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ABSTRACT 

As the size, complexity, and functionality of systems we need to model and simulate con-

tinue to increase, benefits such as interoperability and reusability enabled by distributed discrete-

event simulation are becoming extremely important in many disciplines, not only military but 

also many engineering disciplines such as distributed manufacturing, supply chain management, 

and enterprise engineering, etc. 

In this dissertation we propose a distributed simulation framework for the development of 

modeling and the simulation of complex systems. The framework is based on the interoperability 

of a simulation system enabled by distributed simulation and the gateways which enable Com-

mercial Off-the-Shelf (COTS) simulation packages to interconnect to the distributed simulation 

engine. 

In the case study of modeling Virtual Test Bed (VTB), the framework has been designed 

as a distributed simulation to facilitate the integrated execution of different simulations, (shuttle 

process model, Monte Carlo model, Delay and Scrub Model) each of which is addressing differ-

ent mission components as well as other non-simulation applications (Weather Expert System 

and Virtual Range). Although these models were developed independently and at various times, 

the original purposes have been seamlessly integrated, and interact with each other through Run-

time Infrastructure (RTI) to simulate shuttle launch related processes. 

This study found that with the framework the defining properties of complex systems - 

interaction and emergence – are realized and that the software life cycle models (including the 

spiral model and prototyping) can be used as metaphors to manage the complexity of modeling 

and simulation of the system. The system of systems (a complex system is intrinsically a “system 
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of systems”) continuously evolves to accomplish its goals, during the evolution subsystems co-

ordinate with one another and adapt with environmental factors such as policies, requirements, 

and objectives. In the case study we first demonstrate how the legacy models developed in COTS 

simulation languages/packages and non-simulation tools can be integrated to address a compli-

cated system of systems. We then describe the techniques that can be used to display the state of 

remote federates in a local federate in the High Level Architecture (HLA) based distributed 

simulation using COTS simulation packages. 

 

iv 



ACKNOWLEDGMENTS 

 It hardly seems possible to reach at this level without the support from many others, who 

have helped me in so many ways along the way, and that it only remains to thank the people who 

have helped me. I know that I will never be able to truly express my appreciation. I would like to 

thank my advisors, Dr. Jose A. Sepulveda and Dr. Luis Rabelo for their years of encouragement, 

patient, and support on my research in the Ph.D program. I would like to also thank the rest of 

my dissertation committee: Dr. J. Peter Kincaid, Dr. Charles Reilly, and Dr. Joohan Lee for their 

helpful comments and suggestions during the course of my Ph.D. study.  

 I would like to thank my colleagues in the Center for NASA Simulation Research Group: 

Mario Marine, and previous members: Fred Gruber, Oscar Martínez, Amit Wasadikar, Amith 

Paruchuri, Ann Dalrymple, Asisa Musa, and Usha Neupane for their work which were a part of 

this work (mainly the case study of “Factors Affecting the Expectation of Casualties in the Vir-

tual Range Toxicity Model”). 

 Most of all, I will be grateful to my wife Jinsuk Na and my daughter Subin for their un-

derstanding and support throughout this effort. Without their constant sacrifice, I wouldn’t have 

come so far. 

 

v 



TABLE OF CONTENTS 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF TABLES.......................................................................................................................... x 

LIST OF ACRONYMS/ABBREVIATIONS................................................................................ xi 

CHAPTER ONE: INTRODUCTION............................................................................................. 1 

Background of Study .................................................................................................................. 1 

Objective and Scope ................................................................................................................. 11 

Dissertation Outline .................................................................................................................. 12 

CHAPTER TWO: REVIEW OF RELATED TECHNOLOGIES................................................ 14 

Introduction............................................................................................................................... 14 

Virtual Test Bed (VTB) ............................................................................................................ 14 

High Level Architecture (HLA)................................................................................................ 21 

Discrete-Event Simulation Languages and Packages ............................................................... 34 

Visualization of Distributed Simulation Systems ..................................................................... 44 

CHAPTER THREE: THE HLA INTEROPERABILITY IN SIMULATION 

LANGUAGES/PACKAGES........................................................................................................ 50 

Federate Requirements to Become a HLA Compliant ............................................................. 51 

HLA Support in Modeling Languages and Packages ............................................................... 53 

Implementation of The Basic Discrete Event Simulation Class in The SPEEDES Process 

Model ........................................................................................................................................ 63 

Visualizations in the VTB......................................................................................................... 72 

CHAPTER FOUR: CASE STUDIES........................................................................................... 84 

vi 



Factors Affecting the Expectation of Casualties in the Virtual Range Toxicity Model ........... 84 

Implementing the High Level Architecture in the Virtual Test Bed ...................................... 105 

CHAPTER FIVE: A PROTOTYPE IMPLEMENTATION OF VTB SIMULATION SYSTEM

..................................................................................................................................................... 113 

Introduction and Motivation ................................................................................................... 113 

Adapting Legacy Models to VTB Simulation System Using the HLA.................................. 114 

Integration of the Framework for Spaceport Simulation System ........................................... 125 

CHAPTER SIX: CONCLUSION............................................................................................... 132 

Summary ................................................................................................................................. 132 

Limitation................................................................................................................................ 134 

Future Work. ........................................................................................................................... 135 

LIST OF REFERENCES............................................................................................................ 139 

vii 



LIST OF FIGURES 

Figure 1 Concept of Virtual Test-Bed (adapted with modification from (Rabelo, 2002b)) ......... 16 

Figure 2 VTB System Architecture .............................................................................................. 19 

Figure 3 Federate – Federation Interplay.(adapted from  (DMSO, 1998b))................................. 25 

Figure 4 RTI Components At-a-Glance. (taken from (DMSO, 1998b)) ...................................... 26 

Figure 5 RTI and Federate Code Responsibilities. (taken from (DMSO, 1998b))....................... 27 

Figure 6 SPEEDES Modeling Framework (taken from (Bailey et al., 2001)) ............................. 37 

Figure 7 S_Shuttle Simulation Object .......................................................................................... 38 

Figure 8 Arena Modeling Environment........................................................................................ 42 

Figure 9 Architecture of AnyLogic Modeling and Simulation Environment (taken from 

(Borshchev et al., 2002))....................................................................................................... 44 

Figure 10 RTI and Federate “Ambassadors” (DMSO, 1998a) ..................................................... 52 

Figure 11 SPEEDES Interface to the HLA (adapted from (Bailey et al., 2001)) ......................... 55 

Figure 12  An example of "conversions.par"................................................................................ 56 

Figure 13 Initial Adapter Architecture(taken from (Kuhl & Riddick, 2000)) .............................. 59 

Figure 14 An Example of Initialization File ................................................................................. 60 

Figure 15 Object and Message Format ......................................................................................... 61 

Figure 16 Integrating HLA and AnyLogic (adapted from (Borshchev et al., 2002))................... 62 

Figure 17 Class Diagram of Simulation Classes........................................................................... 67 

Figure 18 An Example Sequence Diagram of Simulation Classes............................................... 71 

Figure 19 Calculation of Population at Risk................................................................................. 75 

Figure 20 Model-Animator-Scheduler paradigm (Lin et al., 1992).............................................. 76 

viii 



Figure 21 Model-Animation on the HLA ..................................................................................... 79 

Figure 22 An Example model for a Remote Federate Animation ................................................ 80 

Figure 23 HLA Interaction Class for Declaration Management Service...................................... 82 

Figure 24 HLA Interaction Class for Object Management Service.............................................. 82 

Figure 25 Virtual Range Toxicity Model Architecture (Sepulveda et al., 2004a)........................ 87 

Figure 26 Launch sectors from the Eastern Range (adapted from (Sepulveda et al., 2004a)....... 90 

Figure 27 Exposure Response Function for HCl (adapted from (Sepulveda et al., 2004a)........ 101 

Figure 28 VR Simulation Interface............................................................................................. 103 

Figure 29 Bad Weather Occurrence (adapted from (Lebo et al., 2002)) .................................... 109 

Figure 30  Launch area intrusions (adapted from (Lebo et al., 2002)) ....................................... 109 

Figure 31 Contributions to the delays and scrubs (adapted from (Lebo et al., 2002)) ............... 110 

Figure 32 Overall Probability of a delay or scrub (adapted from (Lebo et al., 2002)) ............... 111 

Figure 33 Distributed Shuttle Process Simulation using the DMS Adapter............................... 112 

Figure 34 The MonteCarlo Federate and The VR Federate architecture.................................... 115 

Figure 35 Adapted Weather Expert System (WES) Architecture to the HLA ........................... 119 

Figure 36 An implementation of the WES federate.................................................................... 120 

Figure 37 Life cycle of the Orbiter (as an active entity)............................................................. 122 

Figure 38 S_Orbiter Process (Active Entity) Logic Example .................................................... 123 

Figure 39 Space Shuttle Federate Architectue............................................................................ 124 

Figure 40 A Prototype Implementation of VTB Simulation System.......................................... 126 

Figure 41 Interactions between the models during the federation execution ............................. 127 

Figure 42 Visualization of Mission Control Room .................................................................... 129 

ix 



LIST OF TABLES 

Table 1  The DMS Adapter Interface Methods ............................................................................ 58 

Table 2  Commonly used Shuttle Propellants (adapted from (Sepulveda et al., 2004a)) ............. 85 

Table 3  Representative Events in the Shuttle’s Trajectory during the first 120 Seconds (adapted 

from (Sepulveda et al., 2004a))............................................................................................. 93 

Table 4   Factors affecting Ec (Sepulveda et al., 2004a) ............................................................ 104 

Table 5  Factors affecting delays and scrubs (adapted from (Lebo & Woltman, 2002)) ........... 108 

x 



LIST OF ACRONYMS/ABBREVIATIONS 

API     Application Programmer’s Interface 

COTS    Commercial Off-the-Shelf 

DoD    US Department of Defense 

DMSO    Defense Modeling and Simulation Office 

Ec     Casualty Expectation 

FED     Federation Execution Data 

FOM     Federation Object Model 

GIS     Geographic Information System 

HCC    Human-Centered Computing 

HCl    Hydrochloric Acid 

HLA     High Level Architecture 

IDL    Interface Definition Language 

ILRO     Intelligent Launch and Range Operations 

IT    Information Technologies 

KSC    Kennedy Space Center 

MOM     Management Object Model 

NIST    National Institute of Standards and Technology 

OMDT    Object Model Development Tool 

RID     RTI Initialization Data 

RTI     Runtime Infrastructure 

SM     Spaceport Model 

xi 



SOM     Simulation Object Model 

SPEEDES   Synchronous Parallel Environment for Emulation and Discrete- 

    Event Simulation 

VR    Virtual Range 

VTB    Virtual Test Bed 

WES    Weather Expert System 

XML    Extensible Markup Language 

xii 



CHAPTER ONE: INTRODUCTION 

Background of Study 

 Many real world systems and application areas of modeling and simulation are getting 

larger and more complicated. With the help of new science and information technology – espe-

cially the availability of powerful and accurate networked computers – engineers are now capa-

ble of building such complex systems and applications which were difficult to build even just 

one decade ago. Today’s real world systems generally consist of a large number of subsystems, 

are geographically dispersed over large distances and are operating in heterogeneous computing 

environments (Ghosh & Lee, 2000). Many such systems are often considered systems of systems.  

 A “System” is a group or combination of interrelated, interdependent, or interacting ele-

ments that form a collective entity. Elements may include physical, behavioral, or symbolic enti-

ties. Elements may interact physically, mathematically, and/or by exchange of information. 

Rouse defines complex systems as “systems whose perceived complicated behaviors can be at-

tributed to one or more of the following characteristics: large numbers of elements, large num-

bers of relationships among elements, nonlinear and discontinuous relationships, and uncertain 

characteristics of elements and relationships” (Rouse, 2003).  

 Therefore the property of complex systems as a whole is nonlinear; hence the property 

cannot simply be derived from an integration of the properties of components of a system. How-

ever there are some common characteristics of complex systems: (1) they consist of a large num-

ber of interacting subsystems, (2) they exhibit emergence:  that is, a consequence of the interac-

tions between system components to achieve some objective which is difficult to anticipate from 
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the knowledge of the individual components, (3) their emergent evolution can be observed once 

the components have been integrated into a system or adapted into an environment where it is 

used. The appearance of emergent properties is the single most distinguishing feature of complex 

systems (Boccara, 2004). 

 In engineering disciplines “a new system development is initiated either by user needs or 

new opportunity offered by advancing technology. The evolution of a particular new system 

from the time when a need for it is recognized and a feasible technical approach is identified, to 

the point in its development where it is introduced into operational use is referred to as the “sys-

tem development process” (Kossiakoff & Sweet, 2003). Similar to system engineering, in soft-

ware engineering there are a variety of software life cycle models in use. Since we are studying 

the development of simulation systems the emphasis is on the life cycle models in software engi-

neering. Some of the well known models are the waterfall model, the rapid application develop-

ment model, and the spiral model, among many others (Pressman, 2000; Vliet, 2000; Pfleeger, 

2001; Sommerville, 2001; Thayer, Dorfman, & Christensen, 2002). All of these life cycle models 

are useful in developing a single system (or a single complex system) and most are useful in de-

veloping a system of systems with the exception of the traditional waterfall model.  Because of 

the necessity for an understanding of the system level requirements at the beginning of the de-

velopment process and because of the need for system level requirements to remain the same 

throughout the process, the waterfall model cannot be effectively used to develop a system of 

systems.  

 As presented earlier, the defining properties of complex system include (1) the interac-

tions amongst interconnected components and/or the environment interacts in unanticipated ways 

and (2) the behavior of the overall system is different from the aggregate behavior of the parts 
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and knowledge of behavior of the components will not allow us to predict the behavior of the 

whole system, which is the property known as emergence (Sage & Olson, 2001).  

 Since many real world systems are systems of systems, the systems (subsystems) might 

be built in various disciplines, times, and often developers may not know of the existence of 

other systems (subsystems). Therefore the interaction cannot be defined in the development 

process of individual systems (subsystems). 

 The complex system of systems evolves the results of interactions with other systems and 

environments; and then adapts with its environment where it is used. In other words, when the 

configuration of the complex system changes such as when a system (subsystem) is added or 

disposed, or the new functionality of a system is required because of either new user require-

ments or advances in information technology, the systems (subsystems) need to interact with 

these changes and then adapt to them. However, the configuration change of the complex system, 

the future user needs, and the technology advance cannot be known in advance. As a result many 

software development life cycle models may not be applicable in the development of a system of 

systems. 

 The simulated complex system is usually decomposed to a level where subsystems or 

system components are individually defined and developed as functional simulation systems. In 

this dissertation we refer to a simulation of complex systems as an abstraction of the simulated 

complex systems in which systems (subsystems) interact with each other by exchanging the state 

of system information which changes either discrete in time or continuously, or a hybrid of both.  

 In this dissertation we propose a distributed simulation framework for the development of 

modeling and simulation of complex systems which are a system of systems, in which the defin-

ing properties of complex systems – interaction and emergence – are realized and the software 
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life cycle models (including prototyping) are used as metaphors, not actual development proc-

esses, to manage the complexity of modeling and simulation of the system. The framework is 

based on the interoperability of a simulation system enabled by the distributed simulation and the 

gateways which enable COTS simulation packages to interconnect to the distributed simulation 

engine. 

Distributed Simulation 

 While Parallel/Distributed Discrete Event Simulation has been an active area of research 

for more than thirty years, researchers have until recently focused almost exclusively on fast 

execution of process and event oriented models of discrete event simulations. In the mid 1990's, 

High Level Architecture was initiated by the DMSO, US Department of Defense (DoD); the 

process has taken different aspects of Parallel/Distributed Discrete Event Simulation in order to 

support interoperability and reusability of existing simulation models developed at various times, 

purposes and organizations. The HLA is used as a distributed simulation engine in the VTB ar-

chitecture for integration of both current and future simulation models. In general, the simulation 

languages/packages may have special areas of use, distinct advanced features, and require spe-

cific computing environments such as operating systems (OS), external application interfaces, 

and scripting languages. These characteristics of the modeling languages may impose difficulties 

when attempting to seamlessly integrate them with other simulation modeling lan-

guages/packages. We focus more on the VTB environment; in particular, with its interfaces 

among participating simulation models. 
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 Since HLA was developed for reuse of the military simulation models, its main area of 

use has been military domain simulations. Although the HLA does not mandate the use of any 

specific software – it is designed to incorporate new technologies as they develop over time – 

currently the only supporting interfaces available constrain applicable program languages such as 

C++, Java, IDL and Ada. This is problematic when we interconnect simulation models in the 

VTB, many of which are developed by COTS simulation packages such as Arena, AnyLogic or 

SPEEDES. In addition the future models may need to be developed using one of the COTS 

simulation tools and the non-simulation (supporting) tools because these tools often offer rapid 

development cycle, some very specific advanced functionalities difficult to find elsewhere (e.g., 

Calpuff, ArcGis in VTB), and additional tools which are necessary in the process of model de-

velopment, such as input/output analyzers, process optimization applications, visualization soft-

ware of simulation execution and results. Many COTS simulation languages/packages do not 

expose their internal data structure and/or time advance mechanism to an external interface, both 

of which are required to interoperate with the HLA-RTI, and the interface programming lan-

guages need to be among the RTI supporting languages such as C++, Java or Ada.  

 To overcome the restrictions imposed by the HLA-RTI interface in use of COTS tools 

several approaches have been researched and implementation of these approaches has been re-

ported. Some examples of such implementation that link COTS Simulation Packages to the HLA 

are Arena/ProModel (Charles & Frank, 2000), AnyLogic (Borshchev, Karpov, & Kharitonov, 

2002), SLX (Strassburger, Schulze, Klein, & Henriksen, 1998; Strassburger, 1999), Matlab 

(Pawletta, Drewelow, & Pawletta, 2000), and MODSIM III (Johnson, 1999), among many others. 

In order to accomplish the objectives defined in the simulation system of the Virtual Test Bed 

(VTB) we have researched these approaches including a SPEEDES HLA gateway, the Distrib-
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uted Manufacturing Simulation Adapter (DMS Adapter) with Arena, and the AnyLogic HLA 

support module HSM). These HLA interoperability approaches are discussed in detail in Chapter 

3.  

 With each of these approaches comes a price. Although they provide a solution for the 

HLA interoperability, they sometimes cause compatibility issues and increase the complexity of 

simulation systems. For instance, the Manufacturing Simulation Adapter (DMS Adapter) pro-

vides a variant of Federation Object Model (FOM) in Extensible Markup Language (XML) for-

mat. The FOM written in XML format enables the simulation model to have extended data types, 

flexibility in individual document structure and format, ease of creation, parsing, interpretation, 

display by standard tools, and semantic validation of the file, among others. However when we 

are required to integrate the models written in simulation languages/packages which are using 

DMS Adapter and other HLA interoperability tools, the object classes or the interaction classes 

they are referenced may not be compatible in format. This requires the development of an addi-

tional component which translates data formats including data structure and semantics of attrib-

utes to make the FOMs compatible. The DMS Adapter also supports a subset of Application 

Program Interfaces (APIs) in the HLA Interface Specifications, which are sufficient for a distrib-

uted manufacturing simulation. The simplified DMS Adapter functions remove much of the 

complexity and many unnecessary APIs in some simulation projects. In some other application 

areas, the DMS Adapter interfaces that support a subset of the RTI APIs and the simplified time 

coordination in the DMS Adapter which implements “time stepped” synchronization approach 

may limit the range of interoperability enabled by the HLA. 

 Some simulation modeling languages support special features which may not be available 

in many other simulation modeling languages. In general, however, it is not easy to fully utilize 
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the functionalities that the simulation language supports. For example, SPEEDES is a unified 

parallel processing simulation framework that enables integration of objects distributed across 

multiple processors to speed-up simulation run. This feature enhances runtime, especially when 

exploiting the very large number of processors and the high-speed internal communications 

found in high performance computing platforms. It also supports multiple time management al-

gorithms such as the sequential algorithm, time-driven algorithm, Time Warp algorithm, and 

Breathing Time Warp algorithm which is a combination of the Time Warp and Time Bucket al-

gorithms. In optimistic time management, an event can be processed even if it may not be the 

next event to be processed in ascending time order while still maintaining repeatability and cau-

sality by using “rollback” techniques, whereas in conservative time management, an event will 

not be processed until it is known that there is no possibility of an event arriving in the past rela-

tive to the simulation time. Rollbacks restore state variables and retract events scheduled during 

the simulation time period that need to be rolled back. They also support the ability to roll an 

event forward without requiring large amounts of memory overhead if the state that the event 

depends on has not changed. Despite these advanced features, it is not easy for the modelers who 

have been using COTS simulation languages/packages for simulation modeling to learn the 

SPEEDES Modeling Framework and develop a distributed/parallel simulation model in 

SPEEDES.  

Visualization 

 In addition to issues we presented, we have identified the importance of visualization of 

the interaction of the system components and the state of remote systems in distributed simula-
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tion, especially in geographically distributed simulation systems like the Virtual Test Bed (VTB). 

Visualization as a part of a simulation system provides certain insights into the complex dynam-

ics of the system that cannot be obtained using other analysis techniques. Visualization helps the 

modeler, the decision-maker, and non-technical persons to gain some understanding of the model 

being investigated.  In the HLA-based distributed simulation, however, it is difficult, if not im-

possible, to provide the same level of insight to the user by the COTS visualization tools cur-

rently available. Mainly because the COTS visualization tools are integrated into its simulation 

engine or they are designed to support a stand-alone simulation execution instead of a distributed 

simulation run.  

 In a distributed simulation environment, although geographically dispersed simulation 

models may have their own visualization environments, it becomes difficult to provide a com-

prehensive, global presentation of a distributed simulation system. In order to support an effec-

tive decision-making process, informative visualization coupled with distributed simulation 

models are essential tools when dealing with a large and complex distributed simulation such as 

space shuttle operation models, supply chain simulations, or enterprise engineering models. 

Therefore, we believe that there is a clear need to have a visual representation of geographically 

distributed simulations on a single visual display in order to provide comprehensive insight of 

the entire distributed simulation, especially when decision making is the objective of the model-

ing. 

 While a standalone simulation model developing process usually takes advantage of the 

visualization tools embedded in COTS simulation packages, in the distributed simulation devel-

opment process very few packages can be used to visualize the distributed simulations. There are 

two major reasons. First, the HLA framework doesn’t take into account the visualization meth-

8 



odology or the interface is too well tuned into the HLA framework. Second, although the HLA 

integrates various functional models or components, there is no general interface standard for 

COTS simulation packages in terms of communication and internal data presentation. 

Case study: Spaceport simulation system in Virtual Test Bed Architecture 

 This dissertation is concerned with the integration of simulation models that are identified 

as the essential components of Spaceport and are facilitated with general-purpose discrete event 

simulation languages/packages based on distributed simulation engines such as High Level Ar-

chitecture (HLA), and visualization of the participating simulation models in the distributed 

simulation.  

 The objective of the VTB is to provide a collaborative computing environment that sup-

ports the creation, execution, and reuse of simulations that are capable of integrating multidisci-

plinary models representing the elements of launch, ranges, and spaceport operations in order to 

assist with cost analysis, flow optimization, and other important decision making factors (Rabelo, 

2002a). The VTB will provide multiple benefits, such as enabling risk management evaluations 

of existing and future vehicle frameworks, providing a technology pipeline for evaluating and 

implementing new solutions to existing problems, and enabling better knowledge management 

(Rabelo, 2002c). 

 Is Spaceport in VTB architecture a “complex system”? According to Barth,  

“Spaceport technologies employ a life-cycle "system of systems" concept in which ma-
jor spaceport systems -- launch vehicle processing systems, payload processing systems, 
landing and recovery systems, and range systems -- are designed concurrently with 
flight vehicle systems and flight crew systems. The result of applying this concurrent 
systems engineering approach will be robust space transportation systems for future 
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generations” (Barth, 2002). 
 

  A quick and easy answer can be found in (Shishko, Aster, & Cassingham, 1995).  

“Most NASA systems are sufficiently complex that their components are subsystems, 
which must function in a coordinated way for the system to accomplish its goals. From 
the point of view of systems engineering, each subsystem is a system in its own right—
that is, policies, requirements, objectives, and which costs are relevant are established 
at the next level up in the hierarchy. Spacecraft systems often have such subsystems as 
propulsion, attitude control, telecommunications, and power. In a large project, the 
subsystems are likely to be called ‘systems’”. 

 
 In addition our view of complexity in Spaceport simulation system is that since the 

spaceport system is a system of systems, each subsystem such as launch vehicle processing sys-

tems, range systems, etc is regarded as a component or a process in general concept of complex 

systems.  

 The simulation of Spaceport will be developed as a representation of these major space-

port systems. Therefore the simulation components may represent very distinct nature of the ab-

straction of the simulated system in heterogeneous computing environment to achieve the goal of 

the system; the nature includes the properties of interest, different time series (continuous, dis-

crete, hybrid), target users, time of operation in the system, information it generates, etc. The 

output on a certain input to the simulation of Spaceport in which the subsystems of Spaceport are 

interplay based on its own dynamics of operation with multiple decision points will be far from 

linear. 

 In addition the Spaceport simulation system evolves and extends quickly with the envi-

ronmental changes such as technology advances (IT, COTS tools, etc), new functionality needs 

such as “Mission to Mars, Moon”(NASA, 2004), the user requirement increases such as a model 

in higher resolution, etc. Therefore the defining property of complex systems, emergence, applies 

here. Over the life cycle of Spaceport simulation system the systems (subsystems) are intercon-
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nected with themselves in a seamless way and an unambiguous way; and interact with and adapt 

to the environment. The future configuration of Spaceport simulation system by consequence of 

interaction and adaptation may not be deducible in advance especially in the stages in develop-

ment of individual systems (subsystems). Therefore the integration of Spaceport simulation sys-

tems is an example of complex systems, and a system of systems as well. 

Objective and Scope 

 The scope of this study could be described as: (1) analysis of Spaceport simulation sys-

tem in VTB architecture with components of simulation models such as shuttle process, Virtual 

Range model, weather model, etc. (extensions to integration of additional simulation models can 

also be done in the future), (2) study software interfaces for integration of  simulation models 

into the framework which can be used to integrate future models, (3) provide the visualization 

framework for distributed simulation system by utilizing an animation facility embedded in 

COTS simulation packages which traditionally do not provide animation functions for distrib-

uted simulation run. This framework can be used to visualize some simulation languages which 

do not have dedicated visualization capability such as SPEEDES, and (4) implement the frame-

work for the case study of Spaceport distributed simulation system by using the HLA-RTI which 

could be used as a proof of concept of this study 

 The benefits of this framework are two fold. First, the framework supports the evolution 

of a simulation of complex system (that is, a system of systems) as operational requirements 

change. This is realized by applying the metaphor of the life cycle models especially the spiral 

model, most widely used model presently, which includes two variations termed incremental and 
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evolutionary is applicable throughout the system life cycle. By using these approaches in a sys-

tem level, the system of systems evolves with requirements extended while the operability of the 

overall system kept. The fully functional simulation subsystems can be developed independently 

using different software languages/tools and then added to the system as requirement changes as 

in the incremental model approach; and improved or modified subsystems can be replaced with 

old one as technology advance and the user needs change as in the evolutionary model approach. 

 Second, the metaphor of the prototype model which is a well known variant of the water-

fall model can be experimented within the operational system. With a gateway which enables a 

tool to interact within distributed simulation to COTS simulation package the experimental pro-

totype simulation model can be built and then tested in relatively quick and with low cost. This is 

possible because the many COTS simulation packages/tools provide an integrated visual model 

development environment in which the user can build a model by “point-and-click” or “drag-

and-drop” methods as well as often include pre-built modules (or templates) which help the 

modeler to build a quite large model in easy.  

Dissertation Outline 

 This dissertation is structured as follows. Chapter 2 defines the context of this dissertation. 

The concept and architecture of the VTB are defined, and requirements and essential technolo-

gies in order to support the Spaceport simulation system are identified. Each of these technolo-

gies – discrete event simulation languages/packages, the HLA, and visualization framework re-

quired to implement the framework of distributed simulation for Spaceport simulation system in 

VTB  – is reviewed extensively. Chapter 3 presents the HLA interoperability in COTS simula-
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tion languages/packages. We detail the HLA interoperability approaches used in the simulation 

languages/packages that are selected based on the requirements for the Spaceport simulation sys-

tem, outlined in Chapter 2. The discrepancies in the HLA interoperability employed in the se-

lected simulation languages/packages with respect to communication and data compatibility are 

introduced.  As one of our solutions for obstacles we introduced in terms of integration, we pre-

sent the fundamental classes which are commonly provided in many COTS simulation packages 

for discrete event simulations. The classes are built upon the Process Model foundation in 

SPEEDES to promote the shared data compatibility between the models written on SPEEDES 

and those written in other simulation languages/packages. In Chapter 4 and 5, the cases studies 

(Sepulveda, Rabelo, Park, Gruber, & Martinez, 2004a; Sepulveda, Rabelo, Park, Riddick, & 

Peaden, 2004b) we have reported in Winter Simulation Conference in 2004 and the prototype 

VTB simulation system based on the concepts of integrated execution of different simulation 

models are presented with focus remaining on the HLA interoperability and the visualization of a 

remote federate in a distributed simulation. Finally, Chapter 6 concludes the dissertation and out-

lines possible direction for future Virtual Test Bed (VTB) research. 
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CHAPTER TWO: REVIEW OF RELATED TECHNOLOGIES 

Introduction 

 This chapter presents an overview of the Virtual Test Bed (VTB), its architecture, and its 

requirements for the simulation system with a focus on integration of simulation models, each of 

which represent an operational element of a spaceport, range, or another similar system. The 

primitive discrete event simulation and its fundamental modeling elements are described briefly. 

Distributed/Parallel discrete event simulation concepts and High Level Architecture (HLA), the 

most state of the art distributed simulation engine currently available, are introduced. In (Swain, 

2003) more than 40 COTS simulation languages/packages available at the time of survey are 

presented in detail. The modeling environments of several of these are presented, each having 

been selected based on the requirements for VTB and availability of the simulation language 

such as SPEEDES and simulation packages such as Arena and AnyLogic. Finally, the need for 

visualization in distributed simulation is researched. 

Virtual Test Bed (VTB)  

 This section presents the concepts and the architecture of the VTB (Sepulveda et al., 

2004a; Sepulveda et al., 2004b; Compton, Sepulveda, & Rabelo, 2003). NASA implemented the 

Intelligent Launch and Range Operations (ILRO) Program at Ames Research Center (ARC) to 

perform initial studies of a test bed with a demonstration (Bardina, 2001). The VTB Project is 

essentially an evolution of the ILRO test bed. “The objective of the VTB Project is to provide a 

collaborative computing environment to support simulation scenarios, reuse, and the integration 
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of multidisciplinary models that represent operational elements in ranges and spaceports. The 

VTB will provide several benefits, such as a risk management, evaluation of legacy and new ve-

hicle framework, a technology pipeline, and a knowledge management enabler. The VTB will 

leverage current technological developments in intelligent databases from NASA ARC to pre-

sent data and results as usable knowledge with associated security constraints and human-

centered computing (HCC)” (Rabelo, 2002c). 

 According to (Barth, 2002), “Spaceport technologies must employ a lifecycle ‘system of 

systems’ concept in which major spaceport systems – launch vehicle processing systems, pay-

load processing systems, landing and recovery systems, and range systems – are designed con-

currently with the flight vehicle systems and flight crew systems.” One interesting characteristic 

of a complex system is that it is by default a system of systems which are themselves complex 

systems. To be faithful to concurrent engineering principles, we have to study the interactions 

among the different systems that are elements of the complex system. This system of systems is 

non-linear in nature and the interactions among the different components bring interesting emer-

gent properties that are very difficult to visualize and/or study by using the traditional approach 

of decomposition. Therefore, the goal is to develop a VTB that can host models representing the 

systems and elements of a spaceport. These models will work together on the VTB in an inte-

grated fashion, synthesizing into a holistic view and becoming a Virtual Spaceport. This Virtual 

Spaceport can be utilized to test new technologies, new operational processes, the impact of new 

space vehicles on the spaceport infrastructure, the supply chain, and the introduction of higher 

level decision making schemes. A Virtual Spaceport will allow for an intelligent visualization of 

the entire spaceport concept and the implementation of knowledge management strategies. The 
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central goal of the VTB project is to provide a virtual environment of the launch and range op-

erations at Kennedy Space Center (KSC).  

 The VTB will integrate and adapt some of the current simulation models and bridge ex-

isting gaps to create a unique mission environment for the ILRO program. This realistic NASA 

mission environment will provide scientists within the NASA based Intelligent Systems (IS) pro-

ject with a computing environment where they can implement schemes for high-performance 

human-automation systems. This integration will require the development of a computer archi-

tecture that allows for the integration of different models and simulation environments. The 

computing infrastructure will implement advanced ideas of integration, distributed and/or paral-

lel computing, distributed simulation, security, and Web-enabled standard technologies such as 

Extensible Markup Language (XML).  

 
Figure 1 Concept of Virtual Test-Bed (adapted with modification from (Rabelo, 2002b)) 
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Virtual Test Bed (VTB) Architecture 

 The VTB Architecture is composed of several sub-systems which include the Integration 

User Interface, Decision-Maker User Interface, Security Component, Integration System, Simu-

lation System, the Model Functions Manager, the Model Library Manager, and Database System. 

 The Integration User Interface provides the capability to transfer models to the VTB. The 

user can integrate an existing model (and create extensions to it) using the tools and methodolo-

gies provided by this interface. The interface will have privilege mechanisms to provide a means 

of granting the VTB Model Integrator Expert access to the system (e.g., passwords, IP-based 

schemes of security) and the ability to perform security-relevant actions for a limited time and 

under a restrictive set of conditions, while still permitting tasks properly authorized by the VTB 

System Administrator. The Decision-Maker User Interface is the simulation interface which 

supports the development and execution of scenarios based on the models which have been inte-

grated into the VTB. The Security Component provides password schemes, authentication, fire-

walls, Secure Socket Layer (SSL) implementation, maintenance and prevention mechanisms 

(e.g., virus protection and disaster recovery), certificates, and encryption (Rabelo, 2002a).  

 The Integration System takes the representation while the user interface supports the exe-

cution and together they develop the information outlined by the user (using the Integration User 

Interface) to formulate a hierarchical description of entities, activities, and interactions that is 

represented in an integrated model. The Simulation System will provide an environment to exe-

cute integrated simulators/models developed for specific elements of space operations into inter-

active simulator networks to support a single view of operations. For instance, NASA KSC has 

existing models that have been developed over time by different sources. These existing models 

17 



have been developed from different points of view and for different aspects of the operation cy-

cle. Consequently, existing models represent different levels of resolution and have selected dif-

ferent representation methods for internal entities, activities and interactions. The Model Func-

tions Manager provides the business logic for the various transactions to save the model configu-

rations as specified by the Integration System. In addition to providing business logic, the Model 

Functions Manager also retrieves from the Database System the simulation models, data, and the 

configuration parameters needed by the Simulation System. The Model Library Manager will 

support the development and management (retrieval, saving, configuration management) of the 

library of models.  

 The Distributed simulation management system that controls the models and tools before 

and after execution of simulation and manages the models in the library of simulation compo-

nents and tools will be a part of the VTB. These Distributed simulation management system ca-

pabilities will allow other platforms to be operated without extensive personnel management. 

Finally, the Database System stores the model and its details in a scheme appropriate for facili-

tating the operations of the Simulation System and the interface with NASA Ames Research 

Center ILRO VTB transactions to save the different model configurations as specified by the 

Integration System. The Model Functions Manager also retrieves the simulation models, data, 

and configuration parameters needed by the Simulation System from the Database System.  
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Figure 2 VTB System Architecture 

Requirements for Virtual Test Bed (VTB) Simulation System 

 Global System Requirement: The VTB is created by one or more simulations and is a se-

lective recreation of the real world. The simulated “world” consists of a representation of the en-

vironment, a well-defined set of objects that populate and evolve in that environment, and a 

communication mechanism to make sure that all interactions between the different elements oc-

cur in a managed and time consistent fashion. In order to accomplish the goals of the VTB 

framework we have identified several important aspects of the framework: (1) Real-Time Visu-

alization allows (potentially widely distributed) users to collaborate using VTB, (2) Knowledge 

and Information Repository - a repository for storing data, software, object models and lessons 

learned, so that new exercises or scenarios or tests can be readily constructed, (3) Integration 

Environment - a suite of tools for integrating models, visualizing, planning, executing, collecting 
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data from, analyzing and reviewing scenarios, and (4) Flexible and Evolving Architecture - VTB 

will have the ability to flexibly reconfigure resources to meet new and changing needs.  

 Modeling Language Requirement: In recent years the improvement of functionalities of 

basic components in discrete event simulation and ease of use of simulation languages/packages 

has lead to the increased popularity and development of these modeling tools. A general-purpose 

simulation language provides flexibility in modeling, the availability to develop almost any re-

quirements from a modeling environment, and the capability to generate efficient models with 

respect to execution speed. On the other hand, COTS simulation packages provide ready to use 

(built-in) features which cover a wide range of modeling necessity and usually have a highly 

functional user interface in modeling and modification (Law & Kelton, 2000). Weighing the ad-

vantages of these modeling languages/packages against the architecture and requirements of the 

VTB, the VTB team sought to find general-purpose discrete-event simulation languages and/or 

COTS simulation packages for the VTB Simulation System for use with both future and legacy 

technologies. The team identified some basic requirements for these simulation lan-

guages/packages which are as follows. (1) The languages/packages needed to support different 

hardware architectures ranging from a distributed network of fast workstations to a single com-

puter. (2) In order to either develop the HLA-RTI interface or adapt the HLA-RTI interface into 

Virtual Test Bed (VTB) simulation system, C++, Java needed to be the main modeling language 

to support the development and implementation of the simulation. For the COTS simulation 

script language, however, Visual Basic Application (VBA) can be used to develop an advanced 

external interface from the model. (3) The simulation languages/packages must provide inter-

faces for developing external interfaces. These external interfaces may be used to control 

start/stop of model execution and develop the HLA interoperability and to allow scripting lan-
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guages to be written as command messages on top of the simulation layered-architecture.  

 VTB is intended to provide a robust, flexible, easy-to-use architecture, which can incor-

porate current and evolving operational characteristics and scenarios to conduct investigations. 

Where COTS software products can meet task requirements safely, the COTS software is util-

ized instead of developing custom applications (Rabelo, 2002a). The software to be developed 

will be written in high-level languages such as Java, C, and C++, which have demonstrated a 

high degree of portability between platforms. This strategy provides a reliable system that is 

modular, expandable, and extensive. It is based on open hardware and software standards, easily 

incorporates new technology and user developed applications, and provides inherent user inter-

face improvements. 

High Level Architecture (HLA)  

 Parallel/distributed discrete event simulation refers to the execution of a single discrete 

event simulation program on a parallel computer, e.g., a supercomputer or a shared memory mul-

tiprocessor, or on a network of multiple computers (or processors). The primary reason for dis-

tributing the execution is to reduce the length of time required to execute the simulation or to en-

able larger simulations to be executed by utilizing resources from multiple computers when a 

single computer may not support enough computing resources to perform the simulation 

(Fujimoto, 2000; Fujimoto, 2003). As computer hardware technology advances and the cost of 

computing decreases, the application areas which can take a great advantage of this acceleration 

are limited only to the size of which are extremely large and/or execution time (in real-time or 

faster than real-time) critical applications.  

21 



 However, other increasingly important aspects of Parallel/distributed discrete-event simu-

lation technology such as interoperability, reuse of simulation components, and encapsulation of 

the modeling details of the simulation by separating network and model components are getting 

more attention from the simulation community. One example of such interest is the HLA, a stan-

dard distributed simulation interoperability architecture, developed by the Defense Modeling and 

Simulation Office (DMSO) of U.S. Department of Defense (DoD). The HLA has been developed 

based on the idea that no single monolithic simulation can support the needs of all users. An in-

dividual simulation or set of simulations developed for one purpose can be used in different dis-

tributed simulations by integrating these models as a component of the complex model (Judith, 

Richard, & Richard, 1998). 

 The HLA is a programming language-independent object-based distributed simulation 

architecture for promoting simulation reusability and interoperability by defining rules, methods, 

and data formats that simulation application must comply with. The High Level Architecture 

(HLA) was introduced by the Defense Modeling and Simulation Office (DMSO) of the Depart-

ment of Defense (DoD) in 1996 and it was accepted as an IEEE standard for distributed simula-

tion – IEEE 1516 – in September 2000.  

 The HLA defines a common high-level simulation architecture that supports the devel-

opment of simulation applications by integrating other simulation components and tools such as 

visualization tools and real world systems. This architecture promotes interoperability and reus-

ability of legacy simulation models in order to develop a new, complex simulation (Judith et al., 

1998).  Reuse of existing components may reduce the cost and time required to develop a new 

simulation.  
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 The HLA defines terms used in the context of distributed simulation: 

 Federate: a member of a federation; a federate refers to an actual simulation and the role 

in a distributed simulation is defined in its Simulation Object Model (SOM).  

 Federation: a set of simulations (federates) interconnected through RTI; a Federation 

Object Model (FOM) and its supporting infrastructure, which is used to form a large 

model to achieve certain objective. 

Major Components of HLA 

 The HLA comprises three major components: the HLA Rules, the HLA Interface Speci-

fication and the HLA Object Model Template (OMT), which describes the principles of the ar-

chitecture and services required for supporting software to interface among simulations and the 

information model, respectively. The components describe the software architecture of the HLA 

as open instead of specifying a type of software development. Interoperability between federates 

is achieved by three major components:  the HLA rules which describe federation and federate 

responsibilities, the Run Time Infrastructure which coordinates local simulation time managed 

by each federate with global simulation time in federation and controls the data transfer, and Ob-

ject Model Template (OMT) which defines data structure, format of federates (SOM), and com-

mon information in federation (FOM).  The following sections describe the three components in 

detail (Judith et al., 1998). 
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The HLA Rules 

 The HLA Rules define general information exchange principles required to ensure proper 

data transfer of objects (attributes) and interactions (parameters) between a federation and its 

federates, and describe the responsibilities of simulations and supporting tools participating in an 

HLA federation (DMSO, 1998e).  

 Federation Rules: (1) Federations shall have a FOM, documented in accordance with the 

OMT. (2) All representation of objects in the FOM shall be in the federate, not in the RTI. (3) 

During a federation execution, all exchange of FOM data among federates shall occur via the 

RTI. (4) During a federation execution, federates shall interact with the RTI in accordance with 

the HLA interface specification. (5) During a federation execution, an attribute of an instance of 

an object shall be owned by only one federate at any given time. 

 Federate Rules: (1) Federates shall have a SOM, documented in accordance with the 

OMT. (2) Federates shall be able to update and/or reflect any attributes of objects in their SOM, 

and send and/or receive SOM interactions externally, as specified in their SOM. (3) Federates 

shall be able to transfer and/or accept ownership of attributes dynamically during a federation 

execution, as specified in their SOM. (4) Federates shall be able to vary the conditions under 

which they provide updates to the attributes of objects, as specified in their SOM. (5) Federates 

shall be able to manage local time in a way which will allow them to coordinate data exchanges 

with other members of a federation.  

The HLA Interface Specification and Run-Time Infrastructure (RTI) 

 The discussion in this section follows that of (DMSO, 1998c; DMSO, 1998b; Kuhl, 
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Weatherly, & Dahmann, 2000). The HLA Interface Specification defines the runtime services 

and interfaces to be used by federates and supports efficient information exchange between fed-

erates and the Run-Time Infrastructure (RTI) during a federation execution. It also defines the 

way these services are used in both their function and the Application Programmer’s Interface 

(API). The services are classified as one of the six management groups of the FedExec life cycle:  

Federation Management, Declaration Management, Object Management, Ownership Manage-

ment, Time Management, and Data Distribution Management. A high level illustration of the 

interplay between a federate and a federation is shown in Figure 3.  

 
Figure 3 Federate – Federation Interplay.(adapted from  (DMSO, 1998b)) 

 The RTI, a software implementation of the HLA Interface Specification, defines the 

common interfaces for distributed simulation systems during the execution of an HLA simulation. 

It is the architectural foundation that promotes portability and interoperability. All shared infor-

mation exchanged during a federation execution must be passed though the RTI. The RTI is 
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comprised of the following three components: the RTI Executive process (RtiExec), the Federa-

tion Executive process (FedExec), and the libRTI library. Figure 4 shows a configuration of fed-

eration with respect to the three RTI components. 

RTI Components At-a-GlanceRTI Components At-a-Glance

RtiExec FedExec

libRTI

Federate(s)

libRTI

Federate(s)

RTI Provided Federate Provided

Inter-Process Communications

 
Figure 4 RTI Components At-a-Glance. (taken from (DMSO, 1998b))  

 The FedExec manages the process of joining federates and resigning the federation and 

facilitates data exchange between participating federates. A FedExec process is created by the 

RTI when the first federate successfully joins the federation and is eventually destroyed by the 

RTI when the last federate resigns from the federation.  

 The RtiExec manages the creation and destruction of multiple federation executions 

within a network. The RtiExec ensures each FedExec has a unique identification and directs the 

joining of federates to the appropriate federation. Although more than one federation can be run-

ning under a RtiExec, communication between federations is not possible.  

 The libRTI library extends RTI services to the federate developer. It enables the federate 

to access RTI services specified in the Interface Specification by RTIambassador and Feder-

ateAmbassador. Data exchange between federates in a federation occurs only through the RTI by 

the HLA rules and is accomplished by means of RTIambassador and FederateAmbassador. The 
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libRTI includes both the RTIambassador and the FederateAmbassador class. Passing information 

from a federate to the RTI is accomplished by calling services in the RTIambassador.  

 On the other hand, an event from the RTI to a federate and the response service subse-

quently requested by a federate are passed by asynchronously invoking FederateAmbassador 

“callback” functions that are implemented according to the function of simulation. Since Feder-

ateAmbassador is an abstract class, each federate must provide an implementation of the Feder-

ateAmbassador services. An instance of this federate supplied class is required to join a federa-

tion. The header file “RTI.hh” that accompanies libRTI includes declarations for class RTIam-

bassador, the abstract class FederateAmbassador, and a variety of supporting declarations and 

definitions. The RTIambassador is implemented in libRTI and must be incorporated into each 

federate executable. Figure 5 shows the code responsibility of RTIambassador and FederateAm-

bassador. 

RTI and Federate “Ambassadors”RTI and Federate “Ambassadors”

"Various RTI Objects"

RTIambassador

Federate Code

"Ambassador Implementation"

"Various Federate Objects"

FederateAmbassador

  
Figure 5 RTI and Federate Code Responsibilities. (taken from (DMSO, 1998b)) 

 The HLA is a complex integration standard for a distributed simulation. The Interface 

Specification (DMSO, 1998c) includes over 150 different services for the RTIambassador inter-

face and the FederateAmbassador interface. While the part of the HLA design that deals with 
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data sharing (publish and subscribe) is relatively straightforward, the overall architecture is com-

plicated by the other supporting functions such as starting/stoping/saving/resotoring federation, 

supporting different time management scheme, and transferring ownership of object attribute. To 

make the Interface Specification manageable, the specification is divided into six service man-

agement groups which are briefly described below. 

Federation Management 

 The services in Federation Management group are mainly focusing on two types of op-

erations. First, all basic functions related to such operations as defining a federation execution 

operation (creating federations, joining federates to federations, resigning federates from federa-

tions, and destroying federations). Second the federation-wide operations include the services 

controlling synchronization points, supporting state saves and restores. The four main functions 

in Federation Management service which are shown in Figure 3 are briefly described as follow-

ing. (1) Creating Federation: A federation is created by calling the RTIambassador method cre-

ateFederationExecution() which communicates the RtiExec process. If the specified federation 

does not exist, the RtiExec process creates a new FedExec process and associates it with the sup-

plied federation name. If the specified federation already exists, a FederationExecutionAlread-

yExists exception is raised, typically the exception is caught and ignored, and then the federate 

tries to join to the federation. (2) Joining to Federation: The joinFederationExecution() method is 

called to associate a federate with an existing federation execution. It requires the name of the 

calling federate, the name of the federation execution that the federate is attempting to join, and  

a pointer to an instance of a class implementing the FederateAmbassador callback functions. (3) 
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Resigning from Federation: The resignFederationExecution() removes the federate which calls 

the method from a federation. When a federate resigns from a federation, some additional actions 

related to update responsibility are passed to as an enumerated parameter. (4) Destroying federa-

tion: The destroyFederationExecution() method attempts to terminate an executing federation. If 

the invoking federate is not the last participating federate to terminate, a FederatesCurrently-

Joined exception is raised, the federate can ignore the exception. (5) Federate Synchronization 

and Federation wide Save and Restore. The Federation Management includes the functions that 

allow federates to communicate explicit synchronization points for the time-ordered information 

exchanges as well as the services that support federation-wide saves and restores.  

Declaration Management  

 Declaration Management services facilitate efficient information exchange by federates 

declaring their desire to generate and receive objects (with attributes) state information and inter-

actions. Federates that produce objects (or a part of attributes) or that produce interactions must 

explicitly declare what they are be able to publish, and at the same way, federates that need up-

dates of objects and interactions also must declare their interest in the attribute. Unlike object 

class, declarations of interaction must include all parameters. The classes and attributes used in 

the declarations must be consistent with the Federation Object Model (FOM). When a federate 

publishes information, the information is available to federation-wide. The RTI controls the dis-

tribution of information based on the federate interest declared by intention to subscribe so that 

the publishing federate generates object/interaction updates only if at least one subscribing feder-

ate exists. When a federate is no longer interested in any attributes of an object or interaction 
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class that were previously declared, the federate must declare the intention to stop publishing 

and/or subscribing.  

Object Management  

 Object management includes services for registration, updates, and deletion of object in-

stances for information production side and services for instance discovery and reflection on the 

parties interested in the object. To create or discover an object (or interaction) a federate must 

have published or subscribed that object class (or interaction class) through Declaration Man-

agement services. A federate also can delete an object instance, which in response, the subscrib-

ing federates will be notified and will delete the object instance. Object management also in-

cludes methods associated with sending and receiving interactions, controlling instance updates. 

Only a subscribing federate can request a value update of an object instance so that it can receive 

Reflect of a value update. The actual information exchange is supported by the Object manage-

ment services.  

Ownership Management  

 A federate is required to have ownership for an attribute of an instance before it can up-

date. In HLA ownership simply means a responsibility of updating attribute values of an object 

instance. Ownership Management services provide dynamic transfer of ownership of object and 

attributes among federates. The RTI allows federates to share the responsibility for updating and 

deleting object instances. However only one federate can have update responsibility for an indi-

vidual attribute of an object instance and privilege to delete an object instance at any given time. 
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Transfer of ownership can be initiated either by the current owner or the prospective owner. Only 

one federate that has the attribute "privilegeToDelete" for an object instance has the right to de-

lete the object. Once the object is deleted all owners of attributes of the deleted object will be 

notified by the RTI that the object no longer exists. This will prevent publishing attribute values 

for the deleted object. 

Time Management  

 Time Management deals with coordinating the exchange of events among federates in a 

federation. At the highest level, the federation appears to the RTI as a collection of federates that 

communicate by exchanging time-stamped events. Time Management services deal with the ad-

vancement and coordination of simulation time among federates in a federation. The time man-

agement services provide a variety of optional time management services for an orderly ad-

vancement of time during the execution. With default setting, the RTI does not attempt to coor-

dinate time between federates which means federates are neither regulating nor constrained, so it 

is the federate designer’s responsibility to select appropriate time coordination scheme among 

any combination of "regulating,” and "constrained" depending on the purpose and the require-

ments of the federation. Regulating federates regulate the progress in time of federates that are 

designated as constrained.  

Data Distribution Management  

 Both Declaration Management and Data Distribution Management support an efficient 

interest management mechanism for data exchange. The difference between the two is the level 
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of filtering. In Declaration Management, the RTI uses publication and subscription information 

in terms of object and interaction classes to control the update traffic. DDM provides a flexible 

and extensive mechanism for further isolating publication and subscription interests in terms of 

object instances and abstract routing spaces (Kuhl et al., 2000). 

 In DDM, a federation "routing space" is defined. The routing space is a collection of 

"dimensions." The dimensions are used to define "regions." Each region is defined in terms of a 

set of "extents." An extent is a bounded range defined across the dimensions of a routing space. 

It represents a volume in the multi-dimensional routing space (DMSO, 1998c; DMSO, 1998b).  

The Object Model Template (OMT) 

 The OMT defines a common data structure and representation (format) of information for 

all objects and interactions exchanged between participating federates. The OMT enables inter-

operability and reuse of simulations and simulation components with respect to data modeling. 

Since the HLA does not adjust the contents and semantics of a FOM or SOM, a common docu-

mentation of shared information is required to support reuse of simulations(DMSO, 1998d). 

Federation Object Model (FOM)  

 FOM describes all shared information as objects, object attributes, interactions and their 

parameters, which are essential to a particular federation. It does not contain actual information 

of instances of objects and interactions in the federate, but it provides a structure of objects and 

interactions. 
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Simulation Object Model (SOM)  

 SOM describes the objects, attributes, and interactions in a particular simulation which 

can be produced by the simulation and used by other federates in a federation. SOM describes 

the attributes of an object and parameters of interactions by type, cardinality, units and specifica-

tion of update scheme. 

Management Object Model (MOM)  

 MOM is an object model which defines a set of objects and interactions used to manage a 

federation. It is a standard part of FOM defined in the Interface Specification of HLA. It can, 

however, be extended by adding attributes or subclasses of an object, or adding interactions into 

the MOM. The RTI creates and manages instances of object defined in the MOM and updates 

attributes of it. The interactions defined in the MOM are used to manipulate the state of other 

federates and federation, e.g. adjust federation, request information, and report on federate activ-

ity (Kuhl et al., 2000; Fullford, 1999). 

 An Interface Specification prescribes the interface between each federate and the Run-

time Infrastructure (RTI), which provides communication and coordination services to the feder-

ates. The RTI provides services to federates in a way that is analogous to how a distributed oper-

ating system provides services to its applications. 

 An Object Model Template (OMT) defines the way in which federations and federates 

have to be documented (using the Federation Object Model (FOM) and the Simulation Object 

Model (SOM), respectively). Federations can be viewed as a contract between federates where a 

common federation execution is going to be run. The HLA OMT provides a template for docu-
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menting HLA-relevant information about federation objects (classes of simulation), their attrib-

utes (the data that describes the state of the objects in the federation), and the interactions that 

may occur between the objects in the federation. 

 A standardized structural framework (or template) for specifying HLA object models is 

an essential component of the HLA for the following reasons: (1) provides a commonly under-

stood mechanism for specifying the exchange of public data and general coordination among 

members of a federation; it represents the format for a contract between members of a federation 

(federates) detailing the type of objects and interactions that will be supported across its multiple 

interoperating simulations, (2) provides a common, standardized mechanism for describing the 

capabilities of federation members; it represents a basis for comparisons of different simulations 

and federations, (3) facilitates the design and application of common tool sets for development of 

HLA object models. 

Discrete-Event Simulation Languages and Packages  

 Modeling and simulation (M&S) is a powerful technology that helps to understand the 

dynamic nature of the existing or imaginary system being modeled. Discrete Event Simulation 

(DES) has especially been long recognized as an extremely valuable tool for analyzing complex 

systems. It provides a flexible tool capable of dealing with many design decisions that must be 

made before systems can become operational (Rogers & M.T.Flanagan, 1991).  Traditionally the 

results produced by the simulation are used to identify the dynamic characteristics of the system 

by various methods of statistical analysis.  
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 Discrete-event simulation refers to the modeling of a system in which the state of the sys-

tem changes only at discrete points in time at which events occur. Events occur as a result of ac-

tivity of entities and delays. There are a number of different approaches to discrete-event simula-

tion: event, process, and activity approaches. In event approach a system is described by a set of 

events with related state changes at the time of each event. In activity approach a system is mod-

eled by identifying areas where a number of events are grouped in order to describe an activity 

carried out by an entity. In process approach a system is described by the following process:  “a 

time-ordered sequence of interrelated events separated by intervals of time, which describes the 

entire experience of an entity as it flows through a system”(Law et al., 2000; Pidd, 1998).  A dis-

crete event simulation can be built by either COTS simulation package or a general-purpose 

simulation language.  Following sections introduce COTS simulation packages as Arena and 

AnyLogic and SPEEDES, a general-purpose simulation language. These modeling tools are se-

lected based on availability, the number of existing models written in the modeling tool which 

we are going to integrate into the VTB, and the requirements of the VTB simulation system.  

Synchronous Parallel Environment for Emulation and Discrete-Event Simulation 

 Synchronous Parallel Environment for Emulation and Discrete-Event Simulation 

(SPEEDES) is a general-purpose discrete-event distributed simulation engine and modeling 

framework for building complex and interoperable parallel/distributed simulations in C++. It was 

developed at the Jet Propulsion Laboratory by Dr. Jeff Steinman (Bailey, McGraw, Steinman, & 

Wong, 2001; Metron, 2003; Steinman & Wong, 2003). SPEEDES provides a parallel processing 

framework that enables integration of objects distributed across multiple processors to get simu-
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lation speed-up.  This feature enhances runtime, especially when exploiting the very large num-

ber of processors and the high-speed internal communications found in high performance com-

puting platforms.  

 SPEEDES supports multiple time management algorithms such as the sequential algo-

rithm, time-driven algorithm, Time Warp algorithm, and Breathing Time Warp algorithm which 

is a combination of the Time Warp and Time Bucket algorithms. In optimistic time management, 

an event can be processed even if it may not be the next event to be processed in ascending time 

order while maintaining repeatability and causality by using “rollback” techniques, and in con-

servative time management, an event will not be processed until it is known that there is no pos-

sibility of an event arriving in the past relative to the simulation time. Rollbacks restore state 

variables and retract events scheduled during the simulation time period needed to be rolled-back. 

They also support the ability to roll an event forward without requiring large amounts of memory 

overhead if the state that the event depends upon has not changed. This is known as lazy event 

re-evaluation:  Breathing Time Warp algorithm (Bailey et al., 2001; Steinman, 1998a; Steinman, 

1990; Steinman et al., 2003). 

 The SPEEDES architecture provides communications, event, time management, and a 

modeling framework. We are focusing on the modeling framework. The SPEEDES modeling 

framework is comprised of four fundamental components to provide the basic functionalities 

needed for event-based simulation modeling: (1) object manager, (2) simulation object, (3) 

events, and (4) messages (Fullford, 1999; Bailey et al., 2001). Figure 6 shows the components 

and hierarchy of the SPEEDES Modeling Framework. 
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Figure 6 SPEEDES Modeling Framework (taken from (Bailey et al., 2001)) 

Object Manager  

 When the simulation is initialized one simulation object manager for each simulation ob-

ject type is created on each node. Object manager controls the creation, initialization and destruc-

tion of simulation objects and the decomposition of said objects which is a function of placing 

simulation objects to nodes. Decomposition of objects can be done by automatic methods (block, 

scatter) or user-defined manner.  Block decomposition distributes the simulation objects to nodes 

evenly. Scatter decomposition distributes the simulation objects such that simulation objects with 

consecutive kind IDs are located on different consecutive nodes. SPEEDES also supports file-

driven user specified decomposition in which the user must provide placement of simulation ob-

jects and nodes in SimObjPlacement.par file (Metron, 2003). 

Simulation Object 

 Simulation objects are the fundamental concept behind SPEEDES Modeling Framework 

which represent entities in the simulation system. It consists of a set of attributes which maintain 
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the state of the object and the methods which define the activities of object. The type of attributes 

may be primitive base types from C++ or rollbackable types if the attribute is state sensitive. 

Simulation object class in SPEEDES provides the primitive functions to schedule event, process 

event handler, and response to interactions. All user objects must inherit either from the simula-

tion object class (SpSimObj) or from one of its subclasses. Figure 7 shows an example of 

S_Shuttle simulation Object structure (Metron, 2003). 

 

Figure 7 S_Shuttle Simulation Object 

 The S_Shuttle class inherits from SpSimObj and it includes the typical C++ constructor 

and destructor along with two virtual methods Init() and Terminate(). It is highly recommended, 

however, that in SPEEDES Modeling Framework simulation objects perform the necessary 

processes in Init() and Terminate() that are typically in C++ class placed in constructor and de-

structor, respectively. DEFINE_SIMOBJ (in line 24) macro is used to create a simulation object 
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manager for the simulation object, S_Shuttle.  During the simulation initialization, the object 

manager will then create the user-specified number of simulation objects. DE-

FINE_SIMOBJ_EVENT_0_ARG (in line 25) macro is used to create an event, Shuttle_Seize, 

when it is call method Seize() is to be executed. 

Events 

 Simulation object events are a part of a simulation object and are used to change the val-

ues of the state variables in simulation objects. They are defined as a public method, the most 

accessible level, so that any simulation object in the simulation may schedule the simulation ob-

ject events. SPEEDES provides a set of macros that turn methods on simulation objects into 

events, plugs these events into the SPEEDES framework, and generates functions for scheduling 

these events. To make scheduling events convenient, the macros automatically build a global 

function for each event defined, which users can use to invoke each event (Metron, 2003). 

 A simulation object event can be created by DEFINE_SIMOBJ_EVENT macro (as 

shown in line 25 and 26 in Figure 7) and PLUG_IN_EVENT macro (as shown in line 31 and 32 

in Figure 7) which register the event into the SPEEDES framework. This simulation object event 

will be executed when an object calls a schedule function and also a scheduled event can be can-

celed when the event scheduled in the future needed to be changed or canceled.  

 In addition to simulation object event, SPEEDES provides Local Events and Autonomous 

Events. An object may define Local Events on its sub-objects to manage the sub-object with self-

scheduled events. Since Local Events are defined on sub-components of an object, the accessibil-

ity of that event is limited to its simulation object. Unlike Simulation object events and Local 
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events, autonomous events are separate from the Simulation object which they act. Users can 

create an Autonomous Event object which inherits from SpEvent class and define a method on 

the event which will be scheduled by a simulation object. Autonomous Events are often used 

with the lazy option which allows users to rollforward a rolled back event to prevent re-

execution of the event if re-execution of the event does not change the outcome of the simulation.  

Message 

 When an event schedules a new event, a message is created by SPEEDES with header 

information that defines the type of event, simulation time, type of simulation object and its local 

Id. The header information is used to create a corresponding event object by the destination node. 

SPEEDES provides another way to schedule and process events. Users can define methods in 

their simulation objects to be invoked as events. Applications can schedule these event methods 

using a type-checked event-scheduling interface provided by SPEEDES. 

 Among others, SPEEDES also provides the following modeling facilities. (1) SPEEDES 

provides HLA-RTI interoperability in two ways. First, SPEEDES provides a gateway between a 

SPEEDES-based simulation model and a RTI so that a SPEEDES-based federate can be devel-

oped without integrating Local RTI Component (LRC) of HLA. Second, SPEEDES has imple-

mented the HLA RTI interface so that the SPEEDES kernel itself can serve as an RTI. Under this 

scheme, multiple SPEEDES and/or non-SPEEDES federates operating on high-performance 

computing platforms can interoperate via the standard RTI interface, with RTI communications 

implemented by high-speed shared memory mechanisms (this version of SPEEDES is not avail-

able to us). (2) SPEEDES modeling framework is an Object-Oriented architecture, and therefore 
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has a significant impact on the development of simulations.  Individual classes can represent en-

tities in a system.  Such a representation, in turn, facilitates the distribution of the simulation 

models on different processors and the design of parallel simulation experiments. As a distrib-

uted discrete event simulation framework, it allows distribution of various objects over multiple 

processors and coordinates the simulation activities among various objects that are distributed. 

(3) SPEEDES provides interfaces for developing external modules. These modules provide func-

tionalities that allow interoperability between various simulation systems and tools that will be 

able to interact with the simulation model while it is running. This interface enables the users to 

control time advance of the simulation, receive information about the simulation state, and in-

voke events in the simulation. Hence, an external module can be implemented as a graphical dis-

play of simulation or a user interface to the simulation. (4) SPEEDES provides an advanced fea-

ture called Load Balancing. This feature enables the user to balance the objects that require more 

processing on a faster processor, leading to improvements in run time performance. (5) A parser 

was integrated into its framework so that a parameter file could be used for setting initial values 

for simulation objects or making run-time changes to the simulation. (6) SPEEDES also provides 

some diagnostic tools including event tracing and event usage statistics (Bailey et al., 2001; 

Hanna & Hillman, 2002; Metron, 2003; Steinman et al., 1999; Steinman et al., 2003). 

Arena 

 The Arena simulation modeling package is a visual modeling environment. A model 

comprises model logic, animation and model definitions. The package also includes several tools 

such as input data distribution-fitting, output analysis, debugging, and optimization tool. Many 

41 



activities in a model building process can be done using Modules and Templates by Drag-and-

Drop and visual coding. The modules and templates support hierarchical modeling. In addition to 

the basic model logic, similar to that of a flowchart, advanced features can be modeled using ex-

ternal programming languages such as SIMAN, VBA, or C. The results of simulation run can be 

stored in Microsoft Access by default and viewed in Crystal Reports, also the external in-

put/output data can be linked to files in such formats as text, spread sheet, XML, and other ADO 

(Bapat & Sturrock, 2003).  

 
Figure 8 Arena Modeling Environment 
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 The Arena modeling environment provides an embedded Visual Basic development En-

vironment with which an interface can be developed for a model to interact with external appli-

cations such as Excel, VBA, Visio, Access, DDE/OLE Automation supporting applications.  

AnyLogic 

 AnyLogic is a Windows-based, general-purpose simulation environment for complex 

discrete, continuous, and hybrid systems developed by XJ Technologies. It includes graphical 

model Editor, data collection and analysis facilities, debugging and visualization tools, and a 

Code Generator which converts the model into Java codes. The modeling language of AnyLogic 

uses UML-RT (UML for Real Time) – collaboration diagrams and statechart diagrams – to 

model hierarchical object-oriented models and specify behaviors of objects. It can be executed 

on any Java platform over Hybrid Engine and also supports interoperability to HLA-RTI 

(Borshchev et al., 2002). Figure 9 shows the architecture of AnyLogic Modeling and Simulation 

Environment 
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Figure 9 Architecture of AnyLogic Modeling and Simulation Environment (taken from 

(Borshchev et al., 2002)) 

Visualization of Distributed Simulation Systems  

 In the simulation field, from the inception of modeling and simulation study in 1970s, the 

visualization of a simulation system (or animation) has been established as an essential compo-

nent of simulation study. Along with the statistical analysis, visualization of a simulation system 

is used to help the simulation developer and the end user by supporting heightened understanding 

and discussion of the model. Visualization is “an interface between two powerful information 

processing systems—the human mind and the modern computer. Visualization is the process of 

transforming data, information, and knowledge into visual form making use of humans’ natural 

visual capabilities. With effective visual interfaces we can interact with large volumes of data 

rapidly and effectively to discover hidden characteristics, patterns, and trends.” (Nahum, Stephen, 

& Stuart, 1998) There have been significant efforts to integrate visualization capabilities with 

general purpose simulation languages and packages. Many currently available commercial simu-

lation packages include a wide range of animation tools capable of high resolution settings and 
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utilizing good 2D/3D authoring tools (Peter Lorenz, 2003). In recent years, along with the advent 

of high-performance, low-cost graphics technology, the quality and the realism of animation has 

rapidly advanced and proved visualization to be an extremely useful tool for modeling and simu-

lation.  

 The trend makes it “hard to conceive of a simulation not using visualization techniques in 

some form.”(Steven D.Farr & Alex F.Sisti, 1994) Visualization has become a critical component 

of simulation technology. Today we can’t imagine doing a simulation without some kind of 

visualization to help communicate results and obtain a better understanding of a model’s behav-

ior." (Rohrer, 2000) Furthermore, several authors point out that use of visualization could result 

in an increased acceptance of simulation results and be the element that determines the success 

of the project (Blocher, 2002; Nahum et al., 1998; Rohrer, 2000; Steven D.Farr et al., 1994). Al-

though a stand-alone DES has been successfully applied to many engineering domain applica-

tions and used to address a wide range of complexity problems, many believe it is difficult for a 

single simulation model to provide for all of the user's requirements and predict all the features it 

would need. It is thought that Distributed Simulations could be the solution for this limitation by 

providing interoperability among simulation model components; the complex problem can be 

constructed by interconnecting many sub-components and user's future needs can be added to the 

current model without major changes.  

Use of Visualization in Simulation 

 Visualization of a simulation provides an understanding of the complex dynamics of a 

system that are otherwise impossible to obtain by using conventional analysis techniques. The 
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following are the areas for which visualization can be incorporated and evaluated as an ex-

tremely valuable tool for both the model developers and the end-users (Law et al., 2000; Rohrer, 

2000; Swider, Bauer, Jr., & Schuppe, 1994; Steven D.Farr et al., 1994). 

 Visualization is a highly effective means of communicating the essence of a simulation 

model to decision makers and upper management who may not have the technical knowledge 

required to understand the statistical outcome of a simulation; it may also promote communica-

tion among the project team.  It is a reliable method of presenting concepts of model dynamics to 

the end-users who may not be aware of the technical details of the model. Presenting a visualiza-

tion of the system being investigated could save a great deal of time by eliminating the lengthy 

presentation of statistical analysis needed “to be presented, explained, justified, and questioned” 

(Rohrer, 2000) of the system behavior. 

 Verification is the simulation modeling process of comparing the conceptual model with 

a computer representation of the conceptual model, while validation is the process of determin-

ing whether the output performance measures from the model match up to those of reality. In 

general, insuring the accuracy of the model and confirming model validity can be difficult with-

out using animation. Since animation provides visual trace of events at the place where the 

events are relevant, it is a helpful tool in uncovering modeling error when the event happened as 

opposed to having to wait until the simulation run ends. In addition, visualization is useful in 

identifying a sudden but short interval of surging in some model variables, which is not easy to 

identify through average statistics collected at the end of the simulation. Visualization is a tool to 

verify the correctness of a model. Steven claims that “the most widely used technique for estab-

lishing conceptual model validity is "face validation", which involves having domain experts 

view the animated behavior to determine whether it "reasonably" captures the essence of the 
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problem.” (Steven D.Farr et al., 1994) In some cases where the system being modeled does not 

exist or is modeling an operational behavior on an alternative structure of an existing system, 

validation becomes more complicated. If that is the case, visualization is critical in order to pre-

sent how the proposed system works or how these two systems – the current system and the al-

ternative one – perform in terms of the measure of interest. 

 Visualization is an essential component of training simulation. It is an interface between 

the simulation and the trainees. It provides not only the current state of simulation but also the 

effects of their response. Stafford claimed the following as a benefit of visualization in training 

simulation: “With simulation, operators get a global view of the impact made on other depart-

ments when making operational decision. This is not possible in a real operation because opera-

tors have a very localized view of the entire facility.” Farr and Sisti  believe that visualization 

“allows testing of systems and techniques, and training of operational personnel, where testing 

with the real world system or environment is impossible, infeasible or costly.”(Stafford, 1995; 

Steven D.Farr et al., 1994) Animation has proved to be a useful tool in assisting engineering 

analysis of simulation systems, often leading to improvements in system design or operational 

procedures. When animation is used as an analysis tool, it helps users explain events such as 

simulation bottlenecks, conflicts, and deadlocks. 

 Although visualization helps model developers with many modeling tasks, it is no substi-

tute for statistical analyses of model output. In addition, it takes time to build realistic animation 

scenes. Although the adaptation and incorporation of animation capabilities into a simulation is 

not without cost, the benefits far outweigh the expense and effort. In summary, a successful 

simulation project should be a combination of a sufficient statistical analysis and well designed 

animation. 
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Visualization in Distributed Simulation 

 Visualization helps the modeler, the decision-maker, and non-technical people to gain an 

understanding of the model being investigated. However in the HLA-based distributed simula-

tion, it is difficult, if not impossible, to provide the same level of insight to the user by the visu-

alization tools currently available. Although geographically dispersed simulation models have 

their own visualization environments, it becomes difficult to provide a comprehensive presenta-

tion on a global view of distributed simulation system. In order to support an effective decision-

making process, an informative visualization coupled with distributed simulation models could 

be essential tools for large and complex distributed simulation; such as space shuttle processing 

operation models, supply chain simulations or enterprise engineering models. Therefore, we be-

lieve that there is a clear need to have a visual representation of geographically distributed simu-

lations on a single visual display in order to provide comprehensive insight of whole distributed 

simulation, especially when the objective of modeling is a decision making purpose. 

 While a standalone simulation model developing process takes advantage of these visu-

alization tools embedded in COTS simulation packages, in the distributed simulation develop-

ment process, very few packages can be used to visualize the distributed simulations. There are 

two major reasons for this lack of distributed simulation visualizations. First, the HLA frame-

work doesn’t take into account the visualization methodology or possess an interface that is well 

tuned into the HLA framework. Second, although the HLA integrates various functional models 

or components, there is no general interface which interconnects the wide range of those models. 

 In the HLA-RTI based distributed simulation, since the HLA provides a common inter-

face architecture to the simulation components, it is easy to disseminate the state of a system to 
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the federation in textual format. In order to visualize the textual information, a dedicated anima-

tion application as a display federate must be developed.  

 In VTB we have developed a primitive visualization for distributed simulation by incor-

porating the COTS simulation package, AnyLogic, to make possible the functional and logical 

visualization of important systems, and allow engineers to more thoroughly investigate and dis-

play the operational processes of the simulation which is located in the remote site. 
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CHAPTER THREE: THE HLA INTEROPERABILITY IN SIMULATION 
LANGUAGES/PACKAGES 

 During the last three decades a variety of Commercial Off-The-Shelf (COTS) simulation 

tools have been developed and used widely in many areas of the industry. Despite the main pur-

pose of the HLA which was to provide interoperability to military applications to promote reuse 

of existing models and tools, recent trends show that its use has been spread to a wide range of 

other domains including academia and industry. With this trend, there have been number of ap-

proaches reported which enable communication and data exchange between COTS Simulation 

Packages and the HLA-RTI through an interface or a toolset for COTS Simulation Packages in 

the form of either modifying COTS Simulation Package’s framework or developing a 

warpper/gateway (or middleware) without significant change in the framework. Some examples 

of such implementation that link COTS Simulation Packages to the HLA are Arena/ProModel 

(Charles et al., 2000), AnyLogic (Borshchev et al., 2002), SLX (Strassburger et al., 1998; Strass-

burger, 1999), Matlab (Pawletta et al., 2000), and MODSIM III (Johnson, 1999) among many 

others.  

 It is thought that by incorporating various COTS simulation tools which are typically 

specialized in a certain area with the HLA interoperability, the range of a federation (or distribu-

ted simulation) can cover is broad by reusing existing models (or components) built into the spe-

cialized COTS tools.  
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Federate Requirements to Become a HLA Compliant 

 In order to support the HLA Interoperability for COTS simulation packages, there are 

two types of requirements – (1) one derived from the HLA Interface Specification of Ambassa-

dor paradigm, (2) and the other derived from distributed simulation. Strassburger also presents 

that the four general approaches that make a model compliant to the HLA are (1) modifying 

modeling framework, (2) changing the model source code independently with the tool, (3) de-

veloping an external programming interface such as Windows Dynamic Link Library (DLL) or 

Component Object Model (COM), and (4) coupling by a gateway program. The following sec-

tion describes the requirements for a federate (or COTS simulation model) to become HLA com-

pliant (Strassburger et al., 1998; Strassburger, 2001; Boer & Verbraeck, 2003).   

Federate Requirements in the HLA Specification  

 As discussed in Chapter 2, a federate interacts with various simulations only through RTI 

by the HLA rules and it is accomplished with the RTIambassador and FederateAmbassador 

classes. Both the RTIambassador and FederateAmbassador class are a part of libRTI. While the 

federate code provides the internal functionality of the simulation, the local RTI Components 

(LRC) provide the RTI services specified in the Interface Specifications through the RTIambas-

sador class and assist the federate in communicating with the RtiExec and the FedExec. Since the 

FederateAmbassador class is abstract, each federate must implement the callback methods in the 

FederateAmbassador class. All requests from a federate to RTI are accomplished by calling the 

RTIambassador method call. On the other hand, an event from the RTI to a federate and the sub-

sequent response of service requested by a federate are passed by asynchronously invoking Fed-
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erateAmbassador “callback” functions implemented according to the function of simulation. 

Figure 10 shows the components of a federate. 

 
Figure 10 RTI and Federate “Ambassadors” (DMSO, 1998a) 

 In order to make a COTS simulation package compliant to the HLA, a federate is respon-

sible for invoking proper APIs included in RTIambassador which is provided as a Dynamic Link 

Library (DLL). In addition, a federate must implement a set of “callback” functions which are 

provided as a form of C++ header file by HLA. The functions can be called by RTI as an asyn-

chronous response of a request from the federate. 

 There are two methods for making a simulation model that is compliant to HLA. In both 

cases, an interface must prescribe to the same requirements discussed in section 3.2. First, if a 

general-purpose high-level simulation language is used to develop a model, the method is 

straightforward, the federate code directly includes the libRTI library and implements the Feder-

ateAmbassador abstract class definition which are provided in the form of header (“.hh”) files 

when using C++. Second, in the event that a COTS simulation package is used, since many 

COTS simulation packages currently available do not support direct call to C++ libraries as an 
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external interface, it must provide one of the alternative approaches which support the require-

ments for a federate. In addition to the interface to libRTI, it also requires access to some internal 

data that is needed to connect to other simulation models (Boer et al., 2003). The following sec-

tion describes some solutions for COTS simulation packages such as Arena and AnyLogic, and 

SPEEDES, a general-purpose high-level simulation language.  

HLA Support in Modeling Languages and Packages  

 This section presents three different approaches for the simulation languages and pack-

ages have been used in the VTB simulation system. Each of these modeling tools applied the dif-

ferent approaches introduced in Chapter 3. The major factor in selecting one approach and the 

coverage of the RTI services by the approach may depend on availability of source code for the 

modeling framework and the environment the federation that is being used. In general, the RTI 

services in Federation Management, Declaration Management, and Object Management are an 

essential part of a federate, but those in Ownership Management, Time Management, and Data 

Distribution Management may not be required in many situations. 

SPEEDES 

 We have been using SPEEDES as one of the discrete-event simulation languages for our 

HLA implementation because it meets the requirements listed in Chapter 2. SPEEDES is a soft-

ware framework based on NASA-patented algorithms for building parallel C++ simulations. 

SPEEDES allocates events over multiple processors to get simulation speed-up. This feature en-

hances runtime, especially when exploiting the very large number of processors and the high-
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speed internal communications found in high performance computing platforms. It connects a 

model to the HLA through the SPEEDES HLA-gateway. An HLA gateway provides a direct in-

terface to the RTI. The federate gateway is implemented as an entity, which means that it can 

work with the entire Federation Object (FO) and interaction system in SPEEDES. By subscribing 

to all FOs and Interactions with both SPEEDES and with the RTI, the gateway is able to coordi-

nate two-way flow of information. FOs that are created by an entity are discovered by the gate-

way and then registered with the RTI. In a similar manner, FOs that are discovered from the RTI 

are created and published by the gateway. Subscribing entities will then discover the FOs 

through the SPEEDES interest management system. The gateway is implemented through the 

use of FOs (FO classes, or S_HLA class). FOs provide applications with an automated frame-

work for SPEEDES to distribute the exportable attributes of a SimObj to (1) subscribing Si-

mObjs within a SPEEDES based federate, (2) external modules, or (3) other federates within an 

HLA federation. Each FO provides a well documented set of exportable attributes that collec-

tively characterize the public state of an application’s Simulation Object Model (SOM) (Bailey 

et al., 2001; Steinman et al., 2003; Steinman, 1998b). 

 FO attributes are normally declared within SimObjs as exportable state variables that are 

mapped to FOs through pointer references. FO attributes are then used as normal data types in 

application code. Through operator overloading, FO attributes detect when modifications are 

made. Events are automatically scheduled to reflect the changes of these attributes to all sub-

scribers. Figure 11 shows an integration of a SPEEDES model to the HLA federation through the 

HLA-gateway.  
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Figure 11 SPEEDES Interface to the HLA (adapted from (Bailey et al., 2001)) 

 HLA Gateway is a SPEEDES external module that handles communication to/from the 

RTI. It joins itself to the federation and then, on behalf of the SPEEDES simulation, performs all 

the services required as a federate including join/resign from the federation, publish/subscribe 

interaction classes, time management, and route interactions to/from the federation. Therefore a 

SPEEDES simulation and the HLA Gateway together work as a general federate. The HLA 

gateway uses the “gateway.par” parameter file to customize a distributed simulation environ-

ment, which includes parameters for the RTI (federate name, federation name and .fed file) and 

the federation (lookahead, federation synchronization point, etc). The HLA gateway also uses the 

“conversions.par” parameter file to convert objects (and attributes) and interaction (and parame-

ters) between a SPEEDES user model and the HLA Gateway. The parameter file includes a list 

of objects and interactions that it either intends to publish or subscribes to from the federation. 

Each of the objects and interactions must have a corresponding “SPEEDES name”, “RTI class 
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name”, and a designator (PUBLISH or SUBSCRIBE). Figure 12 shows the format of “conver-

sions.par” parameter file.  

 

INTERACTIONS {   
     // SPEEDES Interaction                 RTI Interaction              PUBLISH | SUBSCRIBE 
    Request_for_Launch  Request_from_shuttle  PUBLISH { 
     Pub_request_ID  Request_ID 
     Pub_request_time  Request_Time 
     Pub_request_shuttleID Request_ShuttleID 
  } 
    Approval_from_Control  Approval_to_shuttle SUBSCRIBE { 
     Sub_Approval_ID  Approval_ID 
     Sub_Approval_LaunchTime Approval_LaunchTime 
     Sub_Approval_shuttleID Approval_shuttleID 
  } 

Figure 12  An example of "conversions.par" 

 A SPEEDES simulation sends out HLA interactions simply by scheduling SPEEDES in-

teractions in the usual way. This works by having a special object inside the simulation subscribe 

to the SPEEDES interaction classes, receive interactions and pass them along to the gateway. 

The gateway translates the SPEEDES interaction (and parameters) to the corresponding interac-

tion (and parameters) defined in FOM and sends it out to the federation. 

Arena with Distributed Manufacturing Simulation (DMS) Adapter  

 The Distributed Manufacturing Simulation (DMS) Adapter is a component of an HLA-

based infrastructure for distributed simulation of manufacturing facilities. The adapter was de-

veloped by the National Institute of Standards and Technology (NIST) as part of the MISSION 

project: an international, collaborative project and part of the international Intelligent Manufac-

turing Systems (IMS) Program (McLean & Riddick, 2000b; McLean & Riddick, 2000a).  
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The DMS Adapter’s infrastructure was designed to support the integration of multiple manufac-

turing simulations both with one another and with other manufacturing software applications. 

The DMS Adapter facilitates the adoption of distributed simulation in manufacturing environ-

ments by providing an interface that reduces the complexity of integrating simulations using the 

HLA to a level that is practical for manufacturing simulations. This is supported by several archi-

tectural design goals. (1) It reduces HLA interface complexity. In the DMS Adapter, the methods 

(APIs) for Federate Ambassador (callback) and RTI are grouped and it exposes only about 35 

methods. The methods can be divided into three management groups: Simulation Execution 

group, Message Management group, and Object Management group (NIST, 2001). Table 1 

shows the three management groups and their interface methods (2) Since the DMS Adapter that 

includes an implementation of federate ambassador is provided in form of Component Object 

Model (COM), legacy simulations are not required to implement Federate Ambassador. (3) Data 

from the RTI delivered asynchronously are stored in the internal storage of the adapter associated 

with a federate and the stored data will be passed to the federate upon request. This sequence of 

data exchange enables use of procedural languages such as Visual Basic Application (VBA) and 

other similar scripting languages. (4) While the representation of common objects and associated 

attributes in a federation are defined in the FOM, the instances of these objects are maintained by 

the federate. Moreover the internal representation of these objects may differ from simulation to 

simulation. To address the problem of having to develop a FOM for each federation, the details 

of object class and the associated attributes, as well as the interactions and associated parameters, 

are not defended in the FOM, instead a generic object class and a generic interaction class are 

defined. The generic object class contains an XML string that describes the structure and seman-

tics of the object. (5) Finally, the DMS Adapter supports a “time-stepped” synchronization ap-
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proach. When a simulation wishes to advance to a certain simulation time, it checks the global 

simulation time of the federation and then requests to advance. The methods for these processes 

are provided by the Adapter (McLean et al., 2000a; McLean et al., 2000b).  

Table 1  
The DMS Adapter Interface Methods 

Adapter Methods 
Time advancement and 
Simulation Execution Message Management Object Management 

• Initialize 
• Terminate 
• AdvanceSimulation 
•SimulationAdvanceCompleted 
• GetExecutionState 
• GetSimulationTime 
• GetProperty 
• SetProperty 

• GetNextMessage 
• AllMessagesReceived 
• SendMessage 
 

• CreateObject 
• UpdateObject 
• DeleteObject 
• GetObject 
• GetObjectValue 
• SeizeObject 
• ReleaseObject 
• SelectObjects 

 

While the DMS Adapter minimizes the changes needed for simulations to participate in a 

federation, it provides mechanisms to coordinate the time between legacy simulations, facilitate 

message exchange, and provide facilities for object creation, update, storage, deletion, and trans-

fer of ownership(McLean et al., 2000a). To realize the mechanisms each instance of the adapter 

maintains internal repositories for several kinds of information, the adapter’s “internal data”. 

Some of the internal data maintained by each instance of the adapter follows: federate member 

list, time management data, local/remote object cache, incoming/outgoing message queue, 

adapter properties, and subscription and filtering data. The only way to access the adapter’s in-

ternal data is through the adapter’s methods. A conceptual view of the DMS adapter architecture 

is shown in Figure 13.  
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Figure 13 Initial Adapter Architecture(taken from (Kuhl & Riddick, 2000)) 

 In addition to the HLA operability, the adapter enables the user to tune the properties of 

the simulation through “GetProperty” and “SetProperty”, and/or by an initialization file in 

XML format. The properties of the adapter can be customized are Initial Simulation Time, Simu-

lationStepSize, SimulationName, FaderationName, DebugMode, among others. 

 In the DMS Adapter architecture, Extensible Markup Language (XML) documents are 

used to specify an “initialization file” and to describe Objects and Messages. XML is a Meta lan-

guage that describes data in plain text format. It is created as a way to structure, store and inter-

change information independent of hardware, software, and application. The advantages of using 

XML documents as input for some of the adapter methods are (McLean et al., 2000b): (1) the 

model designer can create, view, and edit the documents using the standard XML tools (Docu-

ment Object Model (DOM), Document Type Definition (DTD), and XML Schema, etc), which 
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are independent of the simulation modeling packages, (2) the XML standard technique such as 

eXtensible Sytle Language (XSL), XML Path Language (Xpath) can be used to access all or 

parts of objects and attribute values as a part of the architecture, e.g., GetObjectValue, (3) due to 

the advantage of XML’s hierarchical document structure and extensibility, the object structure in 

the model can be built with the same internal structure of the actual object using the same vo-

cabulary which makes clear understating of data. Figure 14 shows an example of an initialization 

file in XML format. 

<InitializationFile> 
           <Properties> 
                   <InitialSimulationTime>0</InitialSimulationTime> 
                  <SimulationStepSize>10</SimulationStepSize> 
                  <SimulationName>MonteCarloSim</SimulationName> 
                  <FederationName>VirtualTestBed</FederationName> 
                  <Notifications>Enabled</Notifications> 
                  <DebugMode>Enabled</DebugMode> 
                  <UseManagerMode>Disabled</UseManagerMode> 
                  … 
           </Properties> 
</InitializationFile> 

Figure 14 An Example of Initialization File 

 Objects (and attributes that characterize the object) and interactions (and parameters) are 

stored in the form of XML documents. The header information which is used for controlling ob-

jects and interactions is stored as attributes of the top level document element – ObjectType, 

MessageType  - and the attributes are stored as elements of the ObjectType. Figure 15 shows 

Objects and Attributes, a general Message, and Notification Message in XML format. 
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Objects 
<Accident ObjectID=”101” OwnerID=”MontecarloSim” UpdateCounter=”3”  
                                    LastUpdateTime=”1205” TransferTo =”VirtualRange”> 
          <Time>025</Time> 
          <Location> 
                     <X>539.134</X> 
                     <Y>3146.924</Y> 
                     <Z>01958.66</Z> 
          </Location> 
          <Concentration>  
               <HCl>0.154E+07</HCl> 
          </Concentration> 
</Accident > 

Message 
<LaunchDecision MsgID=”3” Timestamp=”1205” Sender=”MissionControl”  
                                                  Recipient=”LaunchPad”> 
Approved 
</LaunchDecision> 

Notification Message 
<Notification Type=”FederateJoined” Name=”VirtualRange” ID=”5”/> 

Figure 15 Object and Message Format 

HLA Support Module (HSM) for AnyLogic™ 

 AnyLogic™ is a Windows-based, general-purpose simulation environment for complex 

discrete, continuous and hybrid systems developed by XJ Technologies. It includes a graphical 

model Editor, data collection and analysis facilities, debugging and visualization tools, and a 

Code Generator which converts the model into Java codes. The modeling language of Any-

Logic™ is UML-RT (UML for Real Time) – collaboration diagrams and statechart diagrams – to 

model hierarchical object-oriented models and specify behaviors of objects. It can be executed 

on any Java platform over Hybrid Engine and also supports interoperability to HLA-RTI. 

 Originally AnyLogic modeling framework is so called “closed-architecture” which 

means that the engine interfaces are not available for the external modules to control the process 
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of model execution. To support HLA interoperability for AnyLogic modeling framework an add-

on package, HLA Support Module (HSM), was developed by XJ Technologies to facilitate inter-

action between the AnyLogic kernel and the RTI. This interface enables AnyLogic to support a 

wide range of RTI services in the following service groups: Federation Management, Declaration 

Management, Object Management, and Time Management. HSM uses the stepHook interface 

which puts a hook on simulation engine performing model time steps. The StepHook interface 

uses nextEvent(double) methods which is executed just before each time step to schedule a next 

time step and timeStepDone() method which is called by the engine right after the system clock 

has been adjusted to the time given by nextEvent(double) method. The StepHook interface en-

ables AnyLogic models to exchange messages and synchronize Local Simulation Time to federa-

tion Global Time with the federation(Borshchev et al., 2002). The structure of HLA federation 

with AnyLogic federate is shown in Figure 16. 

 
Figure 16 Integrating HLA and AnyLogic (adapted from (Borshchev et al., 2002)) 
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 The HLA interoperability in AnyLogic is supported by an HLA Support Module (HSM) 

class library. The HLA Support Module (HSM) enables a federate to invoke the RTI services by 

using the following classes: (1) supporting most of low-level RTI services (HLAHelpers), (2) 

publishing and subscribing objects and interactions (HLAObjectClass/HLAInteractionClass), (3) 

sending and receiving objects and interactions (HLAObject/HLAInteraction). The HLA Support 

Module (HSM) also presents two port classes which queue receiving objects and interactions as 

HLAObjectUpdatePort and HLAInteractionTranceiverPort, respectively. The AnyLogic’s pow-

erful visual modeling environment coupled with the HLA interoperability may enable the user to 

develop component simulations (federates) and development of distributed simulations (federa-

tions) using easy-to-use, user friendly, drag-and-drop graphic modeling environment. This mod-

eling environment also can be used as a prototype development tool to provide possible solutions 

and validate the approaches and then the approved method can be reimplemented in the real en-

vironment. This will reduce the time and cost in federation development and avoid many errors 

on early phases of the development process (Borshchev et al., 2002). 

Implementation of The Basic Discrete Event Simulation Class in The SPEEDES Process 
Model 

 Law and Kelton pointed out that one of the most important decisions in a simulation 

study is the selection of software (or simulation language/package). It is desirable that the soft-

ware should neither be too difficult to use nor not be flexible enough (Law et al., 2000).  

 One of the decisions we have made concerns SPEEDES; despite SPEEDES providing 

exceptional functionalities including parallel execution, multiple time management, load balanc-

ing, and external module interface, among others, it requires profound knowledge in not only 
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simulation techniques but also SPEEDES modeling framework and its general-purpose pro-

gramming language, in this case C++. All this makes steep learning curve for the modelers who 

have experience in using simulation packages but not in programming languages.  

 In order to address this, we have defined a set of SPEEDES classes using Process Model 

on top of the SPEEDES modeling framework, e.g., Simulation, Entity, Process, Resource and 

Queue, etc. These components are commonly used in COTS simulation packages. The design of 

the basic component classes is apparent for two reasons.  

 First, the set of pre-defined classes may simplify the modeling process and remove the 

needs for in depth knowledge of SPEEDES in the area of industrial simulation modeling. Second, 

our focus on this matter is to implement an interface with which other simulation models in VTB 

(AnyLogic, Arena, etc.) can interact with a SPEEDES model not only by means of communica-

tion but also by data sharing. The means for communication is provided by SPEEDES gateway 

interface to HLA, and the language to talk to each other will be provided by the basic modeling 

classes which are analogues to the building blocks provided as modules or templates with data 

format specified in OMT. We overview the SPEEDES modeling framework (SMF) with a spe-

cial focus on Process Model, and then present the fundamental modeling classes in SPEEDES 

Process Model.  

Process Model 

 Unlike event-based simulation, in which the activity is divided into independent event 

routines that describe the state changes by logical consequences of an event, process-based 

model defines a process as “a time-ordered sequence of interrelated events separated by intervals 
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of time, which describes the entire experience of an entity as it flows through a system” (Law et 

al., 2000). Process-based modeling paradigm is more common than other approaches (event-

based or activity-based approach) in modern modeling tools. This is because writing a process-

based simulation is often simpler, more intuitive, and easier to maintain than writing the same 

simulation in other paradigms. Whitehurst and Brutocao believed that “Object-oriented modeling 

coupled with process-based simulation support provides an environment in which real-world sys-

tems and simulated systems enjoy a high degree of fidelity. The fidelity between the system be-

ing analyzed and the program being developed reduces development time and produces better 

software quality”(Whitehurst & Brutocao, 1998) . 

 Whitehurst has implemented the process model using discrete event primitives, which is 

a set of macros that warp the SPEEDES code required to implement the semantics of process.  

 In SPEEDES, a process is a point-to-point event that uses special macros that allow for 

both exiting code execution at any point and reentering the code at the exit point at some later 

simulated time without losing local variable state or algorithmic context.  The process model in 

SPEEDES defines a set of APIs which include Initializers, Wait Reentry Points, Semaphore Re-

entry Points, and Ask Reentry Points. The process model requires a minimal process block-

structure for a process: P_VAR, P_LV, P_BEGIN, and P_END which mark a start of process 

model, defines process model local variables, the beginning of process model user code, and the 

end of process model user code, respectively. Wait Reentry Points support WAIT and 

WAIT_UNTIL constructs; WAIT waits the specified amount of time while WAIT_UNTIL waits 

until the specified simulation time has been reached before process model continuation. Sema-

phore Reentry Points support WAIT_FOR and WAIT_FOR_RESOURCE constructs which 

work with semaphore classes. These constructs break out of their waits based on the setting of 
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semaphore or after the specified wake-up time has expired. The semaphore classes used for the 

constructs are SpLogicalSem, SpCounterSem, and SpResourceSem. These semaphores allow for 

sharing logical variable, non-negative variable, and integer/double variable types as resources 

across multiple simulation objects. Ask Reentry Points construct enables users to send/receive 

data to/from another simulation object method. To employ the ASK in a process, the user must 

first use a macro that converts a method into an event that can be used by the process model.  

Simulation Modeling Classes 

 In general building a simulation model using a modeling language like SPEEDES re-

quires a profound knowledge of many simulation techniques as well as the modeling framework 

of the language, both of which are not often possessed by model developers. Therefore it is de-

sirable to have conceptual model building blocks that are commonly found in many COTS dis-

crete event simulation packages. This may help to speed the development time of project, pre-

vent logical programming error, and increase interoperability with other COTS simulation pack-

ages with respect to information sharing. 

 To provide the basic building blocks to the modelers, several simulation modeling classes 

which are identified as basic components of discrete event simulation in (Arief & Speirs, 2000; 

Braude, 1998; Law et al., 2000; Rossetti, Aylor, Jacoby, Prorock, & White, 2000) have been im-

plemented. We believe that these class greatly simplify the programming process representation 

of the system being modeled in the VTB environment based upon SPEEDES modeling frame-

work. The classes are S_Simulation, S_Entity, S_Process, S_Resource, and S_Queue. These 

classes are derived from the SimObj and S_SpHLA classes implemented in Process Model mac-
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ros in SPEEDES. The static properties of the classes are depicted by the UML class diagram 

seen in Figure 17. In addition, Figure 18 shows the dynamic aspects of a simulation system in a 

UML sequence diagram. It consists of objects and their relationships including messages that 

might be sent from one object to another by scheduling simulation object events.  

S_Simulation

timeSimulation : Double = 1000
simulationName : const char*
entity ID : Long

setSimulationName(sName : String)
getSimulationName() : String
S_Simulation()
~S_Simulation()
Init()
ScheduleNextArriv al(entity ID : Long = 1, simTime : Double = 0.0)

(from Use-Case Model)

S_Process

ProcessQueue : RB_SpBinary Tree
rand : RB_SpRandom*
counter : RB_int
status : RB_int
processTime : RB_double
pub_no_Av ailableProcess : INT_ATTRIBUTE
no_Av ailableProcess : SpIntSem

getProcessTime()
setProcessingTime()
getAv ailableProcess()
S_Process()
~S_Process()
Init()
Seize()
Release()

(from Use-Case Model)
S_Queue

capacity  : RB_doube
length : RB_double
name_Queue : const char*

setCapacity (capacity  : Long)
getCapacity () : Long
isEmpty () : Boolean
S_Queue()
~S_Queue()
Init()
Run()
Enqueu(entity  : SpObjHandle)
Dequeu()

(from Use-Case Model)

S_Entity

enity Ty pe : String
currentStatus : RB_Int
entity ID : Long
interArriv alTime : Double
delay  : RB_Double
rand : RB_SpRandom*
numberOf Arriv als : RB_Double
numberOf Departures : RB_Double
resourceAv ailability  : SpIntSem
processor : RB_v oidPtr
pub_currentStatus : INT_ATTRIBUTE

Create(entity ID : Long)
Enqueue()
Dispose()
Seize(f reeProcess : SpObjHandle)
S_Entity ()
~S_Entity ()
Init()
Run()
getEntity Name() : String
getEntity ID() : Long
Delay (time_delay  : Double)

(from Use-Case Model)

SpSimObj
(from Use-Case Model)

S_SpHLA
(from Use-Case Model)

S_Resource

time_LastStateChange : RB_double
name_Resource : const char*
state : RB_int
capacity  : Long

S_Resource()
~S_Resource()
Init()
Seize()
Release()
setCapacity (no_resource : Integer) : Long
getCapacity () : Long

(from Use-Case Model)

Figure 17 Class Diagram of Simulation Classes 
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S_Simulation class  

 S_Simulation class is derived from SpSimObj class. S_Simulation class contains the gen-

eral properties related to the simulation and provides: (1) number of arrivals (batch size) at each 

arrival and more importantly, the event that schedules dynamic arrival of entities. The first entity 

arrival is scheduled at a specified time in this class as a model parameter and additional entity 

arrivals will be scheduled by the function of inter-arrival time defined in the S_Entity class by 

calling “CreateNextEntity” event in S_Simulation class. 

S_Entity class  

 S_Entity class is derived from S_SpHLA class. S_Entity class represents an active object 

in the simulated system. Instances of the class differ by name, attributes, activities, and interac-

tions with other objects by scheduling events during the simulation. S_Entity class contains the 

general properties of the active simulation object in the simulation: (1) setting inter-arrival time 

of the same type of entity, (2) obtaining its status, and (3) a series of activities that represent the 

flow of entity through the simulated system is modeled in Process() simulation event. Within the 

Process() event each activity, including the scheduling of the next arrival of entity, requesting a 

resource by joining to a queue, process, and departure are defined as simulation object event: 

Create(), Seize(), and Dispose() respectively. The model designer usually creates a model by im-

plementing an active entity (S_Entity or sub class of E_Entity) which flow through the system in 

which the entity changes the state of the system and that of itself by interacting with other enti-

ties. It also registers attributes that are defined in Objects.par file to proxy system. For each at-
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tribute macro DEFINE_ATTRIBUTE is called with a pair of arguments with attribute name in 

the class and correspond to the attribute listed in the Objects.par definition.  

S_Process class  

 S_Process class is derived from S_SpHLA class. S_Process class controls the status of 

the object of S_Resource class. The entity schedules the Seize() event on S_Process with the 

number of resources required to start a service. The waiting for resources, seize(), and release() 

events in S_Process class are handled by the process model loop which repeats the process of 

waiting for resources, assigning resources to the entity, and releasing resources from the entity. 

By separating S_Process class and S_Resource class, the resource can be simulated not only as a 

group (number) but also an individual object in that way states of each resource can be modeled 

such as schedule of resource, failure.   

S_Resource class 

 Resource in discrete-event simulation is a system component that provides a service to 

the entities. Typically the capacity of resources is limited, hence entities compete each other for 

service from resources to perform activities assigned to and it may result in a delay. S_Resource 

represents passive objects which are used by S_Entity object and managed by S_Process class 

objects in the activity. When more than one S_Resource object are requested by an entity the 

S_Process class object are responsible to allocate the resource object and free it after finishing 

the activity. The state of an S_Resource object may be active (seized, released), failure, inactive. 
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S_Queue class 

 Queue is a modeling element that refers to a place entities waiting for a service from the 

process along with resources when the resources are not available to the entity because either all 

the resource are allocated to other entities or there are not enough resources to start the process. 

S_Queue class is derived from S_SpHLA class. The S_Entity interacts with the S_Queue so that 

new S_Entity class object can be added to the S_Queue. The S_Queue also interacts with 

S_Process so that new entities can proceed with their activities (get services from S_Process ob-

ject) if the S_Process is available.  
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 : S_Simulation : S_Simulation  : S_Entity : S_Entity  : S_Queue : S_Queue  : S_Process : S_Process  : S_Resource : S_Resource

Init( )

Create(Long)

Init( )

ScheduleNextArriv al(Long, Double)

Enqueu(SpObjHandle)

WAIT_FOR_RESOURCE

Init( )

Seize(SpObjHandle)

WAIT_FOR_RESOURCE

Init( )

WAIT_FOR_RESOURCE

Delay (Double)

Release(SpObjHandle)

Seize( )

Dequeu( )

Seize(SpObjHandle)

Release( )

Dispose( )

Figure 18 An Example Sequence Diagram of Simulation Classes 
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Visualizations in the VTB 

 We have identified that two types of additional visualizations are required in the context 

of VTB distributed simulation. First, a visualization of data and/or the specialized functions is an 

essential part of COTS tools, but the tools do not support any type of simulation concepts. In or-

der to integrate the visualization tool to the VTB, we have created a federate that interacts with 

both the RTI and the tool’s external interface which may be in such formats as Component Ob-

ject Model (COM) or Dynamic Library Link (DLL). Second, a simulation engine includes a set 

of integrated animation facilities to display the state of the system being simulated which may 

allow the user to interact with the model. It does not, however, support any function for visuali-

zation of a remote federate in the federation. To address this problem we have utilized a COTS 

simulation package to include the state of remote federate in local federate. This section presents 

two approaches for integrating the visualization of a COTS GIS tool and a remote federate into 

VTB. 

Integrating a visualization of COTS GIS tool 

 Toxic gas-related risk is a function of exposure duration and toxic propellant concentra-

tion or dosage that would result in casualty for all populations (including normal and sensitive 

people, such as asthma patients). If a disaster occurs, the toxic risk assessment will depend on 

factors such as the respiration of propellants, meteorological conditions, the effect of positive or 

negative buoyancy on the rise or descent of the released toxic propellants, the influence of at-

mospheric physics on the transport and diffusion of toxic propellants released in the launch area, 
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the population density, location, susceptibility (health categories), and sheltering for all popula-

tions within each potential toxic hazard area. 

 In order to effectively present (visualize) the region covered by the envelope and to accu-

rately calculate the population at risk associated with that region we have used ArcView with 

Spatial Analyst as a GIS tool and have incorporated the LandScan Global Population Database 

which provides characteristics of the population in detail.  

Geographic Information Systems (GIS) tools 

 ArcView provides the tools to work with maps, database tables, charts, and graphics all 

in one graphical user interface (GUI). ArcView is an integrated suite of advanced GIS applica-

tions. It includes: ArcMap, ArcCatalog and ArcToolbox applications that can aid in performing 

many GIS tasks such as mapping, data management, geographical analysis, data editing and geo-

processing. It includes a high level geographic data model for representing spatial information as 

features, rasters and other spatial data types. Spatial Analyst in particular, an extention to Arc-

View, provides a broad range of powerful spatial modeling and analysis features. Its functional-

ity ranges from creating and querying maps, analyzing cell-based raster data, performing inte-

grated raster vector analysis, deriving new information from existing data, querying information 

from the existing data and across multiple data layers, and fully integrating cell based raster data 

with traditional vector data. 
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Population Database 

 We used The LandScan Global Population Database, a public domain database of the 

World’s population developed by Oak Ridge National Laboratory (ORNL) (LandScan, 2003). 

LandScan includes the best available census counts (usually at province level) for each country 

and allocates these figures into rural and urban population distributions on a 30" X 30" lat/long 

grid cell system. To assign values to a specific grid cell, LandScan calculates a probability coef-

ficient for each cell, and applies the coefficients to the census counts. The probability coefficient 

is based on slope, proximity to roads, land cover, nighttime lights, and an urban density factor. 

Integration and Visualization 

 By the pre-processes of the Virtual Range model, Monte Carlo model and 

Calpuff/Calmet/Calpost (see Chapter 4 for detail), an input to ArcView, concentration of toxicant 

with area under influence, is generated. The steps taken to generate the number of people ex-

posed/casualties and a display of the area of impact follow. . 

 The input text file which includes area under influence as Universal Transverse Mercator 

(UTM) Coordinates and the ground level concentration of Hydrochloric acid (HCl) in a particu-

lar area of interest are imported on top of the population map as a data layer, and later the two 

layers are combined to only select the cross areas. The added point HCl layer is saved into a fea-

ture dataset for query. Then, the query is run on the saved HCl layer to select the region where 

the concentration of the HCl is 7 ppm, i.e., 0.0104387 gm/m3  (Sepulveda et al., 2004a). After 

performing the above steps, the Zonal Statistics function of Spatial Analyst is used to calculate 

the total number of people affected by 7 ppm of HCl. Zonal Statistics calculates the statistics for 
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each zone of a zone dataset based on values from another dataset. A zone is a region in which all 

the cells in a raster have the same value, regardless of whether or not they are contiguous. The 

output sum in the zonal statistics gives the total number of people affected in that 7ppm of HCl 

zone. Figure 19 shows the visual components of the incorporated data.  

 
Figure 19 Calculation of Population at Risk 

Animation System Architecture 

 The fundamental concepts and properties of visualization design are required to develop 

effective tools for visualization of a simulated system. A general architecture of visualization 

(Lin, Yeh, & Sheu, 1992) in which the common components of an animated simulation system 

and interactions among the components required to implement a general animation system are 

identified and also a Model-Animator-Scheduler paradigm is presented for unifying different ap-

proaches of animated simulation systems into a single structure and serving as a foundation for 

implementation and further research.  
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Figure 20 Model-Animator-Scheduler paradigm (Lin et al., 1992) 

The major components of the paradigm are the Model, Animation, and Scheduler. The Model 

represents a simulation program which comprises the description of processes and entities as 

well as data which specify their characteristics. The Animator includes all the facilities that are 

required to be displayed to present the state of the system components and related tasks such as 

static layout of the system, moving entity, and static/dynamic resource. Scheduler coordinates 

the time associated event between Model and Animator. These components are linked to display 

the state of system simulated by the Model either as the model runs or post-simulation run. Dur-

ing the animation the following data are passed from the Model to the Animator. The Static 

Background is the representative display of the target system which never changes over the 

simulation run (e.g. layout). Static elements are the static objects of the target system. It can be 

used to reflect the difference between experiments (e.g. location of machine under the same lay-

out). Dynamic actors are the movable objects (entities) of the system. Since the location and state 

of the object may change over the instance of simulation time, the update should be provided by 

the model. Dynamic foreground is the summary of time-varying system status or variables. Al-

though its location is fixed, the containing values are updated by certain events. The event’s trace 
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for each simulation run is collected and recorded to the trace file which will be used to drive 

animation. 

 A majority of effort being put forth to develop a way to visualize simulation data on the 

HLA-based distributed simulation has been focused on the area of interactive simulation where 

there generally is a common scene shared by most, if not all, of the federates. This type of visu-

alization is good for use as a training simulation (or Man-in-the loop simulation) and a game-like 

simulation in which a relatively small shared space is being simulated with multiple actors join-

ing, interacting, and resigning. A widely employed approach in visualization for HLA-based dis-

tributed simulation is a display federate paradigm in which a visualization model is implemented, 

and then integrated into a federation as a utility (display) federate. Most of these display feder-

ates use a dedicated visualization tool such as Proof Animation (Strassburger, 1999), Skopeo 

(Klein, Schulze, & Strassburger, 1998), and Quest (Roberto, Guixiu, & Charles, 2003), among 

others. 

 We have found that the visualization of a remote federate can be developed by facilitating 

many COTS simulation packages if the packages have embedded animation facilities and have 

the HLA interoperability. The visualization of a remote federate is designed with the following 

steps: (1) The visualization components are categorized into dynamic elements (dynamic fore-

ground), static elements (static background, static elements), and dynamic actors which are iden-

tified in the Model-Animator-Scheduler paradigm (Lin et al., 1992). The classification is made 

based on the how the state of these elements is changed. The state (appearance) of static ele-

ments never changes during the simulation run. The state (appearance) of dynamic elements 

changes whenever there is an interaction with a dynamic actor. Therefore the dynamic elements 
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do not automatically change their state without interacting with a dynamic actor which means the 

elements can be pre-built into the remote visualizer. 

 The dynamic actor represents an active entity in the model which flows through some 

part of the simulated system. The entity has deterministic attributes and stochastic attributes both 

of which together determine the state of the entity. The deterministic attributes of an entity can 

be pre-defined or changed depending on the value of other attributes with it, however the condi-

tions of the change are known at the stage of model building in both (remote federate and visual-

izer). Therefore the last thing we need to feed to the visualizer in order to display the state of re-

mote simulated system is the stochastic attribute, the value of which will be drawn when the en-

tity reaches a modeling block that acts as a delay or a service, the duration of which is stochastic. 

In some simulation studies, especially the study of Variance Reduction techniques, using Com-

mon Random Numbers, the stochastic attributes of simulation components are assigned at the 

beginning of the simulation run so that all the random numbers (stochastic attributes) assigned to 

them will be the same from one system configuration to another. If we take the same approach 

the implementation will be simple because the number of information transfers from the remote 

federate to the visualizer is the same as that of entities in the simulated system. 

 Despite to its simplicity, it may not be applicable if the remote federate has an external 

user interface e.g., a machine or human-in-the-loop simulation. The response from the external 

interface may vary in terms of simulation time which causes the change in the order of the ran-

dom number stream and consequently the value of stochastic attributes assigned at the beginning 

of the simulation run may not be the same as the values assigned each time the entity reaches a 

modeling block.  
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 (2) The visualizer is created in such a way that it depicts all the visual components which 

include static background, static elements, dynamic foreground, and the shape of the active entity 

as well as the deterministic model logic which may change the course of the activity and/or the 

appearance of all the visual components during the simulation run. 

 (3) The remote federate is adapted to generate and then send HLA interactions to the 

visualizer. An HLA interaction consists of the time of event, active entity identification, and the 

duration of activity. In the visualizer an active entity flows through some parts of the system un-

til the next simulation element requires a stochastic value to process. For most cases of discrete 

event simulation it is simply a logical simulation time delay except the time of creation of an en-

tity, and waiting for an HLA interaction. As soon as it gets the HLA interaction it applies the du-

ration of the next activity and then the process. The flow is repeated until it reaches the end of 

the simulation run. 

ModelAnimation

Static Background
Static Elements
Dyamic Foreground

Dynamic ActorsTrace File
Dynamic Actors

Model-Animator in the HLA federation

HLA-RTI

Event time
Active Entity ID
Duration/Time
{

 
Figure 21 Model-Animation on the HLA 
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 The correctness of visualization is achieved by the HLA’s Time Management services 

which deliver time-stamped events to all federates in the federation. This actually simplifies the 

role of scheduler in Model-Animator-Scheduler paradigm. 

Figure 22 An Example model for a Remote Federate Animation 

The main model components for an animation of remote federate consists of following 

“Enterprise Libraries” in AnyLogic: (1) a port with “Message type” as “HLAInteractionEvent-

Message” and “Port type” as “HLAInteractionTransceiverPort”, (2) a port with “Message type” 

as “EntityMsg” and “Port type” as “EntityOutPortMultiple”, (3) additional “Hold” blocks as 

many as the number of blocks which require one or more random variates to specify the duration 

of delay or service, and (4) the exactly same model structure of the remote federate with generat-

ing none of the random variates which will be assigned to as the value of remote federate during 

the simulation run. In addition to the animation model, some adaptation code for the original re-
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mote federate are required to generate and publish the value of ramdom variables to the federate 

which displays the state of the original federate.  

Figure 22 (top) shows an example animation model of a remote federate of a single 

server queueing system shown in Figure 22 (bottom). In the example, the time of entity (cus-

tomer) arrival, the duration of delay, “delay_in”, and the duration of service are the places re-

quires the random variables which should be the same as that of the original model.   

The example model works as follows: (1) When each entity arrival occurs in the remote 

federate, it will send an interaction that contains parameters of the time of arrival and the dura-

tion of the delay, “delay_in”, then the animation federate gets the interaction through “Event-

Messgae” port via the RTI. The “EventMessage” port generates an entity with the parameter val-

ues, and then puts the entity to “EventPort”. The entity will pass through the “EventPort” and 

“Enter” block within the same logical time. When it reaches “Delay” block, the “Delay” block 

holds the entity as much as the parameter value of delay. (2) After finishing the delay the entity 

enters the “Hold” block and waits for another interaction from the “EventMessgae” port. When 

the “EventMessgae” port receives an interaction that contains parameters of a name of “Hold” 

block and a value of random variable, instead of an interaction indication “arrival of an Entity”, 

it creates a vector instance which contains the parameter information and then inserts the vector 

instance into a datastructure in the event time-stamp order. The “EventMessgae” port then sends 

a signal to the “Hold” block specified in the interaction to release the holding entity. The re-

leased entity will fetch the duration of next delay or service from the top vector record from the 

datastructure. The process of (2) will be repeated as many as the number of “Hold“ blocks. The 

actual movement of entity, changes of dynamic background, and the status of server/resource are 

visualized by the facilities in the simulation package in this case AnyLogic. 
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Figure 23 and Figure 24 show the code samples of AnyLogic HLAInteraction class used 

in the visualization for Declaration Management and Object Management services. 

import com.xj.anylogic.hlasupportmodule.*; 
import com.xj.anylogic.hlasupportmodule.datacodecs.*; 
 
class HLAInteractionClassEventMessage extends HLAInteractionClass { 
 
public HLAInteractionClassEventMessage() { 
  super( "EventMessage", null ); 
} 
protected HLAInteractionClassEventMessage( String sClassName, HLAInteractionClass refBaseClass ) {
    super( sClassName, refBaseClass ); 
} 
protected void OnAddParameters()  { 
    AddParameter( "event_type",  HLADefaultDataCodecs.typeString    ); 
    AddParameter( "object",  HLADefaultDataCodecs.typeString    ); 
    AddParameter( "time",  HLADefaultDataCodecs.typeString    ); 
    AddParameter( "time_delay",  HLADefaultDataCodecs.typeString    ); 
} 
public HLAInteraction CreateInstance() { 
  return new HLAInteractionEventMessage(); 
 } 
}; 

Figure 23 HLA Interaction Class for Declaration Management Service 
import com.xj.anylogic.hlasupportmodule.*; 
 
public class HLAInteractionEventMessage extends HLAInteraction  { 
  // Construction/Destruction 
  public HLAInteractionEventMessage()   { 
    super( HLAInteractionClass.GetInteractionClass( "EventMessage" ) ); 
  } 
  protected HLAInteractionEventMessage( HLAInteractionClass refClass ) { 
    super( refClass ); 
  } 
  // Attribute accessors : event_type 
  public String getevent_type() { 
    Object result = GetParameter( "event_type" ); 
    if ( result == null ) { 
    return new String("Error_in : event_type");  
    } 
    return ((String)result); 
  } 
 …  
}; 

Figure 24 HLA Interaction Class for Object Management Service 
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The advantages of this approach are: (1) Reuse of the COTS simulation packages to make 

the animation of simulated components, which is familiar to the modeler instead using a new 

specialized visualization tool. (2) A visualization of remote federate can be coupled with an ex-

isting simulation model. This augmented visual information may help the distributed decision 

maker who is able make management decisions based on both the local and the remote informa-

tion. One drawback of this implementation of animation of a remote federate may be the creation 

of a copy of the remote federate in the visualization model, though the complexity of the copied 

model is greatly depreciated. (3) It requires much less information (dynamic actor) to transmit in 

order to achieve the same level of resolution as the animation of remote federate. If a dedicated 

animation tool is used to display the scene of the remote federate, it requires transmitting not 

only changes on the dynamic actor but also changes on the dynamic foreground.  
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CHAPTER FOUR: CASE STUDIES 

Factors Affecting the Expectation of Casualties in the Virtual Range Toxicity Model 

 The Virtual Range (VR) is “an environment that seamlessly integrates several models to 

simulate and visualize complex systems. In the face of a disaster regarding the Space Shuttle, 

there is a specific criterion that determines the launch decision. If toxic gases are released, it is 

necessary to predict where the gas plume will go, how far it will extend, and the expected con-

centration of toxins. The Virtual Range Toxicity Model’s goal is to determine the expectation of 

casualties (Ec) resulting from a toxic gas dispersion if a disaster occurs within the first 120 sec-

onds of an orbiter’s liftoff” (Sepulveda et al., 2004a). This system will be able to determine the 

launch decision.  

 The area affected by the dispersion of gases is called the range. It is a system of a space-

port. According NASA-Kennedy Space Center (KSC) the range is the volume of space through 

which the vehicle must pass on its way to and from orbit. It is mostly used for vehicle tracking, 

telemetry, and communications (Barth, 2002). The range encompasses many different opera-

tions; among them, range safety has a high level of complexity. The responsibilities of the safety 

offices include three areas: 1. System safety reviews, 2. Flight safety, and 3. Ground safety 

(Committee on Space Launch Range Safety, 2000). Ground safety concerns the projection of that 

volume onto the surface and the people there that may be exposed in the event of a disaster. The 

actual dimensions of the volume and its projection onto the surface depend on the weather condi-

tions, the vehicle’s speed and direction, and the risk component being analyzed. For example, the 

volume (and the corresponding projection onto the surface) for the impact of gas dispersion will 
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be considerably larger (and have a different shape) than the volume and projection resulting from 

the orbiter’s resulting debris. As the vehicle moves, the range encompasses new volumes of 

space and leaves behind areas that fall out of range of potential hazards. The corresponding pro-

jection onto the surface also changes dynamically in size and shape. 

 Toxic gas-related risk is a factor of exposure duration and toxic propellant concentration 

or dosage that would result in casualties (death or incapacitating injury) of normal and sensitive 

people in a given population area. Table 2 displays the most commonly used Shuttle propellants.  

Public exposure to values above the ceiling concentration may cause casualties. Values in the 

last column reflect time-weighted average concentrations that may cause casualties. 

Table 2  
Commonly used Shuttle Propellants (adapted from (Sepulveda et al., 2004a)) 

Toxicant Toxic Concentration 
 Ceiling [ppm] 60-min TWA [ppm]

Ammonium Perchlorate / 
Aluminum (solid propellant)  

NH4ClO4 + Al 
10 2 

Hydrazine - 2 
Nitric Acid (HNO3) 4 2 

Mixed Nitrogen Oxides (NO, NO2, N2O4) 4 - 
 

 The Shuttle has three fuel systems. Two are used to gain orbit and one is used to operate 

the orbiter. The orbiter’s main engines, used to gain orbit, use hydrogen as fuel and oxygen as 

oxidizer, both are stored in the external tank, these components are controllable because the reac-

tion can be stopped at any time and does not produce hazardous components. The Solid Rocket 

Boosters used by the second system to gain orbit use aluminum as fuel, ammonium perchlorate 

as oxidizer and a small amount of iron as a catalyst. This reaction produces several tons of hy- 



drochloric acid (HCl). Once ignited, these components continue to burn until all of the fuel is 

gone. This reaction cannot be stopped and provides the lifting force for the system. At the igni-

tion there are over a million pounds of propellants and it takes only two minutes to burn. 

 For the purpose of this research, the VR focuses on the health impact of the release of 

large amounts of HCl, a major toxicant in the event of a loss of the vehicle. The effect of expo-

sure to HCl may range from mild irritation and headache to incapacitation due to constriction of 

the airway and lack of oxygen delivery to the brain. The analysis for other toxicants resulting 

from a Shuttle disaster will be similar. 

The Virtual Range Toxicity Model’s Architecture 

 The VR integrates a Range Safety Simulation model, Geographic Information Systems 

(GIS), population data, gas dispersion models, and weather information. The architecture is 

modular and uses Commercial Off-The-Shelf (COTS) applications such as ARENA, CALPUFF, 

and ArcMap so that it can be easily applied to other shuttle models and/or other launch operation 

areas. Figure 25 shows the architecture of the Virtual Range Toxicity Model.  
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Figure 25 Virtual Range Toxicity Model Architecture (Sepulveda et al., 2004a) 

 The Monte Carlo simulation – a technique that repeatedly generates random values for 

uncertain variables to simulate a model – accounts for the effects on risk of factors such as vehi-

cle position and consumption of propellants, weather uncertainties, vehicle guidance, and vehicle 

performance deviations. The need for a simulation of these factors is paramount. For example, 

toxic gas impact risk is affected by variability in the meteorological and launch vehicle parame-

ters, wind uncertainties, and other weather related characteristics. The Monte Carlo simulation is 

also used to determine the launch decision. For any planned flight path, it is needed to determine 

what the Ec would be with the actual conditions (input parameters). These analyses will identify 

parameters with the largest impact on the value of Ec and, therefore, identify where modeling 

accuracy is most critical. 

 The VR incorporates flight trajectory data and weather information in and around KSC, a 

model of the toxics dispersion tailored for the NASA Shuttle at low altitudes, a GIS to visualize 

the area over land affected by the disaster, a population model to determine the number of people 

exposed in that area, and a probabilistic calculator/simulator to compute Ec.  
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 If an accident occurs, the model determines the position, volume, and initial dispersion 

velocity of the released pollutants. These values are the input to CALPUFF (CALPUFF Model-

ing System, 2004) a multi-layer, multi-species, non-steady state Lagrangian puff dispersion 

model - which in turn predicts the toxic concentrations of the toxicant at a specified time after 

the onset of the accident. These values determine the envelope over land where the pollutant 

concentration exceeds the ceilings imposed by the pollutant’s Exposure Response Functions 

(ERFs). We use the number of exposed people under that envelope to estimate the number of 

casualties resulting from exposure to toxic levels of the released toxic propellant for that simu-

lated disaster.  

 The scope for Ec calculation is restricted to gas dispersion, for which we focus on dis-

playing boundaries.  We use as critical value the concentration defined for an Ec = 30x10-6 

casualties/launch, resulting from a number of legal decisions related to carcinogens causing can-

cer and generally accepted for the Federal Aviation Administration. The system was also de-

signed with a user friendly interface that provides numerical and graphical summaries of poten-

tial outcomes, with user-defined preferences for the display of units of measure, geographic loca-

tions, and time values. 

Factors Affecting  Ec 

 This section describes the model components and the static and dynamic data integrated 

into the VR and focuses on the factors that may significantly affect the computation of the expec-

tation of casualties resulting from the toxic effects of a gas dispersion that occurs after a disaster 
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affecting a Space Shuttle within 120 seconds of liftoff. This section is adapted from (Sepulveda 

et al., 2004a). 

Flight Path  

 For a planned flight path trajectory (altitude, speed, direction), the system projects an ap-

propriate “envelope” (i.e., the footprint of the projected impact) for a given risk-component. We 

focus on released toxic gases and the system predicts their paths and concentration levels.  

 Figure 26 displays the typical launch sectors for launches from the Eastern Range (Cape 

Canaveral Air Force Station and KSC; owned or leased facilities on downrange sites such as An-

tigua and Ascension; and in the context of launch operations, the Atlantic Ocean, including all 

surrounding land, sea, and air space within the reach of any launch vehicle extending eastward 

into the Indian and Pacific Oceans.) (AST, 2002). In general, vehicles are launched in an easterly 

direction and on an azimuth that provides protection of land masses and populated areas on and 

off the facility, including the Caribbean Islands, Bermuda, the northeast coasts of South America, 

and Africa. For polar launches, the azimuth upper limit is 37° and the lower limit is 44°. For 

equatorial launches, the azimuth upper and lower limits are 110° and 114°, respectively. 
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Figure 26 Launch sectors from the Eastern Range (adapted from (Sepulveda et al., 2004a) 

 The path of the shuttle for equatorial launches is calculated from data of past launches 

given in EFG (Earth-fixed geocentric) coordinates. This information was converted into latitude, 

longitude, and altitude assuming a spherical model of Earth. To make the conversion from EFG 

coordinates to longitude and latitude, we used the following formula: 
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where φ  is the latitude, θ  is the longitude, and zyx ,,  are the geocentric coordinates. For the 

conversion to UTM (Universal Transverse Mercator) (NIMA, 2001) units we used the software 

Corpscon, Version 5.11.08, which allows the user to convert coordinates between Geographic, 

State Plane, and UTM systems on the North American Datum of 1927 (NAD 27), the North 

American Datum of 1983 (NAD 83), and High Accuracy Reference Networks (HARNs) (NGS, 

2004). 
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  Because of the assumption of the spherical model of the earth, the conversion gave us an 

error of less than 0.5% as compared to the real position of the Launch Pad (Pad39a) in KSC. The 

altitude was obtained using the distance from the center of the Earth to the position of the shuttle 

before launch as reference. Using this method the calculated altitude at which the Solid Rocket 

Boosters separation occurs was 44km, approximately 120 seconds after launch.  

 In order to meet the data requirements of CALPUFF, the resulting data was translated 

into UTM NAD 27 Zone 17.  The UTM grid is a special grid adopted by NIMA (National Im-

agery and Mapping Agency) for military use throughout the world. In this grid, the world is di-

vided into 60 north-south zones, each covering a strip 6° wide in longitude. These zones are 

numbered consecutively beginning with Zone 1, between 180° and 174° west longitude, and 

progressing eastward to Zone 60, between 174° and 180° east longitude. Thus, the conterminous 

48 States are covered by 10 zones, from Zone 10 on the west coast through Zone 19 in New Eng-

land (Figure 6). The first factor that may be significant is the direction (polar, equatorial) of the 

launch.   

Probabilities of Failure for the Shuttle 

 The second factor is the exact location where the accident occurs. The VR interface 

grants the analyst the ability to select a random occurrence for the accident (e.g., to use Monte 

Carlo Simulation) or to “fix” the time of the accident. There is also a third time-related option, 

which is to specify a series of observations at fixed time intervals (for example, at 0, 10, 20, 30, 

etc. seconds after launch). The Monte Carlo simulation works by generating random numbers 

based on the probabilities of certain events occurring which are obtained from a report on poten-
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tial causes for a loss of vehicle (Fragola & G.Maggio, 1995). This document presents the total 

probability of losing the vehicle due to the failure of the different systems and subsystems of the 

shuttle. In order to obtain the probability of losing the vehicle at the different stages, the first 120 

seconds were divided into representative events that depict a range of time for which we calcu-

lated the probability of losing the vehicle as a result of an issue within one of the main compo-

nents such as external tank, space shuttle main engine, integrated solid rocket booster, and or-

biter (Table 3). With the intention of getting a better estimate of the probability at the different 

stages, shuttle experts were asked to assign weights to represent their best estimate for a failure 

occurring in a given subsystem during the shuttle operation. This questionnaire is classified ac-

cording to the main subsystems: external tank, space shuttle main engine, integrated solid rocket 

booster and orbiter. With this information the total probability was weighted and calculated at 

each stage within the first 120 seconds. 
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Table 3  
Representative Events in the Shuttle’s Trajectory during the first 120 Seconds (adapted from 
(Sepulveda et al., 2004a)) 
S tage  #  S tart T im e 

(sec) 
E nd tim e 
(sec) 

In te rva l E vent D escrip tion  

1  0 0 .3  0 .3  SR B Ign ition  

SR Bs ign ite . T he SSM Es are  a t 100%  ra ted  
power and g imba led to  launch pos ition ; a ll 
connections w ith  the  veh ic le  re tract o r a re  
dropped  

2  0 .3      L ifto ff The veh ic le  lifts  o f the  pad  

3  0.3  6  5 .7  Tower c lear 
M ake  the  necessary co rrections to  rema in  in  
vertica l fl igh t 

4 * 6  10  4      

5  10  18  8  S tart roll 
m aneuver 

The S hutt le beings a roll program  to ach ieve 
a northeasterly track from  KS C, heading  
tow ard a  5 1 .6  degree inclination to the 
equator. 

  18      End roll 
The shuttle com pletes the program m ed roll 
m aneuver and is now  posit ioned heads dow n, 
w ings level. 

6* 18  26  8      

7 26  30  4  S tart thrott le 
dow n 

The three liquid-fueled m ain eng ines are 
throttled dow n to 72  percent rated thrust to 
ease the veh ic le's flight through  the dense 
low er atm osphere. 

  30      Throttle dow n 
com plete   

8* 30  60  30      

  60      M ax  Q   The maximum dynamic pressure  reaches 580   
psf 

9  60  64  4  Throttle up 
M ain eng ines beg in throttling  back up . The 
eng ine ’s thrust level w ill be taken to 104 .5  
percent. 

10* 64  120  56      

11** 120  126  6  S RB  stag ing  

H aving  consum ed a ll their propellant, the 
solid rocket boosters are jettisoned from  the 
attachm ent points on the externa l fuel tank . 
The boosters parachute into the A tlantic  
O cean for recovery and reuse. 

  

The Toxicity Model 

 Shuttle Toxicants: In order to launch the shuttle into space, the shuttle relies upon two 

Solid Rocket Boosters (SRBs). The SRBs contain aluminum powder as fuel and ammonium per-

chlorate as its oxidizer.  Hydrochloric acid (HCl) is a major combustion product.   

 Due to its relative quantity, the expected dispersion of HCl gas (density 1.26) is the major 
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determinant of shuttle launch decisions. The gas is initially exhausted as an aerosol, which dissi-

pates within a few minutes of flight and remains as gas.  During normal operation of the shuttle 

total exhaust of HCl is 163.3 tons during the first 15 kilometers of flight.  About 72.5 more tons 

are exhausted by two minutes after launch (AIAA, 1991).  In the event of a disaster, the SRBs 

separate from the shuttle, burning like “Roman candles” as they fall.  If a disaster occurs close 

enough to lift-off, it is possible under some meteorological conditions that the ground concentra-

tion would exceed the 10 parts per million, which is the limit set for a ten-minute exposure. The 

short-term exposure limit (STEL) for HCl is 7 ppm (Hill Brothers Chemical Company, 2001). 

This irritating exposure can result in constriction of the upper respiratory tract.. 

 The Gas Dispersion Model: The health impact of the release of large amounts of hydro-

chloric acid, a major toxicant in the event of a loss of vehicle, may be catastrophic. The effect of 

exposure to HCl may range from mild irritation and headache to incapacitation due to constric-

tion of the airway and lack of oxygen delivery to the brain. If a “loss of vehicle” event occurs 

close enough to lift-off, it is possible under some meteorological conditions that the ground con-

centration would exceed 7 ppm, the short-term exposure limit (STEL) for HCl for normal people 

(Hill Brothers Chemical Company, 2001). For HCl, mild symptoms include irritation and head-

ache, which are reversible within 48 hours and do not interfere with normal activity or require 

medical attention (Philipson, 1999). Moderate symptoms include cough and shortness of breath, 

and medical attention might be necessary. Severe symptoms include disorientation due to con-

striction of the airway and consequent shortfall in delivery of oxygen to the brain; changes to 

lung tissue are irreversible in this category. Of course, the STEL values for sensitive people 

(children, the elderly, and people with asthma or other respiratory diseases) are even smaller. 
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 For the evaluation of the gas dispersion and toxic effect we use CALPUFF, developed 

and distributed by Earth Tech, Inc (Earth Tech, 2000). CALPUFF simulates the effects of time 

and space by varying meteorological conditions on pollutant transport, transformation, and re-

moval under inhomogeneous and non-stationary conditions. CALPUFF has modules to assess 

toxic effects of specific chemical agents and factors such as variability of meteorological condi-

tions, dry deposition and dispersion over a variety of spatially varying land surfaces, low wind 

speed dispersion, or wet removal of the pollutant. 

 There are several factors associated with CALPUFF that may affect the value of Ec, the 

most important of which are the initial speed of the toxic plume, the weather conditions (humid-

ity, temperature, etc.), the wind speed and the direction. 

 The Weather Factor: CALPUFF modeling system was developed as part of a study to 

design and develop a generalized non-steady-state air quality modeling system for regulatory use.  

CALPUFF (a puff model) has recently been accepted by the US EPA as a guideline model to be 

used in all regulatory applications involving the long-range (>50km) transport of pollutants. It 

can also be used on a case-by-case basis in situations involving complex flow and non-steady-

state cases from fence-line impacts to 50 km (NIWAR, 2004). It includes three main compo-

nents: CALMET, CALPUFF, and CALPOST.  In addition, it also includes several preprocessing 

programs to interface the model to standard, routinely-available, meteorological, and geophysical 

datasets. 

 CALMET is a meteorological model that develops hourly wind and temperature fields on 

a three-dimensional grid modeling domain with associated two-dimensional fields such as mix-

ing height, surface characteristics, and dispersion properties. CALPUFF is a multi-layer, multi-

species non-steady-state puff dispersion model which can simulate the effects of time and space 
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by varying meteorological conditions on pollutant transport, transformation, and removal.  This 

is done by means of the fields generated by CALMET; or as an option, it may use simple mete-

orological data without the grid.  Selected temporal and spatial variations in the meteorological 

fields are explicitly incorporated in the resulting distribution of puffs throughout a simulation 

period. CALPUFF contains algorithms for near-source effects such as building downwash, tran-

sitional plume rise, partial plume penetration, and sub-grid scale terrain interactions, as well as 

longer range effects such as pollutant removal (wet scavenging and dry deposition), chemical 

transformation, vertical wind shear, over-water transport, and coastal interaction effects.  It can 

accommodate arbitrarily-varying point source and grid area source emissions.  Most of the algo-

rithms contain options to treat the physical processes at different levels of detail depending on 

the model application.  The primary output files from CALPUFF contain either hourly concen-

trations or hourly deposition fluxes evaluated at selected receptor locations. 

 CALPOST is used to process the output files produced by CALPUFF and to summarize 

the results of the simulation.  When performing visibility-related modeling CALPOST uses con-

centrations from CALPUFF to compute extinction coefficients and related measures of visibility, 

reporting these for selected average times and locations. 

 Puff models represent a continuous plume as a number of discrete packets of pollutant 

material.  Most puff models evaluate the contribution of a puff to the concentration at a receptor 

by sampling at particular time intervals (sampling steps).  The total concentration at a receptor is 

the sum of the contributions of all nearby puffs averaged for all sampling steps within the basic 

time step. Depending on the model and the application, the sampling step and the time step may 

both be one hour, indicating only one “snapshot” of the puff is taken each hour.  A traditional 
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drawback of the puff approach has been the need for the release of many puffs to adequately rep-

resent a continuous plume close to a source. 

 CALPUFF uses either of the following two alternatives to the conventional sampling 

function: a sampling scheme that employs radially symmetric Gaussian puffs and a scheme that 

uses a non-circular puff (a “slug”), elongated in the direction of the wind during release to elimi-

nate the need for frequent releases of puffs  (Earth Tech, 2000). 

CALMET requires four types of input files: Surface Meteorological Data, Upper Air Data, 

Overwater Observations, and Geophysical Data  (Earth Tech, 2000). The weather information 

gathered corresponds to days in 2002 in which a launch took place, specifically: March 1, April 8, 

June 5, October 7, and November 23. 

 In simulating future launches for a given launch window (projected day and time for 

launch), we will gather similar weather information that occurred for the same time frame within 

the same week in the previous three years and use the average and extreme values observed for 

the simulation.  

Surface Meteorological Data. The surface meteorological observations were obtained from 

(NOAA, 2004). These meteorological data files contain hourly observations of: Wind speed, 

Wind direction, Temperature (part of surface data file), Cloud cover, Ceiling height, Surface 

pressure, Relative humidity, and Precipitation type code. The Surface Meteorological Data re-

quires information from different nearby stations for more accuracy given the position and code 

of the station. We used the data from four different stations in Florida.  The WBAN codes and 

locations are as follows:  MCO in Orlando, DAB in Daytona Beach, ORL in Orlando, and MLB 

in Melbourne. None of these stations had the surface pressure, cloud cover or precipitation type 
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code so it was necessary to use the default values. CALMET requires hourly information for all 

of these fields (NOAA, 2004). 

Upper Air Data. This set of observations contains twice-daily observed vertical profiles of: Wind 

speed, Wind direction, Temperature, Pressure, Elevation. The data was obtained from station 

XMR in Cape Kennedy from NOAA’s Radiosonde Database Access (NOAA, 2004). 

 Geophysical Data. The data file contains the geophysical data inputs required by the 

CALMET model. These inputs include:  Grid fields of terrain elevations, Land use categories, 

Surface roughness length, Albedo, Bowen ratio, Soil heat flux constant, Anthropogenic heat flux, 

and Vegetative leaf area index. 

 Over-water Data. This data is necessary to know the Overwater transport and dispersion. 

For this purpose it is necessary to have the following information:  Air-sea temperature differ-

ence, Air temperature, Relative humidity, Overwater mixing high, and Wind speed and direction. 

 The location of the overwater site is specified for each observation. The information col-

lected was taken from the closest buoy, in this case Station 41009 - CANAVERAL 20 NM East 

of Cape Canaveral. This information has been obtained from the National Data Buoy Center, a 

division of the NOAA. (NOAA, 2004) (see also (Gesser R, 2003) for information about the use 

of overwater observations in CALMET). 

 Some of the data that was found in NOAA did not match the requirements of CALMET, 

so we calculated the missing parameters with theoretical formulas. For instance, the Relative 

humidity was not part of the information found in the NOAA’s files. Therefore, we used the va-

por pressure, the saturation vapor pressure, the dewpoint temperature, and the ambient tempera-

ture found from NOAA to calculate it. 
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 In the VR interface, the analyst is given the option of selecting any of the given dates. 

The analyst can also change the default values for the wind speed and direction for any selected 

day. As an alternative, the “All days” option may be selected which results in one independent 

simulation run for each of the selected weather profiles. 

Geographic Data and Population Models 

 The VR uses ArcGIS – a powerful commercial GIS application that provides data visu-

alization, query, analysis, and integration capabilities along with the ability to create and edit 

geographic data – to identify the region covered by the dispersed gas. 

The area covered in our simulation is basically the area around the Cape Canaveral region, which 

includes mainly Brevard and Orange Counties and a large part of the sea around the Cape. The 

simulation covers about 150 km in each direction from the source (Cape Canaveral). Since this 

area is a flat, noncomplex terrain and surrounded by sea, it has a good flow of winds, pressure, 

and temperature variations through it. So, the weather data plugged into the model plays an im-

portant role in the simulation. The area covered by the simulation is divided into a number of 

grids with equal spacing to facilitate the study of concentrations of the explosions in the area 

considered. Each grid can be a square block, whose side can range from 10s of meters to 100s of 

kilometers.  

 Population Model. Using the LandScan Global Population Database, a public domain 

database of the world’s population developed by Oak Ridge National Laboratory (ORNL), to 

present population data associated with the covered region, the VR determines the population at 

risk for that specific risk-component (LandScan, 2003). LandScan includes the best available 
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census counts (usually at province level) for each country and allocates these figures into rural 

and urban population distributions on a 30" X 30" lat/long grid cell system. To assign values to a 

specific grid cell, LandScan calculates a probability coefficient for each cell and applies the coef-

ficients to the census counts. The probability coefficient is based on slope, proximity to roads, 

land cover, nighttime lights, and an urban density factor. 

 Exposure Response Functions: Figure 27 shows Exposure Response Functions (ERFs) 

for HCl for sensitive and normal people subject to a 30-minute exposure. The sensitive popula-

tion was defined as children through age 14 and adults aged 75 and over, as well as all others 

with respiratory illnesses.  In Brevard County, recent census data shows that 42% of the popula-

tion is composed of those either those 18 and younger or those 65 and older; this number is ex-

pected to increase by about 55% by the year 2010 (United Way of Brevard County, 2002).  

These curves show that concentrations of 15 ppm and 41.5 ppm of HCl result in an expectation 

of casualties of about 30 in a million launches (Ec= 30x10-6) for sensitive and normal people, 

respectively. ERF curves have been computed for nitric acid aerosol, nitrogen dioxide, and hy-

drochloric acid (Philipson, 1999).  They were constructed by a panel of about 20 expert toxi-

cologists who provided best estimates of the 1- and 99-percentiles of expected casualties.  Below 

the first percentile, “essentially no one in a population of a given sensitivity category would be 

affected to a given level of severity.”  Above the 99th percentile, “essentially all in the popula-

tion would be so affected.”  Twelve estimates (with ranges of uncertainty) for each substance and 

duration of exposure (10, 30, 60, and 120 minutes) were provided by members of the panel of 

experts: one for each percentile, casualty type (mild, moderate, and severe), and victim type 

(sensitive, normal).  Some of the panelists computed duration estimates from 1-hour estimates 

according to Haber’s Law, which states that “an effect level is directly proportional to exposure 
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concentration multiplied by time” (Philipson, 1999). Once these estimates were decided upon by 

the panel, ERF curves were then calculated as cumulative distributions. 

 
Figure 27 Exposure Response Function for HCl (adapted from (Sepulveda et al., 2004a) 

 Geographic Data Model. ArcGIS is used along with LandScan Global Population Data-

base. In this GIS environment, the model of population distribution is integrated with the gas 

dispersion model to calculate Ec for that risk component given a loss of vehicle. Spatial Analyst, 

an extension toolset in ArcGIS, is used to generate the query on the HCl data from the Gas Dis-

persion Model to select the region where the concentration of the HCl exceeds a critical value. 

Zonal Statistics calculates the statistics for each zone of a zone dataset based on values from an-

other dataset. A zone is a region in which all the cells in a raster have the same value, regardless 

of whether or not they are contiguous. The sum of the output gives the total number of people 

affected in that critical HCl concentration zone.  

 For the VR, the sensitive and normal HCl severe ERFs were combined according to the 

sensitive and normal population mix in Brevard County, Florida.  A critical value of 15 ppm was 
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used as a baseline. This value represents a value where most sensitive people will be affected but 

most normal people will not. In the sensitivity analysis we will vary this factor by increasing the 

critical HCl concentration by increments of 10 until we reach 45 ppm, a value where almost the 

whole population will be affected (Sepulveda et al., 2004a).  

 Note that Spatial Analyst and LandScan combine to give an estimate of the number of 

people that may be exposed in the affected area. However, this figure represents an upper limit 

for the number of people at risk as some people will undoubtedly be able to take cover or flee the 

region before the gas dispersion reaches it. Still a sensitivity analysis could be done on the pro-

portion of the exposed people that will actually die or be incapacitated as a result of the accident. 

Integration of the Components Models 

 The Virtual Range Model in summary works as follows: An Arena model simulates the 

time of accident, which is determined by the cumulative probability of an accident occurring in 

ten different stages during a launch.  Each of these stages has a different duration and chance of 

accident.  Once the stage is determined, the time of accident is fixed by equal chance within the 

stage. Based upon the time of accident, the model references coordinates for the path of orbiter 

and determines the volume of remaining pollutants from the existing model data file. These val-

ues are the input to CALPUFF, which in turn predicts the toxic concentrations for each toxicant 

after one hour. We enter these values as a layer into ArcMap, to determine the envelope over 

land where the pollutant concentration exceeds the ceilings imposed by the corresponding ERF. 

ArcMap’s Spatial Analyst has the ability to determine the number of people covered by the dis-

played layer. We use the number of exposed people and the parameters resulting from the pollut-
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ant’s ERF (we use as critical values the concentrations defined by Ec = 30x10-6) to estimate the 

number of casualties for that simulated disaster resulting from exposure to toxic levels of the re-

leased toxic propellant. Figure 28 shows the VR simulation model user interface. Repeating the 

procedure for enough simulation runs, we can get enough information to generate an “average” 

boundary and its associated confidence interval. 

 
Figure 28 VR Simulation Interface 

 In our initial results, the sensitivity analysis shows that wind direction and the time of ac-

cident (seconds after launch) have the most significant impact on the number of people on the 

ground exposed to dangerous concentrations of the toxicant one hour after the onset of the disas-

ter. In these runs, however, we varied wind direction from 0o to 360o in increments of 45o. In the 

final runs the limits for variation in wind direction will be given by the extreme values observed 

in actual launch dates.  
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 The factors selected for the final analysis are summarized in Table 4. .The dependent 

variable in the analysis is the expected number of people on the ground exposed to dangerous 

concentrations of the toxicant one hour after the onset of the disaster. 

Table 4   
Factors affecting Ec (Sepulveda et al., 2004a) 

Factor Example Range 
Flight path’s azimuth 

(direction of the launch) 112o Polar: 37o-44o; ecuatorial: 
110o -114o 

Time of accident [seconds after launch] 
(sets altitude and amount of pollutants release

d) 
15 0-120; will try 0, 5, 10, 15, 20,

25, and 30 seconds. 

Nature and amount of the released toxicant 
(depends on initial value, flight time, 

and consumption rate) 
HCl, 8 tons See Table 2. 

Initial velocity of the gas plume 380 (CALPU
FF’s default) Needs further research 

Weather conditions 4/8/2002 As represented 
by 5 actual launch dates 

Wind direction (f(altitude)) 200 degrees Limits represented by angles 
observed in actual launch dates

Wind velocity (f(altitude)) 10 m/s Limits represented by speeds 
observed in actual launch 

Critical concentration for the pollutant 15 ppm 15 – 45 ppm 
(from ERF for HCl) 

The proportion of exposed population 
incapacitated or dead as a result of the accident 60% 0 to 100% 

 

 This case study presented the factors we have selected for an in-depth sensitivity analysis 

of the population at risk, including vehicle trajectory, accident location, vehicle position and con-

sumption of propellants, weather and wind uncertainties, and amount and type of toxicants re-

leased. Such factors may significantly affect the computation of the population exposed and the 

corresponding expectation of casualties resulting from the toxic effects of the gas dispersion that 

occurs after a disaster affecting a Space Shuttle within 120 seconds of liftoff. 
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Implementing the High Level Architecture in the Virtual Test Bed 

 The distributed simulation implementation described in this section represents different 

systems that interact in the simulation of a Space Shuttle liftoff.  This example implementation 

displays the collaboration of a simplified version of the Space Shuttle Simulation Model and a 

simulation of the Launch Scrub Evaluation Model (Sepulveda et al., 2004b). The implementation 

follows the HLA as the principal framework to integrate all the different types of models that 

need to be a part of the VTB. For example, a spaceport can be represented using different types 

of models using different information spaceport size and operation. The simulation system will 

be a subsystem that will evolve over time to meet this important requirement.   

 Many factors contribute to a launch vehicle launching on time.  The launch vehicle, 

spacecraft, and supporting range must all be ready to go on time in order for the launch to occur. 

Each of these elements may have supporting systems consisting of hundreds of subsystems and 

millions of individual components.  Thousands of opportunities exist for technical system failure 

or human error. Other factors such as weather and launch area intrusions are out of the control of 

the launch officials. The different elements affecting launch decisions are addressed through two 

simulation models that were built independently.  

 The first model simulates Space Shuttle flow from processing at the Orbiter Processing 

Facility (OPF), through transport to the launch pad, liftoff, mission, landing at KSC, and refur-

bishing at OPF to get ready for a new launch. This is a simplified version of the conceptual flow 

diagram described by the Space Shuttle Processing Model (Cates, Steele, Mollaghasemi, & Ra-

badi, 2002). A single shuttle is used to route between the different facilities and launch opera-
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tions at KSC. All processing times come from real world data as included in the Space Shuttle 

Processing Model.  

 In the Space Shuttle Processing Model, when the orbiter reaches the launch pad and is 

ready for launch, the simulation generates a random variable to determine the time that will 

elapse until the launch occurs.  This time follows a theoretical distribution that closely matches 

events as historically observed. Those events account for historically observed instances of de-

lays or scrubs that affected the launch process. A delay means the launch is postponed for a short 

time but still occurs on the expected date. A scrub means the launch is postponed for at least one 

day. To illustrate the VTB capabilities and the procedure needed to combine existing computer 

simulations, the randomly generated delay (or scrub) in the Space Shuttle Processing Model was 

deleted, and processing requiring Shuttles to wait on the launch pad until an external authoriza-

tion for launch is received was added. To generate launch authorization commands, a second 

model independently simulates the range, the launch pad, and other spaceport facilities. This 

model focuses on events occurring in the range and in the processing facilities that can cause 

launch delays or launch scrubs due to mechanical or electrical failure.  Although both models 

discussed here were built using Arena, either one of them (or both) could have been built using 

other software such as ProModel™, Anylogic™, or any other commercial simulation software 

that supports an interface to the RTI. 

The Space Shuttle Simulation Model 

 The Space Shuttle Simulation Model (“LaunchPad”, here after) is a mini model of space 

shuttle operations in Arena. Here we use a single shuttle to route in between different facilities 
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and launch operations at KSC. The Shuttle starts the processing from the OPF (Orbiter Process-

ing Facility). All processing time comes from real world data. After OPF processing, the shuttle 

is routed to the PAD where it completes the PAD processing and sends the signal to the Launch 

Delay and Scrub Model (“MissionControl federate”, here after) that it is ready to launch. At this 

point in time, the LaunchPad will wait for a GO/NOGO signal from the MissionControl federate. 

This signal passing takes place through RTI. As soon as the LaunchPad gets the signal from the 

MissionControl federates to launch, it will route the shuttle to orbit, where it will finish the orbit-

ing process. At the end of the orbiting process, the model checks for the end-of-mission day and 

lands the shuttle at KSC. After the shuttle lands at KSC the model checks the shuttle’s flight 

number. If the flight number is 8, the shuttle is sent to Palmdale for maintenance. Otherwise it 

will continue the cycle from OPF. If it is sent to Palmdale, it finishes the Palmdale processing 

and returns back to OPF. 

The Launch Delay and Scrub Model 

 The Launch Delay and Scrub Model (“Mission Control  federate”) represents the scrub 

and delay logic with their probabilities in shuttle launch. The probability for scrub and delay 

come from real world data. The MissionControl federate handles the logic and data.  

 We have some historical averages of system failures per month.  A system failure was 

identified as a system or component failure that would result in a launch scrub.  Launches can 

continue with many individual components or subsystems not operating as long as they have a 

backup or are not mission critical or safety critical mandatory items. Many factors (see Table 5 

for detail) contribute to a launch vehicle launching on time.  The launch vehicle, spacecraft, and 
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supporting range must all be ready to go on time in order for the launch to occur. Each of these 

elements has supporting systems consisting of hundreds of subsystems and millions of individual 

components. Thousands of opportunities exist for technical system failure or human error. 

Table 5  
Factors affecting delays and scrubs (adapted from (Lebo & Woltman, 2002)) 

System Subsystem Failure Rate 
Airborne Systems 1 failure per month Launch Vehicle Ground Systems 3 failures per month 
Airborne Systems 0.5 failures per month Spacecraft Ground Systems 2 failures per month 
Telemetry Systems 1 failure per month 
Tracking Systems 2 failures per month Range 

Command Systems 1 failure per month 
Weather Lookup table – varies by monthOther factors Launch Area clear Lookup table – varies by month

 

 A system failure was identified as a system or component failure that would result in a 

launch scrub. Launches can continue with many individual components or subsystems not oper-

ating as long as they have a backup or are not mission critical or safety critical mandatory items. 

For the launch vehicle, there was a 10.5% chance of the launch vehicle element causing a scrub.  

For the spacecraft, there was a 6.8% chance of causing a launch scrub. Other factors such as 

weather (see Figure 29) and launch area intrusions (for example, a pleasure boat or an un-

authorized aircraft entering a restricted area, see Figure 30) are out of the control of the launch 

officials.  
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Figure 29 Bad Weather Occurrence (adapted from (Lebo et al., 2002)) 

Graph for Launch Area Intrusion Rate
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Figure 30  Launch area intrusions (adapted from (Lebo et al., 2002)) 

 All of the hardware systems had a constant failure rate, but two items, weather and 

launch area clearance varied significantly with the time of year.  In these cases, lookup tables 

were created to model the average “bad occurrences” per month for each month of the year.  A 

simplified model (see Figure 31 depicting the different contributions and how they should be 

added was built using a System Dynamics approach. 
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Figure 31 Contributions to the delays and scrubs (adapted from (Lebo et al., 2002)) 

 For the range, the combined contribution of weather and range intrusions is varied by 

month since the weather and launch area surveillance components also varied. The probability 

varied from 10% to 30% depending on the month.  The spring and summer months showed a 

higher chance of launch scrubs. The overall launch scrub probability is shown in Figure 32 and it 

varies between 16 and 32% depending on the month. This data could be helpful for financial and 

schedule planning for launch vehicles. 
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Figure 32 Overall Probability of a delay or scrub (adapted from (Lebo et al., 2002)) 

Integration of Space Shuttle Modell and Launch Delay and Scrub Model 

 The integration that occurs between the modified Space Shuttle Simulation Model 

(LaunchPad federate) and the Launch Delay and Scrub Model (MissionControl federate) is ac-

complished using DMS Adapter. The DMS Adapter’s infrastructure was designed to support the 

integration of different manufacturing simulations with each other and with other manufacturing 

software applications. Applications that might be integrated using the DMS Adapter include: 

new or existing simulation created with existing, non-HLA-compliant simulation development 

tools; existing enterprise software applications dealing with non-simulation situations (produc-

tion planning, human resources, inventory control, supply chain information, finance and ac-

counting, instruments data collection, etc); or general non-simulation and non-manufacturing 

oriented legacy software applications. If incorporated into each federate, the DMS Adapter 

works with the RTI to manage the exchange of object and interaction information between feder-

ates.  
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Figure 33 Distributed Shuttle Process Simulation using the DMS Adapter 

 This case study demonstrated the integration of models built in COTS simulation package, 

in this case Arena, using DMS Adapter as a gateway between the model and the RTI on the HLA 

distributed simulation environment. This integration can be extended to develop a new and 

unique collaborative computing environment where simulation models can be hosted and 

integrated in a seamless fashion. The focus of our future work will be to integrate and develop 

the Virtual Test Bed with the Virtual Range. The emphasis is on the integration of the VTB 

operations and the Virtual Range models. The modular architecture of the VTB which can be 

integrated enables the analysis of new vehicle types (e.g., the Crew Exploration Vehicle (CEV)) 

and the study of other launch sites.  It is anticipated that the current environment will be 

extended to support the integration of other discrete-event simulations of KSC operations, and to 

make greater use of the High Level Architecture. 
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CHAPTER FIVE: A PROTOTYPE IMPLEMENTATION OF VTB 
SIMULATION SYSTEM 

Introduction and Motivation 

 This chapter first presents a successful implementation of a prototype VTB simulation 

system for a proof of concept using a distributed simulation engine - the Run Time Infrastructure 

(RTI) of the High Level Architecture (HLA); the HLA interoperability supporting tools include 

the SPEEDES gateway, Distributed Manufacturing Simulation (DMS) Adapter, HLA Support 

Module (HSM); and simulation languages such as  SPEEDES, Arena, and AnyLogic.  

 The complex nature of VTB is a result of the combination of multiple simulations and 

non-simulations (supporting tools), and a mixture of analytical discrete event simulation models 

which generally can be executed “as-fast-as” possible and real-time factors as an input for the 

model are only available through live applications (e.g. Weather Expert System). These factors 

make it difficult to integrate into the VTB simulation architecture. The VTB federation consists 

of the shuttle process federate, weather expert federate, Mission Control federate with the aug-

mented visualization of the federation, Monte Carlo federate, and virtual range federate. The pre-

liminary VTB simulation system manifests the requirement of VTB with respect to the distrib-

uted simulation interface on the HLA-RTI. By incorporating these federates, each of which rep-

resent operations in VTB modeled in various tools and computing environments, the VTB archi-

tecture can be used to analyze more complex, larger operations and provide associated solutions 

such as structural process or cost optimization. This integration is accomplished by providing the 

HLA interface at the communication level as well as the data representation level for multiple 
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simulation models. The purpose of prototype implementation is not only to demonstrate the 

proof of concept, but also to validate the design approach for developing the VTB simulation en-

vironment. 

Adapting Legacy Models to VTB Simulation System Using the HLA 

Virtual Range Toxicity Model   

 As described in Chapter 4, the Virtual Range toxicity model is an integrated set of soft-

ware packages that exchange information in order to calculate the Expectation of Casualty as a 

result of gas dispersion when an accident ending in loss of vehicle affects the Space Shuttle 

within 120 seconds of liftoff. Among these software packages is a MonteCarlo simulation, a gas 

dispersion model (Calpuff), a population model (LandScan), a Geographical Information System 

(ArcView and ArcGIS Spatial Analyst) and access to weather data and flight path information.  

 The VR toxicity model was divided into two simulation models (federates), MonteCarlo 

federate and VR federate. The MonteCarlo federate simulates the time of accident, which is de-

termined by the cumulative probability of an accident occurring in ten different stages during a 

launch.  Each of these stages has a different duration and chance of accident. Once the stage is 

determined, the time of accident is fixed by equal chance within the stage. Based upon the time 

of accident, the MonteCarlo federate references coordinates for the path of orbiter and deter-

mines the volume of remaining pollutants from the existing model data file.  

 Each request of simulated launch from other federates the MonteCarlo federate deter-

mines whether the launch is successful or whether a simulated disaster occurs. If there is a suc-
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cessful launch the Monte Carlo federate sends an interaction indicating “successful launch” 

through the RTI; if there is an accident it sends an interaction which include the location (latitude, 

longitude, and altitude) and the concentration of toxicant released to the federation. All other 

components of the Virtual Range toxicity model are included in the VR federate and they work 

the same as before. Figure 34 shows the new architectures of the Monte Carlo federate and the 

VR federate which are adapted to the HLA distributed simulation.  

 
Figure 34 The MonteCarlo Federate and The VR Federate architecture 

 The advantages of this adaptation are twofold. First, we can simulate many different shut-

tles and orbiters which may have different probability of failure without changing the Virtual 

Range toxicity model. Since the inputs to the Monte Carlo federate highly depend on the prop-

erty of the shuttle, each Monte Carlo federate can be built such a way that a Monte Carlo feder-

ate represents for a shuttle as a components model. The component model can be integrated to 

the VTB as it is necessary. Second, the process of each federate can be initiated by other simula-
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tions such as the LaunchPad federate or the Mission Control federate and the intermediate infor-

mation can be utilized by other federates in the VTB. 

Weather Expert System (WES) 

 The Web-based Weather Expert System (WES) is a critical module of the Virtual Test 

Bed development to support “GO/NO-GO" decisions for Space Shuttle operations in the intelli-

gent Launch and Range Operations (ILRO) program of NASA:  the description of which in this 

section references (Rajkumar & Bardina, 2003). The weather rules characterize certain aspects of 

the environment related to the launching or landing site, the time of the day or night, the pad or 

runway conditions, the mission durations, the runway equipment and the landing type. Expert 

system rules are derived from weather contingency rules, which were developed over several 

years by NASA. Backward chaining, a goal-directed inference method, is adopted to the system 

rules, because a particular consequence or goal clause is evaluated first, and then chained back-

ward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the 

decision is expressed. The expert system is continuously verifying the rules against the past one-

hour weather conditions and the decisions are made. 

 The launch weather guidelines/factors involving the Space vehicles, which are used as 

rules for the weather expert system, are similar in many areas, but distinctions are made for the 

particular characteristics of each. These guidelines are very conservative and seek to avoid pos-

sibly adverse conditions that focus on ambient temperature, wind speed, precipitation, lightning, 

type of clouds, cloud temperature and thickness.  
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 The virtual test bed is used to simulate the mission, control, ground-vehicle, launch and 

range operations, during which weather plays a crucial role. Complex operations and their impli-

cations raised the need for an automated weather expert system to help analyze and provide ex-

pertise to management. The expert system’s primary goal is to make its weather expertise avail-

able to macro level decision makers who need answers quickly and rapidly. It can help assess 

situations and facilitate launch planning. Analyzing text, numeric data and satellite images, the 

expert system helps save money by reducing the time involved in weather analysis allowing 

management to be more productive by making smarter, faster decisions. 

 In the weather expert system, the user interface is automated in such a way that the inputs 

to the expert system are downloaded and fed to the system in a periodic manner. There is no 

need for human intervention in the expert system and decisions for launch are automatically dis-

played as a web page. The weather web expert system is based on Java technology and web en-

abled, which can be viewed from any part of the world.  

 The real time weather data is obtained from different federal weather monitoring agencies. 

Images and other types of data are downloaded and then processed, extracted and converted to 

suitable numerical values. The image processed data is stored in an image file and other numeri-

cal values are stored in a weather file. The above mentioned files constitute the inputs for the ex-

pert system. NASA derives the rules for the weather expert system from weather contingency 

rules developed over several years. An example of a weather rule is (Rajkumar et al., 2003):  

If (36 < Temperature < 98) and  
 (0 < Wind Speed < 24)    and (Precipitation = ”No”) and  
 (Lightning= ”No") and   (Cloud Temperature > 32) and  
 (Cloud height > 20000 ft) and (Cloud thickness < 4500 ft) and  
 (Cumulus = “No”)  and  (Cumulonimbus = “No”)  
Then  
 Launch=”GO”  

117 



 The above rule has nine antecedent clauses joined by a conjunction “and” and has a sin-

gle consequent clause (Launch). The rule is triggered, if all antecedent clauses are set to be true. 

The clause conditions are derived for each vehicle type. Depending upon the launch vehicle, the 

rules are slightly changed. The rule variables remain constant for most of the launch vehicles. 

The rule base consists of rules for GO and NO-GO decisions. Depending upon the prevailing 

weather conditions, decisions are made. The advantage of the weather expert system (WES) is a 

unified decision of various weather factors which affects Shuttle launch.  

 We identified the weather expert system (WES) as an essential component in the Virtual 

Range. In order to integrate the WES to the VR, we decided to convert Socket based VR archi-

tecture(Sepulveda et al., 2004a) to the HLA based distributed simulation . 

 The integration of the WES into the VR infrastructure was accomplished using the RTI 

APIs exposed through the Java Binding. The WES can pass information about the decision and 

the different weather information into the VR and its federates. The integration of the WES into 

an HLA federation includes developing Federation Object Model (FOM) based on the informa-

tion which needs to be exchanged, implementation of FederateAmbassador and adding some ad-

aptation code into WES.  

 First, based on the objective of the federation, the shared information needed from the 

WES are mainly the launch decision and the processed data which are collected from various 

weather sources and then incorporated into the decision algorithm.  

 Second, the interface was implemented using RTI Java Binding which is a thin layer of 

C++ code that exposes the native C++ API of the RTI to Java applications through Java Native 

Interface (JNI) (DMSO, 2001). In addition, since the original WES is running on a Tomcat Web 

Server and the users interact with the application by using a web browser, it is difficult to make 
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WES as a federate within the current VTB architecture. Therefore, most of classes in the original 

WES were converted into Java Applications without altering the main algorithms, which is a 

simple change in the Java interface (Figure 35).  

 
Figure 35 Adapted Weather Expert System (WES) Architecture to the HLA 

 In addition to the conversion, we have created a user interface to initiate the operations 

including acquire source data from various weather sources, process, invoke decision-making 

processes and joining to the VTB federation as a WES federate (Figure 36). The WES federates 

publishes (updates) near-real time weather information and GO or NO-GO decisions requested 

by the federation. The weather information and GO or NO-GO decisions will be used not only to 

the VR as a weather factors for CALPUFF models but also to Mission Control model to decide a 

launch weather criteria. 
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Figure 36 An implementation of the WES federate 

Implementation of Space Shuttle Simulation Model using the SPEEDES Process Model  

 This section details a SPEEDES Process Model based implementation of Shuttle Trans-

portation System (STS) model which was originally developed by Arena from Rockwell Soft-

ware. This implementation will provide the following benefits. First, it makes the new model to 

be able to interact with the VTB federation through SPEEDES HLA gateway. Second, the new 

model will be flexible enough to extend external interfaces which may run asynchronously from 

it. Finally, the model may run on various computer architectures. Not to mention parallel execu-

tion, speed-up, and the advantages of Object-Oriented simulation modeling (Joines & Roberts, 

1995; Rossetti et al., 2000; Law et al., 2000). These are benefits of the transfer and also the re-

quirements of VTB we presented in Chapter 2. The needs for (selecting SPEEDES Process 
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Model as a modeling language for) transferring the original model into SPEEDES modeling 

framework is apparent for two reasons. First, the original model was developed in the COTS 

simulation package, Arena, that is actually an extended network of the basic modeling modules 

(or templates) concept of which are common to many other COTS simulation packages. In Arena 

process-oriented world view of discrete event simulation is applied for modeling simulation sys-

tems.  

 Second, by implementing a simulation model in SPEEDES architecture the model can 

include many exceptionally advanced features which are not available by other simulation lan-

guages or packages (e.g. parallel execution, multiple time management, load balancing, and ex-

ternal module interface, among others). The new model environment will prove even more use-

ful with the future additions to the original simulation model. These additions will allow for dif-

ferent resolution levels and the study of safety and human-behavior modeling issues. The second 

reason using SPEEDES modeling framework is that it provides the HLA interoperability through 

its HLA gateway as described in Chapter 2. The development process includes the description of 

how the basic modeling elements the concept of which are common in COTS simulation pack-

ages, are facilitated and the process of coupling it to the HLA-RTI by SPEEDES’ HLA Gateway. 

 SPEEDES’ Process Modeling facilities and the basic modeling components classes were 

utilized to model the process (at high level) of the Shuttle Transportation System (STS). The 

source of the process flow (high-level) model was the NASA Shuttle Simulation Model. The 

NASA Shuttle Simulation Model is a simulation model for the operational life cycle of the Space 

Shuttle flight hardware elements through their respective ground facilities at KSC, and to on-

orbit operations. The modeling approach of the NASA Shuttle Simulation Model was done at a 
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macro level, it included among others, the major processing facilities, ground support equipment, 

and flight hardware elements.  

 The basic modeling element classes described in Chapter 2 are utilized in the transfer 

process. The flight hardware elements are modeled as active entity classes (subclass of S_Entity), 

each of which has its own lifecycle of activities. The classes include the orbiter, main engines, 

the left and right orbiter maneuvering system pods, the forward reaction control system, the solid 

rocket boosters, and the external tank, among many others. The supporting facilities for the ma-

jor flight hardware elements are modeled also as active entity classes (subclass of S_Process) 

each of which have different service time, schedule and require various resources.  

 
Figure 37 Life cycle of the Orbiter (as an active entity) 

 The classes include Orbiter Processing Facility, Vehicle Assembly Building, Launch Pad, 

Assembly Refurbishment Facility, and Main Engine Processing Facility, among many others. 

Ground support equipment is modeled as a passive entity class (subclass of S_Resource), each of 

which has its own schedule and capacity. The model logic which includes the process of classes, 

the stochastic input data, the hierarchy of classes (orbiter), and business rules follows that of 

(Cates et al., 2002). Figure 37 shows the life cycle of the main active entity in the model: the or-
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biter. Figure 31 shows a code sample of the S_Orbiter class definition on SPEEDES Process 

Model.  

void S_Orbiter::Process() { 
P_VAR; 
P_LV(double, delay_start_VAB); 
                    .   // more P_LV (type, variable name) 
                    . 
int successFlag; 
SpObjHandle ProcessMgrHandle; 
 
P_BEGIN(11); 
delay_start_VAB = rand->GenerateDouble(10.0, 25.0); 
WAIT(1, delay_start_VAB); 
 
// -------------- For VAB  ------------------ 
SCHEDULE_VABQueue_Enqueue(SpGetTime(), SpGetObjHandle 
                                ("S_VABQueue_MGR",0), SpGetObjHandle()); 
WAIT_FOR_RESOURCE(2, resource_VAB, 1, -1, successFlag); 
 
processTime_VAB = rand->GenerateDouble(150.0, 200.0); 
WAIT(3, processTime_VAB); 
 
SCHEDULE_VAB_Release(SpGetTime(), SpGetObjHandle("S_VAB_MGR", 0),  
                                              *(SpObjHandle*)(void*)process_VAB); 
 
delay_VAB_LaunchPad = rand->GenerateDouble(250.0, 500.0); 
WAIT(4, delay_VAB_LaunchPad); 
 
// -------------- For LaunchPad  ------------------ 
SCHEDULE_LaunchPadQueue_Enqueue(SpGetTime(), SpGetObjHandle 
                         ("S_LaunchPadQueue_MGR",0), SpGetObjHandle()); 
WAIT_FOR_RESOURCE(5, resource_LaunchPad, 1, -1, successFlag); 
 
processTime_LaunchPad = rand->GenerateDouble(100.0, 120.0); 
WAIT(6, processTime_LaunchPad); 
 
// -------------- Request for Launch  ------------------ 
SCHEDULE_Orbiter_SendMessage(SpGetTime(), GetObjHandle(), 
"Request:Launch","S_Orbiter", SpGetTime(),0.0); 
WAIT_FOR(7, launchapp,-1); 
launchapp.Unset(); 
// -------------- Dispose  ------------------ 
SCHEDULE_Orbiter_Dispose(SpGetTime(), SpGetObjHandle()); 
P_END; 
} 

Figure 38 S_Orbiter Process (Active Entity) Logic Example 
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 As shown in the simplified code example in Figure 32, the Process Model with the add-

on basic discrete-event simulation classes supports a readable structure for modeling the active 

entities which in general represent the logical structure of the system being modeled. 

Figure 39 Space Shuttle Federate Architectue 

 The Space Shuttle federate consists of three executable applications: (1) Shuttle Process 

Model which is a pure SPEEDES simulation model built incorporating the process model classes, 

(2) SpeedesServer which enables communication between the SPEEDES model and the external mod-

ules  by the HostRouter interface, (3) SPEEDES HLA Gateway which consists of the RTI interfaces  

implementation (FederateAmbassador and RTIambassador), a “bridge” coordinating two-way flow of 

information from both the RTI and SpeedesServer. In addition to the RTI interface in Shuttle 

Process federate, since Shuttle Process model is implemented such a way that it passes informa-
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tion through SpeedesServer, some additional applications such as a User Interface and a dedi-

cated visualization tools can be implemented via SpeedesServer. 

Integration of the Framework for Spaceport Simulation System 

 This section details a prototype implementation of the VTB simulation system for a proof 

of concept experiment. The models integrated into the VTB simulation system represent differ-

ent systems (simulation system and live information system) that interact in the simulation of 

liftoff. These models are the key simulation models that are currently available to VTB team in 

some form of simulation software and identified as models which represent distinctive traits of 

the VTB environment at the operation level, and which are independently developed (or transfer 

to), in different times and with different purposes. The models include the Launch Pad federate, 

Mission Control federate, Weather Expert System federate, Monte Carlo federate, and Virtual 

Range federate. Three major simulation modeling tools – SPEEDES, Arena, and AnyLogic – as 

well as non-simulation tools such as ArcMap and Calpuff are incorporated to created the models 

and for coupling of the models into the VTB distributed simulation environment, SPEEDES 

HLA Gateway, AnyLogic’s  HLA Support Module (HSM), and DMS Adapter are utilized. The 

VTB federation leverages the existing models and uses HLA-RTI interfaces as a supporting dis-

tributed simulation engine for exchanging information between the models. The HLA provides a 

standard mechanism for interoperability and integration of simulations and supporting non-

simulation tools with respect to a means of communication and a standard representation of 

common data. Figure 13 shows the configuration of the prototype implementation of VTB simu-

lation system. 

125 



 The configuration of the prototype is described in parts. First, a brief functional descrip-

tion of each model included in the prototype implementation is presented, and then the interac-

tions between the models during the federation execution are described. 

 
Figure 40 A Prototype Implementation of VTB Simulation System 

Interactions Between the Federates 

 This section presents a brief functional description and the interactions of each model 

taking place during the federation execution of the prototype implementation (Figure 41).  

LaunchPad Federate  

 The LaunchPad Federate is an adaptation of the NASA Space Shuttle Processing Model 
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(Cates et al., 2002) that simulates the flow of a space shuttle from landing at KSC, through its 

normal OPF flow, the VAB SSV flow, and its pad flow.  

Figure 41 Interactions between the models during the federation execution 
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 The simulation starts with the Shuttle reaching the pad in the LaunchPad federate and 

sending a signal through the RTI indicating that it is ready to launch.  In the LaunchPad federate, 

when the shuttle arrives at the pad, a message is sent to the Mission Control federate and the or-

biter waits for authorization to launch. It is possible that the Launch Pad federate may get a num-

ber of delay or scrub messages before getting authorization. When the authorization arrives, the 

Shuttle lifts off and at the same time a launch message is sent to Monte Carlo federate, and then 

waits for message either “successful launch” from Monte Carlo federate or “accident” with num-

ber of expected casualties from Virtual Range federate. In the case of “successful launch”, the 

LaunchPad federate displays flying around Earth and later returning to KSC, landing, and going 

through the cycle again. If the mission ends up in an accident, the LaunchPad federate changes 

the screen and shows the shuttle exploding, the date and time of the accident, the coordinates 

where the explosion occurs, and the amount of contaminant (from the Shuttle’s unused propel-

lants) released into the atmosphere at that point. 

Visualization (Mission Control Federate: The Launch Delay and Scrub Model) 

 The Mission Control federate evaluates the range and after getting through the RTI, the 

go ahead from the Weather federate, eventually authorizes the launch. This federate is activated 

when it receives a message from the LaunchPad federate that the orbiter is at the pad and ready 

to launch. The Mission Control federate then checks the systems in order to launch. The Mission 

Control federate checks for any failures within the four systems. After checking the four systems 

and verifying that no delays or scrubs occur, and also getting a “GO” launch-decision from the 
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Weather Expert System federate for the launch schedule, a message is sent through the RTI that 

the systems in the Mission Control federate are all green and the launch is a GO.  

 The Mission Control federate is the place where all the critical decisions are made during 

the launch operation. It is desired to make as much information as possible available to the fed-

erate in a timely manner in order to support decision making process. For this purpose we aug-

mented the visualization of the VTB distributed simulation into the federation and the Mission 

Control federate. The visualization includes the state of all five federates in the federation as well 

as the messages passing between the federates. Since one of the main uses of visualization is to 

provide the system state to the user for interacting with the simulation system, we created com-

mand buttons on the screen to demonstrate a primitive interaction to the federation.  

 
Figure 42 Visualization of Mission Control Room 
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Monte Carlo Federate 

 When the simulated orbiter lifts off, the Monte Carlo federate is notified through the RTI. 

The Monte Carlo federate model receives the message from the Launch Pad federate that a 

launch took place. The Monte Carlo federate then determines whether the mission is successful 

or whether a simulated disaster occurs. This is done (as in all Monte Carlo simulations) through 

the generation of a random number to decide whether there is going to be an accident or if there 

is going to be a successful launch. If there is a successful launch the Monte Carlo federate sends 

messages through the RTI to the Launch Pad federate and the Mission Control federate; if there 

is an accident it sends messages which include the location (latitude, longitude, and altitude) and 

the amount of toxicant released to the Virtual Range federate and the Mission Control federate. 

Virtual Range Federate: 

 If the message from the Monte Carlo federate indicates a successful launch, the Virtual 

Range federate displays a counter of the number of launches and shows a summary of the current 

weather. As with all other Federates, the Virtual Range federate includes a clock showing date 

and time. If the message from the Monte Carlo federate indicates an accident, the Virtual Range 

model is activated and extracts the location of the accident in space and the amount of contami-

nants released in the atmosphere from the message. In the Virtual Range model, Calpuff is then 

initiated and uses the weather conditions for the day of the simulated launch to determine the 

concentration of the contaminant in different locations around the accident site one hour after the 

accident. This information is then input as a layer in ArcMap and the points where the concentra-

tion of the pollutant exceeds the limits determined by the contaminant’s Exposure Response 

130 



Curves are displayed over a map of Florida. Spatial Analyst, a companion software to ArcMap, 

performs a query on population exposed over the highlighted area. The population data is taken 

from LandScan and imported as a separate layer into ArcMap. At the end, the Virtual Range fed-

erate reports the number of people exposed to toxic levels of the released toxic propellant by 

showing a map of Florida with the area effected by the accident. 

Weather Expert System (WES) federate 

 The Weather Expert System (WES) is a Java-based model. It shows a summary of the 

weather forecast (updated each day). It collects the information from different websites; for ex-

ample, the temperature and wind speed from http://weather.noaa.gov/weather. When the WES 

Federate receives the message that the Mission Control systems are a GO, it checks whether the 

weather conditions are also a GO. If so, the message is sent through the RTI indicating that the 

launch is authorized. 
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CHAPTER SIX: CONCLUSION 

Summary  

 As the size, complexity, and functionality of systems we need to model and simulate con-

tinue to increase, benefits such as interoperability and reusability enabled by distributed discrete-

event simulation are of enormous interest in many disciplines. This research proposes a distrib-

uted simulation based framework for modeling and simulation of complex systems. The frame-

work overlooks simple objects and components and views the complexity of a simulated system 

at a system-wide level. A simulation of a complex system which is itself a system of systems can 

be managed by aggregating individual subsystems within the framework.  

 The distributed simulation engine used with this framework is the High Level Architec-

ture (HLA). The legacy simulation models we have built in previous projects with the Virtual 

Range Model and the Weather Expert System are integrated into the framework. 

 An important aspect of the approach to modeling complex systems adapted in this re-

search effort is that any model developed using COTS simulation languages with HLA interop-

erability such as Arena and AnyLogic, or general purpose programming languages such as C++ 

and Java can be used to model complex systems. 

 In the case study of modeling Spaceport, the framework has been designed as a distrib-

uted simulation to facilitate the integrated execution of different simulations, (shuttle process 

model, Monte Carlo model, Delay and Scrub Model) each of which is addressing different mis-

sion components as well as other non-simulation applications (Weather Expert System and Vir-

tual Range). Although these models were developed independently at various times, the original 
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purposes and organizations have been seamlessly integrated, and interact each other through the 

RTI to simulate a shuttle launch related processes.  

 In order to support a seamless integration of essential simulation components in Space-

port, we have presented the HLA, a state of art distributed simulation engine, currently available, 

with multiple approaches of adaptation to Spaceport requirement. These adaptation approaches 

include (1) designing the primitive simulation component classes to promote an easier model 

building process and to support shared data structure compatibility within the federation, (2) cus-

tomizing existing simulation models to be able to interact each other through the HLA-RTI with 

help of DMS Adapter, SPEEDES HLA Gateway, and AnyLogic’s HLA Support Module, and (3) 

developing a visualization method that animates the state of a remote simulation in the local fed-

erate using COTS simulation packages with HLA interoperability support. This visualization can 

be seen as a prototyping method of the life cycle model. The method of visualization of remote 

federates presented in this study can be used to identify user requirements and the level of fidel-

ity required, and test user interface design. After identifying properties of interest through proto-

typing the visualization can be developed in high resolution and even in a 3D or virtual reality 

environment.  

 While the framework is implemented in the context of Spaceport simulation, it is devoted 

to address a small number of subsystems in the complex system, which is actually a simplified 

representation of Spaceport. The same modeling framework developed in the study could easily 

be ported to various disciplines such as distributed manufacturing, supply chain, and enterprise 

engineering.  

 This study found that the defining properties of complex systems - interaction and emer-

gence – are realized and the software life cycle models (including prototyping and the spiral 
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model) are used as metaphors, not actual development processes, to manage the complexity of 

modeling and simulation of the system. The system of systems continuously evolves to accom-

plish its goals, during the evolution subsystems coordinate with one another and adapt with envi-

ronmental factors such as policies, requirements, and objectives. In addition, when the prototyp-

ing of experimental models using COTS simulation languages proves its feasibility to address 

the problem, high fidelity, high performance modeling can be considered. The prototyping 

method is applicable because COTS simulation languages are more powerful and easy to use and 

are inexpensive.  For these reasons, COTS simulation languages are becoming more common-

place and are often equipped with useful pre-built modules (or templates) and a relatively high 

quality animation. 

Limitation 

 There are a number of challenges remaining to make this framework work systematically 

with respect to the integration of the models into the application repository which comprises of 

simulation models and non-simulation software. Although the current framework proves the fea-

sibility of interoperability, it requires many steps to realize the how the models interact. The 

steps include coupling an interface to the standard distributed simulation engine, developing 

common data model, and adapting existing simulation code into a new distributed simulation en-

vironment, among others. Model integration at the software level requires a considerable amount 

of work if they are developed in different modeling languages. 

 A variety of COTS simulation languages have been developed and used widely in many 

disciplines, not many of which provide an interface to the standard distributed simulation. Since 
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the framework is based on the distributed simulation interfaces must be developed either by the 

COTS simulation language vender or the simulation developer. If the interface is embedded in 

the COTS simulation language’s framework it may reduce the complexity of integration in many 

levels. However, if we can develop a gateway which enables COTS simulation languages to in-

teract within the distributed simulation it is also acceptable and reduces complexity to some de-

gree.  

 The number of models in the repository for a system of systems needs to be extended to 

achieve the objective of complex systems. In the case of Spaceport cost models, training models, 

3D real-time visualization of range, and optimization models of mission-related operations 

would be some examples. 

Future Work  

 While extensive research has been performed to develop a framework for modeling com-

plex systems, much work still remains. As stated in the previous section, some limitations exist 

in multiple areas. To enhance applicability of the framework to a wide range of complex system 

simulation development, the framework can be extended in several areas. 

Model Driven Architecture 

 The most immediate need is for a repository of the simulation models which covers many 

simulated systems in Spaceport and in VTB environments. The individual model should be reus-

able. Some important factors in simulation model reuse are: proper documentation, unambiguous 

interface, selection of proper COTS simulation languages which are flexible, adaptable and ex-
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tensible enough. The advantages from reuse of existing models would be: (1) low cost of model-

ing and rapid development; (2) the quality of reused model increases because it will be examined 

by continued reuse; (3) it may reduce the complexity of the modeling process (Crnkovic, 2004; 

Lau, 2004; Atkinson, 2002; Whitehead, 2002). 

 There is a relatively new technology called Model Driven Architecture (MDA) which 

“provides an approach for designing and building component-based systems that remain decoup-

led from languages, platforms and middleware environment that are eventually used to imple-

ment the system”. The core concept of MDA is the model, which uses industry standards like 

Unified modeling Language (UML) and Meta-Object Facility (MOF) to notate and store the sys-

tem. The model is the key artifact in an MDA system and remains central throughout design and 

development. The model is independent of the eventual platforms and service used to implement 

the system  (Bing, Hongji, Chu, & Baowen, 2003; Ramljak, Puksec, Huljenic, Koncar, & Simic, 

2003; Gracanin, Bohner, & Hinchey, 2004; Uhl, 2003). If the simulation models in Spaceport are 

designed based on MDA and then stored in the repository, the model can be transitioned and 

then executed in the selected computing environment. 

Adapting Web-based Simulation 

 Although the framework is based on distributed simulation, the operating environment of 

a model is very limited to the specific configuration of system as the model is developed. This 

also limits the accessibility of models; in order to address this type of problem a possible future 

work would be adapting Web-based simulation into the framework. The integration of Web 

technology and distributed simulation technology will provide many methods to extend the 
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availability of simulation models. There are multiple technologies that exist such as Remote 

Method Invocation (RMI) from Sunsoft’ Java Development Kit (JDK), Common Object Broker 

(CORBA) by the Object Management Group (OMG), etc. that could be used to extend the avail-

ability of simulation models. RMI enables the programmer to create distributed Java technology-

based applications, in which the methods of remote Java objects can be invoked from other Java 

virtual machines. RMI has its own native Object Request Broker (ORB) and eliminates the need 

to write an IDL (Interface Definition language). One limitation of RMI is that the development 

of application is limited within the Java language. The CORBA technology supports a standard-

ized framework to support application development and interoperation in a distributed and het-

erogeneous environment by separating interfaces from object implementations. The main con-

cept of the CORBA approach is that client and server are isolated by a well defined interface 

which allows the client to access server functionality without knowing the underlying trans-

port/protocol or server’s implementation details (Dang Gang & Jin, 2000; Page et al., 2000; Buss 

& Jackson, 1998). 

Integrating dedicated Visualization tools to the framework 

 Additional work is also needed to integrate a high fidelity visualization model into the 

framework. One of the most compelling components in complex simulation system would be the 

visualization. Integrating real-time high-performance visualization in Spaceport will help the 

user to better understand the simulated operation and interact with the simulation system more 

effectively; especially when the goal of simulation is training the immersive high fidelity visuali-

zation is a must have. We have surveyed some of existing dedicated visualization in the domain 
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of space operations (Compton et al., 2003). The proper visualization model for Spaceport would 

be a 3-D visual representation of the facilities required to perform the functions for space trans-

portation systems. Its objective is to immerse the space transportation systems engineers in their 

domain, to discover the infrastructure and operations implications, across the systems life cycle 

from different perspectives. It complements the analytical tools provided by the core model 

which are linked to data sheets for cost and cycle time information that support all the different 

functions (McCleskey Carey M., 2001). 
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