98 research outputs found

    Model-Based Systems Engineering Approach to Distributed and Hybrid Simulation Systems

    Get PDF
    INCOSE defines Model-Based Systems Engineering (MBSE) as the formalized application of modeling to support system requirements, design, analysis, verification, and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases. One very important development is the utilization of MBSE to develop distributed and hybrid (discrete-continuous) simulation modeling systems. MBSE can help to describe the systems to be modeled and help make the right decisions and partitions to tame complexity. The ability to embrace conceptual modeling and interoperability techniques during systems specification and design presents a great advantage in distributed and hybrid simulation systems development efforts. Our research is aimed at the definition of a methodological framework that uses MBSE languages, methods and tools for the development of these simulation systems. A model-based composition approach is defined at the initial steps to identify distributed systems interoperability requirements and hybrid simulation systems characteristics. Guidelines are developed to adopt simulation interoperability standards and conceptual modeling techniques using MBSE methods and tools. Domain specific system complexity and behavior can be captured with model-based approaches during the system architecture and functional design requirements definition. MBSE can allow simulation engineers to formally model different aspects of a problem ranging from architectures to corresponding behavioral analysis, to functional decompositions and user requirements (Jobe, 2008)

    Ad hoc HLA simulation model derived from a model-based traffic scenario

    Get PDF
    Modern highly automated and autonomous traffic systems and sub-systems require new approaches to test their functional safety in the context of validation and verification. One approach that has taken a leading role in current research is scenario-based testing. For various reasons, simulation is considered to be the most practicable solution for a wide range of test scenarios. However, this is where many existing simulation systems in research reach their limits. In order to be able to integrate the widest possible range of systems to be tested into the simulation, the use of co-simulation has proven to be particularly useful. In this work, the High-Level Architecture defined in the IEEE 1516-2010 standard is specifically addressed, and a concept is developed that establishes the foundation for the feasible use of scenario-based distributed co-simulation on its basis. The main challenge identified and addressed is the resolution of the double-sided dependency between scenario and simulation models. The solution was to fully automate the generation and instantiation of the simulation environment on the basis of a scenario instance. Finally, the developed concept was implemented as a prototype, and the resulting process for its use is presented here using an example scenario. Based on the experience gained during the creation of the concept and the prototype, the next steps for future work are outlined in conclusion

    A Framework To Model Complex Systems Via Distributed Simulation: A Case Study Of The Virtual Test Bed Simulation System Using the High Level Architecture

    Get PDF
    As the size, complexity, and functionality of systems we need to model and simulate con-tinue to increase, benefits such as interoperability and reusability enabled by distributed discrete-event simulation are becoming extremely important in many disciplines, not only military but also many engineering disciplines such as distributed manufacturing, supply chain management, and enterprise engineering, etc. In this dissertation we propose a distributed simulation framework for the development of modeling and the simulation of complex systems. The framework is based on the interoperability of a simulation system enabled by distributed simulation and the gateways which enable Com-mercial Off-the-Shelf (COTS) simulation packages to interconnect to the distributed simulation engine. In the case study of modeling Virtual Test Bed (VTB), the framework has been designed as a distributed simulation to facilitate the integrated execution of different simulations, (shuttle process model, Monte Carlo model, Delay and Scrub Model) each of which is addressing differ-ent mission components as well as other non-simulation applications (Weather Expert System and Virtual Range). Although these models were developed independently and at various times, the original purposes have been seamlessly integrated, and interact with each other through Run-time Infrastructure (RTI) to simulate shuttle launch related processes. This study found that with the framework the defining properties of complex systems - interaction and emergence are realized and that the software life cycle models (including the spiral model and prototyping) can be used as metaphors to manage the complexity of modeling and simulation of the system. The system of systems (a complex system is intrinsically a system of systems ) continuously evolves to accomplish its goals, during the evolution subsystems co-ordinate with one another and adapt with environmental factors such as policies, requirements, and objectives. In the case study we first demonstrate how the legacy models developed in COTS simulation languages/packages and non-simulation tools can be integrated to address a compli-cated system of systems. We then describe the techniques that can be used to display the state of remote federates in a local federate in the High Level Architecture (HLA) based distributed simulation using COTS simulation packages

    Modeling, Design And Evaluation Of Networking Systems And Protocols Through Simulation

    Get PDF
    Computer modeling and simulation is a practical way to design and test a system without actually having to build it. Simulation has many benefits which apply to many different domains: it reduces costs creating different prototypes for mechanical engineers, increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the time to model physical reactions, and trains soldiers to prepare for battle. The motivation behind this work is to build a common software framework that can be used to create new networking simulators on top of an HLA-based federation for distributed simulation. The goals are to model and simulate networking architectures and protocols by developing a common underlying simulation infrastructure and to reduce the time a developer has to learn the semantics of message passing and time management to free more time for experimentation and data collection and reporting. This is accomplished by evolving the simulation engine through three different applications that model three different types of network protocols. Computer networking is a good candidate for simulation because of the Internet\u27s rapid growth that has spawned off the need for new protocols and algorithms and the desire for a common infrastructure to model these protocols and algorithms. One simulation, the 3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube network interconnect. Performance results show that k-array n-cube topologies can sustain higher traffic load than the currently used interconnects. The second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol that uses a data distribution methodology based on the GPS-QHRA routing protocol. CLL algorithm can realize a maximum of 45% power savings and maximum 25% reduced queuing delay compared to GPS-QHRA. The third simulator simulates a grid resource discovery protocol for helping Virtual Organizations to find resource on a grid network to compute or store data on. Results show that worst-case 99.43% of the discovery messages are able to find a resource provider to use for computation. The simulation engine was then built to perform basic HLA operations. Results show successful HLA functions including creating, joining, and resigning from a federation, time management, and event publication and subscription

    Large-Scale Integration of Heterogeneous Simulations

    Get PDF

    An Agile Roadmap for Live, Virtual and Constructive-Integrating Training Architecture (LVC-ITA): A Case Study Using a Component based Integrated Simulation Engine

    Get PDF
    Conducting seamless Live Virtual Constructive (LVC) simulation remains the most challenging issue of Modeling and Simulation (M&S). There is a lack of interoperability, limited reuse and loose integration between the Live, Virtual and/or Constructive assets across multiple Standard Simulation Architectures (SSAs). There have been various theoretical research endeavors about solving these problems but their solutions resulted in complex and inflexible integration, long user-usage time and high cost for LVC simulation. The goal of this research is to provide an Agile Roadmap for the Live Virtual Constructive-Integrating Training Architecture (LVC-ITA) that will address the above problems and introduce interoperable LVC simulation. Therefore, this research describes how the newest M&S technologies can be utilized for LVC simulation interoperability and integration. Then, we will examine the optimal procedure to develop an agile roadmap for the LVC-ITA. In addition, this research illustrated a case study using an Adaptive distributed parallel Simulation environment for Interoperable and reusable Model (AddSIM) that is a component based integrated simulation engine. The agile roadmap of the LVC-ITA that reflects the lessons learned from the case study will contribute to guide M&S communities to an efficient path to increase interaction of M&S simulation across systems

    AOP and HLA : A new aspect on distributed simulation development

    Get PDF
    This thesis develops a method for combining AOP and HLA, leveraging the separation-of-concerns approach used by AOP to allow the creation of core models, free from simulation distribution semantics. Through the use of automated tools, these models are then woven with a generic-HLA aspect, producing an HLA-enabled simulation component. Using AOP in this manner removes the need for model developers to have an in-depth understanding of the HLA, helping to remove the prime factor restricitng a broader uptake of distributed simulation technologies: development complexity.Doctor of Philosoph

    A Simulation Tool Chain for Investigating Future V2X-based Automotive E/E Architectures

    Get PDF
    Due to the evermore rising number of functions, current E/E architectures are more and more a vulnerable source for faults and a barrier to innovation. This situation is aggravated by the integration of new technologies like Vehicle-to-X Communication (V2XC) which form the basis for a large number of future services and applications. At the same time, this “opening” of the E/E architecture to the outside world increases potential for non-deterministic disturbances. In order to overcome the limitations of current E/E architectures, application of new design principles and methodologies is necessary. Platform-based design (PBD) is a promising solution for the development of safety-critical functions, to increase reliability and to reduce development cost. Within this context, we propose a novel extensible tool chain that targets the facilitation of exploration, validation and verification of future V2X-based automotive E/E architectures. The tool chain supports composition of heterogeneous domain-specific models by integrating a heterogeneous modeling tool with a simulation middleware and serves as starting point for the investigation of PBD concepts in the V2X context. We believe that the tool chain can support modeling and validation of future V2X-based E/E architectures. In the final paper, we will evaluate the proposed approach by means of a case study regarding validation capabilities as well as execution performance

    Models, Composability, and Validity

    Get PDF
    Composability is the capability to select and assemble simulation components in various combinations into simulation systems to satisfy specific user requirements. The defining characteristic of composability is the ability to combine and recombine components into different simulation systems for different purposes. The ability to compose simulation systems from repositories of reusable components has been a highly sought after goal among modeling and simulation developers. The expected benefits of robust, general composability include reduced simulation development cost and time, increased validity and reliability of simulation results, and increased involvement of simulation users in the process. Consequently, composability is an active research area, with both software engineering and theoretical approaches being developed. Composability exists in two forms, syntactic and semantic (also known as engineering and modeling). Syntactic composability is the implementation of components so that they can be connected. Semantic composability answers the question of whether the models implemented in the composition can be meaningfully composed

    Software Frameworks for Model Composition

    Get PDF
    A software framework is an architecture or infrastructure intended to enable the integration and interoperation of software components. Specialized types of software frameworks are those specifically intended to support the composition of models or other components within a simulation system. Such frameworks are intended to simplify the process of assembling a complex model or simulation system from simpler component models as well as to promote the reuse of the component models. Several different types of software frameworks for model composition have been designed and implemented; those types include common library, product line architecture, interoperability protocol, object model, formal, and integrative environment. The various framework types have different components, processes for composing models, and intended applications. In this survey the fundamental terms and concepts of software frameworks for model composition are presented, the different types of such frameworks are explained and compared, and important examples of each type are described
    • …
    corecore