
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

A Framework To Model Complex Systems Via Distributed A Framework To Model Complex Systems Via Distributed

Simulation: A Case Study Of The Virtual Test Bed Simulation Simulation: A Case Study Of The Virtual Test Bed Simulation

System Using the High Level Architecture System Using the High Level Architecture

Jaebok Park
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Park, Jaebok, "A Framework To Model Complex Systems Via Distributed Simulation: A Case Study Of The
Virtual Test Bed Simulation System Using the High Level Architecture" (2005). Electronic Theses and
Dissertations, 2004-2019. 369.
https://stars.library.ucf.edu/etd/369

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/369?utm_source=stars.library.ucf.edu%2Fetd%2F369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

A FRAMEWORK TO MODEL COMPLEX SYSTEMS VIA DISTRIBUTED SIMULATION –
A CASE STUDY OF THE VIRTUAL TEST BED SIMULATION SYSTEM

USING THE HIGH LEVEL ARCHITECTURE

by

JAEBOK PARK
B.E. The Naval Academy, Republic of Korea, 1988

M.S. Western Illinois University, 1994

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Modeling and Simulation
in the College of Engineering and Computer Science

 at the University of Central Florida
Orlando, Florida

Spring Term
2005

 Major Professor: Jose Sepulveda
 Major Professor: Luis Rabelo

© 2005 Jaebok Park

ii

ABSTRACT

As the size, complexity, and functionality of systems we need to model and simulate con-

tinue to increase, benefits such as interoperability and reusability enabled by distributed discrete-

event simulation are becoming extremely important in many disciplines, not only military but

also many engineering disciplines such as distributed manufacturing, supply chain management,

and enterprise engineering, etc.

In this dissertation we propose a distributed simulation framework for the development of

modeling and the simulation of complex systems. The framework is based on the interoperability

of a simulation system enabled by distributed simulation and the gateways which enable Com-

mercial Off-the-Shelf (COTS) simulation packages to interconnect to the distributed simulation

engine.

In the case study of modeling Virtual Test Bed (VTB), the framework has been designed

as a distributed simulation to facilitate the integrated execution of different simulations, (shuttle

process model, Monte Carlo model, Delay and Scrub Model) each of which is addressing differ-

ent mission components as well as other non-simulation applications (Weather Expert System

and Virtual Range). Although these models were developed independently and at various times,

the original purposes have been seamlessly integrated, and interact with each other through Run-

time Infrastructure (RTI) to simulate shuttle launch related processes.

This study found that with the framework the defining properties of complex systems -

interaction and emergence – are realized and that the software life cycle models (including the

spiral model and prototyping) can be used as metaphors to manage the complexity of modeling

and simulation of the system. The system of systems (a complex system is intrinsically a “system

iii

of systems”) continuously evolves to accomplish its goals, during the evolution subsystems co-

ordinate with one another and adapt with environmental factors such as policies, requirements,

and objectives. In the case study we first demonstrate how the legacy models developed in COTS

simulation languages/packages and non-simulation tools can be integrated to address a compli-

cated system of systems. We then describe the techniques that can be used to display the state of

remote federates in a local federate in the High Level Architecture (HLA) based distributed

simulation using COTS simulation packages.

iv

ACKNOWLEDGMENTS

 It hardly seems possible to reach at this level without the support from many others, who

have helped me in so many ways along the way, and that it only remains to thank the people who

have helped me. I know that I will never be able to truly express my appreciation. I would like to

thank my advisors, Dr. Jose A. Sepulveda and Dr. Luis Rabelo for their years of encouragement,

patient, and support on my research in the Ph.D program. I would like to also thank the rest of

my dissertation committee: Dr. J. Peter Kincaid, Dr. Charles Reilly, and Dr. Joohan Lee for their

helpful comments and suggestions during the course of my Ph.D. study.

 I would like to thank my colleagues in the Center for NASA Simulation Research Group:

Mario Marine, and previous members: Fred Gruber, Oscar Martínez, Amit Wasadikar, Amith

Paruchuri, Ann Dalrymple, Asisa Musa, and Usha Neupane for their work which were a part of

this work (mainly the case study of “Factors Affecting the Expectation of Casualties in the Vir-

tual Range Toxicity Model”).

 Most of all, I will be grateful to my wife Jinsuk Na and my daughter Subin for their un-

derstanding and support throughout this effort. Without their constant sacrifice, I wouldn’t have

come so far.

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES.. x

LIST OF ACRONYMS/ABBREVIATIONS.. xi

CHAPTER ONE: INTRODUCTION... 1

Background of Study .. 1

Objective and Scope ... 11

Dissertation Outline .. 12

CHAPTER TWO: REVIEW OF RELATED TECHNOLOGIES.. 14

Introduction... 14

Virtual Test Bed (VTB) .. 14

High Level Architecture (HLA).. 21

Discrete-Event Simulation Languages and Packages ... 34

Visualization of Distributed Simulation Systems ... 44

CHAPTER THREE: THE HLA INTEROPERABILITY IN SIMULATION

LANGUAGES/PACKAGES.. 50

Federate Requirements to Become a HLA Compliant ... 51

HLA Support in Modeling Languages and Packages ... 53

Implementation of The Basic Discrete Event Simulation Class in The SPEEDES Process

Model .. 63

Visualizations in the VTB... 72

CHAPTER FOUR: CASE STUDIES... 84

vi

Factors Affecting the Expectation of Casualties in the Virtual Range Toxicity Model 84

Implementing the High Level Architecture in the Virtual Test Bed 105

CHAPTER FIVE: A PROTOTYPE IMPLEMENTATION OF VTB SIMULATION SYSTEM

... 113

Introduction and Motivation ... 113

Adapting Legacy Models to VTB Simulation System Using the HLA.................................. 114

Integration of the Framework for Spaceport Simulation System ... 125

CHAPTER SIX: CONCLUSION... 132

Summary ... 132

Limitation.. 134

Future Work. ... 135

LIST OF REFERENCES.. 139

vii

LIST OF FIGURES

Figure 1 Concept of Virtual Test-Bed (adapted with modification from (Rabelo, 2002b)) 16

Figure 2 VTB System Architecture .. 19

Figure 3 Federate – Federation Interplay.(adapted from (DMSO, 1998b))................................. 25

Figure 4 RTI Components At-a-Glance. (taken from (DMSO, 1998b)) 26

Figure 5 RTI and Federate Code Responsibilities. (taken from (DMSO, 1998b))....................... 27

Figure 6 SPEEDES Modeling Framework (taken from (Bailey et al., 2001)) 37

Figure 7 S_Shuttle Simulation Object .. 38

Figure 8 Arena Modeling Environment.. 42

Figure 9 Architecture of AnyLogic Modeling and Simulation Environment (taken from

(Borshchev et al., 2002))... 44

Figure 10 RTI and Federate “Ambassadors” (DMSO, 1998a) ... 52

Figure 11 SPEEDES Interface to the HLA (adapted from (Bailey et al., 2001)) 55

Figure 12 An example of "conversions.par".. 56

Figure 13 Initial Adapter Architecture(taken from (Kuhl & Riddick, 2000)) 59

Figure 14 An Example of Initialization File ... 60

Figure 15 Object and Message Format ... 61

Figure 16 Integrating HLA and AnyLogic (adapted from (Borshchev et al., 2002))................... 62

Figure 17 Class Diagram of Simulation Classes... 67

Figure 18 An Example Sequence Diagram of Simulation Classes... 71

Figure 19 Calculation of Population at Risk... 75

Figure 20 Model-Animator-Scheduler paradigm (Lin et al., 1992).. 76

viii

Figure 21 Model-Animation on the HLA ... 79

Figure 22 An Example model for a Remote Federate Animation .. 80

Figure 23 HLA Interaction Class for Declaration Management Service...................................... 82

Figure 24 HLA Interaction Class for Object Management Service.. 82

Figure 25 Virtual Range Toxicity Model Architecture (Sepulveda et al., 2004a)........................ 87

Figure 26 Launch sectors from the Eastern Range (adapted from (Sepulveda et al., 2004a)....... 90

Figure 27 Exposure Response Function for HCl (adapted from (Sepulveda et al., 2004a)........ 101

Figure 28 VR Simulation Interface... 103

Figure 29 Bad Weather Occurrence (adapted from (Lebo et al., 2002)) 109

Figure 30 Launch area intrusions (adapted from (Lebo et al., 2002)) 109

Figure 31 Contributions to the delays and scrubs (adapted from (Lebo et al., 2002)) 110

Figure 32 Overall Probability of a delay or scrub (adapted from (Lebo et al., 2002)) 111

Figure 33 Distributed Shuttle Process Simulation using the DMS Adapter............................... 112

Figure 34 The MonteCarlo Federate and The VR Federate architecture.................................... 115

Figure 35 Adapted Weather Expert System (WES) Architecture to the HLA 119

Figure 36 An implementation of the WES federate.. 120

Figure 37 Life cycle of the Orbiter (as an active entity)... 122

Figure 38 S_Orbiter Process (Active Entity) Logic Example .. 123

Figure 39 Space Shuttle Federate Architectue.. 124

Figure 40 A Prototype Implementation of VTB Simulation System.. 126

Figure 41 Interactions between the models during the federation execution 127

Figure 42 Visualization of Mission Control Room .. 129

ix

LIST OF TABLES

Table 1 The DMS Adapter Interface Methods .. 58

Table 2 Commonly used Shuttle Propellants (adapted from (Sepulveda et al., 2004a)) 85

Table 3 Representative Events in the Shuttle’s Trajectory during the first 120 Seconds (adapted

from (Sepulveda et al., 2004a))... 93

Table 4 Factors affecting Ec (Sepulveda et al., 2004a) .. 104

Table 5 Factors affecting delays and scrubs (adapted from (Lebo & Woltman, 2002)) 108

x

LIST OF ACRONYMS/ABBREVIATIONS

API Application Programmer’s Interface

COTS Commercial Off-the-Shelf

DoD US Department of Defense

DMSO Defense Modeling and Simulation Office

Ec Casualty Expectation

FED Federation Execution Data

FOM Federation Object Model

GIS Geographic Information System

HCC Human-Centered Computing

HCl Hydrochloric Acid

HLA High Level Architecture

IDL Interface Definition Language

ILRO Intelligent Launch and Range Operations

IT Information Technologies

KSC Kennedy Space Center

MOM Management Object Model

NIST National Institute of Standards and Technology

OMDT Object Model Development Tool

RID RTI Initialization Data

RTI Runtime Infrastructure

SM Spaceport Model

xi

SOM Simulation Object Model

SPEEDES Synchronous Parallel Environment for Emulation and Discrete-

 Event Simulation

VR Virtual Range

VTB Virtual Test Bed

WES Weather Expert System

XML Extensible Markup Language

xii

CHAPTER ONE: INTRODUCTION

Background of Study

 Many real world systems and application areas of modeling and simulation are getting

larger and more complicated. With the help of new science and information technology – espe-

cially the availability of powerful and accurate networked computers – engineers are now capa-

ble of building such complex systems and applications which were difficult to build even just

one decade ago. Today’s real world systems generally consist of a large number of subsystems,

are geographically dispersed over large distances and are operating in heterogeneous computing

environments (Ghosh & Lee, 2000). Many such systems are often considered systems of systems.

 A “System” is a group or combination of interrelated, interdependent, or interacting ele-

ments that form a collective entity. Elements may include physical, behavioral, or symbolic enti-

ties. Elements may interact physically, mathematically, and/or by exchange of information.

Rouse defines complex systems as “systems whose perceived complicated behaviors can be at-

tributed to one or more of the following characteristics: large numbers of elements, large num-

bers of relationships among elements, nonlinear and discontinuous relationships, and uncertain

characteristics of elements and relationships” (Rouse, 2003).

 Therefore the property of complex systems as a whole is nonlinear; hence the property

cannot simply be derived from an integration of the properties of components of a system. How-

ever there are some common characteristics of complex systems: (1) they consist of a large num-

ber of interacting subsystems, (2) they exhibit emergence: that is, a consequence of the interac-

tions between system components to achieve some objective which is difficult to anticipate from

1

the knowledge of the individual components, (3) their emergent evolution can be observed once

the components have been integrated into a system or adapted into an environment where it is

used. The appearance of emergent properties is the single most distinguishing feature of complex

systems (Boccara, 2004).

 In engineering disciplines “a new system development is initiated either by user needs or

new opportunity offered by advancing technology. The evolution of a particular new system

from the time when a need for it is recognized and a feasible technical approach is identified, to

the point in its development where it is introduced into operational use is referred to as the “sys-

tem development process” (Kossiakoff & Sweet, 2003). Similar to system engineering, in soft-

ware engineering there are a variety of software life cycle models in use. Since we are studying

the development of simulation systems the emphasis is on the life cycle models in software engi-

neering. Some of the well known models are the waterfall model, the rapid application develop-

ment model, and the spiral model, among many others (Pressman, 2000; Vliet, 2000; Pfleeger,

2001; Sommerville, 2001; Thayer, Dorfman, & Christensen, 2002). All of these life cycle models

are useful in developing a single system (or a single complex system) and most are useful in de-

veloping a system of systems with the exception of the traditional waterfall model. Because of

the necessity for an understanding of the system level requirements at the beginning of the de-

velopment process and because of the need for system level requirements to remain the same

throughout the process, the waterfall model cannot be effectively used to develop a system of

systems.

 As presented earlier, the defining properties of complex system include (1) the interac-

tions amongst interconnected components and/or the environment interacts in unanticipated ways

and (2) the behavior of the overall system is different from the aggregate behavior of the parts

2

and knowledge of behavior of the components will not allow us to predict the behavior of the

whole system, which is the property known as emergence (Sage & Olson, 2001).

 Since many real world systems are systems of systems, the systems (subsystems) might

be built in various disciplines, times, and often developers may not know of the existence of

other systems (subsystems). Therefore the interaction cannot be defined in the development

process of individual systems (subsystems).

 The complex system of systems evolves the results of interactions with other systems and

environments; and then adapts with its environment where it is used. In other words, when the

configuration of the complex system changes such as when a system (subsystem) is added or

disposed, or the new functionality of a system is required because of either new user require-

ments or advances in information technology, the systems (subsystems) need to interact with

these changes and then adapt to them. However, the configuration change of the complex system,

the future user needs, and the technology advance cannot be known in advance. As a result many

software development life cycle models may not be applicable in the development of a system of

systems.

 The simulated complex system is usually decomposed to a level where subsystems or

system components are individually defined and developed as functional simulation systems. In

this dissertation we refer to a simulation of complex systems as an abstraction of the simulated

complex systems in which systems (subsystems) interact with each other by exchanging the state

of system information which changes either discrete in time or continuously, or a hybrid of both.

 In this dissertation we propose a distributed simulation framework for the development of

modeling and simulation of complex systems which are a system of systems, in which the defin-

ing properties of complex systems – interaction and emergence – are realized and the software

3

life cycle models (including prototyping) are used as metaphors, not actual development proc-

esses, to manage the complexity of modeling and simulation of the system. The framework is

based on the interoperability of a simulation system enabled by the distributed simulation and the

gateways which enable COTS simulation packages to interconnect to the distributed simulation

engine.

Distributed Simulation

 While Parallel/Distributed Discrete Event Simulation has been an active area of research

for more than thirty years, researchers have until recently focused almost exclusively on fast

execution of process and event oriented models of discrete event simulations. In the mid 1990's,

High Level Architecture was initiated by the DMSO, US Department of Defense (DoD); the

process has taken different aspects of Parallel/Distributed Discrete Event Simulation in order to

support interoperability and reusability of existing simulation models developed at various times,

purposes and organizations. The HLA is used as a distributed simulation engine in the VTB ar-

chitecture for integration of both current and future simulation models. In general, the simulation

languages/packages may have special areas of use, distinct advanced features, and require spe-

cific computing environments such as operating systems (OS), external application interfaces,

and scripting languages. These characteristics of the modeling languages may impose difficulties

when attempting to seamlessly integrate them with other simulation modeling lan-

guages/packages. We focus more on the VTB environment; in particular, with its interfaces

among participating simulation models.

4

 Since HLA was developed for reuse of the military simulation models, its main area of

use has been military domain simulations. Although the HLA does not mandate the use of any

specific software – it is designed to incorporate new technologies as they develop over time –

currently the only supporting interfaces available constrain applicable program languages such as

C++, Java, IDL and Ada. This is problematic when we interconnect simulation models in the

VTB, many of which are developed by COTS simulation packages such as Arena, AnyLogic or

SPEEDES. In addition the future models may need to be developed using one of the COTS

simulation tools and the non-simulation (supporting) tools because these tools often offer rapid

development cycle, some very specific advanced functionalities difficult to find elsewhere (e.g.,

Calpuff, ArcGis in VTB), and additional tools which are necessary in the process of model de-

velopment, such as input/output analyzers, process optimization applications, visualization soft-

ware of simulation execution and results. Many COTS simulation languages/packages do not

expose their internal data structure and/or time advance mechanism to an external interface, both

of which are required to interoperate with the HLA-RTI, and the interface programming lan-

guages need to be among the RTI supporting languages such as C++, Java or Ada.

 To overcome the restrictions imposed by the HLA-RTI interface in use of COTS tools

several approaches have been researched and implementation of these approaches has been re-

ported. Some examples of such implementation that link COTS Simulation Packages to the HLA

are Arena/ProModel (Charles & Frank, 2000), AnyLogic (Borshchev, Karpov, & Kharitonov,

2002), SLX (Strassburger, Schulze, Klein, & Henriksen, 1998; Strassburger, 1999), Matlab

(Pawletta, Drewelow, & Pawletta, 2000), and MODSIM III (Johnson, 1999), among many others.

In order to accomplish the objectives defined in the simulation system of the Virtual Test Bed

(VTB) we have researched these approaches including a SPEEDES HLA gateway, the Distrib-

5

uted Manufacturing Simulation Adapter (DMS Adapter) with Arena, and the AnyLogic HLA

support module HSM). These HLA interoperability approaches are discussed in detail in Chapter

3.

 With each of these approaches comes a price. Although they provide a solution for the

HLA interoperability, they sometimes cause compatibility issues and increase the complexity of

simulation systems. For instance, the Manufacturing Simulation Adapter (DMS Adapter) pro-

vides a variant of Federation Object Model (FOM) in Extensible Markup Language (XML) for-

mat. The FOM written in XML format enables the simulation model to have extended data types,

flexibility in individual document structure and format, ease of creation, parsing, interpretation,

display by standard tools, and semantic validation of the file, among others. However when we

are required to integrate the models written in simulation languages/packages which are using

DMS Adapter and other HLA interoperability tools, the object classes or the interaction classes

they are referenced may not be compatible in format. This requires the development of an addi-

tional component which translates data formats including data structure and semantics of attrib-

utes to make the FOMs compatible. The DMS Adapter also supports a subset of Application

Program Interfaces (APIs) in the HLA Interface Specifications, which are sufficient for a distrib-

uted manufacturing simulation. The simplified DMS Adapter functions remove much of the

complexity and many unnecessary APIs in some simulation projects. In some other application

areas, the DMS Adapter interfaces that support a subset of the RTI APIs and the simplified time

coordination in the DMS Adapter which implements “time stepped” synchronization approach

may limit the range of interoperability enabled by the HLA.

 Some simulation modeling languages support special features which may not be available

in many other simulation modeling languages. In general, however, it is not easy to fully utilize

6

the functionalities that the simulation language supports. For example, SPEEDES is a unified

parallel processing simulation framework that enables integration of objects distributed across

multiple processors to speed-up simulation run. This feature enhances runtime, especially when

exploiting the very large number of processors and the high-speed internal communications

found in high performance computing platforms. It also supports multiple time management al-

gorithms such as the sequential algorithm, time-driven algorithm, Time Warp algorithm, and

Breathing Time Warp algorithm which is a combination of the Time Warp and Time Bucket al-

gorithms. In optimistic time management, an event can be processed even if it may not be the

next event to be processed in ascending time order while still maintaining repeatability and cau-

sality by using “rollback” techniques, whereas in conservative time management, an event will

not be processed until it is known that there is no possibility of an event arriving in the past rela-

tive to the simulation time. Rollbacks restore state variables and retract events scheduled during

the simulation time period that need to be rolled back. They also support the ability to roll an

event forward without requiring large amounts of memory overhead if the state that the event

depends on has not changed. Despite these advanced features, it is not easy for the modelers who

have been using COTS simulation languages/packages for simulation modeling to learn the

SPEEDES Modeling Framework and develop a distributed/parallel simulation model in

SPEEDES.

Visualization

 In addition to issues we presented, we have identified the importance of visualization of

the interaction of the system components and the state of remote systems in distributed simula-

7

tion, especially in geographically distributed simulation systems like the Virtual Test Bed (VTB).

Visualization as a part of a simulation system provides certain insights into the complex dynam-

ics of the system that cannot be obtained using other analysis techniques. Visualization helps the

modeler, the decision-maker, and non-technical persons to gain some understanding of the model

being investigated. In the HLA-based distributed simulation, however, it is difficult, if not im-

possible, to provide the same level of insight to the user by the COTS visualization tools cur-

rently available. Mainly because the COTS visualization tools are integrated into its simulation

engine or they are designed to support a stand-alone simulation execution instead of a distributed

simulation run.

 In a distributed simulation environment, although geographically dispersed simulation

models may have their own visualization environments, it becomes difficult to provide a com-

prehensive, global presentation of a distributed simulation system. In order to support an effec-

tive decision-making process, informative visualization coupled with distributed simulation

models are essential tools when dealing with a large and complex distributed simulation such as

space shuttle operation models, supply chain simulations, or enterprise engineering models.

Therefore, we believe that there is a clear need to have a visual representation of geographically

distributed simulations on a single visual display in order to provide comprehensive insight of

the entire distributed simulation, especially when decision making is the objective of the model-

ing.

 While a standalone simulation model developing process usually takes advantage of the

visualization tools embedded in COTS simulation packages, in the distributed simulation devel-

opment process very few packages can be used to visualize the distributed simulations. There are

two major reasons. First, the HLA framework doesn’t take into account the visualization meth-

8

odology or the interface is too well tuned into the HLA framework. Second, although the HLA

integrates various functional models or components, there is no general interface standard for

COTS simulation packages in terms of communication and internal data presentation.

Case study: Spaceport simulation system in Virtual Test Bed Architecture

 This dissertation is concerned with the integration of simulation models that are identified

as the essential components of Spaceport and are facilitated with general-purpose discrete event

simulation languages/packages based on distributed simulation engines such as High Level Ar-

chitecture (HLA), and visualization of the participating simulation models in the distributed

simulation.

 The objective of the VTB is to provide a collaborative computing environment that sup-

ports the creation, execution, and reuse of simulations that are capable of integrating multidisci-

plinary models representing the elements of launch, ranges, and spaceport operations in order to

assist with cost analysis, flow optimization, and other important decision making factors (Rabelo,

2002a). The VTB will provide multiple benefits, such as enabling risk management evaluations

of existing and future vehicle frameworks, providing a technology pipeline for evaluating and

implementing new solutions to existing problems, and enabling better knowledge management

(Rabelo, 2002c).

 Is Spaceport in VTB architecture a “complex system”? According to Barth,

“Spaceport technologies employ a life-cycle "system of systems" concept in which ma-
jor spaceport systems -- launch vehicle processing systems, payload processing systems,
landing and recovery systems, and range systems -- are designed concurrently with
flight vehicle systems and flight crew systems. The result of applying this concurrent
systems engineering approach will be robust space transportation systems for future

9

generations” (Barth, 2002).

 A quick and easy answer can be found in (Shishko, Aster, & Cassingham, 1995).

“Most NASA systems are sufficiently complex that their components are subsystems,
which must function in a coordinated way for the system to accomplish its goals. From
the point of view of systems engineering, each subsystem is a system in its own right—
that is, policies, requirements, objectives, and which costs are relevant are established
at the next level up in the hierarchy. Spacecraft systems often have such subsystems as
propulsion, attitude control, telecommunications, and power. In a large project, the
subsystems are likely to be called ‘systems’”.

 In addition our view of complexity in Spaceport simulation system is that since the

spaceport system is a system of systems, each subsystem such as launch vehicle processing sys-

tems, range systems, etc is regarded as a component or a process in general concept of complex

systems.

 The simulation of Spaceport will be developed as a representation of these major space-

port systems. Therefore the simulation components may represent very distinct nature of the ab-

straction of the simulated system in heterogeneous computing environment to achieve the goal of

the system; the nature includes the properties of interest, different time series (continuous, dis-

crete, hybrid), target users, time of operation in the system, information it generates, etc. The

output on a certain input to the simulation of Spaceport in which the subsystems of Spaceport are

interplay based on its own dynamics of operation with multiple decision points will be far from

linear.

 In addition the Spaceport simulation system evolves and extends quickly with the envi-

ronmental changes such as technology advances (IT, COTS tools, etc), new functionality needs

such as “Mission to Mars, Moon”(NASA, 2004), the user requirement increases such as a model

in higher resolution, etc. Therefore the defining property of complex systems, emergence, applies

here. Over the life cycle of Spaceport simulation system the systems (subsystems) are intercon-

10

nected with themselves in a seamless way and an unambiguous way; and interact with and adapt

to the environment. The future configuration of Spaceport simulation system by consequence of

interaction and adaptation may not be deducible in advance especially in the stages in develop-

ment of individual systems (subsystems). Therefore the integration of Spaceport simulation sys-

tems is an example of complex systems, and a system of systems as well.

Objective and Scope

 The scope of this study could be described as: (1) analysis of Spaceport simulation sys-

tem in VTB architecture with components of simulation models such as shuttle process, Virtual

Range model, weather model, etc. (extensions to integration of additional simulation models can

also be done in the future), (2) study software interfaces for integration of simulation models

into the framework which can be used to integrate future models, (3) provide the visualization

framework for distributed simulation system by utilizing an animation facility embedded in

COTS simulation packages which traditionally do not provide animation functions for distrib-

uted simulation run. This framework can be used to visualize some simulation languages which

do not have dedicated visualization capability such as SPEEDES, and (4) implement the frame-

work for the case study of Spaceport distributed simulation system by using the HLA-RTI which

could be used as a proof of concept of this study

 The benefits of this framework are two fold. First, the framework supports the evolution

of a simulation of complex system (that is, a system of systems) as operational requirements

change. This is realized by applying the metaphor of the life cycle models especially the spiral

model, most widely used model presently, which includes two variations termed incremental and

11

evolutionary is applicable throughout the system life cycle. By using these approaches in a sys-

tem level, the system of systems evolves with requirements extended while the operability of the

overall system kept. The fully functional simulation subsystems can be developed independently

using different software languages/tools and then added to the system as requirement changes as

in the incremental model approach; and improved or modified subsystems can be replaced with

old one as technology advance and the user needs change as in the evolutionary model approach.

 Second, the metaphor of the prototype model which is a well known variant of the water-

fall model can be experimented within the operational system. With a gateway which enables a

tool to interact within distributed simulation to COTS simulation package the experimental pro-

totype simulation model can be built and then tested in relatively quick and with low cost. This is

possible because the many COTS simulation packages/tools provide an integrated visual model

development environment in which the user can build a model by “point-and-click” or “drag-

and-drop” methods as well as often include pre-built modules (or templates) which help the

modeler to build a quite large model in easy.

Dissertation Outline

 This dissertation is structured as follows. Chapter 2 defines the context of this dissertation.

The concept and architecture of the VTB are defined, and requirements and essential technolo-

gies in order to support the Spaceport simulation system are identified. Each of these technolo-

gies – discrete event simulation languages/packages, the HLA, and visualization framework re-

quired to implement the framework of distributed simulation for Spaceport simulation system in

VTB – is reviewed extensively. Chapter 3 presents the HLA interoperability in COTS simula-

12

tion languages/packages. We detail the HLA interoperability approaches used in the simulation

languages/packages that are selected based on the requirements for the Spaceport simulation sys-

tem, outlined in Chapter 2. The discrepancies in the HLA interoperability employed in the se-

lected simulation languages/packages with respect to communication and data compatibility are

introduced. As one of our solutions for obstacles we introduced in terms of integration, we pre-

sent the fundamental classes which are commonly provided in many COTS simulation packages

for discrete event simulations. The classes are built upon the Process Model foundation in

SPEEDES to promote the shared data compatibility between the models written on SPEEDES

and those written in other simulation languages/packages. In Chapter 4 and 5, the cases studies

(Sepulveda, Rabelo, Park, Gruber, & Martinez, 2004a; Sepulveda, Rabelo, Park, Riddick, &

Peaden, 2004b) we have reported in Winter Simulation Conference in 2004 and the prototype

VTB simulation system based on the concepts of integrated execution of different simulation

models are presented with focus remaining on the HLA interoperability and the visualization of a

remote federate in a distributed simulation. Finally, Chapter 6 concludes the dissertation and out-

lines possible direction for future Virtual Test Bed (VTB) research.

13

CHAPTER TWO: REVIEW OF RELATED TECHNOLOGIES

Introduction

 This chapter presents an overview of the Virtual Test Bed (VTB), its architecture, and its

requirements for the simulation system with a focus on integration of simulation models, each of

which represent an operational element of a spaceport, range, or another similar system. The

primitive discrete event simulation and its fundamental modeling elements are described briefly.

Distributed/Parallel discrete event simulation concepts and High Level Architecture (HLA), the

most state of the art distributed simulation engine currently available, are introduced. In (Swain,

2003) more than 40 COTS simulation languages/packages available at the time of survey are

presented in detail. The modeling environments of several of these are presented, each having

been selected based on the requirements for VTB and availability of the simulation language

such as SPEEDES and simulation packages such as Arena and AnyLogic. Finally, the need for

visualization in distributed simulation is researched.

Virtual Test Bed (VTB)

 This section presents the concepts and the architecture of the VTB (Sepulveda et al.,

2004a; Sepulveda et al., 2004b; Compton, Sepulveda, & Rabelo, 2003). NASA implemented the

Intelligent Launch and Range Operations (ILRO) Program at Ames Research Center (ARC) to

perform initial studies of a test bed with a demonstration (Bardina, 2001). The VTB Project is

essentially an evolution of the ILRO test bed. “The objective of the VTB Project is to provide a

collaborative computing environment to support simulation scenarios, reuse, and the integration

14

of multidisciplinary models that represent operational elements in ranges and spaceports. The

VTB will provide several benefits, such as a risk management, evaluation of legacy and new ve-

hicle framework, a technology pipeline, and a knowledge management enabler. The VTB will

leverage current technological developments in intelligent databases from NASA ARC to pre-

sent data and results as usable knowledge with associated security constraints and human-

centered computing (HCC)” (Rabelo, 2002c).

 According to (Barth, 2002), “Spaceport technologies must employ a lifecycle ‘system of

systems’ concept in which major spaceport systems – launch vehicle processing systems, pay-

load processing systems, landing and recovery systems, and range systems – are designed con-

currently with the flight vehicle systems and flight crew systems.” One interesting characteristic

of a complex system is that it is by default a system of systems which are themselves complex

systems. To be faithful to concurrent engineering principles, we have to study the interactions

among the different systems that are elements of the complex system. This system of systems is

non-linear in nature and the interactions among the different components bring interesting emer-

gent properties that are very difficult to visualize and/or study by using the traditional approach

of decomposition. Therefore, the goal is to develop a VTB that can host models representing the

systems and elements of a spaceport. These models will work together on the VTB in an inte-

grated fashion, synthesizing into a holistic view and becoming a Virtual Spaceport. This Virtual

Spaceport can be utilized to test new technologies, new operational processes, the impact of new

space vehicles on the spaceport infrastructure, the supply chain, and the introduction of higher

level decision making schemes. A Virtual Spaceport will allow for an intelligent visualization of

the entire spaceport concept and the implementation of knowledge management strategies. The

15

central goal of the VTB project is to provide a virtual environment of the launch and range op-

erations at Kennedy Space Center (KSC).

 The VTB will integrate and adapt some of the current simulation models and bridge ex-

isting gaps to create a unique mission environment for the ILRO program. This realistic NASA

mission environment will provide scientists within the NASA based Intelligent Systems (IS) pro-

ject with a computing environment where they can implement schemes for high-performance

human-automation systems. This integration will require the development of a computer archi-

tecture that allows for the integration of different models and simulation environments. The

computing infrastructure will implement advanced ideas of integration, distributed and/or paral-

lel computing, distributed simulation, security, and Web-enabled standard technologies such as

Extensible Markup Language (XML).

Figure 1 Concept of Virtual Test-Bed (adapted with modification from (Rabelo, 2002b))

16

Virtual Test Bed (VTB) Architecture

 The VTB Architecture is composed of several sub-systems which include the Integration

User Interface, Decision-Maker User Interface, Security Component, Integration System, Simu-

lation System, the Model Functions Manager, the Model Library Manager, and Database System.

 The Integration User Interface provides the capability to transfer models to the VTB. The

user can integrate an existing model (and create extensions to it) using the tools and methodolo-

gies provided by this interface. The interface will have privilege mechanisms to provide a means

of granting the VTB Model Integrator Expert access to the system (e.g., passwords, IP-based

schemes of security) and the ability to perform security-relevant actions for a limited time and

under a restrictive set of conditions, while still permitting tasks properly authorized by the VTB

System Administrator. The Decision-Maker User Interface is the simulation interface which

supports the development and execution of scenarios based on the models which have been inte-

grated into the VTB. The Security Component provides password schemes, authentication, fire-

walls, Secure Socket Layer (SSL) implementation, maintenance and prevention mechanisms

(e.g., virus protection and disaster recovery), certificates, and encryption (Rabelo, 2002a).

 The Integration System takes the representation while the user interface supports the exe-

cution and together they develop the information outlined by the user (using the Integration User

Interface) to formulate a hierarchical description of entities, activities, and interactions that is

represented in an integrated model. The Simulation System will provide an environment to exe-

cute integrated simulators/models developed for specific elements of space operations into inter-

active simulator networks to support a single view of operations. For instance, NASA KSC has

existing models that have been developed over time by different sources. These existing models

17

have been developed from different points of view and for different aspects of the operation cy-

cle. Consequently, existing models represent different levels of resolution and have selected dif-

ferent representation methods for internal entities, activities and interactions. The Model Func-

tions Manager provides the business logic for the various transactions to save the model configu-

rations as specified by the Integration System. In addition to providing business logic, the Model

Functions Manager also retrieves from the Database System the simulation models, data, and the

configuration parameters needed by the Simulation System. The Model Library Manager will

support the development and management (retrieval, saving, configuration management) of the

library of models.

 The Distributed simulation management system that controls the models and tools before

and after execution of simulation and manages the models in the library of simulation compo-

nents and tools will be a part of the VTB. These Distributed simulation management system ca-

pabilities will allow other platforms to be operated without extensive personnel management.

Finally, the Database System stores the model and its details in a scheme appropriate for facili-

tating the operations of the Simulation System and the interface with NASA Ames Research

Center ILRO VTB transactions to save the different model configurations as specified by the

Integration System. The Model Functions Manager also retrieves the simulation models, data,

and configuration parameters needed by the Simulation System from the Database System.

18

Model Library

Simulation
Data Models
(SOM/FOM)

Simulation
Execution /
Integration
Manager

Performance
analysis/
Process

Optimization

Shuttle
Process
M

odel

V
irtual

R
ange

W
E

S

L
aunch

C
ontrol

M
onte

C
arlo

Future
M

odels

Simulation Integration System

COTS simulation
Packages

(Arena, AnyLogic, etc)

COTS Tools
(ArcGIS, Calpuff, etc)Management Tools

(XML, SQL,etc)

C++, Java, etc

(SPEEDES, Silk, etc)
Gateway, Adapter(wrapper)

Database System Distributed Simulation Systems (HLA-RTI)

Operating Systems: Networking, Security, File Management System

Figure 2 VTB System Architecture

Requirements for Virtual Test Bed (VTB) Simulation System

 Global System Requirement: The VTB is created by one or more simulations and is a se-

lective recreation of the real world. The simulated “world” consists of a representation of the en-

vironment, a well-defined set of objects that populate and evolve in that environment, and a

communication mechanism to make sure that all interactions between the different elements oc-

cur in a managed and time consistent fashion. In order to accomplish the goals of the VTB

framework we have identified several important aspects of the framework: (1) Real-Time Visu-

alization allows (potentially widely distributed) users to collaborate using VTB, (2) Knowledge

and Information Repository - a repository for storing data, software, object models and lessons

learned, so that new exercises or scenarios or tests can be readily constructed, (3) Integration

Environment - a suite of tools for integrating models, visualizing, planning, executing, collecting

19

data from, analyzing and reviewing scenarios, and (4) Flexible and Evolving Architecture - VTB

will have the ability to flexibly reconfigure resources to meet new and changing needs.

 Modeling Language Requirement: In recent years the improvement of functionalities of

basic components in discrete event simulation and ease of use of simulation languages/packages

has lead to the increased popularity and development of these modeling tools. A general-purpose

simulation language provides flexibility in modeling, the availability to develop almost any re-

quirements from a modeling environment, and the capability to generate efficient models with

respect to execution speed. On the other hand, COTS simulation packages provide ready to use

(built-in) features which cover a wide range of modeling necessity and usually have a highly

functional user interface in modeling and modification (Law & Kelton, 2000). Weighing the ad-

vantages of these modeling languages/packages against the architecture and requirements of the

VTB, the VTB team sought to find general-purpose discrete-event simulation languages and/or

COTS simulation packages for the VTB Simulation System for use with both future and legacy

technologies. The team identified some basic requirements for these simulation lan-

guages/packages which are as follows. (1) The languages/packages needed to support different

hardware architectures ranging from a distributed network of fast workstations to a single com-

puter. (2) In order to either develop the HLA-RTI interface or adapt the HLA-RTI interface into

Virtual Test Bed (VTB) simulation system, C++, Java needed to be the main modeling language

to support the development and implementation of the simulation. For the COTS simulation

script language, however, Visual Basic Application (VBA) can be used to develop an advanced

external interface from the model. (3) The simulation languages/packages must provide inter-

faces for developing external interfaces. These external interfaces may be used to control

start/stop of model execution and develop the HLA interoperability and to allow scripting lan-

20

guages to be written as command messages on top of the simulation layered-architecture.

 VTB is intended to provide a robust, flexible, easy-to-use architecture, which can incor-

porate current and evolving operational characteristics and scenarios to conduct investigations.

Where COTS software products can meet task requirements safely, the COTS software is util-

ized instead of developing custom applications (Rabelo, 2002a). The software to be developed

will be written in high-level languages such as Java, C, and C++, which have demonstrated a

high degree of portability between platforms. This strategy provides a reliable system that is

modular, expandable, and extensive. It is based on open hardware and software standards, easily

incorporates new technology and user developed applications, and provides inherent user inter-

face improvements.

High Level Architecture (HLA)

 Parallel/distributed discrete event simulation refers to the execution of a single discrete

event simulation program on a parallel computer, e.g., a supercomputer or a shared memory mul-

tiprocessor, or on a network of multiple computers (or processors). The primary reason for dis-

tributing the execution is to reduce the length of time required to execute the simulation or to en-

able larger simulations to be executed by utilizing resources from multiple computers when a

single computer may not support enough computing resources to perform the simulation

(Fujimoto, 2000; Fujimoto, 2003). As computer hardware technology advances and the cost of

computing decreases, the application areas which can take a great advantage of this acceleration

are limited only to the size of which are extremely large and/or execution time (in real-time or

faster than real-time) critical applications.

21

 However, other increasingly important aspects of Parallel/distributed discrete-event simu-

lation technology such as interoperability, reuse of simulation components, and encapsulation of

the modeling details of the simulation by separating network and model components are getting

more attention from the simulation community. One example of such interest is the HLA, a stan-

dard distributed simulation interoperability architecture, developed by the Defense Modeling and

Simulation Office (DMSO) of U.S. Department of Defense (DoD). The HLA has been developed

based on the idea that no single monolithic simulation can support the needs of all users. An in-

dividual simulation or set of simulations developed for one purpose can be used in different dis-

tributed simulations by integrating these models as a component of the complex model (Judith,

Richard, & Richard, 1998).

 The HLA is a programming language-independent object-based distributed simulation

architecture for promoting simulation reusability and interoperability by defining rules, methods,

and data formats that simulation application must comply with. The High Level Architecture

(HLA) was introduced by the Defense Modeling and Simulation Office (DMSO) of the Depart-

ment of Defense (DoD) in 1996 and it was accepted as an IEEE standard for distributed simula-

tion – IEEE 1516 – in September 2000.

 The HLA defines a common high-level simulation architecture that supports the devel-

opment of simulation applications by integrating other simulation components and tools such as

visualization tools and real world systems. This architecture promotes interoperability and reus-

ability of legacy simulation models in order to develop a new, complex simulation (Judith et al.,

1998). Reuse of existing components may reduce the cost and time required to develop a new

simulation.

22

 The HLA defines terms used in the context of distributed simulation:

 Federate: a member of a federation; a federate refers to an actual simulation and the role

in a distributed simulation is defined in its Simulation Object Model (SOM).

 Federation: a set of simulations (federates) interconnected through RTI; a Federation

Object Model (FOM) and its supporting infrastructure, which is used to form a large

model to achieve certain objective.

Major Components of HLA

 The HLA comprises three major components: the HLA Rules, the HLA Interface Speci-

fication and the HLA Object Model Template (OMT), which describes the principles of the ar-

chitecture and services required for supporting software to interface among simulations and the

information model, respectively. The components describe the software architecture of the HLA

as open instead of specifying a type of software development. Interoperability between federates

is achieved by three major components: the HLA rules which describe federation and federate

responsibilities, the Run Time Infrastructure which coordinates local simulation time managed

by each federate with global simulation time in federation and controls the data transfer, and Ob-

ject Model Template (OMT) which defines data structure, format of federates (SOM), and com-

mon information in federation (FOM). The following sections describe the three components in

detail (Judith et al., 1998).

23

The HLA Rules

 The HLA Rules define general information exchange principles required to ensure proper

data transfer of objects (attributes) and interactions (parameters) between a federation and its

federates, and describe the responsibilities of simulations and supporting tools participating in an

HLA federation (DMSO, 1998e).

 Federation Rules: (1) Federations shall have a FOM, documented in accordance with the

OMT. (2) All representation of objects in the FOM shall be in the federate, not in the RTI. (3)

During a federation execution, all exchange of FOM data among federates shall occur via the

RTI. (4) During a federation execution, federates shall interact with the RTI in accordance with

the HLA interface specification. (5) During a federation execution, an attribute of an instance of

an object shall be owned by only one federate at any given time.

 Federate Rules: (1) Federates shall have a SOM, documented in accordance with the

OMT. (2) Federates shall be able to update and/or reflect any attributes of objects in their SOM,

and send and/or receive SOM interactions externally, as specified in their SOM. (3) Federates

shall be able to transfer and/or accept ownership of attributes dynamically during a federation

execution, as specified in their SOM. (4) Federates shall be able to vary the conditions under

which they provide updates to the attributes of objects, as specified in their SOM. (5) Federates

shall be able to manage local time in a way which will allow them to coordinate data exchanges

with other members of a federation.

The HLA Interface Specification and Run-Time Infrastructure (RTI)

 The discussion in this section follows that of (DMSO, 1998c; DMSO, 1998b; Kuhl,

24

Weatherly, & Dahmann, 2000). The HLA Interface Specification defines the runtime services

and interfaces to be used by federates and supports efficient information exchange between fed-

erates and the Run-Time Infrastructure (RTI) during a federation execution. It also defines the

way these services are used in both their function and the Application Programmer’s Interface

(API). The services are classified as one of the six management groups of the FedExec life cycle:

Federation Management, Declaration Management, Object Management, Ownership Manage-

ment, Time Management, and Data Distribution Management. A high level illustration of the

interplay between a federate and a federation is shown in Figure 3.

Figure 3 Federate – Federation Interplay.(adapted from (DMSO, 1998b))

 The RTI, a software implementation of the HLA Interface Specification, defines the

common interfaces for distributed simulation systems during the execution of an HLA simulation.

It is the architectural foundation that promotes portability and interoperability. All shared infor-

mation exchanged during a federation execution must be passed though the RTI. The RTI is

25

comprised of the following three components: the RTI Executive process (RtiExec), the Federa-

tion Executive process (FedExec), and the libRTI library. Figure 4 shows a configuration of fed-

eration with respect to the three RTI components.

RTI Components At-a-GlanceRTI Components At-a-Glance

RtiExec FedExec

libRTI

Federate(s)

libRTI

Federate(s)

RTI Provided Federate Provided

Inter-Process Communications

Figure 4 RTI Components At-a-Glance. (taken from (DMSO, 1998b))

 The FedExec manages the process of joining federates and resigning the federation and

facilitates data exchange between participating federates. A FedExec process is created by the

RTI when the first federate successfully joins the federation and is eventually destroyed by the

RTI when the last federate resigns from the federation.

 The RtiExec manages the creation and destruction of multiple federation executions

within a network. The RtiExec ensures each FedExec has a unique identification and directs the

joining of federates to the appropriate federation. Although more than one federation can be run-

ning under a RtiExec, communication between federations is not possible.

 The libRTI library extends RTI services to the federate developer. It enables the federate

to access RTI services specified in the Interface Specification by RTIambassador and Feder-

ateAmbassador. Data exchange between federates in a federation occurs only through the RTI by

the HLA rules and is accomplished by means of RTIambassador and FederateAmbassador. The

26

libRTI includes both the RTIambassador and the FederateAmbassador class. Passing information

from a federate to the RTI is accomplished by calling services in the RTIambassador.

 On the other hand, an event from the RTI to a federate and the response service subse-

quently requested by a federate are passed by asynchronously invoking FederateAmbassador

“callback” functions that are implemented according to the function of simulation. Since Feder-

ateAmbassador is an abstract class, each federate must provide an implementation of the Feder-

ateAmbassador services. An instance of this federate supplied class is required to join a federa-

tion. The header file “RTI.hh” that accompanies libRTI includes declarations for class RTIam-

bassador, the abstract class FederateAmbassador, and a variety of supporting declarations and

definitions. The RTIambassador is implemented in libRTI and must be incorporated into each

federate executable. Figure 5 shows the code responsibility of RTIambassador and FederateAm-

bassador.

RTI and Federate “Ambassadors”RTI and Federate “Ambassadors”

"Various RTI Objects"

RTIambassador

Federate Code

"Ambassador Implementation"

"Various Federate Objects"

FederateAmbassador

Figure 5 RTI and Federate Code Responsibilities. (taken from (DMSO, 1998b))

 The HLA is a complex integration standard for a distributed simulation. The Interface

Specification (DMSO, 1998c) includes over 150 different services for the RTIambassador inter-

face and the FederateAmbassador interface. While the part of the HLA design that deals with

27

data sharing (publish and subscribe) is relatively straightforward, the overall architecture is com-

plicated by the other supporting functions such as starting/stoping/saving/resotoring federation,

supporting different time management scheme, and transferring ownership of object attribute. To

make the Interface Specification manageable, the specification is divided into six service man-

agement groups which are briefly described below.

Federation Management

 The services in Federation Management group are mainly focusing on two types of op-

erations. First, all basic functions related to such operations as defining a federation execution

operation (creating federations, joining federates to federations, resigning federates from federa-

tions, and destroying federations). Second the federation-wide operations include the services

controlling synchronization points, supporting state saves and restores. The four main functions

in Federation Management service which are shown in Figure 3 are briefly described as follow-

ing. (1) Creating Federation: A federation is created by calling the RTIambassador method cre-

ateFederationExecution() which communicates the RtiExec process. If the specified federation

does not exist, the RtiExec process creates a new FedExec process and associates it with the sup-

plied federation name. If the specified federation already exists, a FederationExecutionAlread-

yExists exception is raised, typically the exception is caught and ignored, and then the federate

tries to join to the federation. (2) Joining to Federation: The joinFederationExecution() method is

called to associate a federate with an existing federation execution. It requires the name of the

calling federate, the name of the federation execution that the federate is attempting to join, and

a pointer to an instance of a class implementing the FederateAmbassador callback functions. (3)

28

Resigning from Federation: The resignFederationExecution() removes the federate which calls

the method from a federation. When a federate resigns from a federation, some additional actions

related to update responsibility are passed to as an enumerated parameter. (4) Destroying federa-

tion: The destroyFederationExecution() method attempts to terminate an executing federation. If

the invoking federate is not the last participating federate to terminate, a FederatesCurrently-

Joined exception is raised, the federate can ignore the exception. (5) Federate Synchronization

and Federation wide Save and Restore. The Federation Management includes the functions that

allow federates to communicate explicit synchronization points for the time-ordered information

exchanges as well as the services that support federation-wide saves and restores.

Declaration Management

 Declaration Management services facilitate efficient information exchange by federates

declaring their desire to generate and receive objects (with attributes) state information and inter-

actions. Federates that produce objects (or a part of attributes) or that produce interactions must

explicitly declare what they are be able to publish, and at the same way, federates that need up-

dates of objects and interactions also must declare their interest in the attribute. Unlike object

class, declarations of interaction must include all parameters. The classes and attributes used in

the declarations must be consistent with the Federation Object Model (FOM). When a federate

publishes information, the information is available to federation-wide. The RTI controls the dis-

tribution of information based on the federate interest declared by intention to subscribe so that

the publishing federate generates object/interaction updates only if at least one subscribing feder-

ate exists. When a federate is no longer interested in any attributes of an object or interaction

29

class that were previously declared, the federate must declare the intention to stop publishing

and/or subscribing.

Object Management

 Object management includes services for registration, updates, and deletion of object in-

stances for information production side and services for instance discovery and reflection on the

parties interested in the object. To create or discover an object (or interaction) a federate must

have published or subscribed that object class (or interaction class) through Declaration Man-

agement services. A federate also can delete an object instance, which in response, the subscrib-

ing federates will be notified and will delete the object instance. Object management also in-

cludes methods associated with sending and receiving interactions, controlling instance updates.

Only a subscribing federate can request a value update of an object instance so that it can receive

Reflect of a value update. The actual information exchange is supported by the Object manage-

ment services.

Ownership Management

 A federate is required to have ownership for an attribute of an instance before it can up-

date. In HLA ownership simply means a responsibility of updating attribute values of an object

instance. Ownership Management services provide dynamic transfer of ownership of object and

attributes among federates. The RTI allows federates to share the responsibility for updating and

deleting object instances. However only one federate can have update responsibility for an indi-

vidual attribute of an object instance and privilege to delete an object instance at any given time.

30

Transfer of ownership can be initiated either by the current owner or the prospective owner. Only

one federate that has the attribute "privilegeToDelete" for an object instance has the right to de-

lete the object. Once the object is deleted all owners of attributes of the deleted object will be

notified by the RTI that the object no longer exists. This will prevent publishing attribute values

for the deleted object.

Time Management

 Time Management deals with coordinating the exchange of events among federates in a

federation. At the highest level, the federation appears to the RTI as a collection of federates that

communicate by exchanging time-stamped events. Time Management services deal with the ad-

vancement and coordination of simulation time among federates in a federation. The time man-

agement services provide a variety of optional time management services for an orderly ad-

vancement of time during the execution. With default setting, the RTI does not attempt to coor-

dinate time between federates which means federates are neither regulating nor constrained, so it

is the federate designer’s responsibility to select appropriate time coordination scheme among

any combination of "regulating,” and "constrained" depending on the purpose and the require-

ments of the federation. Regulating federates regulate the progress in time of federates that are

designated as constrained.

Data Distribution Management

 Both Declaration Management and Data Distribution Management support an efficient

interest management mechanism for data exchange. The difference between the two is the level

31

of filtering. In Declaration Management, the RTI uses publication and subscription information

in terms of object and interaction classes to control the update traffic. DDM provides a flexible

and extensive mechanism for further isolating publication and subscription interests in terms of

object instances and abstract routing spaces (Kuhl et al., 2000).

 In DDM, a federation "routing space" is defined. The routing space is a collection of

"dimensions." The dimensions are used to define "regions." Each region is defined in terms of a

set of "extents." An extent is a bounded range defined across the dimensions of a routing space.

It represents a volume in the multi-dimensional routing space (DMSO, 1998c; DMSO, 1998b).

The Object Model Template (OMT)

 The OMT defines a common data structure and representation (format) of information for

all objects and interactions exchanged between participating federates. The OMT enables inter-

operability and reuse of simulations and simulation components with respect to data modeling.

Since the HLA does not adjust the contents and semantics of a FOM or SOM, a common docu-

mentation of shared information is required to support reuse of simulations(DMSO, 1998d).

Federation Object Model (FOM)

 FOM describes all shared information as objects, object attributes, interactions and their

parameters, which are essential to a particular federation. It does not contain actual information

of instances of objects and interactions in the federate, but it provides a structure of objects and

interactions.

32

Simulation Object Model (SOM)

 SOM describes the objects, attributes, and interactions in a particular simulation which

can be produced by the simulation and used by other federates in a federation. SOM describes

the attributes of an object and parameters of interactions by type, cardinality, units and specifica-

tion of update scheme.

Management Object Model (MOM)

 MOM is an object model which defines a set of objects and interactions used to manage a

federation. It is a standard part of FOM defined in the Interface Specification of HLA. It can,

however, be extended by adding attributes or subclasses of an object, or adding interactions into

the MOM. The RTI creates and manages instances of object defined in the MOM and updates

attributes of it. The interactions defined in the MOM are used to manipulate the state of other

federates and federation, e.g. adjust federation, request information, and report on federate activ-

ity (Kuhl et al., 2000; Fullford, 1999).

 An Interface Specification prescribes the interface between each federate and the Run-

time Infrastructure (RTI), which provides communication and coordination services to the feder-

ates. The RTI provides services to federates in a way that is analogous to how a distributed oper-

ating system provides services to its applications.

 An Object Model Template (OMT) defines the way in which federations and federates

have to be documented (using the Federation Object Model (FOM) and the Simulation Object

Model (SOM), respectively). Federations can be viewed as a contract between federates where a

common federation execution is going to be run. The HLA OMT provides a template for docu-

33

menting HLA-relevant information about federation objects (classes of simulation), their attrib-

utes (the data that describes the state of the objects in the federation), and the interactions that

may occur between the objects in the federation.

 A standardized structural framework (or template) for specifying HLA object models is

an essential component of the HLA for the following reasons: (1) provides a commonly under-

stood mechanism for specifying the exchange of public data and general coordination among

members of a federation; it represents the format for a contract between members of a federation

(federates) detailing the type of objects and interactions that will be supported across its multiple

interoperating simulations, (2) provides a common, standardized mechanism for describing the

capabilities of federation members; it represents a basis for comparisons of different simulations

and federations, (3) facilitates the design and application of common tool sets for development of

HLA object models.

Discrete-Event Simulation Languages and Packages

 Modeling and simulation (M&S) is a powerful technology that helps to understand the

dynamic nature of the existing or imaginary system being modeled. Discrete Event Simulation

(DES) has especially been long recognized as an extremely valuable tool for analyzing complex

systems. It provides a flexible tool capable of dealing with many design decisions that must be

made before systems can become operational (Rogers & M.T.Flanagan, 1991). Traditionally the

results produced by the simulation are used to identify the dynamic characteristics of the system

by various methods of statistical analysis.

34

 Discrete-event simulation refers to the modeling of a system in which the state of the sys-

tem changes only at discrete points in time at which events occur. Events occur as a result of ac-

tivity of entities and delays. There are a number of different approaches to discrete-event simula-

tion: event, process, and activity approaches. In event approach a system is described by a set of

events with related state changes at the time of each event. In activity approach a system is mod-

eled by identifying areas where a number of events are grouped in order to describe an activity

carried out by an entity. In process approach a system is described by the following process: “a

time-ordered sequence of interrelated events separated by intervals of time, which describes the

entire experience of an entity as it flows through a system”(Law et al., 2000; Pidd, 1998). A dis-

crete event simulation can be built by either COTS simulation package or a general-purpose

simulation language. Following sections introduce COTS simulation packages as Arena and

AnyLogic and SPEEDES, a general-purpose simulation language. These modeling tools are se-

lected based on availability, the number of existing models written in the modeling tool which

we are going to integrate into the VTB, and the requirements of the VTB simulation system.

Synchronous Parallel Environment for Emulation and Discrete-Event Simulation

 Synchronous Parallel Environment for Emulation and Discrete-Event Simulation

(SPEEDES) is a general-purpose discrete-event distributed simulation engine and modeling

framework for building complex and interoperable parallel/distributed simulations in C++. It was

developed at the Jet Propulsion Laboratory by Dr. Jeff Steinman (Bailey, McGraw, Steinman, &

Wong, 2001; Metron, 2003; Steinman & Wong, 2003). SPEEDES provides a parallel processing

framework that enables integration of objects distributed across multiple processors to get simu-

35

lation speed-up. This feature enhances runtime, especially when exploiting the very large num-

ber of processors and the high-speed internal communications found in high performance com-

puting platforms.

 SPEEDES supports multiple time management algorithms such as the sequential algo-

rithm, time-driven algorithm, Time Warp algorithm, and Breathing Time Warp algorithm which

is a combination of the Time Warp and Time Bucket algorithms. In optimistic time management,

an event can be processed even if it may not be the next event to be processed in ascending time

order while maintaining repeatability and causality by using “rollback” techniques, and in con-

servative time management, an event will not be processed until it is known that there is no pos-

sibility of an event arriving in the past relative to the simulation time. Rollbacks restore state

variables and retract events scheduled during the simulation time period needed to be rolled-back.

They also support the ability to roll an event forward without requiring large amounts of memory

overhead if the state that the event depends upon has not changed. This is known as lazy event

re-evaluation: Breathing Time Warp algorithm (Bailey et al., 2001; Steinman, 1998a; Steinman,

1990; Steinman et al., 2003).

 The SPEEDES architecture provides communications, event, time management, and a

modeling framework. We are focusing on the modeling framework. The SPEEDES modeling

framework is comprised of four fundamental components to provide the basic functionalities

needed for event-based simulation modeling: (1) object manager, (2) simulation object, (3)

events, and (4) messages (Fullford, 1999; Bailey et al., 2001). Figure 6 shows the components

and hierarchy of the SPEEDES Modeling Framework.

36

Figure 6 SPEEDES Modeling Framework (taken from (Bailey et al., 2001))

Object Manager

 When the simulation is initialized one simulation object manager for each simulation ob-

ject type is created on each node. Object manager controls the creation, initialization and destruc-

tion of simulation objects and the decomposition of said objects which is a function of placing

simulation objects to nodes. Decomposition of objects can be done by automatic methods (block,

scatter) or user-defined manner. Block decomposition distributes the simulation objects to nodes

evenly. Scatter decomposition distributes the simulation objects such that simulation objects with

consecutive kind IDs are located on different consecutive nodes. SPEEDES also supports file-

driven user specified decomposition in which the user must provide placement of simulation ob-

jects and nodes in SimObjPlacement.par file (Metron, 2003).

Simulation Object

 Simulation objects are the fundamental concept behind SPEEDES Modeling Framework

which represent entities in the simulation system. It consists of a set of attributes which maintain

37

the state of the object and the methods which define the activities of object. The type of attributes

may be primitive base types from C++ or rollbackable types if the attribute is state sensitive.

Simulation object class in SPEEDES provides the primitive functions to schedule event, process

event handler, and response to interactions. All user objects must inherit either from the simula-

tion object class (SpSimObj) or from one of its subclasses. Figure 7 shows an example of

S_Shuttle simulation Object structure (Metron, 2003).

Figure 7 S_Shuttle Simulation Object

 The S_Shuttle class inherits from SpSimObj and it includes the typical C++ constructor

and destructor along with two virtual methods Init() and Terminate(). It is highly recommended,

however, that in SPEEDES Modeling Framework simulation objects perform the necessary

processes in Init() and Terminate() that are typically in C++ class placed in constructor and de-

structor, respectively. DEFINE_SIMOBJ (in line 24) macro is used to create a simulation object

38

manager for the simulation object, S_Shuttle. During the simulation initialization, the object

manager will then create the user-specified number of simulation objects. DE-

FINE_SIMOBJ_EVENT_0_ARG (in line 25) macro is used to create an event, Shuttle_Seize,

when it is call method Seize() is to be executed.

Events

 Simulation object events are a part of a simulation object and are used to change the val-

ues of the state variables in simulation objects. They are defined as a public method, the most

accessible level, so that any simulation object in the simulation may schedule the simulation ob-

ject events. SPEEDES provides a set of macros that turn methods on simulation objects into

events, plugs these events into the SPEEDES framework, and generates functions for scheduling

these events. To make scheduling events convenient, the macros automatically build a global

function for each event defined, which users can use to invoke each event (Metron, 2003).

 A simulation object event can be created by DEFINE_SIMOBJ_EVENT macro (as

shown in line 25 and 26 in Figure 7) and PLUG_IN_EVENT macro (as shown in line 31 and 32

in Figure 7) which register the event into the SPEEDES framework. This simulation object event

will be executed when an object calls a schedule function and also a scheduled event can be can-

celed when the event scheduled in the future needed to be changed or canceled.

 In addition to simulation object event, SPEEDES provides Local Events and Autonomous

Events. An object may define Local Events on its sub-objects to manage the sub-object with self-

scheduled events. Since Local Events are defined on sub-components of an object, the accessibil-

ity of that event is limited to its simulation object. Unlike Simulation object events and Local

39

events, autonomous events are separate from the Simulation object which they act. Users can

create an Autonomous Event object which inherits from SpEvent class and define a method on

the event which will be scheduled by a simulation object. Autonomous Events are often used

with the lazy option which allows users to rollforward a rolled back event to prevent re-

execution of the event if re-execution of the event does not change the outcome of the simulation.

Message

 When an event schedules a new event, a message is created by SPEEDES with header

information that defines the type of event, simulation time, type of simulation object and its local

Id. The header information is used to create a corresponding event object by the destination node.

SPEEDES provides another way to schedule and process events. Users can define methods in

their simulation objects to be invoked as events. Applications can schedule these event methods

using a type-checked event-scheduling interface provided by SPEEDES.

 Among others, SPEEDES also provides the following modeling facilities. (1) SPEEDES

provides HLA-RTI interoperability in two ways. First, SPEEDES provides a gateway between a

SPEEDES-based simulation model and a RTI so that a SPEEDES-based federate can be devel-

oped without integrating Local RTI Component (LRC) of HLA. Second, SPEEDES has imple-

mented the HLA RTI interface so that the SPEEDES kernel itself can serve as an RTI. Under this

scheme, multiple SPEEDES and/or non-SPEEDES federates operating on high-performance

computing platforms can interoperate via the standard RTI interface, with RTI communications

implemented by high-speed shared memory mechanisms (this version of SPEEDES is not avail-

able to us). (2) SPEEDES modeling framework is an Object-Oriented architecture, and therefore

40

has a significant impact on the development of simulations. Individual classes can represent en-

tities in a system. Such a representation, in turn, facilitates the distribution of the simulation

models on different processors and the design of parallel simulation experiments. As a distrib-

uted discrete event simulation framework, it allows distribution of various objects over multiple

processors and coordinates the simulation activities among various objects that are distributed.

(3) SPEEDES provides interfaces for developing external modules. These modules provide func-

tionalities that allow interoperability between various simulation systems and tools that will be

able to interact with the simulation model while it is running. This interface enables the users to

control time advance of the simulation, receive information about the simulation state, and in-

voke events in the simulation. Hence, an external module can be implemented as a graphical dis-

play of simulation or a user interface to the simulation. (4) SPEEDES provides an advanced fea-

ture called Load Balancing. This feature enables the user to balance the objects that require more

processing on a faster processor, leading to improvements in run time performance. (5) A parser

was integrated into its framework so that a parameter file could be used for setting initial values

for simulation objects or making run-time changes to the simulation. (6) SPEEDES also provides

some diagnostic tools including event tracing and event usage statistics (Bailey et al., 2001;

Hanna & Hillman, 2002; Metron, 2003; Steinman et al., 1999; Steinman et al., 2003).

Arena

 The Arena simulation modeling package is a visual modeling environment. A model

comprises model logic, animation and model definitions. The package also includes several tools

such as input data distribution-fitting, output analysis, debugging, and optimization tool. Many

41

activities in a model building process can be done using Modules and Templates by Drag-and-

Drop and visual coding. The modules and templates support hierarchical modeling. In addition to

the basic model logic, similar to that of a flowchart, advanced features can be modeled using ex-

ternal programming languages such as SIMAN, VBA, or C. The results of simulation run can be

stored in Microsoft Access by default and viewed in Crystal Reports, also the external in-

put/output data can be linked to files in such formats as text, spread sheet, XML, and other ADO

(Bapat & Sturrock, 2003).

Figure 8 Arena Modeling Environment

42

 The Arena modeling environment provides an embedded Visual Basic development En-

vironment with which an interface can be developed for a model to interact with external appli-

cations such as Excel, VBA, Visio, Access, DDE/OLE Automation supporting applications.

AnyLogic

 AnyLogic is a Windows-based, general-purpose simulation environment for complex

discrete, continuous, and hybrid systems developed by XJ Technologies. It includes graphical

model Editor, data collection and analysis facilities, debugging and visualization tools, and a

Code Generator which converts the model into Java codes. The modeling language of AnyLogic

uses UML-RT (UML for Real Time) – collaboration diagrams and statechart diagrams – to

model hierarchical object-oriented models and specify behaviors of objects. It can be executed

on any Java platform over Hybrid Engine and also supports interoperability to HLA-RTI

(Borshchev et al., 2002). Figure 9 shows the architecture of AnyLogic Modeling and Simulation

Environment

43

Figure 9 Architecture of AnyLogic Modeling and Simulation Environment (taken from

(Borshchev et al., 2002))

Visualization of Distributed Simulation Systems

 In the simulation field, from the inception of modeling and simulation study in 1970s, the

visualization of a simulation system (or animation) has been established as an essential compo-

nent of simulation study. Along with the statistical analysis, visualization of a simulation system

is used to help the simulation developer and the end user by supporting heightened understanding

and discussion of the model. Visualization is “an interface between two powerful information

processing systems—the human mind and the modern computer. Visualization is the process of

transforming data, information, and knowledge into visual form making use of humans’ natural

visual capabilities. With effective visual interfaces we can interact with large volumes of data

rapidly and effectively to discover hidden characteristics, patterns, and trends.” (Nahum, Stephen,

& Stuart, 1998) There have been significant efforts to integrate visualization capabilities with

general purpose simulation languages and packages. Many currently available commercial simu-

lation packages include a wide range of animation tools capable of high resolution settings and

44

utilizing good 2D/3D authoring tools (Peter Lorenz, 2003). In recent years, along with the advent

of high-performance, low-cost graphics technology, the quality and the realism of animation has

rapidly advanced and proved visualization to be an extremely useful tool for modeling and simu-

lation.

 The trend makes it “hard to conceive of a simulation not using visualization techniques in

some form.”(Steven D.Farr & Alex F.Sisti, 1994) Visualization has become a critical component

of simulation technology. Today we can’t imagine doing a simulation without some kind of

visualization to help communicate results and obtain a better understanding of a model’s behav-

ior." (Rohrer, 2000) Furthermore, several authors point out that use of visualization could result

in an increased acceptance of simulation results and be the element that determines the success

of the project (Blocher, 2002; Nahum et al., 1998; Rohrer, 2000; Steven D.Farr et al., 1994). Al-

though a stand-alone DES has been successfully applied to many engineering domain applica-

tions and used to address a wide range of complexity problems, many believe it is difficult for a

single simulation model to provide for all of the user's requirements and predict all the features it

would need. It is thought that Distributed Simulations could be the solution for this limitation by

providing interoperability among simulation model components; the complex problem can be

constructed by interconnecting many sub-components and user's future needs can be added to the

current model without major changes.

Use of Visualization in Simulation

 Visualization of a simulation provides an understanding of the complex dynamics of a

system that are otherwise impossible to obtain by using conventional analysis techniques. The

45

following are the areas for which visualization can be incorporated and evaluated as an ex-

tremely valuable tool for both the model developers and the end-users (Law et al., 2000; Rohrer,

2000; Swider, Bauer, Jr., & Schuppe, 1994; Steven D.Farr et al., 1994).

 Visualization is a highly effective means of communicating the essence of a simulation

model to decision makers and upper management who may not have the technical knowledge

required to understand the statistical outcome of a simulation; it may also promote communica-

tion among the project team. It is a reliable method of presenting concepts of model dynamics to

the end-users who may not be aware of the technical details of the model. Presenting a visualiza-

tion of the system being investigated could save a great deal of time by eliminating the lengthy

presentation of statistical analysis needed “to be presented, explained, justified, and questioned”

(Rohrer, 2000) of the system behavior.

 Verification is the simulation modeling process of comparing the conceptual model with

a computer representation of the conceptual model, while validation is the process of determin-

ing whether the output performance measures from the model match up to those of reality. In

general, insuring the accuracy of the model and confirming model validity can be difficult with-

out using animation. Since animation provides visual trace of events at the place where the

events are relevant, it is a helpful tool in uncovering modeling error when the event happened as

opposed to having to wait until the simulation run ends. In addition, visualization is useful in

identifying a sudden but short interval of surging in some model variables, which is not easy to

identify through average statistics collected at the end of the simulation. Visualization is a tool to

verify the correctness of a model. Steven claims that “the most widely used technique for estab-

lishing conceptual model validity is "face validation", which involves having domain experts

view the animated behavior to determine whether it "reasonably" captures the essence of the

46

problem.” (Steven D.Farr et al., 1994) In some cases where the system being modeled does not

exist or is modeling an operational behavior on an alternative structure of an existing system,

validation becomes more complicated. If that is the case, visualization is critical in order to pre-

sent how the proposed system works or how these two systems – the current system and the al-

ternative one – perform in terms of the measure of interest.

 Visualization is an essential component of training simulation. It is an interface between

the simulation and the trainees. It provides not only the current state of simulation but also the

effects of their response. Stafford claimed the following as a benefit of visualization in training

simulation: “With simulation, operators get a global view of the impact made on other depart-

ments when making operational decision. This is not possible in a real operation because opera-

tors have a very localized view of the entire facility.” Farr and Sisti believe that visualization

“allows testing of systems and techniques, and training of operational personnel, where testing

with the real world system or environment is impossible, infeasible or costly.”(Stafford, 1995;

Steven D.Farr et al., 1994) Animation has proved to be a useful tool in assisting engineering

analysis of simulation systems, often leading to improvements in system design or operational

procedures. When animation is used as an analysis tool, it helps users explain events such as

simulation bottlenecks, conflicts, and deadlocks.

 Although visualization helps model developers with many modeling tasks, it is no substi-

tute for statistical analyses of model output. In addition, it takes time to build realistic animation

scenes. Although the adaptation and incorporation of animation capabilities into a simulation is

not without cost, the benefits far outweigh the expense and effort. In summary, a successful

simulation project should be a combination of a sufficient statistical analysis and well designed

animation.

47

Visualization in Distributed Simulation

 Visualization helps the modeler, the decision-maker, and non-technical people to gain an

understanding of the model being investigated. However in the HLA-based distributed simula-

tion, it is difficult, if not impossible, to provide the same level of insight to the user by the visu-

alization tools currently available. Although geographically dispersed simulation models have

their own visualization environments, it becomes difficult to provide a comprehensive presenta-

tion on a global view of distributed simulation system. In order to support an effective decision-

making process, an informative visualization coupled with distributed simulation models could

be essential tools for large and complex distributed simulation; such as space shuttle processing

operation models, supply chain simulations or enterprise engineering models. Therefore, we be-

lieve that there is a clear need to have a visual representation of geographically distributed simu-

lations on a single visual display in order to provide comprehensive insight of whole distributed

simulation, especially when the objective of modeling is a decision making purpose.

 While a standalone simulation model developing process takes advantage of these visu-

alization tools embedded in COTS simulation packages, in the distributed simulation develop-

ment process, very few packages can be used to visualize the distributed simulations. There are

two major reasons for this lack of distributed simulation visualizations. First, the HLA frame-

work doesn’t take into account the visualization methodology or possess an interface that is well

tuned into the HLA framework. Second, although the HLA integrates various functional models

or components, there is no general interface which interconnects the wide range of those models.

 In the HLA-RTI based distributed simulation, since the HLA provides a common inter-

face architecture to the simulation components, it is easy to disseminate the state of a system to

48

the federation in textual format. In order to visualize the textual information, a dedicated anima-

tion application as a display federate must be developed.

 In VTB we have developed a primitive visualization for distributed simulation by incor-

porating the COTS simulation package, AnyLogic, to make possible the functional and logical

visualization of important systems, and allow engineers to more thoroughly investigate and dis-

play the operational processes of the simulation which is located in the remote site.

49

CHAPTER THREE: THE HLA INTEROPERABILITY IN SIMULATION
LANGUAGES/PACKAGES

 During the last three decades a variety of Commercial Off-The-Shelf (COTS) simulation

tools have been developed and used widely in many areas of the industry. Despite the main pur-

pose of the HLA which was to provide interoperability to military applications to promote reuse

of existing models and tools, recent trends show that its use has been spread to a wide range of

other domains including academia and industry. With this trend, there have been number of ap-

proaches reported which enable communication and data exchange between COTS Simulation

Packages and the HLA-RTI through an interface or a toolset for COTS Simulation Packages in

the form of either modifying COTS Simulation Package’s framework or developing a

warpper/gateway (or middleware) without significant change in the framework. Some examples

of such implementation that link COTS Simulation Packages to the HLA are Arena/ProModel

(Charles et al., 2000), AnyLogic (Borshchev et al., 2002), SLX (Strassburger et al., 1998; Strass-

burger, 1999), Matlab (Pawletta et al., 2000), and MODSIM III (Johnson, 1999) among many

others.

 It is thought that by incorporating various COTS simulation tools which are typically

specialized in a certain area with the HLA interoperability, the range of a federation (or distribu-

ted simulation) can cover is broad by reusing existing models (or components) built into the spe-

cialized COTS tools.

50

Federate Requirements to Become a HLA Compliant

 In order to support the HLA Interoperability for COTS simulation packages, there are

two types of requirements – (1) one derived from the HLA Interface Specification of Ambassa-

dor paradigm, (2) and the other derived from distributed simulation. Strassburger also presents

that the four general approaches that make a model compliant to the HLA are (1) modifying

modeling framework, (2) changing the model source code independently with the tool, (3) de-

veloping an external programming interface such as Windows Dynamic Link Library (DLL) or

Component Object Model (COM), and (4) coupling by a gateway program. The following sec-

tion describes the requirements for a federate (or COTS simulation model) to become HLA com-

pliant (Strassburger et al., 1998; Strassburger, 2001; Boer & Verbraeck, 2003).

Federate Requirements in the HLA Specification

 As discussed in Chapter 2, a federate interacts with various simulations only through RTI

by the HLA rules and it is accomplished with the RTIambassador and FederateAmbassador

classes. Both the RTIambassador and FederateAmbassador class are a part of libRTI. While the

federate code provides the internal functionality of the simulation, the local RTI Components

(LRC) provide the RTI services specified in the Interface Specifications through the RTIambas-

sador class and assist the federate in communicating with the RtiExec and the FedExec. Since the

FederateAmbassador class is abstract, each federate must implement the callback methods in the

FederateAmbassador class. All requests from a federate to RTI are accomplished by calling the

RTIambassador method call. On the other hand, an event from the RTI to a federate and the sub-

sequent response of service requested by a federate are passed by asynchronously invoking Fed-

51

erateAmbassador “callback” functions implemented according to the function of simulation.

Figure 10 shows the components of a federate.

Figure 10 RTI and Federate “Ambassadors” (DMSO, 1998a)

 In order to make a COTS simulation package compliant to the HLA, a federate is respon-

sible for invoking proper APIs included in RTIambassador which is provided as a Dynamic Link

Library (DLL). In addition, a federate must implement a set of “callback” functions which are

provided as a form of C++ header file by HLA. The functions can be called by RTI as an asyn-

chronous response of a request from the federate.

 There are two methods for making a simulation model that is compliant to HLA. In both

cases, an interface must prescribe to the same requirements discussed in section 3.2. First, if a

general-purpose high-level simulation language is used to develop a model, the method is

straightforward, the federate code directly includes the libRTI library and implements the Feder-

ateAmbassador abstract class definition which are provided in the form of header (“.hh”) files

when using C++. Second, in the event that a COTS simulation package is used, since many

COTS simulation packages currently available do not support direct call to C++ libraries as an

52

external interface, it must provide one of the alternative approaches which support the require-

ments for a federate. In addition to the interface to libRTI, it also requires access to some internal

data that is needed to connect to other simulation models (Boer et al., 2003). The following sec-

tion describes some solutions for COTS simulation packages such as Arena and AnyLogic, and

SPEEDES, a general-purpose high-level simulation language.

HLA Support in Modeling Languages and Packages

 This section presents three different approaches for the simulation languages and pack-

ages have been used in the VTB simulation system. Each of these modeling tools applied the dif-

ferent approaches introduced in Chapter 3. The major factor in selecting one approach and the

coverage of the RTI services by the approach may depend on availability of source code for the

modeling framework and the environment the federation that is being used. In general, the RTI

services in Federation Management, Declaration Management, and Object Management are an

essential part of a federate, but those in Ownership Management, Time Management, and Data

Distribution Management may not be required in many situations.

SPEEDES

 We have been using SPEEDES as one of the discrete-event simulation languages for our

HLA implementation because it meets the requirements listed in Chapter 2. SPEEDES is a soft-

ware framework based on NASA-patented algorithms for building parallel C++ simulations.

SPEEDES allocates events over multiple processors to get simulation speed-up. This feature en-

hances runtime, especially when exploiting the very large number of processors and the high-

53

speed internal communications found in high performance computing platforms. It connects a

model to the HLA through the SPEEDES HLA-gateway. An HLA gateway provides a direct in-

terface to the RTI. The federate gateway is implemented as an entity, which means that it can

work with the entire Federation Object (FO) and interaction system in SPEEDES. By subscribing

to all FOs and Interactions with both SPEEDES and with the RTI, the gateway is able to coordi-

nate two-way flow of information. FOs that are created by an entity are discovered by the gate-

way and then registered with the RTI. In a similar manner, FOs that are discovered from the RTI

are created and published by the gateway. Subscribing entities will then discover the FOs

through the SPEEDES interest management system. The gateway is implemented through the

use of FOs (FO classes, or S_HLA class). FOs provide applications with an automated frame-

work for SPEEDES to distribute the exportable attributes of a SimObj to (1) subscribing Si-

mObjs within a SPEEDES based federate, (2) external modules, or (3) other federates within an

HLA federation. Each FO provides a well documented set of exportable attributes that collec-

tively characterize the public state of an application’s Simulation Object Model (SOM) (Bailey

et al., 2001; Steinman et al., 2003; Steinman, 1998b).

 FO attributes are normally declared within SimObjs as exportable state variables that are

mapped to FOs through pointer references. FO attributes are then used as normal data types in

application code. Through operator overloading, FO attributes detect when modifications are

made. Events are automatically scheduled to reflect the changes of these attributes to all sub-

scribers. Figure 11 shows an integration of a SPEEDES model to the HLA federation through the

HLA-gateway.

54

Figure 11 SPEEDES Interface to the HLA (adapted from (Bailey et al., 2001))

 HLA Gateway is a SPEEDES external module that handles communication to/from the

RTI. It joins itself to the federation and then, on behalf of the SPEEDES simulation, performs all

the services required as a federate including join/resign from the federation, publish/subscribe

interaction classes, time management, and route interactions to/from the federation. Therefore a

SPEEDES simulation and the HLA Gateway together work as a general federate. The HLA

gateway uses the “gateway.par” parameter file to customize a distributed simulation environ-

ment, which includes parameters for the RTI (federate name, federation name and .fed file) and

the federation (lookahead, federation synchronization point, etc). The HLA gateway also uses the

“conversions.par” parameter file to convert objects (and attributes) and interaction (and parame-

ters) between a SPEEDES user model and the HLA Gateway. The parameter file includes a list

of objects and interactions that it either intends to publish or subscribes to from the federation.

Each of the objects and interactions must have a corresponding “SPEEDES name”, “RTI class

55

name”, and a designator (PUBLISH or SUBSCRIBE). Figure 12 shows the format of “conver-

sions.par” parameter file.

INTERACTIONS {
 // SPEEDES Interaction RTI Interaction PUBLISH | SUBSCRIBE
 Request_for_Launch Request_from_shuttle PUBLISH {
 Pub_request_ID Request_ID
 Pub_request_time Request_Time
 Pub_request_shuttleID Request_ShuttleID
 }
 Approval_from_Control Approval_to_shuttle SUBSCRIBE {
 Sub_Approval_ID Approval_ID
 Sub_Approval_LaunchTime Approval_LaunchTime
 Sub_Approval_shuttleID Approval_shuttleID
 }

Figure 12 An example of "conversions.par"

 A SPEEDES simulation sends out HLA interactions simply by scheduling SPEEDES in-

teractions in the usual way. This works by having a special object inside the simulation subscribe

to the SPEEDES interaction classes, receive interactions and pass them along to the gateway.

The gateway translates the SPEEDES interaction (and parameters) to the corresponding interac-

tion (and parameters) defined in FOM and sends it out to the federation.

Arena with Distributed Manufacturing Simulation (DMS) Adapter

 The Distributed Manufacturing Simulation (DMS) Adapter is a component of an HLA-

based infrastructure for distributed simulation of manufacturing facilities. The adapter was de-

veloped by the National Institute of Standards and Technology (NIST) as part of the MISSION

project: an international, collaborative project and part of the international Intelligent Manufac-

turing Systems (IMS) Program (McLean & Riddick, 2000b; McLean & Riddick, 2000a).

56

The DMS Adapter’s infrastructure was designed to support the integration of multiple manufac-

turing simulations both with one another and with other manufacturing software applications.

The DMS Adapter facilitates the adoption of distributed simulation in manufacturing environ-

ments by providing an interface that reduces the complexity of integrating simulations using the

HLA to a level that is practical for manufacturing simulations. This is supported by several archi-

tectural design goals. (1) It reduces HLA interface complexity. In the DMS Adapter, the methods

(APIs) for Federate Ambassador (callback) and RTI are grouped and it exposes only about 35

methods. The methods can be divided into three management groups: Simulation Execution

group, Message Management group, and Object Management group (NIST, 2001). Table 1

shows the three management groups and their interface methods (2) Since the DMS Adapter that

includes an implementation of federate ambassador is provided in form of Component Object

Model (COM), legacy simulations are not required to implement Federate Ambassador. (3) Data

from the RTI delivered asynchronously are stored in the internal storage of the adapter associated

with a federate and the stored data will be passed to the federate upon request. This sequence of

data exchange enables use of procedural languages such as Visual Basic Application (VBA) and

other similar scripting languages. (4) While the representation of common objects and associated

attributes in a federation are defined in the FOM, the instances of these objects are maintained by

the federate. Moreover the internal representation of these objects may differ from simulation to

simulation. To address the problem of having to develop a FOM for each federation, the details

of object class and the associated attributes, as well as the interactions and associated parameters,

are not defended in the FOM, instead a generic object class and a generic interaction class are

defined. The generic object class contains an XML string that describes the structure and seman-

tics of the object. (5) Finally, the DMS Adapter supports a “time-stepped” synchronization ap-

57

proach. When a simulation wishes to advance to a certain simulation time, it checks the global

simulation time of the federation and then requests to advance. The methods for these processes

are provided by the Adapter (McLean et al., 2000a; McLean et al., 2000b).

Table 1
The DMS Adapter Interface Methods

Adapter Methods
Time advancement and
Simulation Execution Message Management Object Management

• Initialize
• Terminate
• AdvanceSimulation
•SimulationAdvanceCompleted
• GetExecutionState
• GetSimulationTime
• GetProperty
• SetProperty

• GetNextMessage
• AllMessagesReceived
• SendMessage

• CreateObject
• UpdateObject
• DeleteObject
• GetObject
• GetObjectValue
• SeizeObject
• ReleaseObject
• SelectObjects

While the DMS Adapter minimizes the changes needed for simulations to participate in a

federation, it provides mechanisms to coordinate the time between legacy simulations, facilitate

message exchange, and provide facilities for object creation, update, storage, deletion, and trans-

fer of ownership(McLean et al., 2000a). To realize the mechanisms each instance of the adapter

maintains internal repositories for several kinds of information, the adapter’s “internal data”.

Some of the internal data maintained by each instance of the adapter follows: federate member

list, time management data, local/remote object cache, incoming/outgoing message queue,

adapter properties, and subscription and filtering data. The only way to access the adapter’s in-

ternal data is through the adapter’s methods. A conceptual view of the DMS adapter architecture

is shown in Figure 13.

58

DMS Adapter
Legacy Simulation
Execution System

HLA
Runtime

Infrastructure

Federate
Ambasador

Adapter
Supervisor

XML
Parsing &

Generation
Utility

XML
Parsing &

Generation
Utility

Adapter
Information

Base

RTI
Ambassador

Legacy
Simulation

DBMS

Distributed
Manufacturing

Data Repository

Common
Data Access
Mechanism

List of
federates
and object

subscription
information

Mission
Object Type
Definitions

(i.e. DTD's or
Schemas)

Locally
Owned
Object

Instances

Mirrors
of Remote

Object
Instances

Figure 13 Initial Adapter Architecture(taken from (Kuhl & Riddick, 2000))

 In addition to the HLA operability, the adapter enables the user to tune the properties of

the simulation through “GetProperty” and “SetProperty”, and/or by an initialization file in

XML format. The properties of the adapter can be customized are Initial Simulation Time, Simu-

lationStepSize, SimulationName, FaderationName, DebugMode, among others.

 In the DMS Adapter architecture, Extensible Markup Language (XML) documents are

used to specify an “initialization file” and to describe Objects and Messages. XML is a Meta lan-

guage that describes data in plain text format. It is created as a way to structure, store and inter-

change information independent of hardware, software, and application. The advantages of using

XML documents as input for some of the adapter methods are (McLean et al., 2000b): (1) the

model designer can create, view, and edit the documents using the standard XML tools (Docu-

ment Object Model (DOM), Document Type Definition (DTD), and XML Schema, etc), which

59

are independent of the simulation modeling packages, (2) the XML standard technique such as

eXtensible Sytle Language (XSL), XML Path Language (Xpath) can be used to access all or

parts of objects and attribute values as a part of the architecture, e.g., GetObjectValue, (3) due to

the advantage of XML’s hierarchical document structure and extensibility, the object structure in

the model can be built with the same internal structure of the actual object using the same vo-

cabulary which makes clear understating of data. Figure 14 shows an example of an initialization

file in XML format.

<InitializationFile>
 <Properties>
 <InitialSimulationTime>0</InitialSimulationTime>
 <SimulationStepSize>10</SimulationStepSize>
 <SimulationName>MonteCarloSim</SimulationName>
 <FederationName>VirtualTestBed</FederationName>
 <Notifications>Enabled</Notifications>
 <DebugMode>Enabled</DebugMode>
 <UseManagerMode>Disabled</UseManagerMode>
 …
 </Properties>
</InitializationFile>

Figure 14 An Example of Initialization File

 Objects (and attributes that characterize the object) and interactions (and parameters) are

stored in the form of XML documents. The header information which is used for controlling ob-

jects and interactions is stored as attributes of the top level document element – ObjectType,

MessageType - and the attributes are stored as elements of the ObjectType. Figure 15 shows

Objects and Attributes, a general Message, and Notification Message in XML format.

60

Objects
<Accident ObjectID=”101” OwnerID=”MontecarloSim” UpdateCounter=”3”
 LastUpdateTime=”1205” TransferTo =”VirtualRange”>
 <Time>025</Time>
 <Location>
 <X>539.134</X>
 <Y>3146.924</Y>
 <Z>01958.66</Z>
 </Location>
 <Concentration>
 <HCl>0.154E+07</HCl>
 </Concentration>
</Accident >

Message
<LaunchDecision MsgID=”3” Timestamp=”1205” Sender=”MissionControl”
 Recipient=”LaunchPad”>
Approved
</LaunchDecision>

Notification Message
<Notification Type=”FederateJoined” Name=”VirtualRange” ID=”5”/>

Figure 15 Object and Message Format

HLA Support Module (HSM) for AnyLogic™

 AnyLogic™ is a Windows-based, general-purpose simulation environment for complex

discrete, continuous and hybrid systems developed by XJ Technologies. It includes a graphical

model Editor, data collection and analysis facilities, debugging and visualization tools, and a

Code Generator which converts the model into Java codes. The modeling language of Any-

Logic™ is UML-RT (UML for Real Time) – collaboration diagrams and statechart diagrams – to

model hierarchical object-oriented models and specify behaviors of objects. It can be executed

on any Java platform over Hybrid Engine and also supports interoperability to HLA-RTI.

 Originally AnyLogic modeling framework is so called “closed-architecture” which

means that the engine interfaces are not available for the external modules to control the process

61

of model execution. To support HLA interoperability for AnyLogic modeling framework an add-

on package, HLA Support Module (HSM), was developed by XJ Technologies to facilitate inter-

action between the AnyLogic kernel and the RTI. This interface enables AnyLogic to support a

wide range of RTI services in the following service groups: Federation Management, Declaration

Management, Object Management, and Time Management. HSM uses the stepHook interface

which puts a hook on simulation engine performing model time steps. The StepHook interface

uses nextEvent(double) methods which is executed just before each time step to schedule a next

time step and timeStepDone() method which is called by the engine right after the system clock

has been adjusted to the time given by nextEvent(double) method. The StepHook interface en-

ables AnyLogic models to exchange messages and synchronize Local Simulation Time to federa-

tion Global Time with the federation(Borshchev et al., 2002). The structure of HLA federation

with AnyLogic federate is shown in Figure 16.

Figure 16 Integrating HLA and AnyLogic (adapted from (Borshchev et al., 2002))

62

 The HLA interoperability in AnyLogic is supported by an HLA Support Module (HSM)

class library. The HLA Support Module (HSM) enables a federate to invoke the RTI services by

using the following classes: (1) supporting most of low-level RTI services (HLAHelpers), (2)

publishing and subscribing objects and interactions (HLAObjectClass/HLAInteractionClass), (3)

sending and receiving objects and interactions (HLAObject/HLAInteraction). The HLA Support

Module (HSM) also presents two port classes which queue receiving objects and interactions as

HLAObjectUpdatePort and HLAInteractionTranceiverPort, respectively. The AnyLogic’s pow-

erful visual modeling environment coupled with the HLA interoperability may enable the user to

develop component simulations (federates) and development of distributed simulations (federa-

tions) using easy-to-use, user friendly, drag-and-drop graphic modeling environment. This mod-

eling environment also can be used as a prototype development tool to provide possible solutions

and validate the approaches and then the approved method can be reimplemented in the real en-

vironment. This will reduce the time and cost in federation development and avoid many errors

on early phases of the development process (Borshchev et al., 2002).

Implementation of The Basic Discrete Event Simulation Class in The SPEEDES Process
Model

 Law and Kelton pointed out that one of the most important decisions in a simulation

study is the selection of software (or simulation language/package). It is desirable that the soft-

ware should neither be too difficult to use nor not be flexible enough (Law et al., 2000).

 One of the decisions we have made concerns SPEEDES; despite SPEEDES providing

exceptional functionalities including parallel execution, multiple time management, load balanc-

ing, and external module interface, among others, it requires profound knowledge in not only

63

simulation techniques but also SPEEDES modeling framework and its general-purpose pro-

gramming language, in this case C++. All this makes steep learning curve for the modelers who

have experience in using simulation packages but not in programming languages.

 In order to address this, we have defined a set of SPEEDES classes using Process Model

on top of the SPEEDES modeling framework, e.g., Simulation, Entity, Process, Resource and

Queue, etc. These components are commonly used in COTS simulation packages. The design of

the basic component classes is apparent for two reasons.

 First, the set of pre-defined classes may simplify the modeling process and remove the

needs for in depth knowledge of SPEEDES in the area of industrial simulation modeling. Second,

our focus on this matter is to implement an interface with which other simulation models in VTB

(AnyLogic, Arena, etc.) can interact with a SPEEDES model not only by means of communica-

tion but also by data sharing. The means for communication is provided by SPEEDES gateway

interface to HLA, and the language to talk to each other will be provided by the basic modeling

classes which are analogues to the building blocks provided as modules or templates with data

format specified in OMT. We overview the SPEEDES modeling framework (SMF) with a spe-

cial focus on Process Model, and then present the fundamental modeling classes in SPEEDES

Process Model.

Process Model

 Unlike event-based simulation, in which the activity is divided into independent event

routines that describe the state changes by logical consequences of an event, process-based

model defines a process as “a time-ordered sequence of interrelated events separated by intervals

64

of time, which describes the entire experience of an entity as it flows through a system” (Law et

al., 2000). Process-based modeling paradigm is more common than other approaches (event-

based or activity-based approach) in modern modeling tools. This is because writing a process-

based simulation is often simpler, more intuitive, and easier to maintain than writing the same

simulation in other paradigms. Whitehurst and Brutocao believed that “Object-oriented modeling

coupled with process-based simulation support provides an environment in which real-world sys-

tems and simulated systems enjoy a high degree of fidelity. The fidelity between the system be-

ing analyzed and the program being developed reduces development time and produces better

software quality”(Whitehurst & Brutocao, 1998) .

 Whitehurst has implemented the process model using discrete event primitives, which is

a set of macros that warp the SPEEDES code required to implement the semantics of process.

 In SPEEDES, a process is a point-to-point event that uses special macros that allow for

both exiting code execution at any point and reentering the code at the exit point at some later

simulated time without losing local variable state or algorithmic context. The process model in

SPEEDES defines a set of APIs which include Initializers, Wait Reentry Points, Semaphore Re-

entry Points, and Ask Reentry Points. The process model requires a minimal process block-

structure for a process: P_VAR, P_LV, P_BEGIN, and P_END which mark a start of process

model, defines process model local variables, the beginning of process model user code, and the

end of process model user code, respectively. Wait Reentry Points support WAIT and

WAIT_UNTIL constructs; WAIT waits the specified amount of time while WAIT_UNTIL waits

until the specified simulation time has been reached before process model continuation. Sema-

phore Reentry Points support WAIT_FOR and WAIT_FOR_RESOURCE constructs which

work with semaphore classes. These constructs break out of their waits based on the setting of

65

semaphore or after the specified wake-up time has expired. The semaphore classes used for the

constructs are SpLogicalSem, SpCounterSem, and SpResourceSem. These semaphores allow for

sharing logical variable, non-negative variable, and integer/double variable types as resources

across multiple simulation objects. Ask Reentry Points construct enables users to send/receive

data to/from another simulation object method. To employ the ASK in a process, the user must

first use a macro that converts a method into an event that can be used by the process model.

Simulation Modeling Classes

 In general building a simulation model using a modeling language like SPEEDES re-

quires a profound knowledge of many simulation techniques as well as the modeling framework

of the language, both of which are not often possessed by model developers. Therefore it is de-

sirable to have conceptual model building blocks that are commonly found in many COTS dis-

crete event simulation packages. This may help to speed the development time of project, pre-

vent logical programming error, and increase interoperability with other COTS simulation pack-

ages with respect to information sharing.

 To provide the basic building blocks to the modelers, several simulation modeling classes

which are identified as basic components of discrete event simulation in (Arief & Speirs, 2000;

Braude, 1998; Law et al., 2000; Rossetti, Aylor, Jacoby, Prorock, & White, 2000) have been im-

plemented. We believe that these class greatly simplify the programming process representation

of the system being modeled in the VTB environment based upon SPEEDES modeling frame-

work. The classes are S_Simulation, S_Entity, S_Process, S_Resource, and S_Queue. These

classes are derived from the SimObj and S_SpHLA classes implemented in Process Model mac-

66

ros in SPEEDES. The static properties of the classes are depicted by the UML class diagram

seen in Figure 17. In addition, Figure 18 shows the dynamic aspects of a simulation system in a

UML sequence diagram. It consists of objects and their relationships including messages that

might be sent from one object to another by scheduling simulation object events.

S_Simulation

timeSimulation : Double = 1000
simulationName : const char*
entity ID : Long

setSimulationName(sName : String)
getSimulationName() : String
S_Simulation()
~S_Simulation()
Init()
ScheduleNextArriv al(entity ID : Long = 1, simTime : Double = 0.0)

(from Use-Case Model)

S_Process

ProcessQueue : RB_SpBinary Tree
rand : RB_SpRandom*
counter : RB_int
status : RB_int
processTime : RB_double
pub_no_Av ailableProcess : INT_ATTRIBUTE
no_Av ailableProcess : SpIntSem

getProcessTime()
setProcessingTime()
getAv ailableProcess()
S_Process()
~S_Process()
Init()
Seize()
Release()

(from Use-Case Model)
S_Queue

capacity : RB_doube
length : RB_double
name_Queue : const char*

setCapacity (capacity : Long)
getCapacity () : Long
isEmpty () : Boolean
S_Queue()
~S_Queue()
Init()
Run()
Enqueu(entity : SpObjHandle)
Dequeu()

(from Use-Case Model)

S_Entity

enity Ty pe : String
currentStatus : RB_Int
entity ID : Long
interArriv alTime : Double
delay : RB_Double
rand : RB_SpRandom*
numberOf Arriv als : RB_Double
numberOf Departures : RB_Double
resourceAv ailability : SpIntSem
processor : RB_v oidPtr
pub_currentStatus : INT_ATTRIBUTE

Create(entity ID : Long)
Enqueue()
Dispose()
Seize(f reeProcess : SpObjHandle)
S_Entity ()
~S_Entity ()
Init()
Run()
getEntity Name() : String
getEntity ID() : Long
Delay (time_delay : Double)

(from Use-Case Model)

SpSimObj
(from Use-Case Model)

S_SpHLA
(from Use-Case Model)

S_Resource

time_LastStateChange : RB_double
name_Resource : const char*
state : RB_int
capacity : Long

S_Resource()
~S_Resource()
Init()
Seize()
Release()
setCapacity (no_resource : Integer) : Long
getCapacity () : Long

(from Use-Case Model)

Figure 17 Class Diagram of Simulation Classes

67

S_Simulation class

 S_Simulation class is derived from SpSimObj class. S_Simulation class contains the gen-

eral properties related to the simulation and provides: (1) number of arrivals (batch size) at each

arrival and more importantly, the event that schedules dynamic arrival of entities. The first entity

arrival is scheduled at a specified time in this class as a model parameter and additional entity

arrivals will be scheduled by the function of inter-arrival time defined in the S_Entity class by

calling “CreateNextEntity” event in S_Simulation class.

S_Entity class

 S_Entity class is derived from S_SpHLA class. S_Entity class represents an active object

in the simulated system. Instances of the class differ by name, attributes, activities, and interac-

tions with other objects by scheduling events during the simulation. S_Entity class contains the

general properties of the active simulation object in the simulation: (1) setting inter-arrival time

of the same type of entity, (2) obtaining its status, and (3) a series of activities that represent the

flow of entity through the simulated system is modeled in Process() simulation event. Within the

Process() event each activity, including the scheduling of the next arrival of entity, requesting a

resource by joining to a queue, process, and departure are defined as simulation object event:

Create(), Seize(), and Dispose() respectively. The model designer usually creates a model by im-

plementing an active entity (S_Entity or sub class of E_Entity) which flow through the system in

which the entity changes the state of the system and that of itself by interacting with other enti-

ties. It also registers attributes that are defined in Objects.par file to proxy system. For each at-

68

tribute macro DEFINE_ATTRIBUTE is called with a pair of arguments with attribute name in

the class and correspond to the attribute listed in the Objects.par definition.

S_Process class

 S_Process class is derived from S_SpHLA class. S_Process class controls the status of

the object of S_Resource class. The entity schedules the Seize() event on S_Process with the

number of resources required to start a service. The waiting for resources, seize(), and release()

events in S_Process class are handled by the process model loop which repeats the process of

waiting for resources, assigning resources to the entity, and releasing resources from the entity.

By separating S_Process class and S_Resource class, the resource can be simulated not only as a

group (number) but also an individual object in that way states of each resource can be modeled

such as schedule of resource, failure.

S_Resource class

 Resource in discrete-event simulation is a system component that provides a service to

the entities. Typically the capacity of resources is limited, hence entities compete each other for

service from resources to perform activities assigned to and it may result in a delay. S_Resource

represents passive objects which are used by S_Entity object and managed by S_Process class

objects in the activity. When more than one S_Resource object are requested by an entity the

S_Process class object are responsible to allocate the resource object and free it after finishing

the activity. The state of an S_Resource object may be active (seized, released), failure, inactive.

69

S_Queue class

 Queue is a modeling element that refers to a place entities waiting for a service from the

process along with resources when the resources are not available to the entity because either all

the resource are allocated to other entities or there are not enough resources to start the process.

S_Queue class is derived from S_SpHLA class. The S_Entity interacts with the S_Queue so that

new S_Entity class object can be added to the S_Queue. The S_Queue also interacts with

S_Process so that new entities can proceed with their activities (get services from S_Process ob-

ject) if the S_Process is available.

70

 : S_Simulation : S_Simulation : S_Entity : S_Entity : S_Queue : S_Queue : S_Process : S_Process : S_Resource : S_Resource

Init()

Create(Long)

Init()

ScheduleNextArriv al(Long, Double)

Enqueu(SpObjHandle)

WAIT_FOR_RESOURCE

Init()

Seize(SpObjHandle)

WAIT_FOR_RESOURCE

Init()

WAIT_FOR_RESOURCE

Delay (Double)

Release(SpObjHandle)

Seize()

Dequeu()

Seize(SpObjHandle)

Release()

Dispose()

Figure 18 An Example Sequence Diagram of Simulation Classes

71

Visualizations in the VTB

 We have identified that two types of additional visualizations are required in the context

of VTB distributed simulation. First, a visualization of data and/or the specialized functions is an

essential part of COTS tools, but the tools do not support any type of simulation concepts. In or-

der to integrate the visualization tool to the VTB, we have created a federate that interacts with

both the RTI and the tool’s external interface which may be in such formats as Component Ob-

ject Model (COM) or Dynamic Library Link (DLL). Second, a simulation engine includes a set

of integrated animation facilities to display the state of the system being simulated which may

allow the user to interact with the model. It does not, however, support any function for visuali-

zation of a remote federate in the federation. To address this problem we have utilized a COTS

simulation package to include the state of remote federate in local federate. This section presents

two approaches for integrating the visualization of a COTS GIS tool and a remote federate into

VTB.

Integrating a visualization of COTS GIS tool

 Toxic gas-related risk is a function of exposure duration and toxic propellant concentra-

tion or dosage that would result in casualty for all populations (including normal and sensitive

people, such as asthma patients). If a disaster occurs, the toxic risk assessment will depend on

factors such as the respiration of propellants, meteorological conditions, the effect of positive or

negative buoyancy on the rise or descent of the released toxic propellants, the influence of at-

mospheric physics on the transport and diffusion of toxic propellants released in the launch area,

72

the population density, location, susceptibility (health categories), and sheltering for all popula-

tions within each potential toxic hazard area.

 In order to effectively present (visualize) the region covered by the envelope and to accu-

rately calculate the population at risk associated with that region we have used ArcView with

Spatial Analyst as a GIS tool and have incorporated the LandScan Global Population Database

which provides characteristics of the population in detail.

Geographic Information Systems (GIS) tools

 ArcView provides the tools to work with maps, database tables, charts, and graphics all

in one graphical user interface (GUI). ArcView is an integrated suite of advanced GIS applica-

tions. It includes: ArcMap, ArcCatalog and ArcToolbox applications that can aid in performing

many GIS tasks such as mapping, data management, geographical analysis, data editing and geo-

processing. It includes a high level geographic data model for representing spatial information as

features, rasters and other spatial data types. Spatial Analyst in particular, an extention to Arc-

View, provides a broad range of powerful spatial modeling and analysis features. Its functional-

ity ranges from creating and querying maps, analyzing cell-based raster data, performing inte-

grated raster vector analysis, deriving new information from existing data, querying information

from the existing data and across multiple data layers, and fully integrating cell based raster data

with traditional vector data.

73

Population Database

 We used The LandScan Global Population Database, a public domain database of the

World’s population developed by Oak Ridge National Laboratory (ORNL) (LandScan, 2003).

LandScan includes the best available census counts (usually at province level) for each country

and allocates these figures into rural and urban population distributions on a 30" X 30" lat/long

grid cell system. To assign values to a specific grid cell, LandScan calculates a probability coef-

ficient for each cell, and applies the coefficients to the census counts. The probability coefficient

is based on slope, proximity to roads, land cover, nighttime lights, and an urban density factor.

Integration and Visualization

 By the pre-processes of the Virtual Range model, Monte Carlo model and

Calpuff/Calmet/Calpost (see Chapter 4 for detail), an input to ArcView, concentration of toxicant

with area under influence, is generated. The steps taken to generate the number of people ex-

posed/casualties and a display of the area of impact follow. .

 The input text file which includes area under influence as Universal Transverse Mercator

(UTM) Coordinates and the ground level concentration of Hydrochloric acid (HCl) in a particu-

lar area of interest are imported on top of the population map as a data layer, and later the two

layers are combined to only select the cross areas. The added point HCl layer is saved into a fea-

ture dataset for query. Then, the query is run on the saved HCl layer to select the region where

the concentration of the HCl is 7 ppm, i.e., 0.0104387 gm/m3 (Sepulveda et al., 2004a). After

performing the above steps, the Zonal Statistics function of Spatial Analyst is used to calculate

the total number of people affected by 7 ppm of HCl. Zonal Statistics calculates the statistics for

74

each zone of a zone dataset based on values from another dataset. A zone is a region in which all

the cells in a raster have the same value, regardless of whether or not they are contiguous. The

output sum in the zonal statistics gives the total number of people affected in that 7ppm of HCl

zone. Figure 19 shows the visual components of the incorporated data.

Figure 19 Calculation of Population at Risk

Animation System Architecture

 The fundamental concepts and properties of visualization design are required to develop

effective tools for visualization of a simulated system. A general architecture of visualization

(Lin, Yeh, & Sheu, 1992) in which the common components of an animated simulation system

and interactions among the components required to implement a general animation system are

identified and also a Model-Animator-Scheduler paradigm is presented for unifying different ap-

proaches of animated simulation systems into a single structure and serving as a foundation for

implementation and further research.

75

ModelAnimation

Scheduler

Static Background
Static Elements

Dyamic Foreground
Dynamic ActorsTrace File

Real-time informing

Model-Animator-Scheduler paradigm

Figure 20 Model-Animator-Scheduler paradigm (Lin et al., 1992)

The major components of the paradigm are the Model, Animation, and Scheduler. The Model

represents a simulation program which comprises the description of processes and entities as

well as data which specify their characteristics. The Animator includes all the facilities that are

required to be displayed to present the state of the system components and related tasks such as

static layout of the system, moving entity, and static/dynamic resource. Scheduler coordinates

the time associated event between Model and Animator. These components are linked to display

the state of system simulated by the Model either as the model runs or post-simulation run. Dur-

ing the animation the following data are passed from the Model to the Animator. The Static

Background is the representative display of the target system which never changes over the

simulation run (e.g. layout). Static elements are the static objects of the target system. It can be

used to reflect the difference between experiments (e.g. location of machine under the same lay-

out). Dynamic actors are the movable objects (entities) of the system. Since the location and state

of the object may change over the instance of simulation time, the update should be provided by

the model. Dynamic foreground is the summary of time-varying system status or variables. Al-

though its location is fixed, the containing values are updated by certain events. The event’s trace

76

for each simulation run is collected and recorded to the trace file which will be used to drive

animation.

 A majority of effort being put forth to develop a way to visualize simulation data on the

HLA-based distributed simulation has been focused on the area of interactive simulation where

there generally is a common scene shared by most, if not all, of the federates. This type of visu-

alization is good for use as a training simulation (or Man-in-the loop simulation) and a game-like

simulation in which a relatively small shared space is being simulated with multiple actors join-

ing, interacting, and resigning. A widely employed approach in visualization for HLA-based dis-

tributed simulation is a display federate paradigm in which a visualization model is implemented,

and then integrated into a federation as a utility (display) federate. Most of these display feder-

ates use a dedicated visualization tool such as Proof Animation (Strassburger, 1999), Skopeo

(Klein, Schulze, & Strassburger, 1998), and Quest (Roberto, Guixiu, & Charles, 2003), among

others.

 We have found that the visualization of a remote federate can be developed by facilitating

many COTS simulation packages if the packages have embedded animation facilities and have

the HLA interoperability. The visualization of a remote federate is designed with the following

steps: (1) The visualization components are categorized into dynamic elements (dynamic fore-

ground), static elements (static background, static elements), and dynamic actors which are iden-

tified in the Model-Animator-Scheduler paradigm (Lin et al., 1992). The classification is made

based on the how the state of these elements is changed. The state (appearance) of static ele-

ments never changes during the simulation run. The state (appearance) of dynamic elements

changes whenever there is an interaction with a dynamic actor. Therefore the dynamic elements

77

do not automatically change their state without interacting with a dynamic actor which means the

elements can be pre-built into the remote visualizer.

 The dynamic actor represents an active entity in the model which flows through some

part of the simulated system. The entity has deterministic attributes and stochastic attributes both

of which together determine the state of the entity. The deterministic attributes of an entity can

be pre-defined or changed depending on the value of other attributes with it, however the condi-

tions of the change are known at the stage of model building in both (remote federate and visual-

izer). Therefore the last thing we need to feed to the visualizer in order to display the state of re-

mote simulated system is the stochastic attribute, the value of which will be drawn when the en-

tity reaches a modeling block that acts as a delay or a service, the duration of which is stochastic.

In some simulation studies, especially the study of Variance Reduction techniques, using Com-

mon Random Numbers, the stochastic attributes of simulation components are assigned at the

beginning of the simulation run so that all the random numbers (stochastic attributes) assigned to

them will be the same from one system configuration to another. If we take the same approach

the implementation will be simple because the number of information transfers from the remote

federate to the visualizer is the same as that of entities in the simulated system.

 Despite to its simplicity, it may not be applicable if the remote federate has an external

user interface e.g., a machine or human-in-the-loop simulation. The response from the external

interface may vary in terms of simulation time which causes the change in the order of the ran-

dom number stream and consequently the value of stochastic attributes assigned at the beginning

of the simulation run may not be the same as the values assigned each time the entity reaches a

modeling block.

78

 (2) The visualizer is created in such a way that it depicts all the visual components which

include static background, static elements, dynamic foreground, and the shape of the active entity

as well as the deterministic model logic which may change the course of the activity and/or the

appearance of all the visual components during the simulation run.

 (3) The remote federate is adapted to generate and then send HLA interactions to the

visualizer. An HLA interaction consists of the time of event, active entity identification, and the

duration of activity. In the visualizer an active entity flows through some parts of the system un-

til the next simulation element requires a stochastic value to process. For most cases of discrete

event simulation it is simply a logical simulation time delay except the time of creation of an en-

tity, and waiting for an HLA interaction. As soon as it gets the HLA interaction it applies the du-

ration of the next activity and then the process. The flow is repeated until it reaches the end of

the simulation run.

ModelAnimation

Static Background
Static Elements
Dyamic Foreground

Dynamic ActorsTrace File
Dynamic Actors

Model-Animator in the HLA federation

HLA-RTI

Event time
Active Entity ID
Duration/Time
{

Figure 21 Model-Animation on the HLA

79

 The correctness of visualization is achieved by the HLA’s Time Management services

which deliver time-stamped events to all federates in the federation. This actually simplifies the

role of scheduler in Model-Animator-Scheduler paradigm.

Figure 22 An Example model for a Remote Federate Animation

The main model components for an animation of remote federate consists of following

“Enterprise Libraries” in AnyLogic: (1) a port with “Message type” as “HLAInteractionEvent-

Message” and “Port type” as “HLAInteractionTransceiverPort”, (2) a port with “Message type”

as “EntityMsg” and “Port type” as “EntityOutPortMultiple”, (3) additional “Hold” blocks as

many as the number of blocks which require one or more random variates to specify the duration

of delay or service, and (4) the exactly same model structure of the remote federate with generat-

ing none of the random variates which will be assigned to as the value of remote federate during

the simulation run. In addition to the animation model, some adaptation code for the original re-

80

mote federate are required to generate and publish the value of ramdom variables to the federate

which displays the state of the original federate.

Figure 22 (top) shows an example animation model of a remote federate of a single

server queueing system shown in Figure 22 (bottom). In the example, the time of entity (cus-

tomer) arrival, the duration of delay, “delay_in”, and the duration of service are the places re-

quires the random variables which should be the same as that of the original model.

The example model works as follows: (1) When each entity arrival occurs in the remote

federate, it will send an interaction that contains parameters of the time of arrival and the dura-

tion of the delay, “delay_in”, then the animation federate gets the interaction through “Event-

Messgae” port via the RTI. The “EventMessage” port generates an entity with the parameter val-

ues, and then puts the entity to “EventPort”. The entity will pass through the “EventPort” and

“Enter” block within the same logical time. When it reaches “Delay” block, the “Delay” block

holds the entity as much as the parameter value of delay. (2) After finishing the delay the entity

enters the “Hold” block and waits for another interaction from the “EventMessgae” port. When

the “EventMessgae” port receives an interaction that contains parameters of a name of “Hold”

block and a value of random variable, instead of an interaction indication “arrival of an Entity”,

it creates a vector instance which contains the parameter information and then inserts the vector

instance into a datastructure in the event time-stamp order. The “EventMessgae” port then sends

a signal to the “Hold” block specified in the interaction to release the holding entity. The re-

leased entity will fetch the duration of next delay or service from the top vector record from the

datastructure. The process of (2) will be repeated as many as the number of “Hold“ blocks. The

actual movement of entity, changes of dynamic background, and the status of server/resource are

visualized by the facilities in the simulation package in this case AnyLogic.

81

Figure 23 and Figure 24 show the code samples of AnyLogic HLAInteraction class used

in the visualization for Declaration Management and Object Management services.

import com.xj.anylogic.hlasupportmodule.*;
import com.xj.anylogic.hlasupportmodule.datacodecs.*;

class HLAInteractionClassEventMessage extends HLAInteractionClass {

public HLAInteractionClassEventMessage() {
 super("EventMessage", null);
}
protected HLAInteractionClassEventMessage(String sClassName, HLAInteractionClass refBaseClass) {
 super(sClassName, refBaseClass);
}
protected void OnAddParameters() {
 AddParameter("event_type", HLADefaultDataCodecs.typeString);
 AddParameter("object", HLADefaultDataCodecs.typeString);
 AddParameter("time", HLADefaultDataCodecs.typeString);
 AddParameter("time_delay", HLADefaultDataCodecs.typeString);
}
public HLAInteraction CreateInstance() {
 return new HLAInteractionEventMessage();
 }
};

Figure 23 HLA Interaction Class for Declaration Management Service
import com.xj.anylogic.hlasupportmodule.*;

public class HLAInteractionEventMessage extends HLAInteraction {
 // Construction/Destruction
 public HLAInteractionEventMessage() {
 super(HLAInteractionClass.GetInteractionClass("EventMessage"));
 }
 protected HLAInteractionEventMessage(HLAInteractionClass refClass) {
 super(refClass);
 }
 // Attribute accessors : event_type
 public String getevent_type() {
 Object result = GetParameter("event_type");
 if (result == null) {
 return new String("Error_in : event_type");
 }
 return ((String)result);
 }
 …
};

Figure 24 HLA Interaction Class for Object Management Service

82

The advantages of this approach are: (1) Reuse of the COTS simulation packages to make

the animation of simulated components, which is familiar to the modeler instead using a new

specialized visualization tool. (2) A visualization of remote federate can be coupled with an ex-

isting simulation model. This augmented visual information may help the distributed decision

maker who is able make management decisions based on both the local and the remote informa-

tion. One drawback of this implementation of animation of a remote federate may be the creation

of a copy of the remote federate in the visualization model, though the complexity of the copied

model is greatly depreciated. (3) It requires much less information (dynamic actor) to transmit in

order to achieve the same level of resolution as the animation of remote federate. If a dedicated

animation tool is used to display the scene of the remote federate, it requires transmitting not

only changes on the dynamic actor but also changes on the dynamic foreground.

83

CHAPTER FOUR: CASE STUDIES

Factors Affecting the Expectation of Casualties in the Virtual Range Toxicity Model

 The Virtual Range (VR) is “an environment that seamlessly integrates several models to

simulate and visualize complex systems. In the face of a disaster regarding the Space Shuttle,

there is a specific criterion that determines the launch decision. If toxic gases are released, it is

necessary to predict where the gas plume will go, how far it will extend, and the expected con-

centration of toxins. The Virtual Range Toxicity Model’s goal is to determine the expectation of

casualties (Ec) resulting from a toxic gas dispersion if a disaster occurs within the first 120 sec-

onds of an orbiter’s liftoff” (Sepulveda et al., 2004a). This system will be able to determine the

launch decision.

 The area affected by the dispersion of gases is called the range. It is a system of a space-

port. According NASA-Kennedy Space Center (KSC) the range is the volume of space through

which the vehicle must pass on its way to and from orbit. It is mostly used for vehicle tracking,

telemetry, and communications (Barth, 2002). The range encompasses many different opera-

tions; among them, range safety has a high level of complexity. The responsibilities of the safety

offices include three areas: 1. System safety reviews, 2. Flight safety, and 3. Ground safety

(Committee on Space Launch Range Safety, 2000). Ground safety concerns the projection of that

volume onto the surface and the people there that may be exposed in the event of a disaster. The

actual dimensions of the volume and its projection onto the surface depend on the weather condi-

tions, the vehicle’s speed and direction, and the risk component being analyzed. For example, the

volume (and the corresponding projection onto the surface) for the impact of gas dispersion will

84

85

be considerably larger (and have a different shape) than the volume and projection resulting from

the orbiter’s resulting debris. As the vehicle moves, the range encompasses new volumes of

space and leaves behind areas that fall out of range of potential hazards. The corresponding pro-

jection onto the surface also changes dynamically in size and shape.

 Toxic gas-related risk is a factor of exposure duration and toxic propellant concentration

or dosage that would result in casualties (death or incapacitating injury) of normal and sensitive

people in a given population area. Table 2 displays the most commonly used Shuttle propellants.

Public exposure to values above the ceiling concentration may cause casualties. Values in the

last column reflect time-weighted average concentrations that may cause casualties.

Table 2
Commonly used Shuttle Propellants (adapted from (Sepulveda et al., 2004a))

Toxicant Toxic Concentration
 Ceiling [ppm] 60-min TWA [ppm]

Ammonium Perchlorate /
Aluminum (solid propellant)

NH4ClO4 + Al
10 2

Hydrazine - 2
Nitric Acid (HNO3) 4 2

Mixed Nitrogen Oxides (NO, NO2, N2O4) 4 -

 The Shuttle has three fuel systems. Two are used to gain orbit and one is used to operate

the orbiter. The orbiter’s main engines, used to gain orbit, use hydrogen as fuel and oxygen as

oxidizer, both are stored in the external tank, these components are controllable because the reac-

tion can be stopped at any time and does not produce hazardous components. The Solid Rocket

Boosters used by the second system to gain orbit use aluminum as fuel, ammonium perchlorate

as oxidizer and a small amount of iron as a catalyst. This reaction produces several tons of hy-

drochloric acid (HCl). Once ignited, these components continue to burn until all of the fuel is

gone. This reaction cannot be stopped and provides the lifting force for the system. At the igni-

tion there are over a million pounds of propellants and it takes only two minutes to burn.

 For the purpose of this research, the VR focuses on the health impact of the release of

large amounts of HCl, a major toxicant in the event of a loss of the vehicle. The effect of expo-

sure to HCl may range from mild irritation and headache to incapacitation due to constriction of

the airway and lack of oxygen delivery to the brain. The analysis for other toxicants resulting

from a Shuttle disaster will be similar.

The Virtual Range Toxicity Model’s Architecture

 The VR integrates a Range Safety Simulation model, Geographic Information Systems

(GIS), population data, gas dispersion models, and weather information. The architecture is

modular and uses Commercial Off-The-Shelf (COTS) applications such as ARENA, CALPUFF,

and ArcMap so that it can be easily applied to other shuttle models and/or other launch operation

areas. Figure 25 shows the architecture of the Virtual Range Toxicity Model.

86

Figure 25 Virtual Range Toxicity Model Architecture (Sepulveda et al., 2004a)

 The Monte Carlo simulation – a technique that repeatedly generates random values for

uncertain variables to simulate a model – accounts for the effects on risk of factors such as vehi-

cle position and consumption of propellants, weather uncertainties, vehicle guidance, and vehicle

performance deviations. The need for a simulation of these factors is paramount. For example,

toxic gas impact risk is affected by variability in the meteorological and launch vehicle parame-

ters, wind uncertainties, and other weather related characteristics. The Monte Carlo simulation is

also used to determine the launch decision. For any planned flight path, it is needed to determine

what the Ec would be with the actual conditions (input parameters). These analyses will identify

parameters with the largest impact on the value of Ec and, therefore, identify where modeling

accuracy is most critical.

 The VR incorporates flight trajectory data and weather information in and around KSC, a

model of the toxics dispersion tailored for the NASA Shuttle at low altitudes, a GIS to visualize

the area over land affected by the disaster, a population model to determine the number of people

exposed in that area, and a probabilistic calculator/simulator to compute Ec.

87

 If an accident occurs, the model determines the position, volume, and initial dispersion

velocity of the released pollutants. These values are the input to CALPUFF (CALPUFF Model-

ing System, 2004) a multi-layer, multi-species, non-steady state Lagrangian puff dispersion

model - which in turn predicts the toxic concentrations of the toxicant at a specified time after

the onset of the accident. These values determine the envelope over land where the pollutant

concentration exceeds the ceilings imposed by the pollutant’s Exposure Response Functions

(ERFs). We use the number of exposed people under that envelope to estimate the number of

casualties resulting from exposure to toxic levels of the released toxic propellant for that simu-

lated disaster.

 The scope for Ec calculation is restricted to gas dispersion, for which we focus on dis-

playing boundaries. We use as critical value the concentration defined for an Ec = 30x10-6

casualties/launch, resulting from a number of legal decisions related to carcinogens causing can-

cer and generally accepted for the Federal Aviation Administration. The system was also de-

signed with a user friendly interface that provides numerical and graphical summaries of poten-

tial outcomes, with user-defined preferences for the display of units of measure, geographic loca-

tions, and time values.

Factors Affecting Ec

 This section describes the model components and the static and dynamic data integrated

into the VR and focuses on the factors that may significantly affect the computation of the expec-

tation of casualties resulting from the toxic effects of a gas dispersion that occurs after a disaster

88

affecting a Space Shuttle within 120 seconds of liftoff. This section is adapted from (Sepulveda

et al., 2004a).

Flight Path

 For a planned flight path trajectory (altitude, speed, direction), the system projects an ap-

propriate “envelope” (i.e., the footprint of the projected impact) for a given risk-component. We

focus on released toxic gases and the system predicts their paths and concentration levels.

 Figure 26 displays the typical launch sectors for launches from the Eastern Range (Cape

Canaveral Air Force Station and KSC; owned or leased facilities on downrange sites such as An-

tigua and Ascension; and in the context of launch operations, the Atlantic Ocean, including all

surrounding land, sea, and air space within the reach of any launch vehicle extending eastward

into the Indian and Pacific Oceans.) (AST, 2002). In general, vehicles are launched in an easterly

direction and on an azimuth that provides protection of land masses and populated areas on and

off the facility, including the Caribbean Islands, Bermuda, the northeast coasts of South America,

and Africa. For polar launches, the azimuth upper limit is 37° and the lower limit is 44°. For

equatorial launches, the azimuth upper and lower limits are 110° and 114°, respectively.

89

Figure 26 Launch sectors from the Eastern Range (adapted from (Sepulveda et al., 2004a)

 The path of the shuttle for equatorial launches is calculated from data of past launches

given in EFG (Earth-fixed geocentric) coordinates. This information was converted into latitude,

longitude, and altitude assuming a spherical model of Earth. To make the conversion from EFG

coordinates to longitude and latitude, we used the following formula:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
= −

222

1sin
zyx

zφ

⎟
⎠
⎞

⎜
⎝
⎛= −

x
y1tanθ

where φ is the latitude, θ is the longitude, and zyx ,, are the geocentric coordinates. For the

conversion to UTM (Universal Transverse Mercator) (NIMA, 2001) units we used the software

Corpscon, Version 5.11.08, which allows the user to convert coordinates between Geographic,

State Plane, and UTM systems on the North American Datum of 1927 (NAD 27), the North

American Datum of 1983 (NAD 83), and High Accuracy Reference Networks (HARNs) (NGS,

2004).

90

 Because of the assumption of the spherical model of the earth, the conversion gave us an

error of less than 0.5% as compared to the real position of the Launch Pad (Pad39a) in KSC. The

altitude was obtained using the distance from the center of the Earth to the position of the shuttle

before launch as reference. Using this method the calculated altitude at which the Solid Rocket

Boosters separation occurs was 44km, approximately 120 seconds after launch.

 In order to meet the data requirements of CALPUFF, the resulting data was translated

into UTM NAD 27 Zone 17. The UTM grid is a special grid adopted by NIMA (National Im-

agery and Mapping Agency) for military use throughout the world. In this grid, the world is di-

vided into 60 north-south zones, each covering a strip 6° wide in longitude. These zones are

numbered consecutively beginning with Zone 1, between 180° and 174° west longitude, and

progressing eastward to Zone 60, between 174° and 180° east longitude. Thus, the conterminous

48 States are covered by 10 zones, from Zone 10 on the west coast through Zone 19 in New Eng-

land (Figure 6). The first factor that may be significant is the direction (polar, equatorial) of the

launch.

Probabilities of Failure for the Shuttle

 The second factor is the exact location where the accident occurs. The VR interface

grants the analyst the ability to select a random occurrence for the accident (e.g., to use Monte

Carlo Simulation) or to “fix” the time of the accident. There is also a third time-related option,

which is to specify a series of observations at fixed time intervals (for example, at 0, 10, 20, 30,

etc. seconds after launch). The Monte Carlo simulation works by generating random numbers

based on the probabilities of certain events occurring which are obtained from a report on poten-

91

tial causes for a loss of vehicle (Fragola & G.Maggio, 1995). This document presents the total

probability of losing the vehicle due to the failure of the different systems and subsystems of the

shuttle. In order to obtain the probability of losing the vehicle at the different stages, the first 120

seconds were divided into representative events that depict a range of time for which we calcu-

lated the probability of losing the vehicle as a result of an issue within one of the main compo-

nents such as external tank, space shuttle main engine, integrated solid rocket booster, and or-

biter (Table 3). With the intention of getting a better estimate of the probability at the different

stages, shuttle experts were asked to assign weights to represent their best estimate for a failure

occurring in a given subsystem during the shuttle operation. This questionnaire is classified ac-

cording to the main subsystems: external tank, space shuttle main engine, integrated solid rocket

booster and orbiter. With this information the total probability was weighted and calculated at

each stage within the first 120 seconds.

92

Table 3
Representative Events in the Shuttle’s Trajectory during the first 120 Seconds (adapted from
(Sepulveda et al., 2004a))
S tage # S tart T im e

(sec)
E nd tim e
(sec)

In te rva l E vent D escrip tion

1 0 0 .3 0 .3 SR B Ign ition

SR Bs ign ite . T he SSM Es are a t 100% ra ted
power and g imba led to launch pos ition ; a ll
connections w ith the veh ic le re tract o r a re
dropped

2 0 .3 L ifto ff The veh ic le lifts o f the pad

3 0.3 6 5 .7 Tower c lear
M ake the necessary co rrections to rema in in
vertica l fl igh t

4 * 6 10 4

5 10 18 8 S tart roll
m aneuver

The S hutt le beings a roll program to ach ieve
a northeasterly track from KS C, heading
tow ard a 5 1 .6 degree inclination to the
equator.

 18 End roll
The shuttle com pletes the program m ed roll
m aneuver and is now posit ioned heads dow n,
w ings level.

6* 18 26 8

7 26 30 4 S tart thrott le
dow n

The three liquid-fueled m ain eng ines are
throttled dow n to 72 percent rated thrust to
ease the veh ic le's flight through the dense
low er atm osphere.

 30 Throttle dow n
com plete

8* 30 60 30

 60 M ax Q The maximum dynamic pressure reaches 580
psf

9 60 64 4 Throttle up
M ain eng ines beg in throttling back up . The
eng ine ’s thrust level w ill be taken to 104 .5
percent.

10* 64 120 56

11** 120 126 6 S RB stag ing

H aving consum ed a ll their propellant, the
solid rocket boosters are jettisoned from the
attachm ent points on the externa l fuel tank .
The boosters parachute into the A tlantic
O cean for recovery and reuse.

The Toxicity Model

 Shuttle Toxicants: In order to launch the shuttle into space, the shuttle relies upon two

Solid Rocket Boosters (SRBs). The SRBs contain aluminum powder as fuel and ammonium per-

chlorate as its oxidizer. Hydrochloric acid (HCl) is a major combustion product.

 Due to its relative quantity, the expected dispersion of HCl gas (density 1.26) is the major

93

determinant of shuttle launch decisions. The gas is initially exhausted as an aerosol, which dissi-

pates within a few minutes of flight and remains as gas. During normal operation of the shuttle

total exhaust of HCl is 163.3 tons during the first 15 kilometers of flight. About 72.5 more tons

are exhausted by two minutes after launch (AIAA, 1991). In the event of a disaster, the SRBs

separate from the shuttle, burning like “Roman candles” as they fall. If a disaster occurs close

enough to lift-off, it is possible under some meteorological conditions that the ground concentra-

tion would exceed the 10 parts per million, which is the limit set for a ten-minute exposure. The

short-term exposure limit (STEL) for HCl is 7 ppm (Hill Brothers Chemical Company, 2001).

This irritating exposure can result in constriction of the upper respiratory tract..

 The Gas Dispersion Model: The health impact of the release of large amounts of hydro-

chloric acid, a major toxicant in the event of a loss of vehicle, may be catastrophic. The effect of

exposure to HCl may range from mild irritation and headache to incapacitation due to constric-

tion of the airway and lack of oxygen delivery to the brain. If a “loss of vehicle” event occurs

close enough to lift-off, it is possible under some meteorological conditions that the ground con-

centration would exceed 7 ppm, the short-term exposure limit (STEL) for HCl for normal people

(Hill Brothers Chemical Company, 2001). For HCl, mild symptoms include irritation and head-

ache, which are reversible within 48 hours and do not interfere with normal activity or require

medical attention (Philipson, 1999). Moderate symptoms include cough and shortness of breath,

and medical attention might be necessary. Severe symptoms include disorientation due to con-

striction of the airway and consequent shortfall in delivery of oxygen to the brain; changes to

lung tissue are irreversible in this category. Of course, the STEL values for sensitive people

(children, the elderly, and people with asthma or other respiratory diseases) are even smaller.

94

 For the evaluation of the gas dispersion and toxic effect we use CALPUFF, developed

and distributed by Earth Tech, Inc (Earth Tech, 2000). CALPUFF simulates the effects of time

and space by varying meteorological conditions on pollutant transport, transformation, and re-

moval under inhomogeneous and non-stationary conditions. CALPUFF has modules to assess

toxic effects of specific chemical agents and factors such as variability of meteorological condi-

tions, dry deposition and dispersion over a variety of spatially varying land surfaces, low wind

speed dispersion, or wet removal of the pollutant.

 There are several factors associated with CALPUFF that may affect the value of Ec, the

most important of which are the initial speed of the toxic plume, the weather conditions (humid-

ity, temperature, etc.), the wind speed and the direction.

 The Weather Factor: CALPUFF modeling system was developed as part of a study to

design and develop a generalized non-steady-state air quality modeling system for regulatory use.

CALPUFF (a puff model) has recently been accepted by the US EPA as a guideline model to be

used in all regulatory applications involving the long-range (>50km) transport of pollutants. It

can also be used on a case-by-case basis in situations involving complex flow and non-steady-

state cases from fence-line impacts to 50 km (NIWAR, 2004). It includes three main compo-

nents: CALMET, CALPUFF, and CALPOST. In addition, it also includes several preprocessing

programs to interface the model to standard, routinely-available, meteorological, and geophysical

datasets.

 CALMET is a meteorological model that develops hourly wind and temperature fields on

a three-dimensional grid modeling domain with associated two-dimensional fields such as mix-

ing height, surface characteristics, and dispersion properties. CALPUFF is a multi-layer, multi-

species non-steady-state puff dispersion model which can simulate the effects of time and space

95

by varying meteorological conditions on pollutant transport, transformation, and removal. This

is done by means of the fields generated by CALMET; or as an option, it may use simple mete-

orological data without the grid. Selected temporal and spatial variations in the meteorological

fields are explicitly incorporated in the resulting distribution of puffs throughout a simulation

period. CALPUFF contains algorithms for near-source effects such as building downwash, tran-

sitional plume rise, partial plume penetration, and sub-grid scale terrain interactions, as well as

longer range effects such as pollutant removal (wet scavenging and dry deposition), chemical

transformation, vertical wind shear, over-water transport, and coastal interaction effects. It can

accommodate arbitrarily-varying point source and grid area source emissions. Most of the algo-

rithms contain options to treat the physical processes at different levels of detail depending on

the model application. The primary output files from CALPUFF contain either hourly concen-

trations or hourly deposition fluxes evaluated at selected receptor locations.

 CALPOST is used to process the output files produced by CALPUFF and to summarize

the results of the simulation. When performing visibility-related modeling CALPOST uses con-

centrations from CALPUFF to compute extinction coefficients and related measures of visibility,

reporting these for selected average times and locations.

 Puff models represent a continuous plume as a number of discrete packets of pollutant

material. Most puff models evaluate the contribution of a puff to the concentration at a receptor

by sampling at particular time intervals (sampling steps). The total concentration at a receptor is

the sum of the contributions of all nearby puffs averaged for all sampling steps within the basic

time step. Depending on the model and the application, the sampling step and the time step may

both be one hour, indicating only one “snapshot” of the puff is taken each hour. A traditional

96

drawback of the puff approach has been the need for the release of many puffs to adequately rep-

resent a continuous plume close to a source.

 CALPUFF uses either of the following two alternatives to the conventional sampling

function: a sampling scheme that employs radially symmetric Gaussian puffs and a scheme that

uses a non-circular puff (a “slug”), elongated in the direction of the wind during release to elimi-

nate the need for frequent releases of puffs (Earth Tech, 2000).

CALMET requires four types of input files: Surface Meteorological Data, Upper Air Data,

Overwater Observations, and Geophysical Data (Earth Tech, 2000). The weather information

gathered corresponds to days in 2002 in which a launch took place, specifically: March 1, April 8,

June 5, October 7, and November 23.

 In simulating future launches for a given launch window (projected day and time for

launch), we will gather similar weather information that occurred for the same time frame within

the same week in the previous three years and use the average and extreme values observed for

the simulation.

Surface Meteorological Data. The surface meteorological observations were obtained from

(NOAA, 2004). These meteorological data files contain hourly observations of: Wind speed,

Wind direction, Temperature (part of surface data file), Cloud cover, Ceiling height, Surface

pressure, Relative humidity, and Precipitation type code. The Surface Meteorological Data re-

quires information from different nearby stations for more accuracy given the position and code

of the station. We used the data from four different stations in Florida. The WBAN codes and

locations are as follows: MCO in Orlando, DAB in Daytona Beach, ORL in Orlando, and MLB

in Melbourne. None of these stations had the surface pressure, cloud cover or precipitation type

97

code so it was necessary to use the default values. CALMET requires hourly information for all

of these fields (NOAA, 2004).

Upper Air Data. This set of observations contains twice-daily observed vertical profiles of: Wind

speed, Wind direction, Temperature, Pressure, Elevation. The data was obtained from station

XMR in Cape Kennedy from NOAA’s Radiosonde Database Access (NOAA, 2004).

 Geophysical Data. The data file contains the geophysical data inputs required by the

CALMET model. These inputs include: Grid fields of terrain elevations, Land use categories,

Surface roughness length, Albedo, Bowen ratio, Soil heat flux constant, Anthropogenic heat flux,

and Vegetative leaf area index.

 Over-water Data. This data is necessary to know the Overwater transport and dispersion.

For this purpose it is necessary to have the following information: Air-sea temperature differ-

ence, Air temperature, Relative humidity, Overwater mixing high, and Wind speed and direction.

 The location of the overwater site is specified for each observation. The information col-

lected was taken from the closest buoy, in this case Station 41009 - CANAVERAL 20 NM East

of Cape Canaveral. This information has been obtained from the National Data Buoy Center, a

division of the NOAA. (NOAA, 2004) (see also (Gesser R, 2003) for information about the use

of overwater observations in CALMET).

 Some of the data that was found in NOAA did not match the requirements of CALMET,

so we calculated the missing parameters with theoretical formulas. For instance, the Relative

humidity was not part of the information found in the NOAA’s files. Therefore, we used the va-

por pressure, the saturation vapor pressure, the dewpoint temperature, and the ambient tempera-

ture found from NOAA to calculate it.

98

 In the VR interface, the analyst is given the option of selecting any of the given dates.

The analyst can also change the default values for the wind speed and direction for any selected

day. As an alternative, the “All days” option may be selected which results in one independent

simulation run for each of the selected weather profiles.

Geographic Data and Population Models

 The VR uses ArcGIS – a powerful commercial GIS application that provides data visu-

alization, query, analysis, and integration capabilities along with the ability to create and edit

geographic data – to identify the region covered by the dispersed gas.

The area covered in our simulation is basically the area around the Cape Canaveral region, which

includes mainly Brevard and Orange Counties and a large part of the sea around the Cape. The

simulation covers about 150 km in each direction from the source (Cape Canaveral). Since this

area is a flat, noncomplex terrain and surrounded by sea, it has a good flow of winds, pressure,

and temperature variations through it. So, the weather data plugged into the model plays an im-

portant role in the simulation. The area covered by the simulation is divided into a number of

grids with equal spacing to facilitate the study of concentrations of the explosions in the area

considered. Each grid can be a square block, whose side can range from 10s of meters to 100s of

kilometers.

 Population Model. Using the LandScan Global Population Database, a public domain

database of the world’s population developed by Oak Ridge National Laboratory (ORNL), to

present population data associated with the covered region, the VR determines the population at

risk for that specific risk-component (LandScan, 2003). LandScan includes the best available

99

census counts (usually at province level) for each country and allocates these figures into rural

and urban population distributions on a 30" X 30" lat/long grid cell system. To assign values to a

specific grid cell, LandScan calculates a probability coefficient for each cell and applies the coef-

ficients to the census counts. The probability coefficient is based on slope, proximity to roads,

land cover, nighttime lights, and an urban density factor.

 Exposure Response Functions: Figure 27 shows Exposure Response Functions (ERFs)

for HCl for sensitive and normal people subject to a 30-minute exposure. The sensitive popula-

tion was defined as children through age 14 and adults aged 75 and over, as well as all others

with respiratory illnesses. In Brevard County, recent census data shows that 42% of the popula-

tion is composed of those either those 18 and younger or those 65 and older; this number is ex-

pected to increase by about 55% by the year 2010 (United Way of Brevard County, 2002).

These curves show that concentrations of 15 ppm and 41.5 ppm of HCl result in an expectation

of casualties of about 30 in a million launches (Ec= 30x10-6) for sensitive and normal people,

respectively. ERF curves have been computed for nitric acid aerosol, nitrogen dioxide, and hy-

drochloric acid (Philipson, 1999). They were constructed by a panel of about 20 expert toxi-

cologists who provided best estimates of the 1- and 99-percentiles of expected casualties. Below

the first percentile, “essentially no one in a population of a given sensitivity category would be

affected to a given level of severity.” Above the 99th percentile, “essentially all in the popula-

tion would be so affected.” Twelve estimates (with ranges of uncertainty) for each substance and

duration of exposure (10, 30, 60, and 120 minutes) were provided by members of the panel of

experts: one for each percentile, casualty type (mild, moderate, and severe), and victim type

(sensitive, normal). Some of the panelists computed duration estimates from 1-hour estimates

according to Haber’s Law, which states that “an effect level is directly proportional to exposure

100

concentration multiplied by time” (Philipson, 1999). Once these estimates were decided upon by

the panel, ERF curves were then calculated as cumulative distributions.

Figure 27 Exposure Response Function for HCl (adapted from (Sepulveda et al., 2004a)

 Geographic Data Model. ArcGIS is used along with LandScan Global Population Data-

base. In this GIS environment, the model of population distribution is integrated with the gas

dispersion model to calculate Ec for that risk component given a loss of vehicle. Spatial Analyst,

an extension toolset in ArcGIS, is used to generate the query on the HCl data from the Gas Dis-

persion Model to select the region where the concentration of the HCl exceeds a critical value.

Zonal Statistics calculates the statistics for each zone of a zone dataset based on values from an-

other dataset. A zone is a region in which all the cells in a raster have the same value, regardless

of whether or not they are contiguous. The sum of the output gives the total number of people

affected in that critical HCl concentration zone.

 For the VR, the sensitive and normal HCl severe ERFs were combined according to the

sensitive and normal population mix in Brevard County, Florida. A critical value of 15 ppm was

101

used as a baseline. This value represents a value where most sensitive people will be affected but

most normal people will not. In the sensitivity analysis we will vary this factor by increasing the

critical HCl concentration by increments of 10 until we reach 45 ppm, a value where almost the

whole population will be affected (Sepulveda et al., 2004a).

 Note that Spatial Analyst and LandScan combine to give an estimate of the number of

people that may be exposed in the affected area. However, this figure represents an upper limit

for the number of people at risk as some people will undoubtedly be able to take cover or flee the

region before the gas dispersion reaches it. Still a sensitivity analysis could be done on the pro-

portion of the exposed people that will actually die or be incapacitated as a result of the accident.

Integration of the Components Models

 The Virtual Range Model in summary works as follows: An Arena model simulates the

time of accident, which is determined by the cumulative probability of an accident occurring in

ten different stages during a launch. Each of these stages has a different duration and chance of

accident. Once the stage is determined, the time of accident is fixed by equal chance within the

stage. Based upon the time of accident, the model references coordinates for the path of orbiter

and determines the volume of remaining pollutants from the existing model data file. These val-

ues are the input to CALPUFF, which in turn predicts the toxic concentrations for each toxicant

after one hour. We enter these values as a layer into ArcMap, to determine the envelope over

land where the pollutant concentration exceeds the ceilings imposed by the corresponding ERF.

ArcMap’s Spatial Analyst has the ability to determine the number of people covered by the dis-

played layer. We use the number of exposed people and the parameters resulting from the pollut-

102

ant’s ERF (we use as critical values the concentrations defined by Ec = 30x10-6) to estimate the

number of casualties for that simulated disaster resulting from exposure to toxic levels of the re-

leased toxic propellant. Figure 28 shows the VR simulation model user interface. Repeating the

procedure for enough simulation runs, we can get enough information to generate an “average”

boundary and its associated confidence interval.

Figure 28 VR Simulation Interface

 In our initial results, the sensitivity analysis shows that wind direction and the time of ac-

cident (seconds after launch) have the most significant impact on the number of people on the

ground exposed to dangerous concentrations of the toxicant one hour after the onset of the disas-

ter. In these runs, however, we varied wind direction from 0o to 360o in increments of 45o. In the

final runs the limits for variation in wind direction will be given by the extreme values observed

in actual launch dates.

103

 The factors selected for the final analysis are summarized in Table 4. .The dependent

variable in the analysis is the expected number of people on the ground exposed to dangerous

concentrations of the toxicant one hour after the onset of the disaster.

Table 4
Factors affecting Ec (Sepulveda et al., 2004a)

Factor Example Range
Flight path’s azimuth

(direction of the launch) 112o Polar: 37o-44o; ecuatorial:
110o -114o

Time of accident [seconds after launch]
(sets altitude and amount of pollutants release

d)
15 0-120; will try 0, 5, 10, 15, 20,

25, and 30 seconds.

Nature and amount of the released toxicant
(depends on initial value, flight time,

and consumption rate)
HCl, 8 tons See Table 2.

Initial velocity of the gas plume 380 (CALPU
FF’s default) Needs further research

Weather conditions 4/8/2002 As represented
by 5 actual launch dates

Wind direction (f(altitude)) 200 degrees Limits represented by angles
observed in actual launch dates

Wind velocity (f(altitude)) 10 m/s Limits represented by speeds
observed in actual launch

Critical concentration for the pollutant 15 ppm 15 – 45 ppm
(from ERF for HCl)

The proportion of exposed population
incapacitated or dead as a result of the accident 60% 0 to 100%

 This case study presented the factors we have selected for an in-depth sensitivity analysis

of the population at risk, including vehicle trajectory, accident location, vehicle position and con-

sumption of propellants, weather and wind uncertainties, and amount and type of toxicants re-

leased. Such factors may significantly affect the computation of the population exposed and the

corresponding expectation of casualties resulting from the toxic effects of the gas dispersion that

occurs after a disaster affecting a Space Shuttle within 120 seconds of liftoff.

104

Implementing the High Level Architecture in the Virtual Test Bed

 The distributed simulation implementation described in this section represents different

systems that interact in the simulation of a Space Shuttle liftoff. This example implementation

displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a

simulation of the Launch Scrub Evaluation Model (Sepulveda et al., 2004b). The implementation

follows the HLA as the principal framework to integrate all the different types of models that

need to be a part of the VTB. For example, a spaceport can be represented using different types

of models using different information spaceport size and operation. The simulation system will

be a subsystem that will evolve over time to meet this important requirement.

 Many factors contribute to a launch vehicle launching on time. The launch vehicle,

spacecraft, and supporting range must all be ready to go on time in order for the launch to occur.

Each of these elements may have supporting systems consisting of hundreds of subsystems and

millions of individual components. Thousands of opportunities exist for technical system failure

or human error. Other factors such as weather and launch area intrusions are out of the control of

the launch officials. The different elements affecting launch decisions are addressed through two

simulation models that were built independently.

 The first model simulates Space Shuttle flow from processing at the Orbiter Processing

Facility (OPF), through transport to the launch pad, liftoff, mission, landing at KSC, and refur-

bishing at OPF to get ready for a new launch. This is a simplified version of the conceptual flow

diagram described by the Space Shuttle Processing Model (Cates, Steele, Mollaghasemi, & Ra-

badi, 2002). A single shuttle is used to route between the different facilities and launch opera-

105

tions at KSC. All processing times come from real world data as included in the Space Shuttle

Processing Model.

 In the Space Shuttle Processing Model, when the orbiter reaches the launch pad and is

ready for launch, the simulation generates a random variable to determine the time that will

elapse until the launch occurs. This time follows a theoretical distribution that closely matches

events as historically observed. Those events account for historically observed instances of de-

lays or scrubs that affected the launch process. A delay means the launch is postponed for a short

time but still occurs on the expected date. A scrub means the launch is postponed for at least one

day. To illustrate the VTB capabilities and the procedure needed to combine existing computer

simulations, the randomly generated delay (or scrub) in the Space Shuttle Processing Model was

deleted, and processing requiring Shuttles to wait on the launch pad until an external authoriza-

tion for launch is received was added. To generate launch authorization commands, a second

model independently simulates the range, the launch pad, and other spaceport facilities. This

model focuses on events occurring in the range and in the processing facilities that can cause

launch delays or launch scrubs due to mechanical or electrical failure. Although both models

discussed here were built using Arena, either one of them (or both) could have been built using

other software such as ProModel™, Anylogic™, or any other commercial simulation software

that supports an interface to the RTI.

The Space Shuttle Simulation Model

 The Space Shuttle Simulation Model (“LaunchPad”, here after) is a mini model of space

shuttle operations in Arena. Here we use a single shuttle to route in between different facilities

106

and launch operations at KSC. The Shuttle starts the processing from the OPF (Orbiter Process-

ing Facility). All processing time comes from real world data. After OPF processing, the shuttle

is routed to the PAD where it completes the PAD processing and sends the signal to the Launch

Delay and Scrub Model (“MissionControl federate”, here after) that it is ready to launch. At this

point in time, the LaunchPad will wait for a GO/NOGO signal from the MissionControl federate.

This signal passing takes place through RTI. As soon as the LaunchPad gets the signal from the

MissionControl federates to launch, it will route the shuttle to orbit, where it will finish the orbit-

ing process. At the end of the orbiting process, the model checks for the end-of-mission day and

lands the shuttle at KSC. After the shuttle lands at KSC the model checks the shuttle’s flight

number. If the flight number is 8, the shuttle is sent to Palmdale for maintenance. Otherwise it

will continue the cycle from OPF. If it is sent to Palmdale, it finishes the Palmdale processing

and returns back to OPF.

The Launch Delay and Scrub Model

 The Launch Delay and Scrub Model (“Mission Control federate”) represents the scrub

and delay logic with their probabilities in shuttle launch. The probability for scrub and delay

come from real world data. The MissionControl federate handles the logic and data.

 We have some historical averages of system failures per month. A system failure was

identified as a system or component failure that would result in a launch scrub. Launches can

continue with many individual components or subsystems not operating as long as they have a

backup or are not mission critical or safety critical mandatory items. Many factors (see Table 5

for detail) contribute to a launch vehicle launching on time. The launch vehicle, spacecraft, and

107

supporting range must all be ready to go on time in order for the launch to occur. Each of these

elements has supporting systems consisting of hundreds of subsystems and millions of individual

components. Thousands of opportunities exist for technical system failure or human error.

Table 5
Factors affecting delays and scrubs (adapted from (Lebo & Woltman, 2002))

System Subsystem Failure Rate
Airborne Systems 1 failure per month Launch Vehicle Ground Systems 3 failures per month
Airborne Systems 0.5 failures per month Spacecraft Ground Systems 2 failures per month
Telemetry Systems 1 failure per month
Tracking Systems 2 failures per month Range

Command Systems 1 failure per month
Weather Lookup table – varies by monthOther factors Launch Area clear Lookup table – varies by month

 A system failure was identified as a system or component failure that would result in a

launch scrub. Launches can continue with many individual components or subsystems not oper-

ating as long as they have a backup or are not mission critical or safety critical mandatory items.

For the launch vehicle, there was a 10.5% chance of the launch vehicle element causing a scrub.

For the spacecraft, there was a 6.8% chance of causing a launch scrub. Other factors such as

weather (see Figure 29) and launch area intrusions (for example, a pleasure boat or an un-

authorized aircraft entering a restricted area, see Figure 30) are out of the control of the launch

officials.

108

Graph for Bad Weather Occurance Rate
8

6

4

2

0
1 2 3 4 5 6 7 8 9 10 11 12

Time (Month)

Bad Weather Occurance Rate : Current Failures per month

Figure 29 Bad Weather Occurrence (adapted from (Lebo et al., 2002))

Graph for Launch Area Intrusion Rate
8

6

4

2

0
1 2 3 4 5 6 7 8 9 10 11 12

Time (Month)

Launch Area Intrusion Rate : Current Failures per month

Figure 30 Launch area intrusions (adapted from (Lebo et al., 2002))

 All of the hardware systems had a constant failure rate, but two items, weather and

launch area clearance varied significantly with the time of year. In these cases, lookup tables

were created to model the average “bad occurrences” per month for each month of the year. A

simplified model (see Figure 31 depicting the different contributions and how they should be

added was built using a System Dynamics approach.

109

Range Scrub
Range No-Go

Telemetry System
Failure Rate

Command System
Failure Rate

Tracking System
Failure Rate

Bad Weather
Occurance Rate

Launch Area
Intrusion Rate

Bad Weather f Area Intrusion fmonth

Launch
Vehicle
Scrub

Spacecraft
Scrub

Launch Vehicle
No-Go

Spacecraft No-Go

Ground Equipment
Failure Rate

Airborne System
Failure Rate

S/C Ground Equip
Failure Rate

S/C Airborne System
Failure Rate

Launch
Scrub

Probability

Figure 31 Contributions to the delays and scrubs (adapted from (Lebo et al., 2002))

 For the range, the combined contribution of weather and range intrusions is varied by

month since the weather and launch area surveillance components also varied. The probability

varied from 10% to 30% depending on the month. The spring and summer months showed a

higher chance of launch scrubs. The overall launch scrub probability is shown in Figure 32 and it

varies between 16 and 32% depending on the month. This data could be helpful for financial and

schedule planning for launch vehicles.

110

Graph for Launch Scrub Probability
0.4

0.3

0.2

0.1

0
1 2 3 4 5 6 7 8 9 10 11 12

Time (Month)

Launch Scrub Probability : Current

Figure 32 Overall Probability of a delay or scrub (adapted from (Lebo et al., 2002))

Integration of Space Shuttle Modell and Launch Delay and Scrub Model

 The integration that occurs between the modified Space Shuttle Simulation Model

(LaunchPad federate) and the Launch Delay and Scrub Model (MissionControl federate) is ac-

complished using DMS Adapter. The DMS Adapter’s infrastructure was designed to support the

integration of different manufacturing simulations with each other and with other manufacturing

software applications. Applications that might be integrated using the DMS Adapter include:

new or existing simulation created with existing, non-HLA-compliant simulation development

tools; existing enterprise software applications dealing with non-simulation situations (produc-

tion planning, human resources, inventory control, supply chain information, finance and ac-

counting, instruments data collection, etc); or general non-simulation and non-manufacturing

oriented legacy software applications. If incorporated into each federate, the DMS Adapter

works with the RTI to manage the exchange of object and interaction information between feder-

ates.

111

Figure 33 Distributed Shuttle Process Simulation using the DMS Adapter

 This case study demonstrated the integration of models built in COTS simulation package,

in this case Arena, using DMS Adapter as a gateway between the model and the RTI on the HLA

distributed simulation environment. This integration can be extended to develop a new and

unique collaborative computing environment where simulation models can be hosted and

integrated in a seamless fashion. The focus of our future work will be to integrate and develop

the Virtual Test Bed with the Virtual Range. The emphasis is on the integration of the VTB

operations and the Virtual Range models. The modular architecture of the VTB which can be

integrated enables the analysis of new vehicle types (e.g., the Crew Exploration Vehicle (CEV))

and the study of other launch sites. It is anticipated that the current environment will be

extended to support the integration of other discrete-event simulations of KSC operations, and to

make greater use of the High Level Architecture.

112

CHAPTER FIVE: A PROTOTYPE IMPLEMENTATION OF VTB
SIMULATION SYSTEM

Introduction and Motivation

 This chapter first presents a successful implementation of a prototype VTB simulation

system for a proof of concept using a distributed simulation engine - the Run Time Infrastructure

(RTI) of the High Level Architecture (HLA); the HLA interoperability supporting tools include

the SPEEDES gateway, Distributed Manufacturing Simulation (DMS) Adapter, HLA Support

Module (HSM); and simulation languages such as SPEEDES, Arena, and AnyLogic.

 The complex nature of VTB is a result of the combination of multiple simulations and

non-simulations (supporting tools), and a mixture of analytical discrete event simulation models

which generally can be executed “as-fast-as” possible and real-time factors as an input for the

model are only available through live applications (e.g. Weather Expert System). These factors

make it difficult to integrate into the VTB simulation architecture. The VTB federation consists

of the shuttle process federate, weather expert federate, Mission Control federate with the aug-

mented visualization of the federation, Monte Carlo federate, and virtual range federate. The pre-

liminary VTB simulation system manifests the requirement of VTB with respect to the distrib-

uted simulation interface on the HLA-RTI. By incorporating these federates, each of which rep-

resent operations in VTB modeled in various tools and computing environments, the VTB archi-

tecture can be used to analyze more complex, larger operations and provide associated solutions

such as structural process or cost optimization. This integration is accomplished by providing the

HLA interface at the communication level as well as the data representation level for multiple

113

simulation models. The purpose of prototype implementation is not only to demonstrate the

proof of concept, but also to validate the design approach for developing the VTB simulation en-

vironment.

Adapting Legacy Models to VTB Simulation System Using the HLA

Virtual Range Toxicity Model

 As described in Chapter 4, the Virtual Range toxicity model is an integrated set of soft-

ware packages that exchange information in order to calculate the Expectation of Casualty as a

result of gas dispersion when an accident ending in loss of vehicle affects the Space Shuttle

within 120 seconds of liftoff. Among these software packages is a MonteCarlo simulation, a gas

dispersion model (Calpuff), a population model (LandScan), a Geographical Information System

(ArcView and ArcGIS Spatial Analyst) and access to weather data and flight path information.

 The VR toxicity model was divided into two simulation models (federates), MonteCarlo

federate and VR federate. The MonteCarlo federate simulates the time of accident, which is de-

termined by the cumulative probability of an accident occurring in ten different stages during a

launch. Each of these stages has a different duration and chance of accident. Once the stage is

determined, the time of accident is fixed by equal chance within the stage. Based upon the time

of accident, the MonteCarlo federate references coordinates for the path of orbiter and deter-

mines the volume of remaining pollutants from the existing model data file.

 Each request of simulated launch from other federates the MonteCarlo federate deter-

mines whether the launch is successful or whether a simulated disaster occurs. If there is a suc-

114

cessful launch the Monte Carlo federate sends an interaction indicating “successful launch”

through the RTI; if there is an accident it sends an interaction which include the location (latitude,

longitude, and altitude) and the concentration of toxicant released to the federation. All other

components of the Virtual Range toxicity model are included in the VR federate and they work

the same as before. Figure 34 shows the new architectures of the Monte Carlo federate and the

VR federate which are adapted to the HLA distributed simulation.

Figure 34 The MonteCarlo Federate and The VR Federate architecture

 The advantages of this adaptation are twofold. First, we can simulate many different shut-

tles and orbiters which may have different probability of failure without changing the Virtual

Range toxicity model. Since the inputs to the Monte Carlo federate highly depend on the prop-

erty of the shuttle, each Monte Carlo federate can be built such a way that a Monte Carlo feder-

ate represents for a shuttle as a components model. The component model can be integrated to

the VTB as it is necessary. Second, the process of each federate can be initiated by other simula-

115

tions such as the LaunchPad federate or the Mission Control federate and the intermediate infor-

mation can be utilized by other federates in the VTB.

Weather Expert System (WES)

 The Web-based Weather Expert System (WES) is a critical module of the Virtual Test

Bed development to support “GO/NO-GO" decisions for Space Shuttle operations in the intelli-

gent Launch and Range Operations (ILRO) program of NASA: the description of which in this

section references (Rajkumar & Bardina, 2003). The weather rules characterize certain aspects of

the environment related to the launching or landing site, the time of the day or night, the pad or

runway conditions, the mission durations, the runway equipment and the landing type. Expert

system rules are derived from weather contingency rules, which were developed over several

years by NASA. Backward chaining, a goal-directed inference method, is adopted to the system

rules, because a particular consequence or goal clause is evaluated first, and then chained back-

ward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the

decision is expressed. The expert system is continuously verifying the rules against the past one-

hour weather conditions and the decisions are made.

 The launch weather guidelines/factors involving the Space vehicles, which are used as

rules for the weather expert system, are similar in many areas, but distinctions are made for the

particular characteristics of each. These guidelines are very conservative and seek to avoid pos-

sibly adverse conditions that focus on ambient temperature, wind speed, precipitation, lightning,

type of clouds, cloud temperature and thickness.

116

 The virtual test bed is used to simulate the mission, control, ground-vehicle, launch and

range operations, during which weather plays a crucial role. Complex operations and their impli-

cations raised the need for an automated weather expert system to help analyze and provide ex-

pertise to management. The expert system’s primary goal is to make its weather expertise avail-

able to macro level decision makers who need answers quickly and rapidly. It can help assess

situations and facilitate launch planning. Analyzing text, numeric data and satellite images, the

expert system helps save money by reducing the time involved in weather analysis allowing

management to be more productive by making smarter, faster decisions.

 In the weather expert system, the user interface is automated in such a way that the inputs

to the expert system are downloaded and fed to the system in a periodic manner. There is no

need for human intervention in the expert system and decisions for launch are automatically dis-

played as a web page. The weather web expert system is based on Java technology and web en-

abled, which can be viewed from any part of the world.

 The real time weather data is obtained from different federal weather monitoring agencies.

Images and other types of data are downloaded and then processed, extracted and converted to

suitable numerical values. The image processed data is stored in an image file and other numeri-

cal values are stored in a weather file. The above mentioned files constitute the inputs for the ex-

pert system. NASA derives the rules for the weather expert system from weather contingency

rules developed over several years. An example of a weather rule is (Rajkumar et al., 2003):

If (36 < Temperature < 98) and
 (0 < Wind Speed < 24) and (Precipitation = ”No”) and
 (Lightning= ”No") and (Cloud Temperature > 32) and
 (Cloud height > 20000 ft) and (Cloud thickness < 4500 ft) and
 (Cumulus = “No”) and (Cumulonimbus = “No”)
Then
 Launch=”GO”

117

 The above rule has nine antecedent clauses joined by a conjunction “and” and has a sin-

gle consequent clause (Launch). The rule is triggered, if all antecedent clauses are set to be true.

The clause conditions are derived for each vehicle type. Depending upon the launch vehicle, the

rules are slightly changed. The rule variables remain constant for most of the launch vehicles.

The rule base consists of rules for GO and NO-GO decisions. Depending upon the prevailing

weather conditions, decisions are made. The advantage of the weather expert system (WES) is a

unified decision of various weather factors which affects Shuttle launch.

 We identified the weather expert system (WES) as an essential component in the Virtual

Range. In order to integrate the WES to the VR, we decided to convert Socket based VR archi-

tecture(Sepulveda et al., 2004a) to the HLA based distributed simulation .

 The integration of the WES into the VR infrastructure was accomplished using the RTI

APIs exposed through the Java Binding. The WES can pass information about the decision and

the different weather information into the VR and its federates. The integration of the WES into

an HLA federation includes developing Federation Object Model (FOM) based on the informa-

tion which needs to be exchanged, implementation of FederateAmbassador and adding some ad-

aptation code into WES.

 First, based on the objective of the federation, the shared information needed from the

WES are mainly the launch decision and the processed data which are collected from various

weather sources and then incorporated into the decision algorithm.

 Second, the interface was implemented using RTI Java Binding which is a thin layer of

C++ code that exposes the native C++ API of the RTI to Java applications through Java Native

Interface (JNI) (DMSO, 2001). In addition, since the original WES is running on a Tomcat Web

Server and the users interact with the application by using a web browser, it is difficult to make

118

WES as a federate within the current VTB architecture. Therefore, most of classes in the original

WES were converted into Java Applications without altering the main algorithms, which is a

simple change in the Java interface (Figure 35).

Figure 35 Adapted Weather Expert System (WES) Architecture to the HLA

 In addition to the conversion, we have created a user interface to initiate the operations

including acquire source data from various weather sources, process, invoke decision-making

processes and joining to the VTB federation as a WES federate (Figure 36). The WES federates

publishes (updates) near-real time weather information and GO or NO-GO decisions requested

by the federation. The weather information and GO or NO-GO decisions will be used not only to

the VR as a weather factors for CALPUFF models but also to Mission Control model to decide a

launch weather criteria.

119

Figure 36 An implementation of the WES federate

Implementation of Space Shuttle Simulation Model using the SPEEDES Process Model

 This section details a SPEEDES Process Model based implementation of Shuttle Trans-

portation System (STS) model which was originally developed by Arena from Rockwell Soft-

ware. This implementation will provide the following benefits. First, it makes the new model to

be able to interact with the VTB federation through SPEEDES HLA gateway. Second, the new

model will be flexible enough to extend external interfaces which may run asynchronously from

it. Finally, the model may run on various computer architectures. Not to mention parallel execu-

tion, speed-up, and the advantages of Object-Oriented simulation modeling (Joines & Roberts,

1995; Rossetti et al., 2000; Law et al., 2000). These are benefits of the transfer and also the re-

quirements of VTB we presented in Chapter 2. The needs for (selecting SPEEDES Process

120

Model as a modeling language for) transferring the original model into SPEEDES modeling

framework is apparent for two reasons. First, the original model was developed in the COTS

simulation package, Arena, that is actually an extended network of the basic modeling modules

(or templates) concept of which are common to many other COTS simulation packages. In Arena

process-oriented world view of discrete event simulation is applied for modeling simulation sys-

tems.

 Second, by implementing a simulation model in SPEEDES architecture the model can

include many exceptionally advanced features which are not available by other simulation lan-

guages or packages (e.g. parallel execution, multiple time management, load balancing, and ex-

ternal module interface, among others). The new model environment will prove even more use-

ful with the future additions to the original simulation model. These additions will allow for dif-

ferent resolution levels and the study of safety and human-behavior modeling issues. The second

reason using SPEEDES modeling framework is that it provides the HLA interoperability through

its HLA gateway as described in Chapter 2. The development process includes the description of

how the basic modeling elements the concept of which are common in COTS simulation pack-

ages, are facilitated and the process of coupling it to the HLA-RTI by SPEEDES’ HLA Gateway.

 SPEEDES’ Process Modeling facilities and the basic modeling components classes were

utilized to model the process (at high level) of the Shuttle Transportation System (STS). The

source of the process flow (high-level) model was the NASA Shuttle Simulation Model. The

NASA Shuttle Simulation Model is a simulation model for the operational life cycle of the Space

Shuttle flight hardware elements through their respective ground facilities at KSC, and to on-

orbit operations. The modeling approach of the NASA Shuttle Simulation Model was done at a

121

macro level, it included among others, the major processing facilities, ground support equipment,

and flight hardware elements.

 The basic modeling element classes described in Chapter 2 are utilized in the transfer

process. The flight hardware elements are modeled as active entity classes (subclass of S_Entity),

each of which has its own lifecycle of activities. The classes include the orbiter, main engines,

the left and right orbiter maneuvering system pods, the forward reaction control system, the solid

rocket boosters, and the external tank, among many others. The supporting facilities for the ma-

jor flight hardware elements are modeled also as active entity classes (subclass of S_Process)

each of which have different service time, schedule and require various resources.

Figure 37 Life cycle of the Orbiter (as an active entity)

 The classes include Orbiter Processing Facility, Vehicle Assembly Building, Launch Pad,

Assembly Refurbishment Facility, and Main Engine Processing Facility, among many others.

Ground support equipment is modeled as a passive entity class (subclass of S_Resource), each of

which has its own schedule and capacity. The model logic which includes the process of classes,

the stochastic input data, the hierarchy of classes (orbiter), and business rules follows that of

(Cates et al., 2002). Figure 37 shows the life cycle of the main active entity in the model: the or-

122

biter. Figure 31 shows a code sample of the S_Orbiter class definition on SPEEDES Process

Model.

void S_Orbiter::Process() {
P_VAR;
P_LV(double, delay_start_VAB);
 . // more P_LV (type, variable name)
 .
int successFlag;
SpObjHandle ProcessMgrHandle;

P_BEGIN(11);
delay_start_VAB = rand->GenerateDouble(10.0, 25.0);
WAIT(1, delay_start_VAB);

// -------------- For VAB ------------------
SCHEDULE_VABQueue_Enqueue(SpGetTime(), SpGetObjHandle
 ("S_VABQueue_MGR",0), SpGetObjHandle());
WAIT_FOR_RESOURCE(2, resource_VAB, 1, -1, successFlag);

processTime_VAB = rand->GenerateDouble(150.0, 200.0);
WAIT(3, processTime_VAB);

SCHEDULE_VAB_Release(SpGetTime(), SpGetObjHandle("S_VAB_MGR", 0),
 (SpObjHandle)(void*)process_VAB);

delay_VAB_LaunchPad = rand->GenerateDouble(250.0, 500.0);
WAIT(4, delay_VAB_LaunchPad);

// -------------- For LaunchPad ------------------
SCHEDULE_LaunchPadQueue_Enqueue(SpGetTime(), SpGetObjHandle
 ("S_LaunchPadQueue_MGR",0), SpGetObjHandle());
WAIT_FOR_RESOURCE(5, resource_LaunchPad, 1, -1, successFlag);

processTime_LaunchPad = rand->GenerateDouble(100.0, 120.0);
WAIT(6, processTime_LaunchPad);

// -------------- Request for Launch ------------------
SCHEDULE_Orbiter_SendMessage(SpGetTime(), GetObjHandle(),
"Request:Launch","S_Orbiter", SpGetTime(),0.0);
WAIT_FOR(7, launchapp,-1);
launchapp.Unset();
// -------------- Dispose ------------------
SCHEDULE_Orbiter_Dispose(SpGetTime(), SpGetObjHandle());
P_END;
}

Figure 38 S_Orbiter Process (Active Entity) Logic Example

123

 As shown in the simplified code example in Figure 32, the Process Model with the add-

on basic discrete-event simulation classes supports a readable structure for modeling the active

entities which in general represent the logical structure of the system being modeled.

Figure 39 Space Shuttle Federate Architectue

 The Space Shuttle federate consists of three executable applications: (1) Shuttle Process

Model which is a pure SPEEDES simulation model built incorporating the process model classes,

(2) SpeedesServer which enables communication between the SPEEDES model and the external mod-

ules by the HostRouter interface, (3) SPEEDES HLA Gateway which consists of the RTI interfaces

implementation (FederateAmbassador and RTIambassador), a “bridge” coordinating two-way flow of

information from both the RTI and SpeedesServer. In addition to the RTI interface in Shuttle

Process federate, since Shuttle Process model is implemented such a way that it passes informa-

124

tion through SpeedesServer, some additional applications such as a User Interface and a dedi-

cated visualization tools can be implemented via SpeedesServer.

Integration of the Framework for Spaceport Simulation System

 This section details a prototype implementation of the VTB simulation system for a proof

of concept experiment. The models integrated into the VTB simulation system represent differ-

ent systems (simulation system and live information system) that interact in the simulation of

liftoff. These models are the key simulation models that are currently available to VTB team in

some form of simulation software and identified as models which represent distinctive traits of

the VTB environment at the operation level, and which are independently developed (or transfer

to), in different times and with different purposes. The models include the Launch Pad federate,

Mission Control federate, Weather Expert System federate, Monte Carlo federate, and Virtual

Range federate. Three major simulation modeling tools – SPEEDES, Arena, and AnyLogic – as

well as non-simulation tools such as ArcMap and Calpuff are incorporated to created the models

and for coupling of the models into the VTB distributed simulation environment, SPEEDES

HLA Gateway, AnyLogic’s HLA Support Module (HSM), and DMS Adapter are utilized. The

VTB federation leverages the existing models and uses HLA-RTI interfaces as a supporting dis-

tributed simulation engine for exchanging information between the models. The HLA provides a

standard mechanism for interoperability and integration of simulations and supporting non-

simulation tools with respect to a means of communication and a standard representation of

common data. Figure 13 shows the configuration of the prototype implementation of VTB simu-

lation system.

125

 The configuration of the prototype is described in parts. First, a brief functional descrip-

tion of each model included in the prototype implementation is presented, and then the interac-

tions between the models during the federation execution are described.

Figure 40 A Prototype Implementation of VTB Simulation System

Interactions Between the Federates

 This section presents a brief functional description and the interactions of each model

taking place during the federation execution of the prototype implementation (Figure 41).

LaunchPad Federate

 The LaunchPad Federate is an adaptation of the NASA Space Shuttle Processing Model

126

(Cates et al., 2002) that simulates the flow of a space shuttle from landing at KSC, through its

normal OPF flow, the VAB SSV flow, and its pad flow.

Figure 41 Interactions between the models during the federation execution

127

 The simulation starts with the Shuttle reaching the pad in the LaunchPad federate and

sending a signal through the RTI indicating that it is ready to launch. In the LaunchPad federate,

when the shuttle arrives at the pad, a message is sent to the Mission Control federate and the or-

biter waits for authorization to launch. It is possible that the Launch Pad federate may get a num-

ber of delay or scrub messages before getting authorization. When the authorization arrives, the

Shuttle lifts off and at the same time a launch message is sent to Monte Carlo federate, and then

waits for message either “successful launch” from Monte Carlo federate or “accident” with num-

ber of expected casualties from Virtual Range federate. In the case of “successful launch”, the

LaunchPad federate displays flying around Earth and later returning to KSC, landing, and going

through the cycle again. If the mission ends up in an accident, the LaunchPad federate changes

the screen and shows the shuttle exploding, the date and time of the accident, the coordinates

where the explosion occurs, and the amount of contaminant (from the Shuttle’s unused propel-

lants) released into the atmosphere at that point.

Visualization (Mission Control Federate: The Launch Delay and Scrub Model)

 The Mission Control federate evaluates the range and after getting through the RTI, the

go ahead from the Weather federate, eventually authorizes the launch. This federate is activated

when it receives a message from the LaunchPad federate that the orbiter is at the pad and ready

to launch. The Mission Control federate then checks the systems in order to launch. The Mission

Control federate checks for any failures within the four systems. After checking the four systems

and verifying that no delays or scrubs occur, and also getting a “GO” launch-decision from the

128

Weather Expert System federate for the launch schedule, a message is sent through the RTI that

the systems in the Mission Control federate are all green and the launch is a GO.

 The Mission Control federate is the place where all the critical decisions are made during

the launch operation. It is desired to make as much information as possible available to the fed-

erate in a timely manner in order to support decision making process. For this purpose we aug-

mented the visualization of the VTB distributed simulation into the federation and the Mission

Control federate. The visualization includes the state of all five federates in the federation as well

as the messages passing between the federates. Since one of the main uses of visualization is to

provide the system state to the user for interacting with the simulation system, we created com-

mand buttons on the screen to demonstrate a primitive interaction to the federation.

Figure 42 Visualization of Mission Control Room

129

Monte Carlo Federate

 When the simulated orbiter lifts off, the Monte Carlo federate is notified through the RTI.

The Monte Carlo federate model receives the message from the Launch Pad federate that a

launch took place. The Monte Carlo federate then determines whether the mission is successful

or whether a simulated disaster occurs. This is done (as in all Monte Carlo simulations) through

the generation of a random number to decide whether there is going to be an accident or if there

is going to be a successful launch. If there is a successful launch the Monte Carlo federate sends

messages through the RTI to the Launch Pad federate and the Mission Control federate; if there

is an accident it sends messages which include the location (latitude, longitude, and altitude) and

the amount of toxicant released to the Virtual Range federate and the Mission Control federate.

Virtual Range Federate:

 If the message from the Monte Carlo federate indicates a successful launch, the Virtual

Range federate displays a counter of the number of launches and shows a summary of the current

weather. As with all other Federates, the Virtual Range federate includes a clock showing date

and time. If the message from the Monte Carlo federate indicates an accident, the Virtual Range

model is activated and extracts the location of the accident in space and the amount of contami-

nants released in the atmosphere from the message. In the Virtual Range model, Calpuff is then

initiated and uses the weather conditions for the day of the simulated launch to determine the

concentration of the contaminant in different locations around the accident site one hour after the

accident. This information is then input as a layer in ArcMap and the points where the concentra-

tion of the pollutant exceeds the limits determined by the contaminant’s Exposure Response

130

Curves are displayed over a map of Florida. Spatial Analyst, a companion software to ArcMap,

performs a query on population exposed over the highlighted area. The population data is taken

from LandScan and imported as a separate layer into ArcMap. At the end, the Virtual Range fed-

erate reports the number of people exposed to toxic levels of the released toxic propellant by

showing a map of Florida with the area effected by the accident.

Weather Expert System (WES) federate

 The Weather Expert System (WES) is a Java-based model. It shows a summary of the

weather forecast (updated each day). It collects the information from different websites; for ex-

ample, the temperature and wind speed from http://weather.noaa.gov/weather. When the WES

Federate receives the message that the Mission Control systems are a GO, it checks whether the

weather conditions are also a GO. If so, the message is sent through the RTI indicating that the

launch is authorized.

131

http://weather.noaa.gov/weather

132

CHAPTER SIX: CONCLUSION

Summary

 As the size, complexity, and functionality of systems we need to model and simulate con-

tinue to increase, benefits such as interoperability and reusability enabled by distributed discrete-

event simulation are of enormous interest in many disciplines. This research proposes a distrib-

uted simulation based framework for modeling and simulation of complex systems. The frame-

work overlooks simple objects and components and views the complexity of a simulated system

at a system-wide level. A simulation of a complex system which is itself a system of systems can

be managed by aggregating individual subsystems within the framework.

 The distributed simulation engine used with this framework is the High Level Architec-

ture (HLA). The legacy simulation models we have built in previous projects with the Virtual

Range Model and the Weather Expert System are integrated into the framework.

 An important aspect of the approach to modeling complex systems adapted in this re-

search effort is that any model developed using COTS simulation languages with HLA interop-

erability such as Arena and AnyLogic, or general purpose programming languages such as C++

and Java can be used to model complex systems.

 In the case study of modeling Spaceport, the framework has been designed as a distrib-

uted simulation to facilitate the integrated execution of different simulations, (shuttle process

model, Monte Carlo model, Delay and Scrub Model) each of which is addressing different mis-

sion components as well as other non-simulation applications (Weather Expert System and Vir-

tual Range). Although these models were developed independently at various times, the original

133

purposes and organizations have been seamlessly integrated, and interact each other through the

RTI to simulate a shuttle launch related processes.

 In order to support a seamless integration of essential simulation components in Space-

port, we have presented the HLA, a state of art distributed simulation engine, currently available,

with multiple approaches of adaptation to Spaceport requirement. These adaptation approaches

include (1) designing the primitive simulation component classes to promote an easier model

building process and to support shared data structure compatibility within the federation, (2) cus-

tomizing existing simulation models to be able to interact each other through the HLA-RTI with

help of DMS Adapter, SPEEDES HLA Gateway, and AnyLogic’s HLA Support Module, and (3)

developing a visualization method that animates the state of a remote simulation in the local fed-

erate using COTS simulation packages with HLA interoperability support. This visualization can

be seen as a prototyping method of the life cycle model. The method of visualization of remote

federates presented in this study can be used to identify user requirements and the level of fidel-

ity required, and test user interface design. After identifying properties of interest through proto-

typing the visualization can be developed in high resolution and even in a 3D or virtual reality

environment.

 While the framework is implemented in the context of Spaceport simulation, it is devoted

to address a small number of subsystems in the complex system, which is actually a simplified

representation of Spaceport. The same modeling framework developed in the study could easily

be ported to various disciplines such as distributed manufacturing, supply chain, and enterprise

engineering.

 This study found that the defining properties of complex systems - interaction and emer-

gence – are realized and the software life cycle models (including prototyping and the spiral

134

model) are used as metaphors, not actual development processes, to manage the complexity of

modeling and simulation of the system. The system of systems continuously evolves to accom-

plish its goals, during the evolution subsystems coordinate with one another and adapt with envi-

ronmental factors such as policies, requirements, and objectives. In addition, when the prototyp-

ing of experimental models using COTS simulation languages proves its feasibility to address

the problem, high fidelity, high performance modeling can be considered. The prototyping

method is applicable because COTS simulation languages are more powerful and easy to use and

are inexpensive. For these reasons, COTS simulation languages are becoming more common-

place and are often equipped with useful pre-built modules (or templates) and a relatively high

quality animation.

Limitation

 There are a number of challenges remaining to make this framework work systematically

with respect to the integration of the models into the application repository which comprises of

simulation models and non-simulation software. Although the current framework proves the fea-

sibility of interoperability, it requires many steps to realize the how the models interact. The

steps include coupling an interface to the standard distributed simulation engine, developing

common data model, and adapting existing simulation code into a new distributed simulation en-

vironment, among others. Model integration at the software level requires a considerable amount

of work if they are developed in different modeling languages.

 A variety of COTS simulation languages have been developed and used widely in many

disciplines, not many of which provide an interface to the standard distributed simulation. Since

135

the framework is based on the distributed simulation interfaces must be developed either by the

COTS simulation language vender or the simulation developer. If the interface is embedded in

the COTS simulation language’s framework it may reduce the complexity of integration in many

levels. However, if we can develop a gateway which enables COTS simulation languages to in-

teract within the distributed simulation it is also acceptable and reduces complexity to some de-

gree.

 The number of models in the repository for a system of systems needs to be extended to

achieve the objective of complex systems. In the case of Spaceport cost models, training models,

3D real-time visualization of range, and optimization models of mission-related operations

would be some examples.

Future Work

 While extensive research has been performed to develop a framework for modeling com-

plex systems, much work still remains. As stated in the previous section, some limitations exist

in multiple areas. To enhance applicability of the framework to a wide range of complex system

simulation development, the framework can be extended in several areas.

Model Driven Architecture

 The most immediate need is for a repository of the simulation models which covers many

simulated systems in Spaceport and in VTB environments. The individual model should be reus-

able. Some important factors in simulation model reuse are: proper documentation, unambiguous

interface, selection of proper COTS simulation languages which are flexible, adaptable and ex-

136

tensible enough. The advantages from reuse of existing models would be: (1) low cost of model-

ing and rapid development; (2) the quality of reused model increases because it will be examined

by continued reuse; (3) it may reduce the complexity of the modeling process (Crnkovic, 2004;

Lau, 2004; Atkinson, 2002; Whitehead, 2002).

 There is a relatively new technology called Model Driven Architecture (MDA) which

“provides an approach for designing and building component-based systems that remain decoup-

led from languages, platforms and middleware environment that are eventually used to imple-

ment the system”. The core concept of MDA is the model, which uses industry standards like

Unified modeling Language (UML) and Meta-Object Facility (MOF) to notate and store the sys-

tem. The model is the key artifact in an MDA system and remains central throughout design and

development. The model is independent of the eventual platforms and service used to implement

the system (Bing, Hongji, Chu, & Baowen, 2003; Ramljak, Puksec, Huljenic, Koncar, & Simic,

2003; Gracanin, Bohner, & Hinchey, 2004; Uhl, 2003). If the simulation models in Spaceport are

designed based on MDA and then stored in the repository, the model can be transitioned and

then executed in the selected computing environment.

Adapting Web-based Simulation

 Although the framework is based on distributed simulation, the operating environment of

a model is very limited to the specific configuration of system as the model is developed. This

also limits the accessibility of models; in order to address this type of problem a possible future

work would be adapting Web-based simulation into the framework. The integration of Web

technology and distributed simulation technology will provide many methods to extend the

137

availability of simulation models. There are multiple technologies that exist such as Remote

Method Invocation (RMI) from Sunsoft’ Java Development Kit (JDK), Common Object Broker

(CORBA) by the Object Management Group (OMG), etc. that could be used to extend the avail-

ability of simulation models. RMI enables the programmer to create distributed Java technology-

based applications, in which the methods of remote Java objects can be invoked from other Java

virtual machines. RMI has its own native Object Request Broker (ORB) and eliminates the need

to write an IDL (Interface Definition language). One limitation of RMI is that the development

of application is limited within the Java language. The CORBA technology supports a standard-

ized framework to support application development and interoperation in a distributed and het-

erogeneous environment by separating interfaces from object implementations. The main con-

cept of the CORBA approach is that client and server are isolated by a well defined interface

which allows the client to access server functionality without knowing the underlying trans-

port/protocol or server’s implementation details (Dang Gang & Jin, 2000; Page et al., 2000; Buss

& Jackson, 1998).

Integrating dedicated Visualization tools to the framework

 Additional work is also needed to integrate a high fidelity visualization model into the

framework. One of the most compelling components in complex simulation system would be the

visualization. Integrating real-time high-performance visualization in Spaceport will help the

user to better understand the simulated operation and interact with the simulation system more

effectively; especially when the goal of simulation is training the immersive high fidelity visuali-

zation is a must have. We have surveyed some of existing dedicated visualization in the domain

138

of space operations (Compton et al., 2003). The proper visualization model for Spaceport would

be a 3-D visual representation of the facilities required to perform the functions for space trans-

portation systems. Its objective is to immerse the space transportation systems engineers in their

domain, to discover the infrastructure and operations implications, across the systems life cycle

from different perspectives. It complements the analytical tools provided by the core model

which are linked to data sheets for cost and cycle time information that support all the different

functions (McCleskey Carey M., 2001).

LIST OF REFERENCES

AIAA (1991). Atmospheric Effects of Chemical Rocket Propulsion. New York: American Insti-
tute of Aeronautics and Astronautics (AIAA).

Arief, L. B. & Speirs, N. A. (2000). A UML tool for an automatic generation of simulation pro-
grams. Proceedings Second International Workshop on Software and Perform-
ance.WOSP2000, 71-76.

AST (2002). Operating in the Federal Ranges, Student Training Guide. Safety Inspector Training
and Qualification Program, Washington [On-line].

Atkinson, C. (2002). Component-based product line engineering with UML. London: Addison-
Wesley.

Bailey, C. A., McGraw, R. M., Steinman, J. S., & Wong, J. (2001). SPEEDES: a brief overview.
Proceedings of the SPIE - The International Society for Optical Engineering, 4367, 190-
201.

Bapat, V. & Sturrock, D. T. (2003). The Arena Product Family: enterprise modeling solutions.
Proceedings of the 2003 Winter Simulation Conference, 210-217.

Bardina, J. (2001). Intelligent Launch & Range Operations. NASA ARC.

Barth, T (2002, April). Found in Space. IIE Solutions.

Bing, Q., Hongji, Y., Chu, W. C., & Baowen, X. (2003). Bridging legacy systems to model
driven architecture. In (pp. 304-309).

Blocher, T. W. (2002). Information visualization in a distributed virtual decision support envi-
ronment. Proceedings of the SPIE - The International Society for Optical Engineering,
4716, 323-329.

Boccara, N. (2004). Modeling complex systems. New York: Springer.

Boer, C. A. & Verbraeck, A. (2003). Distributed simulation with COTS simulation packages.
Proceedings of the 2003 Winter Simulation Conference, 829-837.

Borshchev, A., Karpov, Y., & Kharitonov, V. (2002). Distributed simulation of hybrid systems
with AnyLogic and HLA. Future Generation Computer Systems, 18, 829-839.

Braude, E. J. (1998). Towards a standard class framework for discrete event simulation. In (pp.
4-8).

Buss, A. & Jackson, L. (1998). Distributed simulation modeling: a comparison of HLA, CORBA,
and RMI. 1998 Winter Simulation Conference.Proceedings, 819-825.

139

CALPUFF Modeling System (2004). CALPUFF Modeling System.
http://earthtec.vwh.net/download/download.htm [On-line].

Cates, G. R., Steele, M. J., Mollaghasemi, M., & Rabadi, G. (2002). Modeling the space shuttle.
Proceedings of the 2002 Winter Simulation Conference, 754-762.

Charles, M. & Frank, R. (2000). Simulation in the international IMS MISSION project: the IMS
MISSION architecture for distributed manufacturing simulation. 2000 Winter Simulation
Conference Proceedings, 1539-1548.

Committee on Space Launch Range Safety, A. a. S. E. B. N. R. C. (2000). Streamlining Space
Launch Range Safety Washington, DC: NATIONAL ACADEMY PRESS.

Compton, J., Sepulveda, J., & Rabelo, L. C. (2003). Integration of the Virtual Test Bed and Vir-
tual Range Assessment.

Crnkovic, I. (2004). Component-based software engineering 7th international symposium, CBSE
2004, Edinburgh, UK, May 24-25, 2004 : proceedings. Berlin: Springer-Verlag.

Dang Gang, W. X. Z. W. & Jin, S. (2000). A prototype of Web-based distributed simulation en-
vironment. Proceedings Fourth International Conference/Exhibition on High Perform-
ance Computing in the Asia-Pacific Region, 732-737.

DMSO. (1998a). Hands-On Practicum. Defense Modeling and Simulation Office .
Ref Type: Slide

DMSO (1998b). High Level Architecture Run-Time Infrastructure Programmer's Guide 1.3 Ver-
sion 5. Defense Modeling and Simulation Office [On-line]. Available:
https://www.dmso.mil/public/

DMSO (1998c). HLA: Interface Specification. Version 1.3. Defense Modeling and Simulation
Office [On-line]. Available: https://www.dmso.mil/public/

DMSO (1998d). HLA: Object Model Template Specification Version 1.3. Defense Modeling and
Simulation Office [On-line]. Available: https://www.dmso.mil/public/

DMSO (1998e). HLA: Rules Version 1.3. Defense Modeling and Simulation Office [On-line].
Available: https://www.dmso.mil/public/

DMSO (2001). The RTI1.3-NG Java Binding. DMSO [On-line]. Available:
https://www.dmso.mil/public/

Earth Tech (2000). A User's Guide for the CALPUFF Dispersion Model (Version 5). Earth Tech
Inc.

140

http://earthtec.vwh.net/download/download.htm
https://www.dmso.mil/public/
https://www.dmso.mil/public/
https://www.dmso.mil/public/
https://www.dmso.mil/public/
https://www.dmso.mil/public/

Fragola, J. & G.Maggio (1995). Probabilistic Risk Assessment of the Space Shuttle. Phase 3: A
Study of Potential of Losing the Vehicle During Nominal Operation, Vol. 2: Integrated
Loss of Vehicle Model SAIC (Science Applications International Corporation) to NASA.

Fujimoto, R. M. (2003). Distributed simulation systems. 2003 Winter Simulation Conference
Proceedings, 1, 124-134.

Fujimoto, R. M. (2000). Parallel and distribution simulation systems. New York: Wiley.

Fullford, D. (1999). A Federation Management Tool: Using the Management Object Model
(MOM) to Manage, Monitor, and Control an HLA Federation. Spring Simulation lnter-
operability Workshop.

Gesser R. (2003). Practical Applications of Overwater Data to CALMET modeling on Coastal
Domains. Atlanta, GA, Trinity Consultants.
Ref Type: Generic

Ghosh, S. & Lee, T. S. (2000). Modeling and asynchronous distributed simulation
analyzing complex systems. New York: IEEE Press.

Gracanin, D., Bohner, S. A., & Hinchey, M. (2004). Towards a model-driven architecture for
autonomic systems. In (pp. 500-505).

Hanna, J. P. & Hillman, R. G. (2002). SPEEDES for distributed information enterprise modeling.
Proceedings of the SPIE - The International Society for Optical Engineering, 4716, 160-
166.

Hill Brothers Chemical Company (2001). Material Safety Data Sheet.
http://hillbrothers.com/msds/pdf/hydrochloric-acid-solution.pdf [On-line].

Johnson, G. D. (1999). Networked simulation with HLA and MODSIM III. WSC'99.1999 Winter
Simulation Conference Proceedings.'Simulation - A Bridge to the Future', 1065-1070.

Joines, J. A. & Roberts, S. D. (1995). Design of object-oriented simulations in C++. 1995 Winter
Simulation Conference Proceedings, 82-89.

Judith, D., Richard, M. F., & Richard, M. W. (1998). The DoD high level architecture: an update.
1998 Winter Simulation Conference.Proceedings, 797-804.

Klein, U., Schulze, T., & Strassburger, S. (1998). Traffic simulation based on the High Level Ar-
chitecture. 1998 Winter Simulation Conference.Proceedings, 1095-1103.

Kossiakoff, A. & Sweet, W. N. (2003). Systems engineering principles and practice. Hoboken,
N.J: J. Wiley.

Kuhl, F. & Riddick, F. (2000). Distributed Manufacturing Simulation Adapter.
Ref Type: Slide

141

http://hillbrothers.com/msds/pdf/hydrochloric-acid-solution.pdf

Kuhl, F., Weatherly, R., & Dahmann, J. (2000). Creating computer simulation systems : an in-
troduction to the high level architecture. Upper Saddle River, NJ: Prentice Hall PTR.

LandScan (2003). LandScan. http://www.ornl.gov/sci/gist/landscan/index.html [On-line].

Lau, K. K. (2004). Component-based software development case studies. New Jersey: World
Scientific.

Law, A. M. & Kelton, W. D. (2000). Simulation modeling and analysis. (3rd ed ed.) Boston:
McGraw-Hill.

Lebo, D. & Woltman, M. (2002). EIN5117 Final Report University of Central Florida.

Lin, J. T., Yeh, K. C., & Sheu, L. C. (1992). A framework for designing an animated simulation
system based on model-animator-scheduler paradigm. 1992 Winter Simulation Confer-
ence Proceedings, 756-763.

McCleskey Carey M. (2001). VISION SPACEPORT.
http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/Vision_Spaceport_Report
_042701.pdf [On-line].

McLean, C. & Riddick, F. (2000a). The IMS MISSION architecture for distributed manufactur-
ing simulation. 2000 Winter Simulation Conference Proceedings, 1539-1548.

McLean, C. & Riddick, F. (2000b). Integration of manufacturing simulations using HLA. Pro-
ceedings of the Military, Government and Aerospace Simulation Symposium, 237-242.

Metron, I. (2003). SPEEDES, Users Guide 2003 . Metron Corporation,San Diego,California.

Nahum, G., Stephen, G. E., & Stuart, C. (1998). Information visualization. interactions., 5, 9-15.

NASA (2004). Follow NASA as we Explore: Earth, Moon, Mars and Beyond.
http://www.nasa.gov/missions/solarsystem/explore_main.html [On-line].

NGS (2004). NGS -- the National Geodetic Survey NADCON, North American Datum Conver-
sion Utility [Computer software]. NGS -- the National Geodetic Survey NADCON.

NIMA (2001). The Universal Transverse Mercator (UTM) Grid, Fact Sheet 077-01.
http://mac.usgs.gov/mac/isb/pubs/factsheets/fs07701.html#utm [On-line].

NIST. (2001). The Distributed Manufacturing Simulation Adapter Reference Guide. The Na-
tional Institute of Standards and Technology (NIST).
Ref Type: Generic

NIWAR (2004). Good Practice Guide for Atmospheric Dispersion Modeling. Wellington, New
Zealand: National Institute of Water and Atmospheric Research (NIWAR).

142

http://www.ornl.gov/sci/gist/landscan/index.html
http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/Vision_Spaceport_Report_042701.pdf
http://science.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/Vision_Spaceport_Report_042701.pdf
http://www.nasa.gov/missions/solarsystem/explore_main.html

NOAA (2004). Unedited Surface Weather Observations. http://www.nndc.noaa.gov/cgi-
bin/nndc/buyOL-001.cgi?FNC=qcall__Aswoqmain_htm [On-line].

Page, E. H., Buss, A., Fishwick, P. A., Healy, K. J., Nance, R. E., & Paul, R. J. (2000). Web-
based simulation: revolution or evolution? ACM Transactions on Modeling and Com-
puter Simulation, 10, 3-17.

Pawletta, S., Drewelow, W., & Pawletta, T. (2000). HLA-based simulation within an interactive
engineering environment. In (pp. 97-102).

Peter Lorenz (2003). Simulation and Animation . http://isgwww.cs.uni-
magdeburg.de/~pelo/s1e/sa1/sa1.shtml [On-line].

Pfleeger, S. L. (2001). Software engineering
theory and practice. (2nd ed ed.) Upper Saddle River, N.J: Prentice Hall.

Philipson, L. L. (1999). An expert elicitation of estimates of exposure limits for space and missile
launch toxicants Technical Report No. 99-400/11.2-01.

Pidd, M. (1998). Computer simulation in management science. (4th ed ed.) New York: John
Wiley.

Pressman, R. S. (2000). Software engineering
a practitioner's approach. (5th ed ed.) Boston, Mass: McGraw Hill.

Rabelo, L. (2002a). SLS Document for the VTB NASA Kennedy Space Center.

Rabelo, L. (2002b). Presentation to NASA Ames Research Center about the VTB.

Rabelo, L. (2002c). The Virtual Test Bed Project: NASA Fellow 2002, RESEARCH REPORTS
John F. Kennedy Space Center.

Rajkumar, T. & Bardina, J. E. (2003). Web-based weather expert system (WES) for Space Shut-
tle launch. SMC'03 Conference Proceedings.2003 IEEE International Conference on Sys-
tems, Man and Cybernetics.Conference Theme - System Security and Assurance, 5040-
5045.

Ramljak, D., Puksec, J., Huljenic, D., Koncar, M., & Simic, D. (2003). Building enterprise in-
formation system using model driven architecture on J2EE platform. In (pp. 521-526).

Roberto, F. L., Guixiu, Q., & Charles, M. (2003). Manufacturing case studies: NIST XML simu-
lation interface specification at Boeing: a case study. Winter Simulation Conference,
1230-1237.

Rogers, P. & M.T.Flanagan (1991). On-line simulation for real-time scheduling of manufactur-
ing systems. Industrial Engineering.

143

http://www.nndc.noaa.gov/cgi-bin/nndc/buyOL-001.cgi?FNC=qcall__Aswoqmain_htm
http://www.nndc.noaa.gov/cgi-bin/nndc/buyOL-001.cgi?FNC=qcall__Aswoqmain_htm
http://isgwww.cs.uni-magdeburg.de/~pelo/s1e/sa1/sa1.shtml
http://isgwww.cs.uni-magdeburg.de/~pelo/s1e/sa1/sa1.shtml

Rohrer, M. W. (2000). Seeing is believing: the importance of visualization in manufacturing
simulation. 2000 Winter Simulation Conference Proceedings, 1211-1216.

Rossetti, M. D., Aylor, B., Jacoby, R., Prorock, A., & White, A. (2000). Simfone': an object-
oriented simulation framework. 2000 Winter Simulation Conference Proceedings, 1855-
1864.

Rouse, W. B. (2003). Engineering complex systems: implications for research in systems engi-
neering. Systems, Man and Cybernetics, Part C, IEEE Transactions on, 33, 154-156.

Sage, A. P. & Olson, S. R. (2001). Modeling and Simulation in Systems Engineering: Whither
Simulation Based Acquisition? SIMULATION, 76, 283-285.

Sepulveda, J., Rabelo, L., Park, J., Gruber, F., & Martinez, O. (2004a). Factors Affecting the Ex-
pectation of Casualties in the Virtual Range Toxicity Model. In (pp. 685-692).

Sepulveda, J., Rabelo, L., Park, J., Riddick, F., & Peaden, C. (2004b). Implementing the High
Level Architecture in the Virtual Test Bed. In (pp. 380-387).

Shishko, R., Aster, R., & Cassingham, R. C. (1995). NASA systems engineering handbook.
Washington, D.C.: National Aeronautics and Space Administration.

Sommerville, I. (2001). Software engineering. (6th ed ed.) Harlow, England: Addison-Wesley.

Stafford, R. (1995). AutoView [model animation]. 1995 Winter Simulation Conference Proceed-
ings, 524-528.

Steinman, J. S. (1998b). Time managed object proxies in SPEEDES. Proceedings of Object-
Oriented Simulation Conference (OOS'98).International Conference on Simulation and
Multimedia in Engineering Education (ICSEE'98).1998 Western MultiConference, 59-65.

Steinman, J. S. (1990). SPEEDES: synchronous parallel environment for emulation and discrete
event simulation. Advances in Parallel and Distributed Simulation.Proceedings of the
SCS Multiconference, 95-103.

Steinman, J. S. (1998a). Scalable distributed military simulations using the SPEEDES object-
oriented simulation framework. Proceedings of Object-Oriented Simulation Conference
(OOS'98).International Conference on Simulation and Multimedia in Engineering Edu-
cation (ICSEE'98).1998 Western MultiConference, 3-23.

Steinman, J. S., Berliner, G., Blank, G. E., Brutocao, J. S., Burckhardt, J., Peckham, M. et al.
(1999). The SPEEDES-based run-time infrastructure for the high-level architecture on
high-performance computers. Proceedings of the High Performance Computing Sympo-
sium - HPC'99.1999 Advanced Simulation Technologies Conference, 255-266.

144

Steinman, J. S. & Wong, J. W. (2003). The SPEEDES persistence framework and the standard
simulation architecture. Proceedings.Seventeenth Workshop on Parallel and Distributed
Simulation, 11-20.

Steven D.Farr & Alex F.Sisti (1994). Visualization of General Purpose Simulation Results.
http://www.rl.af.mil/tech/papers/ModSim/DU94.html [On-line].

Strassburger, S. (1999). On the HLA-based coupling of simulation tools. Modelling and Simula-
tion: A Tool for the Next Millennium.13th European Simulation Multiconference
1999.ESM'99, 45-51.

Strassburger, S. (2001). Distributed Simulation Based on the High Level Architecture in Civilian
Application Domains.

Strassburger, S., Schulze, T., Klein, U., & Henriksen, J. O. (1998). Internet-based simulation us-
ing off-the-shelf simulation tools and HLA. 1998 Winter Simulation Confer-
ence.Proceedings, 1669-1676.

Swain, J. James (2003, August). Simulation Software Survey. OR/MS Today.

Swider, C. L., Bauer, K. W., Jr., & Schuppe, T. F. (1994). The effective use of animation in
simulation model validation. 1994 Winter Simulation Conference Proceedings, 633-640.

Thayer, R. H., Dorfman, M., & Christensen, M. J. (2002). Software engineering. (2nd ed ed.)
Los Alamitos, Calif: IEEE Computer Society Press.

Uhl, A. (2003). Model driven arcitecture is ready for prime time. Software, IEEE, 20, 70, 72.

United Way of Brevard County (2002). LandScan. http://sedac.ciesin.org/plue/gpw/landscan/
[On-line].

Vliet, H. v. (2000). Software engineering principles and practice. (2nd ed ed.) Chichester Eng-
land: John Wiley.

Whitehead, K. (2002). Component-based development principles and planning for business sys-
tems. Boston, Mass: Addison-Wesley.

Whitehurst, R. A. & Brutocao, J. (1998). Parallel execution of process-based simulation models.
Proceedings of Object-Oriented Simulation Conference (OOS'98).International Confer-
ence on Simulation and Multimedia in Engineering Education (ICSEE'98).1998 Western
MultiConference, 115-120.

145

http://www.rl.af.mil/tech/papers/ModSim/DU94.html
http://sedac.ciesin.org/plue/gpw/landscan/

	A Framework To Model Complex Systems Via Distributed Simulation: A Case Study Of The Virtual Test Bed Simulation System Using the High Level Architecture
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS/ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	Background of Study
	Objective and Scope
	Dissertation Outline

	CHAPTER TWO: REVIEW OF RELATED TECHNOLOGIES
	Introduction
	Virtual Test Bed (VTB)
	Discrete-Event Simulation Languages and Packages
	Visualization of Distributed Simulation Systems

	CHAPTER THREE: THE HLA INTEROPERABILITY IN SIMULATION LANGUA
	Federate Requirements to Become a HLA Compliant
	HLA Support in Modeling Languages and Packages
	Implementation of The Basic Discrete Event Simulation Class in The SPEEDES Process Model
	Visualizations in the VTB

	CHAPTER FOUR: CASE STUDIES
	Factors Affecting the Expectation of Casualties in the Virtual Range Toxicity Model
	Implementing the High Level Architecture in the Virtual Test Bed

	CHAPTER FIVE: A PROTOTYPE IMPLEMENTATION OF VTB SIMULATION S
	Introduction and Motivation
	Adapting Legacy Models to VTB Simulation System Using the HLA
	Integration of the Framework for Spaceport Simulation System

	CHAPTER SIX: CONCLUSION
	Summary
	Limitation
	Future Work

	LIST OF REFERENCES

