1,192 research outputs found

    Spatio-temporal landslide inventory and susceptibility assessment using Sentinel-2 in the Himalayan mountainous region of Pakistan

    Get PDF
    The 2005 Kashmir earthquake has triggered widespread landslides in the Himalayan mountains in northern Pakistan and surrounding areas, some of which are active and are still posing a significant risk. Landslides triggered by the 2005 Kashmir earthquake are extensively studied; nevertheless, spatio-temporal landslide susceptibility assessment is lacking. This can be partially attributed to the limited availability of high temporal resolution remote sensing data. We present a semi-automated technique to use the Sentinel-2 MSI data for co-seismic landslide detection, landslide activities monitoring, spatio-temporal change detection, and spatio-temporal susceptibility mapping. Time series Sentinel-2 MSI images for the period of 2016–2021 and ALOS PALSAR DEM are used for semi-automated landslide inventory map development and temporal change analysis. Spectral information combined with topographical, contextual, textural, and morphological characteristics of the landslide in Sentinel-2 images is applied for landslide detection. Subsequently, spatio-temporal landslide susceptibility maps are developed utilizing the weight of evidence statistical modeling with seven causative factors, i.e., elevation, slope, geology, aspect, distance to fault, distance to roads, and distance to streams. The results reveal that landslide occurrence increased from 2016 to 2021 and that the coverage of areas of relatively high susceptibility has increased in the study area

    Landslide mapping and monitoring by using radar and optical remote sensing: examples from the EC-FP7 project SAFER

    Get PDF
    This paper focuses on the Landslide Thematic services of the EU-funded FP7-SPACE project SAFER (Services and Applications For Emergency Response) for inventory mapping, monitoring and rapid mapping by using Earth Observation (EO). We exploited satellite Interferometric Synthetic Aperture Radar (InSAR) and Object-Based Image Analysis (OBIA), and discuss example applications in South Tyrol and Abruzzo (Italy), Lower Austria (Austria), Lubietova (Slovakia) and the Kaohsiung County (Taiwan). These case studies showcase the significance of radar and optical EO data, InSAR and OBIA methods for landslide mapping and monitoring in different geological environments and during all phases of emergency management: mitigation, preparedness, crisis and recovery

    Rapid Mapping of Landslides in the Western Ghats (India) Triggered by 2018 Extreme Monsoon Rainfall Using a Deep Learning Approach

    Get PDF
    Rainfall-induced landslide inventories can be compiled using remote sensing and topographical data, gathered using either traditional or semi-automatic supervised methods. In this study, we used the PlanetScope imagery and deep learning convolution neural networks (CNNs) to map the 2018 rainfall-induced landslides in the Kodagu district of Karnataka state in theWestern Ghats of India.We used a fourfold cross-validation (CV) to select the training and testing data to remove any random results of the model. Topographic slope data was used as auxiliary information to increase the performance of the model. The resulting landslide inventory map, created using the slope data with the spectral information, reduces the false positives, which helps to distinguish the landslide areas from other similar features such as barren lands and riverbeds. However, while including the slope data did not increase the true positives, the overall accuracy was higher compared to using only spectral information to train the model. The mean accuracies of correctly classified landslide values were 65.5% when using only optical data, which increased to 78% with the use of slope data. The methodology presented in this research can be applied in other landslide-prone regions, and the results can be used to support hazard mitigation in landslide-prone regions

    DFPENet-geology: A Deep Learning Framework for High Precision Recognition and Segmentation of Co-seismic Landslides

    Full text link
    The following lists two main reasons for withdrawal for the public. 1. There are some problems in the method and results, and there is a lot of room for improvement. In terms of method, "Pre-trained Datasets (PD)" represents selecting a small amount from the online test set, which easily causes the model to overfit the online test set and could not obtain robust performance. More importantly, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to revisit the section of geological feature fusion, in terms of results, we need to further improve and refine. 2. arXiv is an open-access repository of electronic preprints without peer reviews. However, for our own research, we need experts to provide comments on my work whether negative or positive. I then would use their comments to significantly improve this manuscript. Therefore, we finally decided to withdraw this manuscript in arXiv, and we will update to arXiv with the final accepted manuscript to facilitate more researchers to use our proposed comprehensive and general scheme to recognize and segment seismic landslides more efficiently.Comment: 1. There are some problems in the method and results, and there is a lot of room for improvement. Overall, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to further improve and refine the results. 2. For our own research, we need experts to provide comments on my work whether negative or positiv

    Remote sensing of geomorphodiversity linked to biodiversity — part III: traits, processes and remote sensing characteristics

    Get PDF
    Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed

    Review article: The use of remotely piloted aircraft systems (RPAS) for natural hazards monitoring and management

    Get PDF
    The number of scientific studies that consider possible applications of Remotely Piloted Aircraft Systems (RPAS) for the management of natural hazards effects and the identification of occurred damages are strongly increased in last decade. Nowadays, in the scientific community, the use of these systems is not a novelty, but a deeper analysis of literature shows a lack of codified complex methodologies that can be used not only for scientific experiments but also for normal codified emergency operations. RPAS can acquire on-demand ultra-high resolution images that can be used for the identification of active processes like landslides or volcanic activities but also for the definition of effects of earthquakes, wildfires and floods. In this paper, we present a review of published literature that describes experimental methodologiesdeveloped for the study and monitoring of natural hazards

    Exploiting satellite SAR for archaeological prospection and heritage site protection

    Get PDF
    Optical and Synthetic Aperture Radar (SAR) remote sensing has a long history of use and reached a good level of maturity in archaeological and cultural heritage applications, yet further advances are viable through the exploitation of novel sensor data and imaging modes, big data and high-performance computing, advanced and automated analysis methods. This paper showcases the main research avenues in this field, with a focus on archaeological prospection and heritage site protection. Six demonstration use-cases with a wealth of heritage asset types (e.g. excavated and still buried archaeological features, standing monuments, natural reserves, burial mounds, paleo-channels) and respective scientific research objectives are presented: the Ostia-Portus area and the wider Province of Rome (Italy), the city of Wuhan and the Jiuzhaigou National Park (China), and the Siberian “Valley of the Kings” (Russia). Input data encompass both archive and newly tasked medium to very high-resolution imagery acquired over the last decade from satellite (e.g. Copernicus Sentinels and ESA Third Party Missions) and aerial (e.g. Unmanned Aerial Vehicles, UAV) platforms, as well as field-based evidence and ground truth, auxiliary topographic data, Digital Elevation Models (DEM), and monitoring data from geodetic campaigns and networks. The novel results achieved for the use-cases contribute to the discussion on the advantages and limitations of optical and SAR-based archaeological and heritage applications aimed to detect buried and sub-surface archaeological assets across rural and semi-vegetated landscapes, identify threats to cultural heritage assets due to ground instability and urban development in large metropolises, and monitor post-disaster impacts in natural reserves

    Ground instability detection using PS-InSAR in Lanzhou, China

    Get PDF
    This paper reports on the application of radar satellite data and Persistent Scatterer Interferometry (PS-InSAR) techniques for the detection of ground deformation in the semi-arid loess region of Lanzhou, northwestern China. Compared with Synthetic Aperture Radar Interferometry (InSAR), PS-InSAR overcomes the problems of temporal and geometric de-correlation and atmospheric heterogeneities by identifying persistent radar targets (PS) in a series of interferograms. The SPINUA algorithm was used to process 40 ENVISAT ASAR images for the study period 2003–2010. The analysis resulted in the identification of over 140000 PS in the greater Lanzhou area covering some 300 km2. The spatial distribution of moving radar targets was checked during a field campaign and highlights the range of ground instability problems that the Lanzhou area faces as urban expansion continues to accelerate. The PS-InSAR application detected ground deformations with rates up to 10 mm a−1; it resulted in the detection of previously unknown unstable slopes and two areas of subsidence. Lanzhou is the capital of Gansu Province and is one of the most important industrial cities in NW China (Fig. 1). The 12th Five-Year Plan and the 2011 National Economic and Social Development Statistical Bulletin of Lanzhou City indicate that the gross domestic product (GDP) of Lanzhou more than doubled in the last decade, reaching some 136 billion Yuan (c. £13.6 billion). This is associated with a rapid increase in the urban population and current forecasts suggest that the remaining undeveloped land can sustain further development for only some 10–15 years (Yao 2008). Increasingly, people have to encroach on marginal areas having a greater potential for ground instability. Since 1949, a variety of geohazards (mainly comprising landslides, debris flows, soil collapse, subsidence and floods) in Lanzhou have caused some 676 deaths and an estimated cumulative direct economic loss of some 756 million Yuan (Ding & Li 2009; Dijkstra et al. 2014). It is expected that further casualties and economic impacts will result in this unstable landscape unless a better understanding of the spatial distribution and causes of typical geohazards involving ground instability can be implemented in the development of land-use management practices, urban planning and the design of mitigation strategies. Satellite-based radar interferometry provides an opportunity to map ground deformation over large areas of interest. This paper highlights the use of PS-InSAR (Permanent Scatterer Synthetic Aperture Radar Interferometry) in a region where an incomplete ground instability inventory exist
    corecore