use. A higher resolution will provide more
detailed images. Thus, a higher recall rate is expected for the
system.

The category recognized least was injection of anesthetic,
possibly because of the small amount of training data. The
amount of training data depends on the distribution of a ges-
ture throughout an intervention. Injection of anesthetic, for
instance, is performed only at the beginning of an inter-
vention and only for a short period of time (10s of an
intervention running 20min), whereas an endoscope is used
nearly entirely throughout an intervention. The very skewed
imbalance in the amount of training data has a disadvan-
tage. The KNN, used as a classifier, stores the training data
and categories. Thus, certain ambiguous and rarely occur-
ring categories may be mostly classified into other categories
because several categories are overtrained. However, making
the amount of training data per category more balanced is
not a solution. On the contrary, this balancing will reduce
the overall recall rate because the variety of gestures is not
learned.

The results are similar to those of other vision-based
approaches. Blum et al. [22] recognized phases using video
data with a recall rate of up to 77%. Lalys et al. [23] achieved
an accuracy of 95% for the offline detection of visual cues
in cataract surgeries. In another study [24], the recognition
rate of activities in cataract surgeries was 64.5%.

In contrast to the use of conventional visual cameras, ther-
mal data provide additional information about a scene. When
trying to classify the gestures of a surgeon, it is only plausi-
ble to make use of the temperature information. The clothes
worn for sterility purposes allow easy extraction of the hands
of the surgeon. The clothing shields the body temperature
of the person, whereas the gloves provide sufficient thermal
conductivity. Therefore, the hands are well distinguishable
from the surroundings and background. The extraction of
the hands is more complex if the background is at approx-
imately the same temperature as the hands. This similarity
may be the case, for instance, when the hands are in between
the thermal camera and the operating field. Thus, a dynamic

background detection algorithm may be needed to place the
camera more freely.

A HTM was chosen for object recognition because recent
studies showed that hierarchical systems have advantages
when invariance is demanded in vision-based object recog-
nition [30], [31]. Additionally, in contrast to classic pattern
matching methods, the memory usage and calculation times
do not grow with the amount of the training/reference data.
Therefore, a large amount of training images could be used
for learning the network.

In the future, the application of the system to a real surgical
environment needs to be investigated, including aspects such
as the mounting of the camera in an OR on a rack or micro-
scope. Additionally, the warmth of the operating field needs
to be considered. The currently implemented algorithms that
extract gestures rely on the fact that the hands of the surgeon
are warmer than ambient areas. When the surgeon handles
instruments in front of the operating field, this distinction
may not be the case.

Our system was validated using one type of surgery. Fur-
ther studies must be performed to estimate the feasibility of
expanding this technique to general use.

Furthermore, the method of training the system is still
very time-consuming. First, the software needs to extract all
gestures from the training videos. Afterward, each extracted
gesture needs to be labeled by a human observer. Therefore, if
the procedure times are long or the variety of gestures is very
high, a large amount of gestures needs to be labeled for train-
ing. In these cases, the current learning procedure is ineffi-
cient. Hence, a way of training the system semi-automatically
needs to be found. Based on a recorded workflow, an HTM
should be able to learn the correlation between the workflow
and the images recorded by a camera.

Conclusion

Surgical processes are complex entities that rely on expres-
sive models and data for their description. The main limi-
tation of current vision-based recognition methods is inef-
ficiency in online recognition because of the large amount
of information generated. We have overcome this problem
using infrared thermal imaging for the recognition of surgi-
cal activities. Combining an infrared thermal camera with an
HTM network for the classification of activities, we obtained
an online recognition rate of 96%. This finding provides a
basis for further workflow management and surgical assis-
tance systems that demand robust recognition of surgical
activities to provide situation-dependent support to the sur-
geon.

Acknowledgments ICCAS is funded by the German Federal Ministry
of Education and Research (BMBF) in the scope of the Unternehmen

123

Vision-based online recognition of surgical activities

29



986 Int J CARS (2014) 9:979–986

Region (Grant Number 03Z1LN12) and by the German Ministry of
Economics (BMWi) in the scope of the Zentrales Innovationsprogramm
Mittelstand (ZIM) (Grant Number KF2036709FO0).

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Archer T, Macario A (2006) The drive for operating room effi-
ciency will increase quality of patient care. Curr Opin Anaesthesiol
19:171–176. doi:10.1097/01.aco.0000192796.02797.82

2. Sutherland J, van den Heuvel W-J (2006) Towards an intelligent
hospital environment: adaptive workflow in the OR of the future.
Proceedings of the 39th annual Hawaii international conference on
system sciences, volume 05. IEEE Computer Society, Washington,
DC, USA, p 100b

3. Cleary K, Kinsella A, Mun SK (2005) OR 2020 workshop report:
operating room of the future. Int Congr Ser 1281:832–838. doi:10.
1016/j.ics.2005.03.279

4. Neumuth T, Jannin P, Schlomberg J et al (2011) Analysis of
surgical intervention populations using generic surgical process
models. Int J Comput Assist Radiol Surg 6:59–71. doi:10.1007/
s11548-010-0475-y

5. Neumuth T (2013) Surgical process modeling: theory, methods,
and applications

6. Neumuth T, Liebmann P, Wiedemann P, Meixensberger J (2012)
Surgical workflow management schemata for cataract procedures.
Process model-based design and validation of workflow schemata.
Methods Inf Med 51:371–382. doi:10.3414/ME11-01-0093

7. Franke S, Meixensberger J, Neumuth T (2013) Intervention time
prediction from surgical low-level tasks. J Biomed Inform 46:152–
159. doi:10.1016/j.jbi.2012.10.002

8. Tiwari V, Dexter F, Rothman BS et al (2013) Explanation for
the near-constant mean time remaining in surgical cases exceed-
ing their estimated duration, necessary for appropriate display on
electronic white boards. Anesth Analg 117:487–493. doi:10.1213/
ANE.0b013e31829772e9

9. Epstein RH, Dexter F (2012) Mediated interruptions of anaesthesia
providers using predictions of workload from anaesthesia informa-
tion management system data. Anaesth Intensive Care 40:803–812

10. Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards auto-
matic skill evaluation: detection and segmentation of robot-assisted
surgical motions. Comput Aided Surg 11:220–230. doi:10.3109/
10929080600989189

11. Judkins TN, Oleynikov D, Stergiou N (2009) Objective evaluation
of expert and novice performance during robotic surgical training
tasks. Surg Endosc 23:590–597. doi:10.1007/s00464-008-9933-9

12. Reiley CE, Lin HC, Varadarajan B et al (2008) Automatic recog-
nition of surgical motions using statistical modeling for capturing
variability. Stud Health Technol Inform 132:396

13. Vankipuram M, Kahol K, Cohen T, Patel VL (2009) Visualization
and analysis of activities in critical care environments. AMIA Annu
Symp Proc 2009:662–666

14. Bouarfa L, Jonker PP, Dankelman J (2009) Surgical context dis-
covery by monitoring low-level activities in the OR

15. Neumuth T, Meissner C (2012) Online recognition of surgical
instruments by information fusion. Int J Comput Assist Radiol Surg
7:297–304. doi:10.1007/s11548-011-0662-5

16. Meißner C, Neumuth T (2012) RFID-based surgical instrument
detection using Hidden Markov models. Biomed Tech (Berl).
doi:10.1515/bmt-2012-4047

17. Kranzfelder M, Zywitza D, Jell T et al (2012) Real-time moni-
toring for detection of retained surgical sponges and team motion
in the surgical operation room using radio-frequency-identification
(RFID) technology: a preclinical evaluation. J Surg Res 175:191–
198. doi:10.1016/j.jss.2011.03.029

18. Ahmadi S-A, Padoy N, Heining SM et al (2008) Introducing wear-
able accelerometers in the surgery room for activity detection.
7. Jahrestagung der Deutschen Gesellschaft fuer Computer-und
Roboter-Assistierte Chirurgie (CURAC 2008)

19. Lester J, Choudhury T, Kern N et al (2005) A hybrid discrimina-
tive/generative approach for modeling human activities. In: Pro-
ceedings of the international joint conference on artificial intelli-
gence (IJCAI), pp 766–772

20. Klank U, Padoy N, Feussner H, Navab N (2008) Automatic feature
generation in endoscopic images. Int J CARS 3:331–339. doi:10.
1007/s11548-008-0223-8

21. Blum T, Feußner H, Navab N (2010) Modeling and segmenta-
tion of surgical workflow from laparoscopic video. In: Jiang T,
Navab N, Pluim J, Viergever M (eds) Medical image computing and
computer-assisted intervention—MICCAI 2010. Springer, Berlin,
pp 400–407

22. Lalys F, Riffaud L, Bouget D, Jannin P (2011) An application-
dependent framework for the recognition of high-level surgical
tasks in the OR. In: Fichtinger G, Martel A, Peters T (eds) Medical
image computing and computer-assisted intervention—MICCAI
2011. Springer, Berlin, pp 331–338

23. Lalys F, Bouget D, Riffaud L, Jannin P (2013) Automatic
knowledge-based recognition of low-level tasks in ophthalmolog-
ical procedures. Int J Comput Assist Radiol Surg 8:39–49. doi:10.
1007/s11548-012-0685-6

24. Haro BB, Zappella L, Vidal R (2012) Surgical gesture classifi-
cation from video data. In: Ayache N, Delingette H, Golland P,
Mori K (eds) Medical image computing and computer-assisted
intervention—MICCAI 2012. Springer, Berlin, pp 34–41

25. Appenrodt J, Al-Hamadi A, Michaelis B (2010) Data gathering for
gesture recognition systems based on single color-, stereo color-
and thermal cameras. Int J Signal Process Image Process Pattern
Recognit 3:37–50

26. Hawkins J, George D (2006) Hierarchical temporal memory: con-
cepts, theory, and terminology

27. Hawkins J, Blakeslee S (2007) On intelligence. Macmillan, New
York

28. Kapuscinski T (2010) Using hierarchical temporal memory for
vision-based hand shape recognition under large variations in
hand’s rotation. In: Rutkowski L, Scherer R, Tadeusiewicz R et al
(eds) Artificial intelligence and soft computing. Springer, Berlin,
pp 272–279

29. Kapuscinski T, Wysocki M (2009) Using hierarchical temporal
memory for recognition of signed polish words. In: Kurzynski
M, Wozniak M (eds) Computer recognition systems 3. Springer,
Berlin, pp 355–362

30. Bengio Y (2009) Learning deep architectures for AI. Found Trends
Mach Learn 2:1–127. doi:10.1561/2200000006

31. Bouvrie J, Rosasco L, Poggio T (2009) On invariance in hierarchi-
cal models. Adv Neural Inf Process Syst 22:162–170

123

Vision-based online recognition of surgical activities

30



Current Directions in Biomedical Engineering 2016; 2(1): 369–372

Open Access

Michael Unger*, Adrian Franke and Claire Chalopin

Automatic depth scanning system for 3D infrared
thermography
DOI 10.1515/cdbme-2016-0162

Abstract: Infrared thermography can be used as a pre-,
intra- and post-operative imaging technique during med-
ical treatment of patients. Modern infrared thermal cam-
eras are capable of acquiring imageswith ahigh sensitivity
of 10 mK and beyond. They provide a planar image of an
examined 3D object in which this high sensitivity is only
reached within a plane perpendicular to the camera axis
and defined by the focus of the lens. Out of focus planes
are blurred and temperature values are inaccurate. A new
3D infrared thermography system is built by combining a
thermal camera with a depth camera. Multiple images at
varying focal planes are acquiredwith the infrared camera
using a motorized system. The sharp regions of individual
images are projected onto the 3D object’s surface obtained
by the depth camera. The system evaluation showed that
deviation between measured temperature values and a
ground truth is reduced with our system.

Keywords: 3D scene; depth of field; sharpness; thermal
imaging.

1 Introduction
Infrared thermographywas introduced in themedical area
already in the 1960s [1]. It is employed for diagnosis and
monitoring of diseases involving temperature differences.
Some applications are the detection of tumors [2, 3] or
the monitoring of cardiovascular diseases [4, 5]. More-
over, because acquisition of data is performed contactless,
thermography was brought in surgery for pre-operative
planning, as intra-operative assistance tool and for post-
operative monitoring of surgical outcome. Applications
were mostly reported in neurosurgery [6–8] and in plastic
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surgery [9, 10]. Furthermore, since body temperature is
correlated with tissue perfusion, identification and mon-
itoring of skin transplants can be performed with this
imaging technique [11, 12].

Recent technical developments apply thermal imag-
ing onto 3D scenes for visualization purposes [13]. This
technique was presented for medical applications too
[14–16]. However, thermal cameras possess a very small
depth of field, especially at small distances between cam-
era and object [17]. Soldan [18] extended the depth of field
by combining multiple thermal images of the same scene
acquired with varying focuses. The optimal focus for an
object is chosen by selecting a focus measure function
(FMF). The FMF yields a minimum or maximum value at
optimum. But good results require selecting an optimal
FMF and it’s parameters for a given scene.

To overcome this disadvantage we combined an in-
frared thermal camera and a depth camera. The latter
records a 3D surface of the examined object. Multiple ther-
mal images of the scene are acquired with the infrared
camera at varying focus settings. The optimal measure-
ment is selected as a function of it’s depth in the 3D
scene. Sharp parts of each thermal image are projected
on the 3D object surface in order to reconstruct a sharp
3D thermal scene. An automatic focus control system was
implemented with the future goal to use the device in the
operating room.

2 3D thermographic imaging
system

Then imaging system consisting of an infrared thermal
camera Optris PI450 and a Microsoft Kinect V2, providing
depth and visual information (Figure 1). The thermal cam-
era has a spatial resolution of 382× 288 pixels and a ther-
mal sensitivity of 40 mK. The Kinect V2 provides a depth
image with a spatial resolution of 512× 424 pixels and a
visual image of 1920× 1080 pixels. The depth resolution
is approximately 1 mm in a range of 0.5 m to 4 m.

The sharpness of the thermal image needs to be
adjusted manually. To overcome this, we outfitted the

© 2016 Michael Unger et al., licensee De Gruyter.
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Figure 1: The thermographic imaging system consists of a thermal camera and depth camera. A motor focus for the thermal camera allows
for automatic image acquisition at different focal planes. A computer system processes the data.

camera with a drive for focus control. The hardware con-
sists of a gear motor with a rotary encoder for position
measurement which is controlled by an Arduino board.
A firmware was developed providing basic functions for
referencing the focus as well as getting and setting the
focus position.

A software developed by us retrieves the temperature
information and a depth image via provided vendor soft-
ware. The thermal images are acquired using the Optris
PI Connect which supplies the data for the inter-process
communication via a dynamic link library. The Kinect for
Windows SDK is used to acquire the depth andRGB images
from the Kinect camera. After reconstructing the all-in-
focus image, the 3D scene with applied thermal image
mapping is rendered using the Kinect Fusion API.

2.1 Calibration of the system components

The components of the 3D thermographic imaging sys-
tem must be calibrated in order to combine the different
imaging modalities. The calibration process is described
in detail in the following sections.

2.1.1 Calibration of the focus

Changing the focus of the thermal camera defines which
objects at a certaindistance to the camerawill bedisplayed
sharply. For automating the image acquisition process, the
dependency between focus setting and the focal plane
needs to be known. Therefore, the focus was referenced
(zero position) by driving it to its end position. Following,
the characteristic curve was determined by incrementally
setting the focus and measuring the corresponding focal

plane. The measurement was done by moving a checker-
board until it was displayed sharply and reading the cor-
responding object distance from the depth image.

2.1.2 Camera calibration

To be able to combine the spatial data of the depth camera
and the temperature data of the thermal camera, the opti-
cal intrinsic (lens specific) and extrinsic parameters of the
components must be calculated. For this process a known
geometric pattern that is visible in both image modalities
is needed. We used a checkerboard pattern which had
alternating tiles removed (Figure 2). The removed tiles
were clearly visible in both the depth and thermal image.

Figure 2: Checker board uses in the calibration process.
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Firstly, the intrinsic parameters of the thermal camera
were calculated. The intrinsic parameters of the depth
camera are stored in its firmware. Secondly, the extrinsic
parameters describing the spatial relation between the
cameras were obtained. Using the resulting transforma-
tion matrix, the thermal image can projected onto the 3D
scene retrieved by the depth camera.

2.2 Depth scanning

To improve the image quality, sharp parts of multiple ther-
mal images are combined to anoverall sharp image. There-
fore, images at multiple focal planes are acquired. Points
of the 3D surface acquired with the depth camera become
the temperature value in the corresponding thermal image
obtained using the transformation between thermal and
depth images.

2.3 System evaluation

To evaluate the system an object which is visible in the
depth and thermal datawas constructed.WemountedLED
stripes into grids onto a plane board. Three boards were
positioned to focal planes at a distances of 500, 1000,
1500 mm. Each board contained 120 LEDs.

The current flowing through the LEDs causes heating
which was used to evaluate the image quality. If the plane
containing the LEDs is out of focus it gets blurred. This
blurring leads to a reduced temperature of the LED mea-
sured in the thermal image. The LEDs were heated for half
an hour to reach a steady state. Then a manually focused
thermal image of each board was acquired. These images
were used as a ground truth.

Secondly, our system reconstructed an overall sharp
image using depth scanning (Figure 3). We calculated the
temperature difference between the ground truth and our
algorithm. If the correct focus setting corresponding to the

Figure 3: Reconstructed 3D scene with applied thermal map.

Table 1: Temperature deviation due to blurring.

∆T with ∆T without
depth scanning (K) depth scanning (K)

mean std mean std

Board 1 (near) −2.45 0.36 −16.80 0.21
Board 2 (mid) −0.56 0.19 −0.36 0.13
Board 3 (far) −1.31 0.24 −5. 47 0.30

thermal pixel was selected the temperature difference is
expected to be zero. The depth scanning algorithm was
compared to an image with the focus set to the middle
board.

3 Results
When using depth scanning, the temperature deviation
due to blurring is reduced (Table 1). The biggest improve-
ment was achieved at near distance to the object. At far
distances the negative effects of the small field of depth
have less impact.

4 Discussion and conclusion
We showed that reconstructing an all-in-focus thermal
image improves the image quality and therefor the accu-
racy of the temperature measurement. The temperature
deviation induced by blurring was reduced but was still
up to 2.45 K.

Remaining errors may be caused by the rather simple
model used for the camera calibration. Adjusting the focus
causes a change in the focal length parameter which was
assumed fix. This dependency needs to be added to the
calibration process.

[18] improved the image quality by calculating an all-
in-focus thermal image by applying algorithms developed
for visual images. This process requires adjusting param-
eters depending on the scene. By using a depth camera
no parameters need to be adjusted, but more hardware is
needed and the calibration process is more complex.

Further evaluation of the imaging system is needed
to assess the impact on the image quality in medical use
cases.
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Infrared thermography (IRT) has been used for medical applications since the 1960s. The
means of non-invasive temperature measurement made infrared thermography an interesting
technology for the detection of diseases causing changes in metabolic activity and thus in tem-
perature. Technological advantages lead to improvements like higher thermal sensitivity, higher
resolution, as well as smaller and cheaper systems which expanded the field of research. The
field of research in this work investigated previously uncovered applications and technological
improvements of thermography for use in surgical environments.

This work investigated a use case to support surgical procedures by using IRT for diagnostic
purposes. IRT has been widely used in the medical domain for the diagnosis of diseases. Because
physiological processes have an impact on tissue temperature, thermal imaging can be used to
contactless measure the skin surface temperature. For example, IRT was used to monitor
the skin temperature [Cha15], to detect skin cancer [PH11], breast tumours [Omr16; Vre13],
inflammation [Den10] and vascular disorders [Bag09; LEP17].

In reconstructive surgery, the transfer of microvascular tissue is a routinely used method
for covering defects caused by injuries, tumor removal, or malformations. These transplants
include skin, subcutaneous tissue, and blood vessels. The location of the blood vessels supply-
ing the tissue (perforator vessels) needs to be known during the planning of the operation to
avoid necrosis after transplantation. Imaging techniques to visualize the perforator vessels are
digital subtraction angiography (DSA), computed tomography angiography (CTA), and mag-
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netic resonance angiography (MRA) which are used pre-operatively. These methods provide a
high image quality but require the administration of a contrast agent or exposing the patient
to radiation. The selection of the donor flap is made during the intervention in the operating
room (OR) because the flap size depends on the actual defect [WW10]. Intra-operatively used
imaging techniques are doppler ultrasound (Doppler-US) and indocyanine green angiography
(ICG-A). Doppler-US is non-invasive but the quality of the perforator identification depends on
the skill of the surgeon. ICG-A is the current standard, but the administration of a fluorescent
dye impacts the ease of use and isn’t compatible with specific diseases. DeWeerd et al. used
IRT to visually locate perforator vessels by qualitative assessment of thermograms of the deep
inferior epigastric perforator (DIEP) flap [dWWM12b]. However, perforator locations were only
determined manually which requires experience and examination time.

In this work, a thermography-based system to automatically locate the perforator vessels
was designed, evaluated, and published in the article Automatic detection of perforator vessels
using IRT in reconstructive surgery. The system consists of a thermal camera, a computer,
and custom-developed software. As the perforators correspond to hot spots in the thermogram,
an algorithm to find local hot spots in the thermal image was developed. A Gaussian blur
filter was applied to reduce noise, followed by a local maximum search. The filter kernel size
can be adjusted by the user to set the detection sensitivity. For the evaluation, the thermal
camera was used to acquire the temperature variations of the skin surface of the DIEP flap
of 20 volunteers. The volunteers were placed in an intra-operative setting on the OR table.
The detected perforator centers were compared to the manual labeling performed by clinicians.
The perforator was classified as detected if the distance between the manually labeled perforator
center and the center detected by the algorithm was less than 10 pixels (≈ 5 mm). The algorithm
performance was evaluated by calculating recall and precision and F measure (harmonic mean
of precision and recall). The best F measure of 0.833 is reached for a kernel size of 17. For
this parameter value, the median recall is 0.907 and the median precision is 0.80. The kernel
size can be chosen by the clinician to optimize the detection performance for specific patients
and regions under examination. Although the algorithm performance varied, no statistically
significant differences regarding specific parameters such as gender, age, or daily sports activity
could be measured within the cohort of the conducted study. Furthermore, the algorithm
was only evaluated for the region of the DIEP flap. More studies are necessary to assess the
performance of typical donor flap regions.

Thermography is advantageous to commonly used imaging techniques because it is non-
invasive. As opposed to CTA or ICG-A no contrast agent needs to be administered which
nullifies the side effects. Furthermore, contrast agent-based imaging can’t be repeated without
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restrictions due to its proliferation in the body which reduces the quality of subsequent images.
In contrast, the use of thermography as presented in this work is not limited in this regard. The
detection of hot spots in real-time and the compact system size makes it a versatile tool for use
inside and out of the OR whereas CT angiography can only be acquired preoperatively.

While using thermography for the diagnosis of diseases is obvious, IRT can also be used
to improve technical systems in the OR. Hereby, a broadly investigated field of research is the
improvement of processes and workflows in the OR. To improve the processes, for example, by
automating tedious and repetitive tasks, knowledge of the ongoing tasks and activities in the OR
is needed. The classification of surgical activities is a vital step as workflow management engines
require knowledge of the situation in the OR. Surgical activities can be automatically deducted
from sensor data by analyzing the motion of the surgeon using accelerometers or equivalent
wearable devices [Ahm08; Les05; NM12] and RFID tags attached to surgical instruments and
personnel [BJD09; Kra12; MN12; NM12; Van09]. As these approaches require the modification
of surgical instruments or wearing special equipment, barriers to establishing such technologies in
the OR is quite high. Alternatively, surgical processes can be identified by analyzing video data
in endoscopic procedures [BFN10; Bou17; HZV12; Kla08; Lal13; Lal11] or cameras monitoring
the surgical team [Bha07].

One of the main challenges of vision-based methods for the recognition of surgical activities is
the extraction of the foreground object, e.g. the surgical instrument. Changes in the background
image, varying lighting conditions, and image quality make robust activity recognition all the
more difficult. Thermal imaging extends the information space beyond the visible spectrum.
The hands of the surgeon have a higher temperature than the background scene. Therefore,
temperature information can be used to extract regions of interest and recognize surgical ac-
tivities. The manuscript Vision-based online recognition of surgical activities investigated the
development and evaluation of a system that is capable of recognizing surgical activities by
analyzing thermal video data. A thermal camera was used to acquire images of a surgical scene
and the regions of interest, i.e. the hand of the surgeon were extracted via thresholding. In
the segmented images, a blob detector was applied. A hierarchical temporal memory (HTM)
combined with a k-nearest neighbor algorithm was used for gesture recognition. This approach
was evaluated in a simulated functional endoscopic sinus surgery. 12 videos (∼ 20 min each) of
three different workflows representing surgeries were recorded. The system was trained using
manually labeled gestures in 9 classes and was validated with leave-one-out cross-validation.

The system was capable to classify images in real-time providing input for surgical assistance
systems and workflow management systems. The recognition accuracy of 96 % with precision
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and recall rates of approximately 60 % was similar to other vision-based approaches [BFN10;
Lal11; Lal13]. The recall rates varied between the classes (29 % to 99 %). A probable cause
is the limited resolution of only 50 x 50 pixels of the objects impedes the correct gesture clas-
sification, especially if the instruments are held by the surgeon, and therefore the hand poses,
differ only slightly. Today commercially available cameras offer 17 times the spatial resolution
of the used camera which enables depicting more details of the scene. Further investigations are
needed to assess how much an increased resolution improves the recognition. HTM was a state-
of-the-art method at the time of the publication of the manuscript. Since then, many advances
in machine learning, especially deep learning, were made. Hence, the proposed approach may
be improved using the latest machine learning methods. But using machine learning approaches
in general and deep learning especially requires a huge amount of training data that needs to
be annotated manually to keep a clean training data set.

Although thermal cameras were already introduced in the medical field in the 1960s, technical
advancements were mostly made to reduce the size of the devices, increase the resolution of
the acquired images and increase the thermal sensitivity. Due to physical constraints, it’s not
possible to reduce the size of the imaging sensor. Therefore, thermal cameras have a small depth
of field, especially at small distances between camera and object [SF15]. Hence, to acquire sharp
images the focal plane must be aligned to the region of interest. Blurred images lead to loss of
information and thus may reduce the performance of image processing algorithms. The impact
of this loss of information is depending on the application. Soldan extended the depth of field by
combining multiple thermal images of the same scene acquired with varying focuses [Sol12]. The
optimal focus for an object is chosen by selecting a focus measure function (FMF). The FMF
yields a minimum or maximum value at optimum. But good results require selecting an optimal
FMF and its parameters for a given scene. To overcome this problem a method to reconstruct an
all-in-focus image was proposed and published under the title Automatic depth scanning system
for 3D infrared thermography. A thermal camera was combined with a depth camera and a
drive to adjust the focus. This enables taking images at variable depths. Software controls
and synchronizes the image acquisition with the depth and thermal camera. Both cameras
were registered to each other which enables the mapping of the pixels of the thermal image
to a certain depth. A system evaluation was conducted by placing heated objects at different
distances. The reconstruction of an all-in-focus image reduced the temperature deviation over all
distances. Although the temperature measurement could be vastly improved, the measurement
error was still up to 2.5 K. The remaining error may be caused by the simplified calibration
model and can be further reduced by improving the calibration process and integrating the
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approach into a single device. The proposed method enables applications that are based on
accurate temperature measurements for objects at varying depths without manually adjusting
the focus. The reconstruction of the all-in-focus image requires the acquisition of multiple
thermal images. Therefore, this method is not applicable for dynamic or real-time analysis and
has its limitations regarding usability.

3.1 Conclusions and Outlook

Thermography can be used for diagnosis as well as part of technical systems providing support in
the OR. There are limitations caused by physical constraints which impede broad and easy use.
Thermal cameras possess a small depth of field which leads to blurred images when the focus
isn’t set optimal. Adjusting the focus manually is cumbersome and impacts usability. Further
improvements are necessary to provide systems that are as easy to use as RGB cameras.

Properties like the resolution and sensitivity of thermal cameras improved over time enabling
the detection of the smallest temperature differences which enables using IRT for the detection
of blood vessels beneath the skin. By providing software-based tools locating perforator vessels
becomes easier and is less impacted by the skill of the clinician. In this work, only static
images were analyzed to detect the locations of the perforator vessels. Further enhancements
can be made by combining multiple static images to improve the recognition robustness over
time or analyzing the thermograms over time. By exposing the tissue to a cold challenge and
analyzing the reheating of the skin surface, it might be possible to estimate the strength of the
underlying perforators. To further improve this approach, thermal imaging could be combined
with hyperspectral imaging (HSI). HSI describes the number of modalities used for imaging.
Whereas IRT uses only one (broad) spectrum ranging from 8 µm to 14 µm and visible imaging
uses three spectra, red (650 nm .. 750 nm), green (490 nm .. 575 nm), and blue (420 nm
.. 490 nm), HSI uses 100 spectra and more ranging from 400 nm to 1100 nm. Hence, HSI is
covering the visible and near-infrared spectral range. By analyzing the spectral distribution
of light reflected from the skin surface, various parameters can be calculated. For example,
HSI was used to measure tissue oxygenation (StO2), perfusion-(NIR Perfusion Index), organ
hemoglobin (OHI), and tissue water index (TWI) for the measurement of ischemic conditioning
effects of the gastric conduit during esophagectomy [Köh19]. In colorectal surgery, HSI was used
for the assessment of the best possible perfusion and ideal anastomotic area by visualizing the
tissue perfusion before and after the separation of the marginal artery [Jan19]. Initial studies
investigating the feasibility of using HSI for perforator identification are inconclusive [Goe20;
Nis21]. Therefore, the approach to use HSI as an adjuvant imaging modality to further improve
the assessment of the perforator locations must be investigated further.
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Aufbereitung und Auswertung der erhobenen Daten erfolgte durch mich persönlich.

In dem Artikel Automatic depth scanning system for 3D infrared thermography wurde ein
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