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I. INTRODUCTION

Today, the electric/electronic (E/E) architecture of modern
cars is a distributed network of embedded systems, consisting
of several bus systems, dozens of electronic control units
(ECUs) and hundreds of sensors and actuators. To this system,
high requirements regarding determinism are imposed which
form the basis for safe operation in any conceivable driv-
ing situation. Because of that, the timing behavior of single
components as well as communication within the vehicle is
widely statically determined a priori and the E/E architecture
is realized as a nearly fully closed system.

Due to the evermore rising number of functions, current
E/E architectures are more and more a vulnerable source
for faults and a barrier to innovation [1]. This situation
is aggravated by the integration of new technologies like
Vehicle-to-X Communication (V2XC) which form the basis
for a large number of future services and applications. For
these, it is no longer sufficient to only consider data that
is available locally. The majority of applications rather will
rely on information that originates from most diverse data
sources. E/E architectures in the first approximation need to
be ”opened” by means of an additional radio interface located
e.g. at an ECU, which enables communication with other
vehicles or infrastructure. This not least increases potential
for non-deterministic disturbance of safety-critical functions
or malicious attacks of the internal communication network
[2].

In order to overcome the limitations of current E/E ar-
chitectures, application of new design principles like more
encapsulation, standardization and centralization as well as a
fundamental reconsideration of the fragmented development
process is necessary [1]. Up to the present day, both, function
and architecture development are most often separately running
tasks. As a result, errors are often only discovered in the
integration phase. This fact can become an extremely time
consuming and expensive endavor. Principles of platform-
based design (PBD) are a promising solution in order to
cope with this problem [3] since function and architecture
are separated. This enables a flexible mapping of function
to architecture and its validation already in early phases of
development. The result is an increase of reliability and a
reduction of development cost by avoiding additional design
cycles [3]. Within this context, we propose a novel extensible
tool chain that targets facilitation of exploration, validation and
verification of future V2X-based automotive E/E architectures.

Such systems are heterogeneous by nature. Hence, a design
framework is necessary that supports managing heterogeneous
model composition for representing data as well as control
flow between models. The proposed tool chain is made up of
a heterogeneous design tool called Ptolemy II (PtII) [4] and a
simulation middleware based on the High Level Architecture
(HLA) [5]. A possible framework architecture that can be
developed by the tool chain is illustrated in Fig. 1.
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Fig. 1. Possible Framework Architecture

The HLA enables distributed co-simulation with domain-
specific simulators like (parallel) SystemC [6][7] (hardware/-
software), OMNET++ [8] (network), Veins/SUMO [9], Mi-
crosim [10] (traffic) or co-emulation with real hardware/soft-
ware components [11]. PtII is the starting point of the design
process. Its task within the tool chain is twofold: I) The
capabilities for explicit meta-modeling using an abstract syntax
of clustered graphs [12] serve as user interface for support
of tool integration and configuration of control and data flow
interaction via HLA, II) due to its inherent heterogeneity and
model composition properties PtII serves as central design
tool for performing architectural exploration and validation and
verification.

II. FUNDAMENTALS

In PtII, the basic building block of a system description is
an actor. Actors are concurrent components that communicate
through ports and relations. They can be atomic or composite.
An atomic actor is at the bottom of the hierarchy. A composite
actor allows hierarchical nesting of actors. Both, atomic and
composite actors are executable following specific execution
semantics, also known as models of computation (MoC) [4].
The MoC within a composite actor is determined by a director.
In the discrete event (DE) MoC, interaction between actors
is modeled by events, representing some instantaneous action
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during simulation time. DE simulations are particularly suit-
able for modeling discrete systems like e.g. digital hardware
or communication networks. SystemC, OMNET++, SUMO or
Microsim are examples of DE simulators. Beside DE there
exist various other MoCs like continuous time (CT) which
is suitable for modeling analogue components like sensors, or
process networks (PN) which are often used for modeling data
flow applications.

The HLA is an IEEE standard [5] since 2000. It was
originally defined by the Defense Modeling and Simulation
Office (DMSO) for the U.S. Department of Defense. Its
original field of application are military training simulations.
The HLA is a generic software architecture combining all the
components necessary for Parallel Discrete Event Simulation
(PDES). In HLA terminology the logical representation of an
interconnection of different simulators is called a federation
and includes multiple simulators called federates. Federates
connect via ambassadors to a runtime infrastructure (RTI).
The RTI implements services defined by the HLA standard
like time management or data distribution management. A
RTI can possibly run several independent logical federations in
parallel. Also part of the HLA standard is the so called Object
Model Template (OMT) which defines the format and syntax
of HLA object models including object/interaction classes
attributes, parameters and datatypes but not their content.
The OMT allows to define Federation Object Models (FOM)
and Simulation Object Models (SOM). The FOM contains
properties of a whole federation. The SOM contains properties
of a single federate.The HLA implementation used in this work
is [13].

III. SIMULATION PLATFORM LIBRARY

In order to equip PtII with HLA interface configuration
and generation capabilities, a new version of the so called
Simulation Platform Library (SPLib) [11] is used. The new
version enables model-based federation development and is
incorporated by PtII for construction kit like composition of
distributed simulation tools. Therefore, a set of classes is
provided that abstract from the HLA ambassador interfaces and
that allows to define a contract between HLA and simulation
tools in terms of data flow and interaction behavior. Fig. 2
shows an extract of the newly developed SPLib classes.
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Fig. 2. SPLib Class Diagram

The Federate class aggregates all other core classes.
The ToolAdaptor class establishes a link from a simulation

tool to the data model and the behavioral metamodels of
the SPLib. These are given by the ObjectModel (OM)
and the BehavioralInterfaceModel (BIM) classes.
The ToolAdaptor provides high-level control flow related
methods that are to be called by the simulation tool. Be-
side that, it encapsulates instances of IOSocket which are
used for establishing data flow connections to the simulation
tool. IOSockets are equipped with a queue that allows
buffering incoming HLA reflections. On the reverse side, the
Ambassador class provides access to the RTI ambassador
interfaces and implements the federate ambassador callback
methods. Hence, it is the access point for data as well as
control flow interaction with the RTI. The HLA specific
interfaces given by the Ambassador class are encapsulated
by the HLAAdaptor class.

A. Object Model

The ObjectModel allows to store the SOM of a specific
simulator. It provides capabilities for dynamic object model
representation resulting in a high amount of flexibility. An
excerpt of the overall class structure is illustrated in Fig. 3.
The classes form an object-oriented meta-representation of
a SOM. The structure has been developed according to the
OMT. In the OMT specification, components are structured
in tables. Object/interaction classes within the OMT can be
hierarchically nested, representing inheritance. Components
within one table can reference components within other tables.
For instance, an attribute entry in the attribute table must
reference a specific object class it belongs to. In addition,
an attribute must be assigned a datatype of one of the
datatype tables. Each datatype table contains types that share
common characteristics. The OMT standard differntiates e.g.
between basic data representations, simple datatypes or the
array datatype table. More complex datatypes like arrays may
reference to simple datatypes as element types.
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Fig. 3. Object Model Class Diagram

The nesting and referencing relationships between com-
ponents in the OMT tables are mapped to object-oriented
aggregation and/or inheritance relationships within the struc-
ture of Fig. 3. Generally, the ObjectModel class con-
sists of ObjectClass and InteractionClass mem-
bers. The hierarchical nesting between object and interac-
tion classes is modelled using self-aggregation. Also, at-
tribute and parameter ownership is modelled using aggre-
gation between Object/InteractionClass types and
Attribute/Parameter types. The latter two are owner of



any of the defined datatypes. For datatype representation in-
heritance has been applied in order to exploit polymorphism in
case of compound datatypes like arrays. In the current imple-
mentation SOM tables can be specified in a easy readable form
by means of (nested) C++ method calls as shown in Listing 1.
Therefore, the ObjectModel class needs to be inherited for
implementation of the generateObjectModel() method.
Methods applied within generateObjectModel() are
implemented in the base class. An alternative is to provide
the SOM as XML representation.

Listing 1. OM Instantiation Code
v i r t u a l vo id g e n e r a t e O b j e c t M o d e l ( )
{

/ / S y n c h r o n i z a t i o n t a b l e
SYNCPOINT( ” S y n c P o i n t ” , ”NA” , ” R e g i s t e r / Achieve ” , ” . . . ” ) ;
. . .
/ / B a s i c da ta r e p r e s e n t a t i o n t a b l e
BASICTYPE ( ” HLAinteger16BE ” , ” 16 ” , ” . . . ” , ” Big ” , ” . . . ” ) ;
. . .
/ / S i mp l e d a t a t y p e t a b l e
SIMPLETYPE ( ” HLAASCIIchar ” , ” HLAoctet ” , ”NA” , ”NA” , ”NA” , ” . . . ” ) ;
. . .
/ / Array d a t a t y p e t a b l e

ARRAYTYPE( ” HLAASCIIstr ing ” , ” HLAASCIIchar ” , ” Dynamic ” , ” HLAvar iab leArray ” , ” . . . ” ) ;
. . .
/ / O b j e c t c l a s s s t r u c t u r e t a b l e
OBJECTCLASS( ” O b j e c t R o o t ” , ”N” ,

OBJECTCLASSL( ” Ob jC la s s1 ” , ”PS” ) ,
OBJECTCLASS( ” ObjC la s s2 ” , ”PS” ,

OBJECTCLASSL( ” Ob jC la s s3 ” , ”PS” ) )
) ;
/ / A t t r i b u t e t a b l e
OBJECT( ” O b j e c t R o o t . Ob jC la s s1 ” ,

ATTRIBUTE( ” a t t r 1 ” , ” HLAASCIIchar ” , ” C o n d i t i o n a l ” , ” U p d a t e C o n d i t i o n ” , ”DA” , ”PS” ,
” HLAReliable ” , ” TimeStamp ” ) ,
. . . ) ;

. . .
}

B. Behavioral Interface Model

By inheriting from the BIM class (see Fig. 4) it is possible
to define a finite state machine (FSM) by which data and
control flow interactions between simulator and HLA and vice
versa can be controlled. The FSM defines a valid calling
sequence of simulator interface and ambassador methods.
This allows to realize/verify different general interaction be-
haviors and/or synchronization schemes on top of the HLA
services. The latter can be advantageous for accelerating DE
co-simulation/emulation [11]. Also, for MoCs different from
DE other synchronization schemes may be more suitable.
BIM descriptions can be annotated to respective actors as
C++ code. When neglecting hierarchical states and abstract
arguments, BIM FSMs can mathematically be described as a
tuple (S,Σ,Ω, δ, s0, se, Sint), with S being the set of states, Σ
the input alphabet, Ω the output alphabet, δ : S ×Σ→ S ×Ω
the transition function, s0 the start state, se the end state and
Sint the set of interaction states.
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Fig. 4. Behavioral Interface Model Class Diagram

States are realized by the State class. During execu-
tion, the input within a certain state s is given by the

topmost Event within the EventQueue. Events are either
generated by actions or incoming method calls from the
Ambassador or the simulation tool respectively IOSocket.
In the latter case, method calls are converted by the re-
spective adaptor into events. The transition function relates
inputs and source states to outputs and target states. In the
BehavioralInterfaceModel class it is realized by a
transition table which holds elements of type Transition.
The traversal of transitions must be protected by Guards.
Outputs are generated by Action(s) which can be annotated
to transitions. An output corresponds to the generation of a new
event into the EventQueue, the call of a ToolAdaptor/H-
LAAdaptor method or the write access to elements of type
AbstractArgument which are part of a FSM description.

The notion of interaction state as it is introduced within
this work becomes more clear when considering the execution
semantics of a BIM FSM in more detail. These are based on
iterative execution of the two methods exec() and post()
which are inspired by the fire() and postfire() meth-
ods of Ptolemy II actors (since the FSM is always ready to fire,
an equivalent to prefire() is not necessary). An iteration
consists of a single call to exec() and a subsequent single
call to post(). Therewith, the following happpens:

• The exec() method takes the front event from the
EventQueue and selects the transition for which the
guard evaluates to true. This transition is called active
transition. Thereby, a runtime check is performed in order
to ensure that there exists only one active transition.
If the runtime check is passed, the associated action(s)
is/are executed. If the exist more than one or no active
transitions, an exception is thrown.

• The post() method changes the current state to the
target state of the chosen transition. The method either
returns 0 oder +1. If the target state is the toplevel end
state or an interaction state the method returns 0 in order
to signal termination or that control should temporally be
passed to the environment. For all other states the method
returns +1 in order to signal that a further iteration of
exec() and post() should be performed.

Therewith, an interaction state forms a kind of label
at which the execution of the BIM FSM is suspended
and control is given to the surrounding execution envi-
ronment (i.e. the simulator to be connected). The state
in which the FSM has been suspended last, corresponds
to the entry point for further execution. Instantiation of a
BIM FSM works similar to the instantiation of the object
model, namely by using (nested) C++ function calls within
the generateBIM() method. Applied methods within
generateBIM() like STATE() or TRANSITION() are
again part of the BehavioralInterfaceModel base
class. Listing 2 illustrates an example. At the top instantia-
tion of an abstract argument, specifically a synchronization
point named ”‘READY TO RUN”’ is exemplarily shown.
Afterwards, four states S_INIT, S_GRANT, S_ADVANCE
and S_END are instantiated within the state table. S_INIT
and S_END are marked as start respectively end states. In
order to avoid state explosion, BIM FSMs can be defined
hierarchically: S_INIT is a hierarchical state that is refined
with a complete state machine called Init_FSM. Thereby, re-
finements are always executed first. Only if a refinement cannot



execute, then outer transitions are evaluated. The S_GRANT
state is marked as interaction state. Both, S_GRANT and
S_ADVANCE are referenced by the subsequent transition def-
inition, where S_GRANT is the source state and S_ADVANCE
the destination state of the transition. Traversal of the transition
is protected by an event guard (a derived type of the Guard
class) which limits passage of the transition to the occurence
of the Sim Event SetNextBarrier event. The passage of the
transition is coupled with the execution of an action called
HLA13 A5 11 Action NextEventReq.

Listing 2. BIM FSM Instantiation Code
v i r t u a l vo id genera teBIM ( )
{

/ / Argument t a b l e
ARG SYNCPOINT( ”ARG SP” , ”READY TO RUN” ) ;
. . .
/ / S t a t e t a b l e
STATE( S INIT ) ;
STATE( ”S GRANT” ) ;
STATE( ”S ADVANCE” ) ;
STATE(S END ) ;
. . .
/ / s p e c i a l s t a t e s
START STATE( ” S INIT ” ) ;
INTERACTION STATE ( ”S GRANT” ) ;
END STATE( ”S END” ) ;
REFINED STATE (STATEREF( S INIT ) ,FSM( ” Ini t FSM ” ) ) ;
. . .
/ / T r a n s i t i o n t a b l e
TRANSITION (

STATEREF( ”S GRANT” ) ,
STATEREF( ”S ADVANCE” ) ,
ACTION( ” HLA13 A5 11 Action NextEventReq ” ) ,
EG( ” S i m E v e n t S e t N e x t B a r r i e r ” )

) ,
. . .

}

IV. TOOL INTEGRATION

Tool integration means, making simulation models or tool
capable of communicating with the rest of the overall simula-
tion. The process of tool integration can be separated into the
three steps Federation Model Definition, Interface Generation
and Interface Integration. The proposed overall supporting
process is illustrated in Fig. 5. In the first step one or several
federation models (FMs) are defined in PtII. A single PtII
model can contain several FMs, each representing a separate
federation. In the second step, interfaces for each tool are
generated automatically based on the FM definition(s). Finally,
interfaces are integrated into simulation tools. Depending on
the tool, this step can occur automatically or must occur
manually.

A. Federation Model Definition

An FM specified in PtII syntax includes all the necessary
information for generating interfaces and configuration files.
This information is extracted by parsing the FM. Generally, a
FM is specified within a PtII HlaComposite actor. Beside
the HLAComposite actor, further different novel types
of PtII actors like HLAComposite, HLAFederate,
HLAObjectClass or HLAInteractionClass
are introduced. HLAFederate actors represent
simulators to be co-simulated, HLAObjectClass or
HLAInteractionClass actors represent HLA object
respectively interaction classes (in the following only
HLAObjectClass actors are mentioned for simplicity
reasons). By means of these basic elements the user can
define I) data flows and data representations within a
distributed co-simulation using actors, ports and relations.
This includes datatypes, object/interaction classes and
publish/subscribe relationships. II) control flow between
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Fig. 5. Interface Generation and Tool Integration

simulators by means of annotating behavioral descriptions to
actors.

1) Definition of Data Flows and Datatypes: Data flows
between the mentioned HLA entities (i.e. the newly introduced
actors) are modelled by PtII relations. Thereby, the names of
the actors correspond to the names of the respective entities
within an HLA object model. HLAFederate actors are
only allowed to connect to HLAObjectClass actors and
communicate with each other via these. Beside that, federation
models can but need not include PtII as federate. PtII can
solely be used for FM definition and interface generation.
In turn, a HLAFederate actor can represent any type of
simulator, including another PtII instance. In order to allow a
PtII instance to take part in a federation, ports need to be added
to the composite actor that allow connecting to the residual PtII
simulation model to HLAObjectClass actors. The structure
of HLA object classes and the datatypes of attributes and
parameters are determined by the PtII datatypes of the actor
ports. The direction of communication between federate actors
and object class actors through ports and relations determines
the publish/subscribe relationships. In the example of Fig. 5, a
single external simulator represented by a federate actor named
”‘RemoteSimulator”’ is co-simulated with a local PtII model.
Connection to a local PtII model is achieved by introducing
PtII input and output ports (large arrows in corners of the
composite) that connect the FM to the HLA composite. The
local PtII model and the remote simulator solely communicate
via the ObjectClassX and InteractionClassY actors.

2) Definition of Control Flow: The kind of interaction and
control flow between simulators that are part of a federation
is specified by their BIM FSMs. The BIM FSMs limit the
number of interaction patterns between simulators that interact
via HLA to a subset of all interaction patterns that are allowed
by HLA. In the current version of the PtII extension, BIM FSM
descriptions must be annotated to actors as C++ code. In case
PtII taking part as federate, the BIM FSM must be annotated
to the HLAComposite in case of any other simulator it needs



to be annotated to the respective HLAFederate actor.

B. Interface Generation

Tool interfaces can be generated automatically. A gener-
ated interface serves as a separate layer between a simulator
and HLA. From the overall FM four types of artifacts are
generated:

• FOM related artifacts: Currently it is possible to auto-
matically generate the .fed file which is necessary for
configuring the RTI.

• SOM: The SOM is exported as C++ code. SOM specifi-
cations follow the syntax as it has been defined in section
III-A (i.e. an inherited class of the ObjectModel class
with respective OM instantiation code).

• Behavioral Interface Model FSM: As already mentioned
above, BIM FSMs currently need to be annotated as PtII
parameter to federate actors and/or the HLA composite
actor. BIM FSMs follow the syntax defined in section
III-B. From the annotated FSM description an inherited
class of the BehavioralInterfaceModel class is
generated for each federate.

• High level interface classes: These are generated for
each federate and set on top of the SPLib classes. They
include derived types of IOSocket and a C++ wrapper
class. The latter provides a function-based interface to the
Adaptor and IOSocket classes. This greatly simplifies
usage. Beside that, SWIG [14] interface files (.i files)
can be generated. SWIG is incorporated in order to
wrap the C++ wrapper class once again for integration
into simulators that are based other languages than C++.
Interface files are used to configure SWIG with special
type mappings between C++ and a target language. The
resulting component is called interface wrapper in the
following.

For interface generation there exists a special director
called HLAGenDirector. This director must be added
to the HLAComposite. The HLAGenDirector has ac-
cess to different ModelInterpreter classes as shown
in Fig. 6. These provide concrete (language specific) inter-
pretations of the syntactical artifacts provided by the FM.
Each of the TypeInterpreter classes contains tables
with which PtII datatypes are mapped to language specific
types like C++, Java or HLA datatypes. Hence, the PtII
type system serves as reference type system from which
language specific types are derived. The SOMInterpreter
is used to fill the datatype tables of the type inter-
preters with SOM specific content. Both, SOMInterpreter
and FOMInterpreter classes provide the capabilities
for generating the above mentioned FOM and SOM re-
lated artifacts. Finally, the JavaInterfaceInterpreter
and CPPInterfaceInterpreter classes inherit from
SOMInterpreter and provide additional capabilities for
deriving the signature of the data flow related Java and
C++ interface functions by which the interface wrapper is
accessed from outside. CPPInterfaceInterpreter is
capable of generating the high level interface classes, the
JavaInterfaceInterpreter is capable for generating
the Java specific SWIG interface file.

The resulting artifacts are compiled with the SPLib classes
into a shared C++ library. If the target simulator is written

in C++ (like e.g. the open source SystemC or OMNET++
simulators) the shared library can directly be integrated and
linked to the simulator/model. If the target simulator is written
in another language like Java, C# or a scripting language like
Python, SWIG must be called for target language wrapper
generation.

TypeInterpreter

SOMInterpreter FOMInterpreter

ModelInterpreter

OMInterpreter

HLAGenDirector* 1

CPPTypeInterpreterJavaTypeInterpreter

HLATypeInterpreter

* 1

JavaInterfaceInterpreter CPPInterfaceInterpreter

Fig. 6. Model Interpreters used within the HLAGenDirector

C. Interface Integration

The interface wrapper appears to a simulator as a single
class that provides a fixed number of control flow and a vari-
able number of data flow related high level methods. The con-
trol flow related methods are provided by the ToolAdaptor
class, the data flow related ones by the IOSocket classes (see
also section III). They have a fixed signature. In the current
implementation, control flow related methods are

• getState(): Return the current state of the BIM FSM.
• setExpState(sexp): The expected sexp state value

may be used by the FSM to verify that it matches the
actual next interaction state.

• setNextBarrier(): Set the next time barrier that the
simulator wishes to advance.

• getNextBarrier(): Get the last time barrier that has
been granted.

• iterate(): Iterate the BIM FSM. Executes sequences
of exec() and post() until post() returns 0. This
method must regularly be called by the environment
simulator in order to advance the BIM FSM state.

• end(): Generate a Sim_Event_End event for the BIM
FSM.

Generally, interface integration can be viewed as a mapping
of BIM FSM states into the execution phases of the target sim-
ulator. Exemplarily transferred to a PtII director these phases
are preinitialize(), initialize(), prefire(),
fire(), postfire() and wrapup(). For PtII integration,
a special HLADEDirector has been developed which derives
from the original DEDirector and which integrates an
interface wrapper following the described approach (a pre-
study has been done in [15]). Since PtII is written in Java,
a SWIG based wrapper is used and loaded dynamically. The
mentioned control flow related calls can theoretically occur in
any of the execution phases of the HLADEDirector. The
applied BIM FSM (the same has been used for SystemC and
Veins) is illustrated in Fig. 7. It consists of a toplevel FSM
with four hierarchical states and an atomic state. In S_INIT
HLA initialization like federation creation, publication and
subscription as well as instance registration is performed (for
the latter, S_INIT internally contains an interaction state). The
S_SYNC_READY_TO_RUN and S_SYNC_SHUTDOWN states



are refined by FSMs that implement synchronization proce-
dures by means of HLA synchronization points which ensure
that simulators start and stop execution (the latter includes in-
stance deletion and the shutdown procedure) at the same time.
The S_EXECUTE state is responsible for time advancement
(federates are time regulating and time constrained). It is an
interaction state and a refined state at the same time. Interaction
with the environment simulator is only performed if there
does not exist an event in the FSM event queue (symbolized
by Event_Absent). Otherwise, the refinement states ensure
that only valid events can occur during the time advancement
procedure. Finally, if the toplevel end state becomes the
next state, the FSM terminates. The current implementation
matches the S_INIT and S_SYNC_READY_TO_RUN states
to the initialize() phase, the S_EXECUTE state to the
fire() phase and the S_SYNC_SHUTDOWN and S_END
states to the wrapup() phase of the HLADEDirector.
If the fire() method of the HLADEDirector is called
and the timestamp of the next local event (requested by
getModelNextIterationTime()) is larger than the
previously granted time, the director proposes an advance,
iterates the BIM FSM and sets the next fire time via
fireContainerAt() to the granted time. Afterwards re-
flections are served. Due to the microstep semantics zero
lookahead was chosen. In order to be able to achieve deter-
ministic distributed execution by means of the HLA 1.3 NER
service, a priority field method similar to the one described in
[16] can be applied. In this case, also the microstep needs to
be passed when requesting advancement.
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In contrast to the control flow methods, data flow related
methods do not necessarily have a fixed signature. Methods for
reading and writing start with read or write followed by the
name of the object class that is accessed. The instance name
is a method parameter. Number and types of other parameters
depend on number and types of attributes that are stored within
the respective object class. Data flow related methods are

• readX(): Read topmost reflection of IOSocket/object
class ”X”.

• writeX(): Write an update into IOSocket/object
class ”X”. This effectively generates a
Sim_Event_Update event for the BIM FSM. In
addition, a timestamp must be passed to the write call.

• addRemInst(): Generate event for adding/removing
object class instances.

• getSocketQueueSize(): Return the fill level of a
specified IOSocket.

• popSocket(): Pop the topmost reflection from a spec-
ified IOSocket.

The HLADEDirector manages data flow between a local
PtII model and the interface wrapper with support of the
HLAObjectClass. The HLADEDirector is equipped with
a reflectDir() and updateDir(token) method. The
reflectDir() method is called by the HLADEDirector
itself at any point in simulation time when a new time
barrier has been read by calling getNextBarrier().
The method checks IOSocket buffers for available reflec-
tions by calling getSocketQueueSize(). If a reflec-
tion is available the full signature of the read method
is dynamically derived from the object class structure of
the SOM using the JavaInterfaceInterpreter class.
The reflection is then converted into a PtII token. After-
wards, the token is transferred to the HLAObjectClass
actor that belongs to the IOSocket which provided the
reflection. For that reason, each HLAObjectClass actor
is equipped with a reflectAct(token,time) method.
In turn, the updateDir(token) method is called by
HLAObjectClass actors. The method converts the passed
token by the help of the JavaInterfaceInterpreter
class into a write method call on the interface wrapper. The
timestamp of the generated update event corresponds to the
current local simulation time. The semi-automatic integration
by dynamic signature derivation makes sense since PtII plays
a central role within the overall tool chain and is probably ap-
plied in many different and extensible co-simulation scenarios.

During execution, only HLAObjectClass actors that
connect to the HLAComposite ports play an active role.
They represent the HLA object classes (to) which the
residual probably heterogeneous PtII model subscribes/pub-
lishes. They are necessary for transferring data between
the residual PtII model and the federation and vice
versa. All other HLAObjectClass and HLAFederate
actors remain passive and will never fire during ex-
ecution. The reflectAct(token,time) method of
a HLAObjectClass actor stores the passed token in
an internal timed queue. The method internally calls
fireAt(time). This makes sure, that the actor is fired at the
point in time, when a reflected token should be forwarded to
the residual PtII model through the corresponding output port.
Therefore, the time parameter must correspond to the time of
the grant. The opposite direction works as follows: As soon as
an HLAObjectClass actor is fired it checks its input ports
for available tokens. if a token is found it is passed to the
HLADEDirector by calling updateDir(token).

Overall, by means of the combination of PtII and HLA
in the described manner, the following types of execution are
conceivable:

• Standard Mode: All simulators are part of a single feder-
ation. This mode is best applied if all simulators follow
related execution semantics. E.g. integrating several iden-
tical DE simulators into a single federation is a straight
forward issue since both, RTI and the simulators are
basically event-based. A typical application is parallel
simulation for improving performance.
• PtII Managed Mode: Generally, a ”brute-force” com-

position of heterogeneous simulators following different



MoCs may result in so called emergent behavior [4].
Hence, in this mode, the RTI is assisted by PtII for
managing heterogeneity. This enables structured com-
position of federations and modification of data and
control flows between them. Single simulators are co-
simulated with PtII within separate federations using
separate HLAComposite actors and appropriate SOMs
and BIM FSMs. PtII serves as federation gateway and
mediates between these federations. A possible drawback
is decreased performance.

• Mixed Mode: In this mode, the previously described
modes are executed together, i.e. not only PtII and single
simulators form separate federations but a co-simulation
federation can contain more simulators. It combines ad-
vantages of both modes, namely better execution perfor-
mance and flexibility in model composition.

V. CASE STUDIES

Applicability of the previously described tool chain is
now demonstrated by means of a framework that has been
developed with the tool chain. Thereby, validation of a V2X
based ACC application running on a future automotive E/E
architecture has been chosen as example. Pursued goals of the
case studies are I) demonstration of the basic capability of
heterogeneous distributed co-simulation II) demonstration of
the applicability of PBD within the tool chain III) demonstra-
tion of applicability for verification using several federations
in parallel.

A. Simulation Setup

The overall framework is shown in Fig. 8. It consists
of PtII, Veins and SystemC federates. The simulation setup
has been designed according to the PtII managed mode de-
scribed in section IV-C, i.e. single simulators are co-simulated
with PtII within separate logical federations using separate
HLAComposite actors. All federates are integrated by means
of the interface wrapper described above. In case of Veins and
SystemC the interface wrapper has been integrated manually.

Within the PtII federate the E/E architecture of the vehicles
of interest is modelled. These intra-vehicle models are con-
nected to an inter vehicle model that is provided by the Veins
composite. Veins is an open source vehicular network simu-
lator that integrates the OMNET++ network simulator with
the SUMO traffic simulator bidirectionally using a TCP/IP
proxy. It allows simulating IEEE 802.11p wireless networks
including node mobility. Within the framework Veins simulates
surrounding vehicles and the inter vehicle communication via
V2X messages. We’ve modified the application and mobility
modules of Veins by the introduction of additional parameters
that allow indicating which vehicles are remotely controlled
by PtII or if WiFi messages are received/sent remotely from/to
PtII. This is a prerequisite for validation of the ACC functional-
ity. Regarding synchronization a parameter can be set for each
vehicle representing the time interval for updating messages
exchanged with PtII. Analogueous, there is a parameter which
specifies the update time interval between SUMO and OM-
NET++ via TCP/IP. In the different considered scenarios these
are set to a value of 0.01s. Finally, by means of a SystemC
federate selected ECUs within the E/E architecture model can
be refined down to fully cycle accurate descriptions. As an

example a detailed SystemC model of a multi-core architecure
called HeMPS [17] which represents a refined V2X ECU has
been integrated. The model consists of a configurable number
of processing elements (PEs) which are interconnected by a
Network-on-Chip (NoC) called HERMES [18]. The model is
equipped with a HLA-based virtual internal/external network
interface that connects the model to the interface wrapper.
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Fig. 8. Case Study Simulation Framework

B. Adaptive Cruise Control Application

Current ACC systems monitor the distance to the vehicle
in front using radar sensors. Based on the monitored values
speed and distance are automatically adjusted by motor and
brake intervention. However, conventional ACC monitoring is
limited to the line of sight. This can be a safety critical factor
e.g. in case of a sudden traffic congestion within a curve.
By extending the ACC with V2XC capabilities, an automatic
reaction to such situations is possible.

The PtII model of the considered scenario is shown in Fig.
9. On the top level, the overall simulation model is instantiated,
containing Veins and separate composite actors for selected
vehicles. Vehicles can be refined to E/E architectures. Here,
we orient ourselves by design principles suggested for future
E/E architectures [1] like a centralized computer architecture
and interconnection by a standardized communication back-
bone. We assume, that the basic structure of the target E/E
architecture is predefined while implementation of components
like ECUs may vary. Inside the E/E architecture data is
routed through a network model represented by an Internal
Network composite. V2X ECU and Central ECU are as-
sumed to be multi-core architectures which execute the ACC
application. Radar ECU and GPS ECU are responsible for
data acquisition and preprocessing of radar sensor and GPS
data where the Radar ECU provides position and velocity
of the vehicle ahead and the GPS ECU the own position.
The four Wheel ECUs take the acceleration calculated by
the ACC as an input and drive the corresponding wheels to
the desired velocity. The determined velocity value is fed
back to the top level model and forwarded to Veins where
the velocity of the corresponding remotely controlled SUMO
vehicle is adjusted. The Wheel ECU composites, representing
the control path of the ACC application, are directed by
a ContinuousDirector. The velocity provided by the
Wheel ECUs is discretized in order to be reused for trans-
mission to connected ECUs. The sampling rate is set to 0.01s
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C. Heterogeneous Distributed Co-Simulation

For the first example scenario we’ve constructed an urban
traffic scenario in SUMO where a leading vehicle is peri-
odically approaching crosses with a distance of 200 m. The
mobility model of SUMO [19] results in regular decceleration
and acceleration cycles. A second follower vehicle is con-
trolled remotely by PtII, whose velocity is set with the value
calculated by the ACC application. The latter is modelled as an
abstract DE model located within the V2X ECU composite.
The traffic simulation is executed with a forerun of 10s. In
this section ACC scenarios are considered that either use radar
or V2X communication. In both cases, velocity and position
values of the leading vehicle are transferred to PtII, either
directly or via the 802.11p wireless channel model.

In Fig. 10 the velocity measurements of radar only con-
trolled ACC is shown. The red and blue curves belong to the
ahead and refined vehicle respectively. As we can see, the
refined vehicle whose velocity is calculated in PtII follows the
leading vehicle controlled by SUMO with a certain distance
that depends on ACC parameters such as a safety time gap
(set to 1.7s). The calculated acceleration is plotted in Fig. 10.
On the right hand side in Fig. 10 we can see the position of
the leading and the following vehicle. The difference between
both curves represents the distance between both vehicles and
is also reflected by the distance plot in Fig. 10.

To analyse the influence of the V2X based ACC, several
simulations with different V2X message beacon rates of 0.1s,
1.0s and 10.0s have been conducted. With a beacon rate
of 0.1s the curves are identical to the radar ACC. When
increasing the beacon rate to 1.0s and 10.0s (low beacon rates
could arise e.g. in lossy or jammed channels) the progress
of the velocity of the following vehicle gets less comfortable
in terms of maneuver with high deceleration rates or higher
velocities. This gets more obvious the lower the beacon rates
get since the ACC algorithm gets updates about the actual
position and velocity of the leading vehicle less frequently.
This can be observed in Fig. 11 but even with a beacon rate
of 10.0s the scenario still remains crash free. However, if
the beacon rate gets too low, the ACC cannot react properly
anymore and crashes into the leading vehicle. This has been

Fig. 10. Velocities (top left), Own Acceleration (bottom left), Distance (top
right) and Position (bottom right) of radar controlled ACC

Fig. 11. Velocity and Position of Ahead and V2X Controlled Vehicle with
Left: Beacon Rate = 1.0s, Right: Beacon Rate = 10.0s

observed with a very low beacon rate of 50.0s where a crash
occured after around 49s.

D. Application of Platform-based Design Principles

As has been shown, the framework allows modelling of
functional and architectural artifacts as well as environmental
components, that are necessary for a holistic analysis and
system validation. In the following it is shown that by replacing
abstract artifacts through more detailed entities, an iterative
refinement of an abstract specification towards the final imple-
mentation is possible. Moreover, if the process of refinement is
based on quantity managers (QM) [20] a mapping of functions
to co-simulated architecture models is possible. PtII provides
capabilities for computation and communication refinement
using so called aspects which are a synonym for QMs [21].

As mentioned above, messages exchanged within an
E/E architecture model are routed through an Internal
Network composite. For communication refinement, the ports
at that composite can e.g. be annotated with a bus communi-
cation aspect allowing investigation of bus delay influences.
Furthermore, the vehicle composites can be refined towards
functional and architectural models which is the basis for
computation refinement. The function (ACC application) is
specified by means of a task graph consisting of Tasks T1-T7.
A task is represented by a (composite) actor which models a
specific sub-functionality of the overall V2X-ACC application.
Hereby, the single tasks fulfill the following sub-functionality:



1) V2X data transmission 2) V2X data reception 3) V2X data
security measures 4) radar sensor and GPS data processing
5) data aggregration 6) V2X-ACC algorithm based on the
Intelligent Driver Model (IDM) 7) actuator control.

Within this case study, Central ECU and V2X ECU are
responsible for the tasks T1-T7. The latter can be mapped
on the former by means of a newly developed quantity
manager actor called QMMapper. The mapping and routing
are specified by routing entries in a mapping/routing table used
by the QMMapper. This is the basis for a later automization
of design space exploration. For investigating task mapping
influences, the following methodology is imaginable:

1) Tasks are clustered into task groups consolidated in
further composite actors. These composites follow the
PTIDES MoC [22] time-synchronized distributed real-
time applications. A PTIDES composite is also called
PTIDES platform.

2) PTIDES platforms are mapped onto V2X ECU resp.
Central ECU which is accomplished by means of the
QMMapper.

3) The specification of each of the ECUs is refined from an
abstract model down to an individual cycle accurate Sys-
temC implementation. Each PTIDES platform is equiv-
alent to a specific PE within the abstract composite/co-
simulated SystemC model.

In the following measurements a V2X based ACC has been
configured with a beacon interval of 1.0s. Two task groups, i.e.
PTIDES platforms called ACC (T4-T7) and V2X (T1-T3) have
been created. Central and V2X ECUs are modelled abstractly.
Each is made up of four PEs interconnected by an abstract
NoC. Scheduling issues are not considered in this use case
but can be incorporated by annotating different kinds of so
called execution aspects [21]. Table I summarizes the mapping
variations of the platforms. In both cases the ACC platform
is mapped onto the Central ECU and the V2X platform onto
the V2X ECU but on different PEs inside the ECU. Thereby
PE 0 is a computational core with additional access to the
network interface, i.e. every message to be received/sent is
processed in PE 0 first. It is obvious that in Mapping 1 no
additional communication delay through the NoC emerges
whereas in Mapping 2 all messages need to be received/sent
from/to PE 3. Furthermore, in both mappings the received
V2X messages have to pass the internal network since the
ACC and V2X platforms are mapped onto Central and V2X
ECU respectively. To see the influence of communication delay
caused by the E/E internal network and the NoCs of the Central
and V2X ECU, we generated synthetic congestion resulting
in bus service times of the internal network of 2ms and in
NoC delays per hop of 500ms. Such high delays per hop
can arise in simple NoCs in case of congestion when there
are no quality of service countermeasures. Thus in Mapping
2 there are three hops necessary in the V2X ECU to forward
received velocity and position values of the vehicle ahead to
PE 0 before the packet can be sent out via the internal E/E bus
to the Central ECU. In the latter again all incoming messages
have to be forwarded from PE 0 to PE 3 before the ACC
algorithm can calculate new acceleration values. This results
in a communication delay of about 6 ∗ 500ms = 3s where
the internal bus delay is neglected. This can be obeserved in
Fig. 12 where the braking maneveur of Mapping 2 is delayed

TABLE I. PTIDES PLATFORM MAPPINGS

Mapping 1
Platform Tasks ECU PE

ACC T4-T7 Central ECU 0
V2X T1-T3 V2X ECU 0

Mapping 2
Platform Tasks ECU PE

ACC T4-T7 Central ECU 3
V2X T1-T3 V2X ECU 3

by calculated value compared to Mapping 1 where only the
internal bus delay has an influence.

Fig. 12. Velocities depending on Mapping, Left: ACC=CentralECU PE0,
V2X=V2XECU PE0, Right: ACC=CentralECU PE3, V2X=V2XECU PE3

E. Verification based on Multiple Federations

The last case study serves as demonstration of the feasi-
bility of PtII managed mode and mixed mode. In the case
of discrete-event models a distinct execution order of actors
is the basis for achieving causally correct and deterministic
simulation results. For that case, PtII assigns priorities to events
by sorting them according to model time, microstep and level
[21]. The microstep specifies a zero delay at a certain point
in time whereas the level is determined by a topological sort
of a directed acyclic graph (DAG) of the actors. Therewith
an ordering is assigned such that an upstream actor in the
DAG executes earlier than a downstream actor. In order to
be able to build a DAG, loops between actors must contain
at least a microstep delay. The synchronization algorithm that
has been presented above relies on the NER service of the
HLA. An HLADEDirector proposes to advance to a certain
point in time that is specified by the setNextBarrier()
call. This includes passing the next time that is returned
when calling getModelNextIterationTime(). In order
to guarantee causal correct execution the time delta from the
current point in time to the proposed time must not be larger
than the minimum possible delay until the HLAComposite
may possibly receive a new token. This requirement is al-
ways fulfilled for a single HLA composite and for multiple
HLA composites without loops between them (due to the
execution ordering). However, in case of the existence of
loops between HLA composites the next time returned by
getModelNextIterationTime() cannot uncondition-
ally be taken for proposition via setNextBarrier(), even
in the case of delays that are inserted. The reason is, that
after the grant of a HLADEDirector A within an upstream
HLAComposite to time tA, a HLADEDirector B within
an adjacent downstream HLAComposite that requests at the
same time and microstep could be granted to a time tB < tA
and violate causal correctness by inserting a token that will
be sent to federation A at an already passed point in time. A
simple solution is to derive a minimum lookahead time > 0
within the PtII model and regularly generate events having a



time distance of the derived minimum lookahead. This solution
has been chosen here. The path from Veins to HeMPS contains
no delay. The path from HeMPS to Veins via the Wheel ECU
hence must contain at least a microstep delay to create the
DAG. Concerning lookahead, since the Wheel ECU generates
events with the same frequency as Veins (i.e. 1/0.01s), there
will always be an event in due time which avoids that Veins
requests too far into the future. Hence, Veins will never receive
tokens in the past and causal correctness is preserved. Fig. 13
illustrates the measured results for a simulated time interval of
10s when executing the radar ACC application as Kahn Process
Network (KPN) on the cycle accurate HeMPS model. The
model has been simulated with clock frequencies of 100 kHz
respectively 50 kHz. As can be seen 100 kHz version reacts
slightly faster which results in the velocity to start increasing
again already at 19s whereas the 50 kHz version still remains at
0 m/s. The execution for 10s of simulation time was 25min at
50kHz and 52min at 100kHz on a core i5 dual-core at 2.5GHz.

Fig. 13. Radar ACC as KPN Application on HeMPS (100 kHz left, 50 kHz
right), red = ahead vehicle, blue = follower vehicle

VI. DISTINCTION TO RELATED WORKS

In [23] a metamodel for federation architectures is pre-
sented. However, no solution for managing composition of
heterogeneous simulation models is provided. In recent model-
based approaches for investigating V2X communication like
[24], [9] the emphasis lies on application analysis on a more
coarse grained level like traffic management and efficiency.
Because of that, in these works vehicles can be considered
as a focused processing point. However, for validation of E/E
architecture components, such a point-of-view is insufficient.
There is rather the need for a comprehensive description of
a complete V2X processing chain starting from the sensor
of the source vehicle and ending up at the actor of the
destination vehicle. The concept presented in [25] targets such
a view but it is not mentioned, how heterogeneity could be
managed or PBD principles could be integrated. In the area
of hardware/software co-simulation [26] or [20] are prominent
tools. However, they do not provide capabilities for structured
integration of simulators.
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