22 research outputs found

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Spécification, validation et satisfiabilité [i.e. satisfaisabilité] de contraintes hybrides par réduction à la logique temporelle

    Get PDF
    Depuis quelques années, de nombreux champs de l'informatique ont été transformés par l'introduction d'une nouvelle vision de la conception et de l'utilisation d'un système, appelée approche déclarative. Contrairement à l'approche dite impérative, qui consiste à décrire au moyen d'un langage formelles opérations à effectuer pour obtenir un résultat, l'approche déclarative suggère plutôt de décrire le résultat désiré, sans spécifier comment ce «but» doit être atteint. L'approche déclarative peut être vue comme le prolongement d'une tendance ayant cours depuis les débuts de l'informatique et visant à résoudre des problèmes en manipulant des concepts d'un niveau d'abstraction toujours plus élevé. Le passage à un paradigme déclaratif pose cependant certains problèmes: les outils actuels sont peu appropriés à une utilisation déclarative. On identifie trois questions fondamentales qui doivent être résolues pour souscrire à ce nouveau paradigme: l'expression de contraintes dans un langage formel, la validation de ces contraintes sur une structure, et enfin la construction d'une structure satisfaisant une contrainte donnée. Cette thèse étudie ces trois problèmes selon l'angle de la logique mathématique. On verra qu'en utilisant une logique comme fondement formel d'un langage de « buts », les questions de validation et de construction d'une structure se transposent en deux questions mathématiques, le model checking et la satisfiabilité, qui sont fondamentales et largement étudiées. En utilisant comme motivation deux contextes concrets, la gestion de réseaux et les architectures orientées services, le travail montrera qu'il est possible d'utiliser la logique mathématique pour décrire, vérifier et construire des configurations de réseaux ou des compositions de services web. L'aboutissement de la recherche consiste en le développement de la logique CTLFO+, permettant d'exprimer des contraintes sur les données, sur la séquences des opérations\ud d'un système, ainsi que des contraintes dites «hybrides». Une réduction de CTL-FO+ à la logique temporelle CTL permet de réutiliser de manière efficace des outils de vérification existants. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Méthodes formelles, Services web, Réseaux

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Business Policy Modeling and Enforcement in Relational Database Systems

    Get PDF
    Database systems maintain integrity of the stored information by ensuring that modifications to the database comply with constraints designed by the administrators. As the number of users and applications sharing a common database increases, so does the complexity of the set of constraints that originate from higher level business processes. The lack of a systematic mechanism for integrating and reasoning about a diverse set of evolving and potentially interfering policies manifested as database level constraints makes corporate policy management within relational systems a chaotic process. In this thesis we present a systematic method of mapping a broad set of process centric business policies onto database level constraints. We exploit the observation that the state of a database represents the union of all the states of every ongoing business process and thus establish a bijective relationship between progression in individual business processes and changes in the database state space. We propose graphical notations that are equivalent to integrity constraints specified in linear temporal logic of the past. Furthermore we demonstrate how this notation can accommodate a wide array of workflow patterns, can allow for multiple policy makers to implement their own process centric constraints independently using their own logical policy models, and can model check these constraints within the database system to detect potential conflicting constraints across several different business processes. A major contribution of this thesis is that it bridges several different areas of research including database systems, temporal logics, model checking, and business workflow/policy management to propose an accessible method of integrating, enforcing, and reasoning about the consequences of process-centric constraints embedded in database systems. As a result, the task of ensuring that a database continuously complies with evolving business rules governed by hundreds of processes, which is traditionally handled by an army of database programmers regularly updating triggers and batch procedures, is made easier, more manageable, and more predictable

    Verificare: a platform for composable verification with application to SDN-Enabled systems

    Full text link
    Software-Defined Networking (SDN) has become increasing prevalent in both the academic and industrial communities. A new class of system built on SDNs, which we refer to as SDN-Enabled, provide programmatic interfaces between the SDN controller and the larger distributed system. Existing tools for SDN verification and analysis are insufficiently expressive to capture this composition of a network and a larger distributed system. Generic verification systems are an infeasible solution, due to their monolithic approach to modeling and rapid state-space explosion. In this thesis we present a new compositional approach to system modeling and verification that is particularly appropriate for SDN-Enabled systems. Compositional models may have sub-components (such as switches and end-hosts) modified, added, or removed with only minimal, isolated changes. Furthermore, invariants may be defined over the composed system that restrict its behavior, allowing assumptions to be added or removed and for components to be abstracted away into the service guarantee that they provide (such as guaranteed packet arrival). Finally, compositional modeling can minimize the size of the state space to be verified by taking advantage of known model structure. We also present the Verificare platform, a tool chain for building compositional models in our modeling language and automatically compiling them to multiple off-the-shelf verification tools. The compiler outputs a minimal, calculus-oblivious formalism, which is accessed by plugins via a translation API. This enables a wide variety of requirements to be verified. As new tools become available, the translator can easily be extended with plugins to support them

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Model Checking and Model-Based Testing : Improving Their Feasibility by Lazy Techniques, Parallelization, and Other Optimizations

    Get PDF
    This thesis focuses on the lightweight formal method of model-based testing for checking safety properties, and derives a new and more feasible approach. For liveness properties, dynamic testing is impossible, so feasibility is increased by specializing on an important class of properties, livelock freedom, and deriving a more feasible model checking algorithm for it. All mentioned improvements are substantiated by experiments

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore