
Graduate School of Information Technology and

Mathematical Sciences

University of Ballarat

2009

AOP and HLA:

A New Aspect on Distributed Simulation

Development

Mr. Timothy J. Pokorny

University of Ballarat

t.pokorny(«)ballarat.edu.aii

This thesis is submitted in total fulfilment of the requirements of the

degree of Doctor of Philosophy

University of Ballarat

P O Box 663

University Drive, Mount Helen

Ballarat, Victoria, 3350

Australia

Submitted in February 2009

ii

Abstract

Underpinning the development of distributed simulations in the defence community, the

High Level Architecture (HLA) has gained acceptance due in part to its support for a broad

level of interoperability. Encompassing a framework that loosely couples together

simulation components developed and deployed on a diverse range of platforms, the H L A

has the potential to enable increasing interoperation between otherwise disparate

simulations.

Although it has long been used for simulation efforts in the defence domain, use of the

H L A within the wider business community has thus far been minimal. In domains where a

wide variety of proprietary, customised simulation tools and generic desktop applications

alike are used for simulation purposes, use of the H L A can help enable increased reuse

and interoperability. However, while capable of supporting such a goal, the H L A requires

expert skills and training that do not exist in these domains.

Aspect Oriented Prograniming (AOP) methodologies partition the development of a

software system into a number of separate "aspects". Some aspects relate to the core

business logic of the application, while others relate to system-level facilities such as

applications distribution (perhaps via the HLA). To form a complete application, a

number of aspects are automatically woven together according to a set of weaving rules

created by developers. While the final system represents a mixing of all aspects, the

process of developing each one is conducted in isolation. This in turn allows developers to

work without the need for an in-depth knowledge of the underlying technologies used by

other components.

This thesis develops a method for combining AOP and HLA, leveraging the separation-of-

concerns approach used by A O P to allow the creation of core models, free from simulation

distribution semantics. Through the use of automated tools, these models are then woven

with a generic-HLA aspect, producing an HLA-enabled simulation component. Using A O P

in this manner removes the need for model developers to have an in-depth understanding

of the HLA, helping to remove the prime factor restricting a broader uptake of distributed

simulation technologies: development complexity.

hi

Statement of Authorship

Except where explicit reference is made in the text of the thesis, this thesis contains no

material published elsewhere or extracted in whole or in part from a thesis by which I have

qualified for or been awarded another degree or diploma. N o other person's work has been

relied upon or used without due acknowledgement in the main text and bibliography of

the thesis.

Signed:

r'L.ij Ui

Dated: Dated:

?//*/<*

Mr. Timothy J. Pokorny Dr. Philip A. Smith

Candidate Principal Supervisor

iv

Acknowledgements

Although I ultimately stand alone when it comes to the responsibility for this work, the

number of people involved some way or another in its production is considerable. I've

been toiling away at this for many years and through this time many people have

influenced and contributed to the process. Whether it be materially or less tangibly, the

value of these endowments has always been welcomed and very much appreciated.

Accordingly I would like to take a brief moment to specifically thank a small group of

people who have been a consistent presence throughout m y time as a student and without

whose support and help I would never have been able to finish.

Firstly, I have to thank the academic and support staff at the University of Ballarat. In

particular I must thank Professor Sidney Morris for instilling in m e the idea that if I can't

explain what I'm doing in two sentences then I don't know what I'm doing at all. I would

also like to mention m y gratitude to Di Clingin for helping to ensure that I remained

funded and for responding to any requests with speed and care.

Throughout my time as a PhD student I've been fortunate enough to have a small group of

people who have been willing to listen to m y often incoherent ramblings or provide a

welcome distraction. Josh Stewart, Sae Ra Germaine and especially Cameron Tudball

have always provided this companionship, something especially needed when your work

from the solitary confinement of a home office. Providing the same relief but in a more

topical sense were Dr. David Andrews and the soon to be Dr's, Lance Burns and Anthony

Cramp. Whether it be through late night marathon games of pool or acting as a general

sounding board for ideas, frustrations and insights, their support has been invaluable.

Thank-you all.

I have known Michael Fraser since the beginning of my PhD, and from that time I've had

the privilege of calling him one of m y closest friends. We've worked together on numerous

projects, from insanely bad lego-based stop motion animation to sugar fuelled plans to

take over the world with Open Source Software. He is someone I implicitly and

unquestionably trust in the trenches and the projects that have been the biggest success in

m y life thus far all bear his influence. Thank-you.

My supervisors, Dr. Philip Smith and Dr. David Stratton deserve special mention. We

have all been working together on various projects for over 6 years now and I can't think of

two people who have been more influential on m y professional development than them.

v

Their attention, feedback, encouragement and guidance throughout this entire period has

been indispensable and I cannot thank them enough.

Until almost the end of my time as a PhD, Marni Ryan and I were partners. The love and

support I received from her during this time was altogether above and beyond anything I

could ever expect; offered unconditionally and without reservation. As the years ticked by

on m y thesis she never nagged, never pushed, never pressured m e to finish. I will always

consider her a part of m y most immediate family, and can only hope that one day I can

somehow repay to her that which she sacrificed for me.

Finally, I must reserve me most heartfelt thanks to my parents, Stan and Elizabeth

Pokorny. It is difficult to adequately articulate the full effect m y parents have had on me.

Although I would not have believed it when I started as a student, over time I can see more

and more of their influence and traits coming to the surface in the way I think about and

approach life in general. They put m e in front of a computer and despite numerous

hurdles provided m e with a stable, worry free environment in which I could explore and

learn. Everything I needed they provided and without their support I would never have

finished.

vi

Table of Contents

Introduction l

1.1 Background 2

1.2 Motivation 5

1.3 Scope 7

1.4 Contribution 7

1.5 Overview... 8

Simulation in the Wider Business
Communityio

2.1 What is Simulation? 10

2.2 Simulation Tools in the Wider Business Community 11

2.2.1 Spreadsheets 12

2.2.2 Specialised Simulation Tools 16

2.3 Addressing the Problems 18

Distributed Simulation and the High Level
Architecture 19

3.1 Distributed Simulation 19

3.1.1 C o m m o n Object Request Broker Architecture 20

3.1.2 Remote Method Invocation 20

3.1.3 Distributed Interactive Simulation 21

3.1.4 Aggregate Level Simulation Protocol 22

3.1.5 Summary 22

3.2 The High Level Architecture 22

3.2.1 H L A Overview 23

3.2.2 H L A Object Models 24

3.2.3 The H L A Interface and Processes 28

vii

3.2.4 Summary 39

3.3 HLA for the Wider Business Community 39

3.3.1 Size and Complexity 39

3.3.2 Interoperability and Reuse 40

3.4 Summary 42

The HLA: Problems and Solutions 43

4.1 Shortcomings of the HLA 43

4.1.1 Development Complexity 43

4.1.2 Interoperability and Reuse Shortfalls 45

4.1.3 Barrier to Entry 48

4.1.4 Summary 50

4.2 Addressing the Problems 50

4.2.1 F O M Agile Federates 50

4.2.2 Code Generation 51

4.2.3 Component Models 53

4.2.4 Middleware 57

4.2.5 Tools Support 58

4.2.6 Migration of H L A Services to Civilian Applications 59

4.3 The Model Driven Architecture 62

4.3.1 M D A Overview 62

4,3.2 Advantages and Proposed Successes of the M D A 65

4.3.3 Shortcomings and Failures of the M D A 67

4.3.4 Summary 71

4.4 Aspect-Oriented Programming 72

4,4.1 Introduction to A O P 73

4,4.2 Working with A O P 79

4.4.3 A O P Viability 81

4.4.4 AOP: A Potential Solution? 82

4.5 AOP Shortcomings 85

• • •
V1U

4-6 Summary 89

Research Questions and Experimental
Framework 91

5.1 Research Questions 91

5.2 Experimental Framework 95

5.2.1 Overview 95

5.2.2 The Test Simulations 96

5.2.3 Experiments 98

5.3 Summary 105

Manual AOP: Separating Model and Platform
107
6.1 Requirements of a Generic Aspect 108

6.1.1 Defining "Generic"? 108

6.1.2 Research Questions Addressed 109

6.1.3 The Reference Implementation 111

6.2 Simspect: A Generic AOP Environment 113

6.2.1 The Generic Aspect 115

6.2.2 The Model and Simulation Facades 119

6.2.3 The Simspect Runtime 121

6.2.4 Customising Simspect Through Configuration 126

6.3 Handler Methodologies 128

6.3.1 Composite Objects and Complex Data Types 128

6.3.2 Object Data 130

6.3.2 External Data Introduction 141

6.3.3 Methods and Interactions 152

6.3.4 Ownership Management 167

6.3.5 Logical Time 167

6.3.6 Federate Level Agreements 169

6.3.7 Ticking and Call-back Invocation 170

ix

6.3.8 Summary 171

6.4 Experiment One 172

6.4.1 Experimental Results 172

6.5 Summary181

Automating Model and Mappings Extraction
182

7.1 Model Introspection 183

7.1.1 The Somputer 186

7.1.2 Storing Mapping Data 188

7.1.3 Storing Type Information 191

7.2 Introspecting Objects 192

7.2.1 What Makes an Attribute Interesting? 193

7.2.2 The Object Somputation Algorithm Explained ..197

7.2.3 Completed Object Model 205

7.3 Introspection Methods 206

7.4 Rendering Configuration Data 210

7.5 Experiment Two 210

7.6 Summary 213

Air Transport Operations 215

8.1 The Air Transport Operations Simulation 215

8.2 Experiment Three 216

8.2.1 Results 216

8.2.2 Remaining Problems 219

8.3 Conclusion 221

Conclusion 222

X

List of Figures

Figure 3-1 Federation Overview

Figure 3-2 Federate Communication

Figure 3-3 Attribute Inheritance

Figure 3-4 Publish and Subscribe

Figure 3-5 Object Instance Registration

Figure 3-6 Attribute Value Update

Figure 3-7 Object Instance Removal

Figure 3-8 Interaction Publish and Subscribe

Figure 3-9 Send Interaction

Figure 3-10 Time Constrained and Regulating

Figure 3-11 Lookahead

Figure 3-12 Time Advance Request

Figure 4-1 Simulation Component Model

Figure 4-2 Development of a PIM

Figure 4-3 PIM to PSM Conversion

Figure 4-4 PSM to Implementation Conversion

Figure 4-5 Code Tangling

Figure 4-6 AOP Development Stages

Figure 4-7 A Generic Aspect

Figure 4-8 Simulation Component Generation Process

Figure 6-1 A Simspect Overview

Figure 6-2 Simspect Internals

Figure 6-3 Simspect Configuration

Figure 6-4 Constructor Called Flowchart

Figure 6-5 Java Field Modified Flowchart

Figure 6-6 Object Removed Flowchart

Figure 6-7 Runtime Publication and Subscription

Figure 6-8 Instance Discovery Flowchart

Figure 6-9 Attributes Updated Flowchart

Figure 6-10 Mapping Methods to Interactions

Figure 6-11 Method Execution Flowchart

23

24

26

30

31

32

33

34

34

36

36

37

55

62

63

64

73

77

82

83

113

121

126

130

134

139

141

144

148

157

159

xi

Figure 6-12 Interaction Received Flowchart 164

Figure 7-1 Model Introduction Process 182

Figure 7-2 The Somputer 185

Figure 7-3 Object Mappings 187

Figure 7-4 Method Mappings 189

Figure 7-5 Field Assessment 192

Figure 7-6 Object Somputation 196

Figure 7-7 ObjectClass Generation 199

Figure 7-8 Abstract Inheritance Assessment 201

Figure 7-9 Attach Class to Object Model 202

Figure 7-10 Interaction Somputation 205

Figure 7-11 Method Suitability Assessment 207

xii

list of Tables

Table 5-1 Experiment One Success Requirements 100

Table 5-2 Experiment T w o Success Requirements 102

Table 5-3 Experiment Three Success Requirements 104

Table 6-1 Model Event Actions 117

Table 7-1 Simspect Enumeration Mappings 190

xiii

List of Abbreviations

ACM
AOP

API

ASL

ATC

ATO

DLC

DMSO
FM
FOM

HLA
IEEE

MDA
OCL

OMG
OMT

OO
OOP

OSS
PIM

PSM
RTI

SISO
SOM

UML

UoB
WBC

XMI

Aircraft Manager Federate

Aspect-Oriented Programming

Application Program Interface

Action Semantics Language

Air Traffic Control Federate

Air Transport Operations Federation

Dynamic Link Compatibility

Defense Modeling and Simulation Office

Flight Manager Federate

Federation Object Model

High Level Architecture

Institute of Electrical and Electronics Engineers

Model Driven Architecture

Object Constraint Language

Object Management Group

Object Management Template

Object Oriented

Object-Oriented Programming

Open Source Software

Platform Independent Module

Platform Specific Module

Run-Time Infrastructure

Simulation Interoperability Standards Organization

Simulation Object Model

Unified Modelling Language

University of Ballarat

Wider Business Community

extensible Metadata Interchange

xiv

Chapter 1

Introduction

Distributed simulation is recognised as a useful and important part of training, scientific

modelling and acquisitions. The ability to assess the effectiveness of a new product design,

or financial model without the expense and uncertainty of implementing it allows for the

identification of defects or weaknesses at a stage when they are easily rectified. Involving

numerous simulation components connected over a network, the standardised High Level

Architecture (HLA) is widely recognised as the primary distributed simulation facilitator

within the defence community.

Encompassing a framework that loosely couples together simulation components

developed and deployed on a diverse range of platforms, the H L A has the potential to

enable increasing interoperation between otherwise disparate simulations. While the

benefits of distributed simulation are well understood and practised in the defence

domain, uptake of the associated technologies in the wider business community has thus

far been minimal.

Despite comparatively minimal application of distributed simulation beyond the field of

defence, simulation in general remains a vital component in many enterprises. General

productivity tools (such as spreadsheets) and customised simulation applications tend to

be favoured over distributed technologies, primarily due to their ease of use and pervasive

nature. While customised simulation tools focus on abstracting the problems of a

particular domain, generalised desktop tools are broadly available, well understood and

simple to use. In such an environment, the relative complexity of distributed simulation

technologies appears to provide little benefit when considering the expert training and

skills required.

However, while the tools typically employed within the wider business community offer a

simplified development experience for many simulation problems, significant reuse,

interoperability, design and scalability issues exist. Designed with such issues in mind, the

H L A has the potential to address these shortcomings and support both expanded

interoperability and increased model complexity.

While capable of delivering many benefits, the significant costs and complexities involved

in the development of H L A simulations have thus far constrained its broader uptake. To

help address this problem, the research presented here seeks to abstract the H L A from the

model development process.

Aspect-Oriented Programming (AOP) builds on traditional Object-Oriented (OO) software

development approaches and defines a process for modularising and separating multiple

concerns during software development Where traditional methods require the tangling of

system-level details (such as the H L A) within the business logic of a software system, A O P

introduces a new unit of modularisation that allows their development to be quarantined.

Isolating such concerns allows the majority of a system to be developed without the

specialist knowledge implementation of these system details necessitates. Such an

environment has clear potential benefits in application of the H L A within the wider

business community. However, A O P is only a facilitator, allowing components to be

developed separately. Considerable specialist knowledge is still required to create the H L A

portion of a system.

Leveraging AOP as a mechanism for separating simulation model development from the

low-level details of the HLA, this research discusses methods that can be used to

automatically extract H L A semantics from a pure Object-Oriented (OO) model. This

information can then be used to manipulate a generic H L A component, removing the need

for the development of a custom solution (and the specialised knowledge such an effort

would entail). Taken together, such an environment would allow for the abstraction of the

H L A from the simulation development process.

This research discusses methods that allow generic, non-distributed models (represented

as plain O O code) to be automatically rendered as H L A simulation components. Removing

the requirement for expert H L A skills and training, such a facility would significantly

simplify the development of new distributed models and help expose existing models to

HLA-based distributed simulation and the benefits it brings. This work focuses on the

questions that arise when attempting to achieve this goal.

1.1 Background

Used as a decision support mechanism for many years, simulation involves the

investigation and assessment of the various effects and outcomes of a model given

particular inputs and events. For example, a financial services corporation may use a stock

market model to ascertain the likely behaviour of the market should interest rates

increase. Alternatively, a product manager may produce a financial model in order to

determine the effects on productivity and profitability should five new employees be hired.

2

In pursuit of developing these simulation models, two categories of tools are generally

used; generic desktop productivity applications and specialised simulation tools. Each of

these tools offers both a number of advantages and disadvantages.

Spreadsheet Applications

The most popular and prevalent tool used for simulation purposes within the wider

business community is the spreadsheet. Spreadsheet applications provide a general-

purpose environment that caters well to a larger number of diverse simulation problems.

Inbuilt support for c o m m o n mathematical functions is enhanced by facilities that allow

the more complex logic associated with simulation models to be developed via traditional

programming languages and plugged in as modules.

Combining excellent support for the development of small numerical models with facilities

for formatting and presenting the results enables solutions to many small simulation-like

problems to be developed in a rapid fashion. However, perhaps the most compelling of all

advantages this class of tool presents is their desktop commodity status. General-purpose

tools such as spreadsheets are widely available and relatively inexpensive. Their support

for a large breadth of purposes has seen them become the de-facto standard for simulation

activities in the wider business community.

However, while spreadsheet applications provide an environment well suited to the

development of smaller solutions, as the simulation models involved begin to grow, the

limits of these desktop tools are quickly reached.

Spreadsheets depend heavily on the location of information. The use of data is inherently

tied to its position in the spreadsheet, meaning the functions intended to operate on this

data are extremely sensitive to even the slightest repositioning. A small change can trigger

a multitude of errors in any moderately sized spreadsheet. One of the most commonly

noted problems with spreadsheet applications is the prevalence of errors. A review of the

literature presented later in this document highlights the high occurrence of error

observed in spreadsheets, many citing the strict dependence on the location of

information as a prime cause. As a consequence of this condition, the maintenance costs of

spreadsheets increase and the reliability of the results they produce is reduced.

Strict dependence on the location of information causes model composition and reuse to

suffer greatly. The ability to create a new entity entirely from pre-existing components is a

powerful concept and one that has the potential to reduce the costs involved in composing

simulation models. The ability to then reuse these entities in other models generates

3

additional savings and increases the value of such components. However, the rigid

structure of spreadsheets does little to support this type of composition and reuse,

consequently resulting in increased initial development and ongoing maintenance costs.

Additionally, the generalised interface is unable to express or capture the detailed logic

often associated with simulation development, forcing developers to use traditional

programming language facilities. Seeking to address some of these shortcomings, more

specialised, simulation oriented tools have also become popular for model development.

Specialised Simulation Tools

While spreadsheet applications are the most pervasive tool used for simulation purposes

within the wider business community, specialised simulation tools often provide a more

compelling model development environment. Unlike spreadsheet applications, specialised

tools are designed specifically to address the problems of simulation model design and

construction. Where spreadsheets deal in generic terms, a custom tool is able to provide

users with a comfortable setting that enhances their ability to develop such simulation

models. Removing the major drawbacks associated with spreadsheet based simulation

development, domain specific applications allow users to work in a setting designed

specifically to meet their needs.

Free from the grid-based interface of spreadsheets, specialised tools are able to support

simplified methods of model development. Often graphical in nature, these tools allow for

greater comprehension and understanding of a simulation model and provide additional

support for novice users lacking an in-depth knowledge of simulation. Such facilities help

reduce initial development time and simplify the maintenance process. As with

spreadsheet applications, where the required complexity cannot be supported by the

interface, these tools also allow a developer to utilise traditional programming tools and

insert the additional modules into the model. W h e n combined, these capabilities result is

an environment that scales well from small and simple models to larger and more complex

ones.

However, despite offering many improvements over spreadsheet applications, specialised

simulation tools present a large number of serious shortcomings that hamper their

usefulness in many situations.

Specialised, graphical interfaces allow for greater human comprehension of a model and

allow even novice users to create simulations. While the benefits are clear, a certain level

of training is required to learn the customised language of the application. Further, such

knowledge is not portable from one tool to another. Although the domain specific nature

of many specialised tools provides an environment in which domain experts can be

4

productive and work efficiently, generic tools such as spreadsheets can be useful in much

larger array of situations. The specialised nature of such tools restricts their usefulness to

the situations they were designed for.

Despite the shortcomings identified above, the biggest obstacle specialised simulation

tools present is their proprietary nature. Although many tools support the reuse of

simulation models or model components that were developed in the same tool, any

attempt to leverage this investment in another environment is removed. While this

restriction is acceptable in a number of circumstances, in situations where models from a

variety of domains and specialities must be brought together, the lack of interoperabihty

support in these tools obscures any development benefits they may impart.

1.2 Motivation

While each type of tool used for simulation in the wider business community presents

advantages and disadvantages, a c o m m o n shortcoming among all is a lack of

interoperability. In a setting where numerous differing tools are all used for similar

purposes, the ability to leverage investments made in the development of simulation

models, independent of those tools, is severely restricted.

All simulations revolve around data. In any given model, regardless of tool or

environment, information is created, updated and removed, according to its programmed

behaviour. The primary goal of distributed simulation is to share the information

produced by one simulation, with a number of other simulations. This allows individual

simulations to take advantage of the data produced by others, without needing to

implement the logic required to produce it. In this way, the burden of performing the

simulation is shared.

The standalone simulation models typical of those produced by the desktop tools common

to the wider business community do not have this ability. Without facilities to share

information about the creation, alteration and removal of data, standalone simulations

cannot interoperate with one another. This in turn restricts the size and complexity of

such simulations, in addition to their reuse value. A n excellent model for predicting stock

market fluctuations in the face of interest rate changes is of little use when attempting to

consider these effects in a broader context unless that model can work with other such

excellent models that focus on alternate facets of the subject.

5

Ideally, simulation models could be built using whichever environment best suited the

task at hand. They could then brought together and used as part of a larger model,

regardless of tool or platform. Designed to address this issue, use of the H L A could help

realise such a goal. Providing a low level infrastructure, use of the H L A to link together

otherwise standalone models would provide a greater return on the investment made in

their development.

While capable of addressing the common interoperability problem shared by simulation

tools within the broader business community, use of the H L A is regarded as a complex

and costly process. Notwithstanding the potential reuse and interoperability advantages it

could provide, minimal application of the H L A beyond the defence community has shown

the reluctance within mainstream domains to support a technology that requires expert

distributed simulation knowledge and programming skills. As it currently stands, the

development costs and complexities of the HLA render it unsuitable within the wider

business community.

Much recent research has focused on reducing the development burden associated with

the H L A and addressing its useability issues. In turn, this has lead to advancements that

greatly reduce the time and effort involved in the production of HLA-based distributed

simulations, making it more cost-effective and attractive. However, despite a bulk of

research addressing the many problems, few researchers have investigated how the H L A

can be removed entirely, thus making it suitable for the wider business community.

Some success has been gained in previous work that focused on attaching the HLA to

specific specialised simulation tools through "tool specific interfaces". In that situation,

certain tools were modified to add H L A support and allow their models to participate in

distributed H L A simulations. This research is conceptually an extension of that effort. The

focus in this work is on the development of a generically applicable solution. In this case,

the specifics of a particular specialised tool cannot be considered in an effort to find a

solution that has the potential to be applied within any tool. The use of A O P as a facilitator

helps achieve this goal. A O P facilities exist for many platforms and environments and its

concepts are based on consistent underlying theory. Through the use of A O P the potential

to employ the developed solutions in a range of specialised simulation tools is maintained.

It is against this background that the author draws motivation for this research.

6

1.3 Scope

The primary focus of this work is on the development of methods that would allow a

generic simulation model to be rendered as a H L A distributed simulation component.

However, before considering the significance of this goal, a clear definition of what

constitutes a generic model is required.

While the landscape of tools and applications used to develop simulation models in the

wider business community is broad and varied, at a low level, all models will at some point

share a common form. Be it functionality pieced together via the grid-based interface of

spreadsheet applications, or component behaviour composed via the drag-and-drop

interfaces of specialised tools, at some point in a model's lifetime, it will become basic

program code. Even if the portable format in which the model is stored is never directly

translated into code itself, the execution environment that interprets that format will have

been developed in some standard programming language. However, to support model

execution, these tools make use of proprietary methods and frameworks. In turn, their use

pollutes the model representation and creates non-generic dependencies.

For a model to be truly generic, it must contain only information about the system being

represented and not the supporting infrastructure used to execute it. Remove the tool-

specific information and only the "pure" model remains. It is the development of this

business logic that defines the lasting value of a simulation model. In this research, we are

referring to a generic model as one that consists of pure object-oriented code, free from

any notion of application distribution of distributed simulation. While object-oriented

programming skills can be viewed as "specialist," they are pervasive within the wider

business community (unlike distributed simulation). Given this, we arrive at the following

definition in the context of this research:

"A generic model can be described as a pure, object-oriented representation

of a system that includes only the details salient to its operation and not the

supporting execution infrastructure,"

1.4 Contribution

Significant overlap exists between general O O programming theory and the H L A

specification. Many of the facilities provided by the H L A are merely avenues through

which information about the state of a simulation can be distributed to other

simultaneously executing simulation components. As the state of some simulation object

changes, this update can be reflected to other simulations, in turn allowing them to take

7

some course of action based on the new information. In a standalone (or non-distributed)

model, such events would still occur. However, the absence of any distribution framework

would mean that these events are not shared with other simulations. For all intents and

purposes, the pure model is monolithic.

Through the use of AOP and an investigation to the parallels between the HLA and general

O O theory, this research develops methods that allows H L A semantic information to be

extracted from pure models and renders them as fully distributed simulation components.

Such advancement in the state of the art would allow generic simulation models to be

mapped automatically into components ready for use within the HLA, without mandating

that simulation developers obtain direct knowledge of the HLA. This simplification would

remove the primary barrier preventing a broader uptake of distributed simulation within

the wider business community. Larger and more complex models could be developed,

providing more reliable and in-depth results. Where previously the return on investment

in a model was minimised due the inability to reuse models developed across differing

tools, the interoperability benefits of the H L A can help to enhance them.

The complexities of distributed simulation have been well documented. All users (be they

current or potential) stand to gain from a solution that lowers the barriers of entry and

provides for increase focus on the core model issues rather than the development

platform. Beyond the wider business community, areas in which the H L A is already used

also stand to benefit. The reduction in development complexity and enhanced focus on

model issues (rather than those of the HLA) help reduce development costs and time.

Further, the simplified process aids in model comprehension and the identification of

potential errors or weaknesses. Together, these benefits form a significant contribution

and advancement in the current state of the art.

1.5 Overview

This thesis is arranged into 9 chapters. The first half, comprising chapters 2-5 lay out the

motivation and background of this work. The second half describes the contribution of this

work, presenting solutions to the identified problems and discusses experimental results.

Chapter 2 discusses the simulation tools used within the wider business community, their

strengths and shortfalls. Chapter 3 introduces distributed simulation, and more

specifically, the High Level Architecture, discussing how distributed simulation can be

used to address the problems of tools used within the wider business community.

8

Chapter 4 highlights the problems that currently deem the H L A unsuitable for meeting the

needs of commodity tools, primary among which is development complexity. This chapter

highlights some of the technologies and approaches that have been identified within the

distributed simulation community as potential answers to these problems, focusing

particularly on the Model Driven Architecture (M D A) and Aspect-Oriented Programming

(AOP), the latter of which is considered the most suitable for meeting the goals of this

research.

Chapter 5 identifies where the gap exists in the current state of the art, and how AOP alone

is not sufficient to solve the particular problem set motivating this work. It provides a set

of research questions that capture the intent of this work and introduces the experimental

framework that is used to assess the solutions raised in later chapters.

Chapters 6-8 form the bulk of contribution made by this work. They introduce a set of

solutions aimed at addressing the research questions raised in Chapter 5 and present the

results of experimentation.

Chapter 9 concludes this work, briefly identifying fertile areas for further research.

9

Chapter 2

Simulation in the Wider Business Community

Removing the complexities associated with distributed simulation development so that the

wider business community can benefits from the advantages it can bring is the primary

motivation for this research. This chapter discusses h o w simulation is used within the

wider business community and what the associated problems are.

2.1 What is Simulation?

What is simulation and why is it useful? Before delving into an analysis of the tools that

are commonly used within the wider business community for simulation purposes, some

consideration must be given to the nature of simulation and the benefits it provides. As a

starting point, the author Banks in [8] defines simulation as "an imitation of the operation

of a real-world process of a system over time''. While this definition does capture the

essence of simulation (a replication of some process over time), it is somewhat restrictive

to confine contemplation to real-world processes and systems.

From an economist attempting to predict the movement of foreign currency rates [47], to

the physicist endeavouring to uncover the mysteries of dark matter, simulation can be

found in many diverse situations. While the topic of currency rates fit clearly in Banks'

definition, matters of a cosmological nature prove more challenging. In consideration of

such situations, a broader definition is required. Perhaps an apt expansion of the previous

definition would be: "An imitation of an environment or phenomenon over time,

performed for the purpose of investigation, exploration, training or decision support".

Whichever form is preferred, simulation is leveraged to advantage in numerous and

diverse fields. Given this situation, one is naturally drawn to pose the question, "what

benefit or assistance does simulation provide?"

Why use Simulation?

Simulation is used for many purposes. W h e n an airline pilot is trained, they are done so

using a flight simulator. W h e n an engineer wishes to explore the effects of stress on a

bridge design or an environmental scientist wishes to investigate the effects of global

warming on the average temperature of the planet, simulation is used. Where the direct

observation of a live system is impractical [101] or dangerous, simulation can be used to

10

assess or explore various outcomes, to ask various questions in a safe and cost effective

manner.

The benefits of using simulation have been noted in many places with the following list

compiled from [8, 9,58,103]:

• Time Compression and Expansion: Time can be compressed and expanded in

order to more closely observe an event or observe occurrences that unfold over a

large amount of time quickly.

• Understand "Why": Close analysing a system modelled by a simulation can assist

in understanding why a situation has occurred.

• Explore Possibilities: Possibly the most obvious benefit, simulation allows

difference possibilities to be explored without the need to actually implement

them.

• Choose Correctly (Acquisitions'): Through exploration, simulation can aid the

process of choosing before actually committing to an option.

• Cost Effectiveness: Simulation can help identifying possible problems before a

system is implemented. At this point they can be rectified most cost effectively.

• Identify Constraints: As with the previous point, constraints (of a new product

design for example) can be identified without actually implementing the system

being modelled.

• Safety: Simulators can be used safely as a substitute for actual systems in situations

where potentially dangerous actions are involved. Examples include pilots training

on flight simulators or military use for exercises.

• Access: Simulations support experimentation for systems that would otherwise be

impossible to test (such as those often found in astronomy or cosmology)

From the list above it is clear how simulation can aid in the process of investigation,

exploration, training or decision support in many and meaning ways. Given the valuable

contribution simulation can make in many situations, its use has become pervasive.

Within the wider business community, a number of supporting tools and environments

are available, targeting a wide variety of uses and domains.

2.2 Simulation Tools in the Wider Business Community

In pursuit of developing simulation models within mainstream domains, two categories of

tools are generally used; generic desktop productivity applications and specialised

simulation tools. Each of these tools offers both a number of advantages and

11

disadvantages, which are discussed in this section. Widely recognised as the most popular

tool used for simulation purposes within the wider business community [6], spreadsheets

are the de-facto standard among desktop productivity applications.

2.2.1 Spreadsheets

The notion of a spreadsheet began in the Accounting domain where they were used to

store information regarding the transactions of a business. A spreadsheet was a large sheet

of paper organised into columns and rows which was able to "spread, or show" large

amounts of related information to a manager for use in the decision making process [94].

Continuing this analogy, a computerised spreadsheet comprises a group of pages, each of

which has a table consisting of rows and columns of cells. Each call may contain either

data, or a formula (the result of which is presented as the value for the cell) [104]. With a

spreadsheet program able to perform automatic calculations based on the contents of a

sheet, and their evolution to provide presentation capabilities (such as text formatting and

colouring or graphing capabilities) in addition to data processing, spreadsheets have

become the most popular desktop productivity tool for small-scale simulation activities

[22].

The use of spreadsheet applications as a simulation tool presents many advantages [8,

104I:

' Spreadsheets environments are widely available: models developed by one person

are able to be used easily by another

• Spreadsheet environment are able to combine both data processing logic and

presentation into a single package

• A large number of built in functions to do mathematical, financial, statistical

calculations is provided

• The table based structure allows developers to organise computations and results

in an intuitive manner

' Automation of tasks can be achieved through scripting languages and modules

developed under traditional programming models

' Spreadsheets provide a generic environment capable of supporting any number of

different problems

Spreadsheet applications provide a general-purpose environment that caters well to a

larger number of diverse simulation problems. Inbuilt support for common mathematical

functions is enhanced by facilities that allow the more complex logic associated with

12

simulation models to be developed via traditional programming languages and plugged in

as modules [81.

Combining excellent support for the development of small numerical models with facilities

for formatting and presenting the results enables solutions to many small simulation-like

problems to be developed in a rapid fashion [104]. However, perhaps the most compelling

of all advantages this class of tool presents is their desktop commodity status. General-

purpose tools such as spreadsheets are widely available and relatively inexpensive. Their

support for a large breadth of purposes has seen them become the de-facto standard for

simulation activities in the wider business community [59].

However, while spreadsheet applications provide an environment well suited to the

development of smaller solutions, as the simulation models involved begin to grow, the

limits of these desktop tools are quickly reached.

Spreadsheet Problems

While the use of spreadsheets as a financial modelling and simulation (M&S) environment

does present many advantages, there are also severe drawbacks involved. Primary among

these are the problems of structure and development, error, speed and interoperability

and reuse.

Structure and Development

While intuitive to use, the structure imposed by the spreadsheet interface creates many

problems. Users of spreadsheets enter data into cells, and define formulas for those cells.

These formulas reference values contained in other cells for use in calculations, the results

of which may be referenced in other formulas contained in other cells [99]. This system of

absolute referencing results in a highly in-flexible, interdependent, static structure [59].

Moving even a single value or formula can trigger a cascading effect causing bugs to

develop throughout a spreadsheet.

The development of spreadsheet models is often achieved through an ad-hoc,

unstructured process [98]. While for small, uncomplicated models this method may be

adequate, as larger models are required the effort needed to develop and maintain these

spreadsheets becomes significant and expensive. The hard coding of data that occurs from

the location centric approach of spreadsheets can also make them difficult and costly to

maintain [95].

13

While spreadsheets provide an intuitive interface and are considered simple to use and

master, the actual amount of mental work a developer must go through is considerable

[59]. A n interface which required a developer to recall or calculate cell coordinates

imposes a mental workload which can lead to both the occurrence of serious errors and an

increase in development time [29]. Implementing complex algorithms using a spreadsheet

environment becomes an unnecessarily complex activity [104], again increasing

development and maintenance time. While a major advantage of developing in a

spreadsheet environment is the large amount of functions available for a range of

purposes, such environments only provide simple data structures for a developer to work

with [104].

The interface presented by spreadsheets raises numerous issues relating to flexibility and

development; however, comprehension of developed models is perhaps a larger concern.

The familiar grid-based interface lacks the expressive power to fully capture and present

the often-intricate entities and relationships that exist within a model. Such a situation

hinders human comprehension of a model and restricts the environments ability to

adequately support developments in which complex entities and relationships must exist.

These shortcomings and restrictions complicate the development process and can lead to

the occurrence of errors in both the structure of a model and the data it operates on.

Error

The high occurrence rate of errors within spreadsheets is perhaps the single largest

problem associated with their use for simulation and decision support mechanisms. While

notions of what constitutes an error vary, the general definition is a situation in which an

incorrect value is observed or produced [126].

Many studies and field audits have highlighted the high percentage of spreadsheets in

which errors were produced. Results of these studies quote figures which identify

anywhere from 3 8 % to 77% of surveyed spreadsheets to contain errors of some description

[12, 81]. However, of perhaps an even greater concern is that spreadsheets are used in

production settings and the results they produced are confidently relied on during the

decision making process [15, 99]. The ill-perceived air of simplicity that surrounds

spreadsheets can lead users to trust their results, despite an alarmingly high rate of errors.

The high occurrence of errors observed in spreadsheets can be explained by a number of

potential problems. The informal development approach generally associated with

spreadsheets takes the place of a structured and standardised method. This ad-hoc style

involves much less rigor than controlled methods, leading to the introduction of logic

errors [80].

14

Strict dependence on the location of information within a spreadsheet can also trigger the

occurrence of errors. Spreadsheets allow users to change the values of cells arbitrarily [31]

introducing errors when the other cells depend on certain information being in a specific

location. The appearance of information within a spreadsheet provides few visual clues the

other information a given cell depends on. This can trigger cascading-style errors when a

single value is moved. Further, additional errors can arise when a dependence is created

on the wrong cell by mistake.

Finally, as mentioned above, the spreadsheet interface does not posses the expressive

power to fully capture complex entities and relationships, in turn hampering human

comprehension. This can lead to the occurrence of errors during the development of

models involving even a modicum of complexity.

Interoperability and Reuse

Given spreadsheets dependence on the location of information, model composition and

reuse also suffer greatly. The ability to create a new entity entirely from pre-existing

components is a powerful concept and one that has the potential to reduce the costs

involved in composing simulation models. The ability to then reuse these entities in other

models generates additional savings and increases the value of such components.

Spreadsheet development is often characterised as a dependence-driven, direct-

manipulation process [4] with data often dependent on the location of other data and

requires direct manipulation to modify. While many people may use a spreadsheet in its

entirety, the reuse of components or sub sections of a model is extremely limited given the

dependence on factors like the location of information. A lack of interoperability and reuse

leads to the duplication of development efforts where they could otherwise be reused. This

results in a higher maintenance costs (as multiple occurrences of similar components

must n o w be maintained) and initial development costs.

Speed

Spreadsheet environments are often slow in their calculation compared to other more

specialised modelling environments [104]. Each time a model is executed in a spreadsheet

environment all the calculations involved must be translated into a form that can be

actually executed. Functions executed in spreadsheets are often interpreted as opposed to

pre-compiled; the amount of effort required to have those calculations converted into an

executable form can be considerable [104]. This becomes a larger concern when you

consider that in certain types simulations, the same model is executed repeatedly while

15

working of differing data. Each time the model is executed the conversion process must

again take place. Again, while not an issue for smaller models, when larger and complex

ones become involved the situation quickly becomes unattractive.

Moving Bevond Spreadsheets

Due primary to their pervasive nature, simplistic approach and desktop commodity status,

spreadsheet applications have become the de-facto standard for simulation activities

within the wider business community. While their use offers many potential advantages,

there are numerous and significant shortcomings that can hamper development efforts

and reduce confidence in the results generated.

Given the problems highlighted above, the achievable size and complexity of developed

models is significantly restricted. While there are many advantages to the use of the

spreadsheet environment, the size and complexity restrictions mean users forego the in-

depth analysis that comes from larger and more comprehensive models.

Moving beyond the limitations and restrictions of the spreadsheet interface, specialised

simulation tools can offer several advantages in the pursuit of developing more complex

simulations.

2.2.2 Specialised Simulation Tools

While spreadsheet applications are the most pervasive tools used for simulation purposes

within the wider business community, their environment raises many potential issues

when attempting to develop complex models. However, alternative options do exist in the

form of more specialised simulation tools.

Specialised Tool Advantages

Unlike spreadsheets, which are general purpose in nature, specialised tools are designed

to address the particular problems of simulation model construction and execution. As

such, the development environments they provide are often far more adequately suited to

this task. Often graphical in nature (such as [32, ill, 120,125]) these tools address many

of the development shortcomings of the spreadsheet environment. Removing the major

drawbacks associated with spreadsheet based simulation development, domain specific

applications allow users to work in a setting designed specifically to meet their needs.

Free from the grid-based interface of spreadsheets, specialised tools are able to support

simplified methods of model development. The graphical nature of these tools allows

greater comprehension and understanding of a simulation model, and provides additional

16

support for novice users lacking an in-depth knowledge of simulation. Such facilities help

reduce initial development time and simplify the maintenance process.

Where the complexity of a model is such that the visual environment alone cannot

adequately express the desired behaviour, lower-level facilities are provided. As with

spreadsheet applications, these tools also allow a developer to utilise programming

language constructs to insert additional modules into the model. Often using code

generation to create executable models in the background [125], the integration of lower

level services is well catered for. W h e n combined, these capabilities result is an

environment that aids simulation development from small and simple models to larger

and more complex ones.

Specialised Tools Disadvantages

The development environments provided by specialised simulation tools are a significant

improvement beyond that of the c o m m o n spreadsheet. However, despite offering many

advantages, this category of applications introduces its own set of shortcomings,

hampering their usefulness in many situations.

While specialised, graphical interfaces allow for greater human comprehension of a model

a certain level of training is required to learn the customised language of the application.

Further, given the proprietary nature of these tools, such knowledge is not portable from

one to another. Although such tools provide an environment in which domain experts can

be productive and work efficiently, the specialised nature of such tools restricts their

usefulness to the situations they were designed for. Spreadsheets however can be useful in

much larger array of situations.

Although they provide greater levels of support for simulation model construction and

creation, data input has been noted as one particular area where simulation tools suffer

[7]. Further, although anecdotal evidence suggests that the use of visual systems can help

in the development and validation of simulation models, little published empirical

evidence exists to substantiate these claims [7].

Despite the shortcomings identified above, perhaps the biggest obstacle specialised

simulation tools present is their proprietary nature.

The large number of commercial modelling and simulation environments competing

within the wider business community can cause significant problems when attempting to

integrate artefacts developed with alternate tools. Although support may be provided for

17

the reuse of simulation models or model components that were developed within the same

tool, any attempt to leverage this investment in another environment is removed.

When attempting to bring together models developed across a variety of domains and

specialities, the lack of interoperability between these tools can obscure any potential

benefits realised during their development. Ideally, the separate components of large and

complex models could be initially developed in the tools that best suited the task at hand.

These components could then be assembled with one another, forming a larger co

operative model. However, the lack of interoperability between the myriad of simulation

tools available eliminates this option and reduces the reuse potential of the developed

models.

Looking over the shortcomings identified above, it becomes evident that the problem of

interoperability and reuse is a significant limitation. Whether choosing the pervasive

spreadsheet, or the advanced specialised simulation tools, integrating and reusing model

components is considerably restricted. Directly affecting the return-on-investment (ROI)

made in these models, the lack of reuse and interoperation serves to reduce their

achievable size. In turn, the benefits of analysis that models of greater depth can bring are

lost; a significant factor when considering that within the wider business community,

simulation is used primarily as a decision-support mechanism.

2.3 Addressing the Problems

This chapter has looked at the types of tools used for simulation purposes within the wider

business community, in addition to their strengths and weaknesses. The primary

problems of interoperability and reuse have been identified as limiting the development of

larger and more complex simulations. Addressing these issues is the primary motivation

of this research.

Underpinning the development of distributed simulations in the defence community, the

High Level Architecture (HLA) has gained acceptance due in part to its support for a broad

level of interoperability. The H L A comprises a framework that loosely couples together

simulation components developed and deployed on a diverse range of platforms. The H L A

has the potential to enable increasing interoperation between otherwise disparate

simulations and tools and help address the problems identified above. The HLA, its

advantages and disadvantages are discussed in chapter three.

18

Chapter 3

Distributed Simulation and the High Level

Architecture

Where the many types of simulation tools used within the WBC tend to focus on

monolithic, single application simulations, distributed simulation partitions the effort into

multiple, co-operative units. Underpinning the development of distributed simulations in

the defence community, the High Level Architecture (HLA) has gained acceptance due in

part to its support for a broad level of interoperability. Encompassing a framework that

loosely couples together simulation components developed and deployed on a diverse

range of platforms, the H L A has the potential to enable increasing interoperation between

otherwise disparate simulations and systems.

Despite enjoying pervasive application within the defence domain, use of the HLA within

the wider business community has to this point been minimal. In such domains, where a

wide variety of proprietary tools are used for simulation purposes, the H L A can help

enable increased interoperability and reuse. Offering a common, standardised, low-level

infrastructure, the H L A would allow simulation models otherwise isolated from one

another to be used together.

This chapter introduces the HLA, discussing its major components and characteristics.

Initially, a brief introduction to the alternate technologies that went before the H L A is

presented. Following this, the H L A itself is presented. To conclude the chapter, a brief

discussion on h o w the H L A can help address the problems of simulation within the wider

business community is provided.

3.1 Distributed Simulation

Before beginning a discussion of the H L A as the potential solution to the problems

identified in chapter 2, it must be established that the H L A is currently that best suited

alternative. This section briefly introduces other simulation and application distribution

frameworks and discusses their individual advantages and disadvantages.

19

3.1.1 Common Object Request Broker Architecture

Developed and standardised by the Object Management Group (OMG), the C o m m o n

Object Request Broker Architecture (CORBA) is an attempt to link together otherwise

disparate applications [66]. C O R B A allows distributed, heterogeneous applications to

communicate with one another in a location and language independent manner. From the

perspective of the calling application, all objects Generic Aspect appear to be local.

However, the underlying middleware supporting C O R B A abstracts the location, language

and platform of the remote object, routing requests and responses across application

boundaries are required.

The public interface made available by a remote application is described via the Interface

Definition Language (IDL). IDL provided a programming-language neutral method for

specifying the specifics of an interface and can be used by other frameworks to generate

the necessary stub code that will facilitate distributed communication [73].

In addition to IDL, CORBA also defines a generalised communications protocol that

allows clients written in any programming language and on any platform to communicate

with one another. The Internet Inter-ORB Protocol (HOP) standardises the format of

communications that are to pass between distributed CORBA-enabled applications.

While CORBA supports the distribution of application logic and is capable of enabling

greater levels of interoperability between otherwise disconnected applications, it is a

general solution and does not provide support for common simulation functionality.

Advanced simulation services such as integrated time management, interest specification

(publication and subscription), ownership management and data distribution services are

all unavailable. However, it is important to note that some existing H L A implementations

have used C O R B A as a communications protocol. Although H L A infrastructure tools like

RTI-NG and GERTICO are based on CORBA, it is up to these particular implementations

to provide the advance simulation services themselves. For this reason, C O R B A alone is

not a suitable distributed simulation platform.

3.1.2 Remote Method Invocation

Remote Method Invocation (RMI) shares many similarities with CORBA. Its primary

purpose is to allow the invocation of methods on distributed objects (ones that do not exist

in the same memory space, or even the same computer, as the executing program).

Developed by Sun Microsystems, R M I was initially intended to be a solution that only

20

supported the Java programming language. However, more recent versions have seen

support added for the H O P protocol utilised by CORBA.

As with all application distribution technologies, facilities to specify the methods and

parameters that are callable in a distributed manner are provided (via Java interfaces) in

addition to services for locating and connecting to the distributed providers. However, as

with CORBA, R M I was designed to be allow the invocation of remote functionality in a

location transparent manner. As such, it lacks specific support for simulation activities

(such as co-ordinated time and message delivery).

While both CORBA and RMI provide robust support for the interoperation of software

applications in a distributed environment, they lack support for common facilities found

in simulation-specific frameworks. DIS and ALSP (described below) are two examples of

distributed simulation frameworks that go beyond generalised application distribution.

3.1.3 Distributed Interactive Simulation

The Distributed Interactive Simulation (DIS) framework is an IEEE standard (IEEE 1278)

that began primarily as a means of connecting various large, human-in-the-loop

simulators (eg. flight simulators). The DIS framework centres on a standard set of

Protocol Data Unit's (PDU) that describe the format of messages that can be exchanged

between participating components. W h e n certain state changes within a given simulator

occur (such as the movement of an entity), these messages are broadcast to all other

participants. The use of dead-reckoning algorithms helps to reduce the amount of network

traffic by allowing simulators to send less frequent updates while remote clients

interpolate information about the position of an entity based on their previously provided

information (such as speed and heading).

While DIS has proven successful in linking together and allowing the interoperation of

many disparate platforms, certain problems render it unable to help address the problems

highlighted in chapter 2. DIS lacks any notion of centralised time co-ordination or the

ordering of events. As such, simulation repeatability is not possible. This is not a problem

in the virtual worlds DIS was designed to support. However, this is not suitable for

analytical-style simulations such as those used commonly in the wider business

community for decision support.

DIS primary is a protocol designed to standardise communications between various

military simulators. PDU's only exist for concepts that make sense in a physical world

(such as the movement of an entity). Attempting to link together financial simulations

21

would require the specification PDU's describing the salient state changes that might

occur in that context. DIS is very tightly defined, and as such, it is unable to provide any

support in a generic context.

3.1.4 Aggregate Level Simulation Protocol

The Aggregate Level Simulation Protocol (ALSP) is one of the closest predecessors to the

HLA. Similar to DIS, ALSP describes a protocol for messages that are to be passed

between the various participants of a distributed simulation [123]. Moving beyond DIS,

ALSP provides global time synchronization [67], helping to address the causality and

repeatability issues of DIS. Much like HLA, the shared object model of a distributed

simulation takes on an object-oriented approach, modelling information as objects with

attributes.

Although filtering is provided, advanced interest management facilities are not provided

and all information changes are still broadcast to all participants. Containing a number of

similarities with the HLA, ALSP is perhaps best regarded as a subset. While supporting

many of the same features, certain highlights are still missing (e.g., time management

among different kinds of simulations and data distribution management) [112]. While well

aligned with the problems raised in chapter 2, the level of functionality provided by ALSP

is a subset of that provided by the HLA. Further, unlike the HLA, ALSP has no open

international standard and has not enjoyed the same substantial ongoing research and

development that continues to surround the HLA.

3.1.5 Summary

The various technologies introduced above are each aimed at joining together separate

applications or simulation in a distributed fashion. C O R B A provides for location-

independent interoperability among heterogeneous applications, while DIS and ALSP

have proven capable of bringing together disparate simulations. However, in recent years

the H L A has emerged as the most prevalent distributed simulation framework. The

following section introduces the HLA; its processes and components.

3.2 The High Level Architecture

The H L A was initially developed by the United States Defense Modeling and Simulation

Office (D M S O) in order to address the need for interoperability between simulations (both

new and legacy) used within the U S Department of Defense (DoD). The H L A aimed to

extend upon the work surrounding the Distributed Interactive Simulation (DIS) and the

22

Aggregate Level Simulation Protocol (ALSP) [37] and provide a standard framework for

simulations used within the DoD.

In 1996, the HLA was mandated for use in all new works purchased by the DoD, however,

recent times have seen this requirement loosened somewhat [118]. In the interests of

developing a vibrant and active community, the H L A was adopted as an IEEE

specification (IEEE 1516) in 2000 [47, 48, 49, 61], thus providing an open process for

contributors to become involved in the standardisation effort. Despite significant work

from a large number of people, the original IEEE 1516 standard contained numerous

ambiguities and shortcomings. This in turn led to the development of companion

specifications [42, 106, 107] that addressed the problems by extending the standards.

Currently, the IEEE specification is under periodical review with enhancements and

extensions being made. Due for ratification in late 2006, the new "HLA-Evolved" standard

will address the problems previously identified and provide an improved, unified, open

specification.

3.2.1 HLA Overview

Within the HLA, individual simulation components, known as federates, exchange data

and work together in a federation. Communication and co-ordination between the

separate federates is handled via a central component known as the Run-Time

Infrastructure (RTI). Figure 3-1 provides a logical overview of this structure:

Federation

Federate

Federate

Federate

\

L I*

L
1*

«

73

c
1
-i

3

=r
fu
V>
ft-

c
1-*

c
~%
(V

Figure 3-1: Federation Overview

Conversations between a given federate and the RTI are bi-directional. Federates

communicate with the RTI through a standardised interface known as the

23

RTIambassador. This interface comprises the set of services that provide specialised

simulation functionality (time management, publication and subscription, data exchange

facilities, etc.). W h e n the RTI needs to pass information to a given federate, it can do so

via another standardised interface known as the FederateAmbassador. The

implementation of this interface is provided by the federate, thus enabling it to take action

on any incoming information. Figure 3-2 shows the components involved in these

communications:

Federate

RTIambassadorU A
 F^deratf

\mmmmmmmmmmii** \mmmmmmmmmmm

I
Run-Time

Infrastructure
^fmmmimmmm
Figure 3-2: Federate Communication

When a given federate wishes to provide updated information to other parties involved in

the federation, it does to by informing the RTI ambassador of the new values. This

information is then filtered such that only the appropriate portions are passed to a given

federate, where they receive notification of the update through the their federate

ambassador.

All information exchanged between federates must conform to a common object model.

The Federation Object Model (FOM) establishes the shared vocabulary of a federation.

Each federate within a federation is itself considered to be a smaller simulation. As such,

an individual document, known as the Simulation Object Model (SOM), defines the

structure of information each federate produces and consumes.

The following sections provide a more detailed look at both object models and the

standard interfaces/services used within the HLA.

3.2.2 HLA Object Models

The primary purpose of object models within the H L A is to define and document the

structure of information that is of interest to either a specific federate or federation. The

24

file:///mmmmmmmmmmii**
file:///mmmmmmmmmmm

transmission of all information between federates occurs as an opaque series of bytes [42].

Given this, object model information is a vital component of any H L A simulation,

providing an instruction manual that enables shared information to be reconstructed into

some meaningful form. Depending on the model in use, additional information such as the

intentions of a given federate to produce or consume certain information defined by the

model is also provided [114]. The Object Model Template (OMT) defines the format these

models must conform to [49].

ft.2.2.l Simulation Object Models

In the HLA, each federate has its own object model known as its SOM. Each federate

within a distributed simulation is itself considered an individual smaller simulation, thus,

the S O M for each federate describes the object model it uses. Beyond describing the

structure of information for the federate, a S O M may also describe which of the entities it

intends to provide to other federates and which it desires to consume information about

[491.

While the SOM defines the object model for a particular federate, internally the federate

does not have to work with information structured the same way. The S O M simply

describes the public face of the federate [112]. Although the H L A specification defines that

each federate must have a S O M [50], during execution the document is generally never

used. Despite this, the S O M is still a vital documentation component and is often used by

middleware or code-generation frameworks that seek to provide simplified methods for

developing H L A federates (such approaches are discussed later in this document).

1.2.2.2 Federation Ohiect Models

While a S O M describes the object model for a given federate, a F O M describes the shared

vocabulary for a federation. Broadly speaking, a F O M can be thought of as an intersection

of the S O M s for all the participating federates. This is not strictly true as any federate can

choose to produce or consume only portions of the information defined in a FOM1.

Regardless, a F O M formally defines the structure of all information that is available to be

passed between federates and communication regarding information not contained

within it is prohibited [50].

Given that a FOM defines a shared lexicon, it is one of the primary vehicles enabling

simulation interoperability within the H L A [112]. Any federate that is able to produce

information according to a particular F O M is able to communicate with any other such

federate via the RTI. Given this, the compatibility between a given S O M (describing the

1 Further, a FOM may have elements that are neither produced nor consumed by any federate.

25

object model of a federate) and a given F O M is a crucial aspect when attempting to enable

broad-level interoperability. While the O M T format provides a shared grammar for these

documents, bridging semantic gaps is far more difficult. The H L A provides the syntax for

interoperability [112], solving semantic differences is left up to the user.

Object models within the HLA draw heavily from typical Object-Oriented (OO)

approaches. While the two are not an exact match, significant areas of overlap exist. As

with O O approach, one of the primary constructs of a H L A object model is the object class.

3.2.2.3 Object Classes and Attributes

As with traditional O O approaches, information within a H L A object model is organised in

an Object Class hierarchy. Object classes describe the entities simulated by federates, and

may contain any number of attributes (including zero). Attributes are the primary

mechanism for specifying persistent storage information. The hierarchies described within

the object models define the parent-child relationships that exist between classes. This is

important as the O O concept of inheritance applies to the attributes of an object class. For

example, consider Figure 3-3:

mm

/I

Account
-owner
-balance

7T
extends

Credit Account
-limit

Figure 3-3: Attribute Inheritance

In this example, the Credit Account class would contain three attributes: the explicitly

defined limit attribute, and the owner and balance attributes inherited from Account.

Instances of the object classes defined in an object model are the primary modelling entity

within the HLA. As object instances are created, the values of their various attributes can

be set and altered.

While traditional OO concepts apply to object class hierarchies and attribute inheritance,

the H L A has no direct equivalent for method specification [62]. Although the H L A

26

supports the ability to pass messages between federates via Interactions (discussed next),

these are not directly associated with either a specific class of object or an individual

instance.

3.2.2.4 Interaction Classes

As mentioned above, while the H L A has no specific notion of methods in the traditional

O O sense, it does provide facilities that allow the passing of transient messages [26]. The

central entity involved in this process is the Interaction Class. As with object classes, a

hierarchy of interactions if defined within the object model. Each interaction class may

prescribe a number of parameters that contain the values of a message. As with attributes,

the principle of inheritance applies to parameters.

While their primary purpose is the passing of messages between federates (perhaps to

trigger additional processing or signal an event), interaction classes share many

differences with OO-style methods. Interactions are not associated with a given object

class or instance. Further, the H L A provide no support for directly targeting a specific

federate with an interaction, rather, any federate that signals an interest in an interaction

m a y receive them.

As any federate can show an interest in a specific class of interaction and as such, the

direct passing of messages from one federate to another is not explicitly supported.

However, if this behaviour is required, federates can be programmed to support it

(perhaps through the inclusion of a parameter identifying the target federate, which in

turn causes other federates to ignore the message). Just as the direct passing of messages

from federate to federate is not supported directly (as is typical with OO-style methods),

workarounds that include an identifier for the target object instance can be programmed

into federates should the developers desire it.

g.2.g.s Data Types

Following the IEEE 1516 standardisation process, support was added to the. O M T format

for defining data types [49]. W h e n information is passed between federates (via attribute

updates or interactions for example), the values of the attributes and parameters

concerned are formatted as an opaque series of bytes. The IEEE 1516 specification

provides support for associating a given data type with an attribute or parameter, thus

fully defining their structure.

Building on primitive types, the OMT specification provides support for more complex

arrangements in the following formats [49]:

27

• Simple Types: Generally speaking, simple types are just restrictions or

associations with a given primitive type. That is to say, the simple type Minute,

might define an integer that can be of the value 0 to 59.

• Enumerated Types: Used to define a "data element that can take a finite

discrete set of values" [49].

• Array Types: Used to define collections of another data type. These may be static

in size or dynamic.

• Fixed Record Types: Define a complex type that may consist of many other

types. For example, the type Position may be defined as containing three

consecutive 64-bit floating-point values defining an x, y and z value.

• Variant Record Types: Variant records describe "discriminated unions of

types" [49].

3.2.3 The HLA Interface and Processes

W h e n exchanging information about the creation, alteration or removal of data described

within the F O M , each federate communicates with the RTI via a standard interface. This

interface defines how each federate can access the various simulation services provided by

the RTI, such as time, declaration and object management. This section introduces the

mechanisms involved in exploiting these services.

3.2.3.1 HLA Interface Facilities

The H L A interface exposes many facilities, each of which can be grouped as follows (the

relevant services are discussed in more detail later in this section):

' Federation Management: These services cover the management of a specific

execution, enabling the creation and removal of federations, in addition to allowing

federates to join to and resign from a federation. Additionally, synchronization

facilities allow federates to co-ordinate their execution at certain named points,

while save and restore functionality allows federates to return a simulation to a

previously defined state.

• Declaration M a n a g e m e n t : These services allow a federate to inform the RTI of

its intentions to produce and consume the various entities defined in the FOM.

• Object M a n a g e m e n t : The Object Management facilities allow a federate to

register, update and remove instances of the various object classes defined within a

F O M . These services also cover the ability to send and receive interactions.

28

• T i m e M a n a g e m e n t : The Time Management services allow a federate to control

and advance logical time within a simulation. Support is provided for defining

whether or not a federate will produce events which are time stamped, and

whether a given federation intends to be constrained by the current time status of

other federates.

• Ownership Management: W h e n information is created by a given federate, it is

implicitly granted ownership over it. To alter attribute values, a federate must be

the owner of them. The Ownership Management services provide facilities to

obtain and transfer the ownership of attributes between federates.

• Data Distribution M a n a g e m e n t (D D M) : Providing a mechanism to reduce

both the transmission and reception of irrelevant data [72,112], the data

distribution services allow a federate to specify a region in which a subscribed

attribute must be in order for the federate to receive notification of changes. When

a federate updates an attribute, it can outline the given region in which that update

is relevant. Unless the update region intersects with the subscription region for a

different federate, it will not receive that update. D D M provides more fine-grained

control over attribute updates (or interactions), reducing network traffic to a

minimum.

The HLA standards define realisations for these services in three different programming

languages: Java, C++ and Ada [48]. While these are the only standardized mappings,

there is nothing preventing federates written in other languages or software platforms

from forming part of a distributed simulation. Having introduced the various sections of

the standard H L A interface, some discussion of the relevant salient details is required.

3.2.3.2 Publication and Subscription

Publication and subscription are the means by which federates signal to the RTI their

intent to produce and consume state information of particular types declared in the FOM.

While older simulation frameworks such as DIS and ALSP used a broadcast mechanism to

distribute state changes [123], the H L A allows a federate to show selective interest without

needing to implement filtering itself.

29

Publish Aircraft with
attributes position

and fuelState

Consider Figure 3-4 shown below

Federate A I I Federate B 1 I Federate C
wmmmmmi^ **mimmmmmmmmm

Subscribe Aircraft with
attribute position

Subscribe
Helicopter with
attribute position

Run-Time Infrastructure
mmmmmwmmmmmmmmwmmmmmmmmmmmmmmmm^

Figure 3-4: Publish and Subscribe

This figure shows three federates, each with differing publication and subscription

interests. Federate A signals to the RTI that is intends to publish the position and

fuelState attributes of the Aircraft class. Federate B informs the RTI that it only

wishes to hear about state changes to the position attribute of the Aircraft class and

Federate C only to the position attribute of the Helicopter class.

Until the point at which Federate A declares that it wishes to publish the given attributes

of the Ai r craft class, any attempt to create a new instance of this type will be forbidden

by the RTI. Accordingly, unless Federate B signals that it is interested in the position

attribute of the Aircraft class, it will never receive updates about changes made in other

federates. Publication and subscription services are dynamic. Thus, during any point

within a simulation, a given federate can decide to publish, unpublish, subscribe or

unsubscribe various pieces of the F O M .

These facilities allow the RTI to filter incoming information and pass only the relevant

portion to interested federates, rather than broadcasting all messages and burdening each

individual federate with the task of filtering it [72,67]. The effect publish and subscribe

calls is demonstrated in the next sub-section.

With one small exception, the semantics of publication and subscription apply to

interactions just as they do to object classes and attributes. Where a federate can signal

30

publication or subscription interests for specific attributes of an object class, with regard

to interactions, the action applies to the class as a whole (not individual parameters).

a.a.S.3 Information Creation and Distribution

Once a federate is either publishing or subscribing to various attributes or interactions, it

will start receiving information about the relevant events that are occurring in other

federates. The list below shows the four different types of events recognised by the HLA:

Object Instance Registration: Creating an specific instance of an object class

contained in the F O M

' Attribute Value Alteration: Changing the value of a particular attribute

contained within a particular object instance

' Obj ect Instance Removal: Deleting a specific object instance

• Interaction Sending: The transmission of an interaction

Object Instance Registration

All persistent simulation data within a federation is stored in attributes contained within

object instances. Before a federate can register an instance of an object class, it must be

publishing at least one attribute (either declared or inherited). Continuing the "three

federate" example from Figure 3-4, Figure 3-5 demonstrates what happens when an object

instance is registered.

0
Register Aircraft

instance (given id: 7)

Federate A Federate B I J Federate C

Discover Aircraft

instance (given id: 7)

mmmmmm
Figure 3-5: Object Instance Registration

Here, Federate A informs the RTI that it is registering an instance of the Aircraft class.

As Federate B is subscribed to at least one attribute of this class, the RTI notifies it that an

31

instance has been created via a discover call back. Given that Federate C has no interest in

the Aircraft class, it will not receive any information about this new instance.

Type Promotion

Type promotion refers to the situation in which an instance can be discovered (or an

interaction received) as a different type to that which it was sent as. For example, if Figure

3-5 contained a fourth federate that subscribed to a Vehicle object class (where Vehicle

is the parent of both Airplane and Helicopter), that federate would discover any

instances of either child class that were registered. However, rather than discovering the

instance as the type it was registered as, the fourth federate would see any instances as

types of Vehicle. In this case, the child classes had been prompted up the hierarchy [27].

Further, the federate would only be able to see any attributes of the Vehicle class (and

n o n e of the child classes).

The same is true for interactions. If a federate is subscribed to a given interaction class,

and an interaction of a child-class is sent, the federate will receive it as the parent class

(with only the parameters that are relevant for that class).

Attribute Value Alteration

Over the course of a simulation it is expected that the various values of certain information

will be updated. During the simulation run, a federate can alter the value of the attributes

associated with a previously registered object instance. Figure 3-6 demonstrates this

process:

Federate A

Update position
and fuelState
attributes for
instance 7

Federate B I (Federate C
)

Receive update of
position attribute

for instance 7

Figure 3-6: Attribute Value Update

32

Having changed the value of the position and fuelState attributes, Federate A notifies

the RTI. As Federate B is only subscribed to the position attribute, it will receive

information only of its alteration. Again, as Federate C is not interested in any relevant

information, none shall be passed to it.

Object Instance Removal

At some point during a simulation run, previously created object instances may need to be

removed, and thus, all federates using that information notified. The process of removing

an object instance is much like that of creating one or updating attributes:

Federate A

Delete object
instance 7

Federate B]• 1 Federate C

Remove object instance 7

mmmmmmmmmmmmmmmmmmmwmm

Figure 3-7: Object Instance Removal

Figure 3-7 shows Federate A informing the RTI that the previously created Aircraft

object instance should be removed. As Federate B has previously discovered this instance,

it is informed of the removal. Given the subscription interests of Federate C, it never

discovered the instance, and as such, it does not receive any notification if the removal.

Interaction Sending and Receiving

The final mechanism for information distribution within the H L A is interaction sending.

Designed to model transient messages, interactions (unlike object instance attributes) are

not meant to represent persistent data. The typical notions of publication and subscription

apply to interactions, with the exception that interest is shown on a class level (rather than

the lower parameter level) [27]. It is also important to note that when sending an

interaction, a federate does not need to provide values for all the parameters [112].

33

Figure 3-8 shows the publication and subscription interests of three federates, in addition

to the hierarchy of interactions in use:

Federate A
>

Publish class TakeOff

CFederate B J-

mmimwmmmwmmw Subscribe class TakeOff

Federate C
) ^mmmmmm

Subscribe class StatusChanoe

StatusChange

v_

zrn TakeOff Land

(

\

Loiter

~ \

s

Interaction Hierarchy

Figure 3-8: Interaction Publish and Subscribe

Here, Federate A is publishing the interaction class TakeOff and Federate B is subscribed

to it. In this case, Federate C has subscribed to the parent class, StatusChange. Figure 3-9

demonstrates what happens when Federate A sends an interaction:

c Federate A c Federate B Send interaction
TakeOff

Receive interaction

TakeOff

K.
Federate C

Receive interaction
StatusChange

Run-Time Infrastructure

Figure 3-9: Send Interaction

34

Federate B is subscribed to TakeOff, thus, it receives the interaction as is. However, as

Federate C is subscribed to StatusChange, type promotion means that it will receive the

interaction as that type (and without any parameters that were introduced by the TakeOff

interaction class in the F O M) .

3.2.3.4 Time Management in the HLA

The concept of time is central to a vast number of distributed simulations. One of the

primary advantages of the H L A over previous distributed simulation frameworks is the

shared time management facility it provides [14]. Throughout a given simulation run,

these services allow separate federates to remain synchronized to a central "logical time"

and help guarantee the delivery of certain messages at a specific logical time.

Logical, or Simulation time is the logical measure of time within a simulation. Logical

time is a synthetic measure whose values are somewhat arbitrary. One unit of logical time

might represent one second or one hour of actual time depending on the simulation. The

time services provided by the H L A focus on time advancement and the association of

messages with a specific logical time.

Logical Time and Message Delivery

Messages within the H L A are delivered to a federate in one of two mechanisms: Receive

Order (RO) or Timestamp Order (TSO). R O messages are simply queued up and delivered

to a federate as soon as possible, while TSO messages are only released to a federate once

the RTI can guarantee that no messages with an earlier (lower) timestamp will be created

[112]. The mechanisms used to determine when this point has been reached are

introduced during the time advancement discussion below.

In order to help the RTI manage the delivery of time stamped messages, federates can

signal that they wish to be either time regulating or time constrained (or potentially both

or neither). Time regulating federates are those that wish to produce messages (such as

attribute updates) with an associated timestamp [48]. Time constrained federates are

signalling to the RTI that they wish to receive messages in timestamp order [48].

Only time regulating federates can send TSO messages and only time constrained

federates can receive them [27]. If a non-regulating federate attempts to send a TSO

message, the timestamp will be discarded and the message delivered as R O [48].

Accordingly, if a non-constrained federate receives a message that was sent with a

timestamp, it will be discarded and the message delivered as R O (to that particular

federate) [48]. Figure 3-10 demonstrated this process:

35

Federate A
mmmmm

Federate B

F"

Federate C
mmm

Send attribute
update with
timestamp

Receive attribute
update as TSO

Receive attribute
update as RO

Run-Time Infrastructure

Figure 3-10: Time Constrained and Regulating

It is important to note that the non-constrained federate will receive the attribute update

as soon as possible, while the constrained federate will have to wait until the appropriate

logical time has been reached (which may not occur for quite some time) [14].

To help the RTI ensure that no TSO messages are delivered in the logical "past" (with

timestamps lower than the current logical time), regulating federates must provide a "look

ahead" value. The look ahead is added to the current logical time to determine the lowest

timestamp a federate may associate with a message. This value is known as the Lower

Bound Time Stamp (LBTS) [14]. Figure 3-11 demonstrates how look ahead affects the

ability of a federate to send a TSO message:

Current Time = 12

Lookahead = 3

10 11

LBTS =15
Federate cannot
produce messages
with a timestamp of
less than this value

Logical Time

15] 13] 14] 15] 16] 17] 18

Figure 3-11: Lookahead

The RTI will not release any TSO message to a constrained federate until it can determine

that no more messages with a timestamp less than the proposed new logical time will be

36

generated [27]. To enable the RTI to determine this point, federates use the various time

advancements services provided.

TimeAdvanoRmpnt

To enable the proper coordination across a federation, the RTI controls when time

constrained federates are allowed to advance their logical time. A given federate must

explicitly request an advancement in its logical time and wait for the RTI to grant its

request before moving on [112]. Consider figure 3-12 below:

LBTS = 16
Requested T i m e = 13 Federate cannot

-—^^^ produce messages
^^\ with a timestamp of

Current T i m e « 12 t less than this value
Lookahead « 3

Logical Time
~^0| 111 12] 13] 14l 15] 16| 17| 18|

Figure 3-12: Time Advance Request

In this figure, the current logical time for the given federate is 12, however, it has

requested a time advance to 13. A request to advance time is taken as an indication that

the federate no longer wishes to produce messages at the current time. Thus, if the

federate is regulating, its look ahead will now be calculated from the requested time

(making the LBTS for this federate equal to 16) [27].

The RTI will not grant this advance until it can determine that all TSO messages with a

timestamp of less than 13 have been delivered. To do this, it must determine the earliest

possible timestamp a message might arrive with; it needs to know the LBTS for the

federation. As regulating federates are the only ones capable of producing TSO messages,

this value will be equal to the lowest LBTS of all such federates. Only when this value is

greater than or equal to the requested time will the RTI grant the advancement2.

The HLA provides three different methods for the advancement of logical time:

2 While the H L A provides facilities to coordinate time advancement, an independent logical time is
maintained for each federate. For example, it is valid for one federate to have a logical time of 12 while another
has a logical time of 15. The RTI will only restrict the advancement of constrained federates as they are the
only ones capable of receiving TSO messages. Advancement requests by non-constrained federates will be
granted immediately.

37

• T i m e Stepping: Federates directly request advances of a given value. Generally

speaking, the value is consistent (i.e., Always requests advances of 3 units)

• Event Based: Rather than directly managing the time advancement process,

these federates are more interested in processing the next available message

(whatever timestamp it might have). As all TSO messages will be delivered in

order, requesting the next event is implicitly asking the RTI for an advance to the

timestamp of that message [48].

• Optimistic: Time-stepped and event-based approaches are known as

conservative techniques [112]. This is because they guarantee that events will be

delivered in timestamp order and that no events will occur in the past. Optimistic

federates are able to receive all currently queued-events, even if there is the

possibility that more messages with smaller timestamps may still be generated

[48). Facilities are also provided to allow such federates to cancel previously sent

messages if required.

A major strength of the HLA is that it allows the combination of federates using different

advancement mechanisms. From the perspective of a federate, the mechanisms used by

other federates are hidden and irrelevant, allowing, for example, time-stepped federates to

interoperate with event-based and optimistic ones [112].

3.2.3.5 Ownership Services

Each attribute of a given object instance is explicitly owned by a single federate. Only the

federate that owns an attribute may update it The ownership management services

provided by the H L A allow for the transferral and acquisition of attribute ownership

among federates. These facilities support the co-operative modelling of simulation data by

allowing separate federates to manage various attributes of the same instance, or, indeed,

share management of a specific attribute [27].

The HLA supports two types of attribute transferral: push and pull. A negotiated attribute

ownership transferral is used when a particular federate wishes to "get rid" of (or push

away) a given attribute [112]. A requested acquisition is used when a given federate wishes

to gain ownership (pull) of an attribute currently managed by another federate.

3.2.3.6 Data Distribution Management

With the HLA, publication and subscription mechanisms are used to reduce the amount of

unnecessary traffic flowing between the RTI and federates. Data Distribution Management

38

(D D M) provides facilities that allow more fine-grained control over updates and further

reduce superfluous communications.

When a federate is subscribing to a set of attributes or an interaction class, it may also

supply a specific region. Regions are multi-dimensional spaces that define constraints for

the transmission of events. W h e n a federate updates an attribute value, it may supply an

update region with the event that signals the space it is valid for. Only when that space

overlaps with the subscription region for given federate that is interested in that attribute,

will the RTI forward the update. This removes the transferral of information that the

receiving has declared itself as having no interest in [72,27].

3.2.4 Summary

This section introduced the HLA, its component, entities and processes. Discussion has

focused on both object models and the various simulation services provided by the H L A

that enable the interoperation of federates within a distributed simulation. With this in

mind, the section 3.3 discusses h o w the interoperability benefits of the H L A can help

remedy the problems of the wider business community as highlighted in chapter 2.

3,3 HLA for the Wider Business Community

The landscape of tools used for simulation purposes with the wider business community

consists of numerous and varied options. From general-purpose spreadsheet applications

to specialised simulation environments, the lack of interoperability between the produced

models can have considerable effects on reusability and return on investment. Designed

specifically to address the problems of connecting many varied hardware and software

platforms together, the interoperability afforded by the H L A presents significant attractive

options when considering it for use in such a diverse landscape. This section describes

how the H L A can be of benefit.

3.3.1 Size and Complexity

Simulation tools used within the wider business community tend to be monolithic in

nature. The use of a single tool producing a single simulation can negatively impact both

the development complexity and achievable size of a model. Distributed simulation

focuses on the development and co-operation of multiple, smaller and more specialised

models. Partitioning the required work into smaller, more manageable units helps reduce

development complexity and allow for greater reuse through the integration of pre-written

components.

39

Such an approach also allows for the integration of additional modules at later points,

increasing the overall size of the model and potentially enhancing the information is

produces. As the single simulation, monolithic approach places restrictions on the

achievable size of a model. The increased depth of analysis extending from lager, more

compensative models is forgone in an environment like that which currently exists within

the wider business community. Distributed simulation offers enhanced scalability, thus

addressing these shortcomings.

3.3.2 Interoperability and Reuse

As mentioned above, the wide variety of tools used for simulation within the wider

business community can negatively affect the return on investment made in developed

models through reduced reuse and higher initial development costs when developing

complex models. Further, the lack of reuse caused by an inability to use existing work

developed with alternate tools also increases costs and reduces the achievable size of

models. Ideally, a larger model could be developed from a combination of custom built

and pre-existing components (that were themselves created with the tools that most suited

the task at hand). These models could then be brought together and work jointly as a

distributed simulation. The interoperability benefits of the H L A can help to realise this

goal.

How is Interoperability Achieved in the HLA?

Before discussing h o w the interoperability benefits of the H L A can help the wider business

community, it is first important to discuss how the H L A achieves interoperability across

otherwise disparate platforms.

Interoperability is achieved within the HLA in a number of ways. Central to all of them is

the role of the F O M . Describing the structure of information a given federation can

produce and consume as a whole, the F O M is the primary artefact that allows federates to

work with one another in a defined manner. A F O M defines the shared vocabulary of a

federation. From an interoperability perspective, this means that any simulation

component willing to produce or consume information in the same manner can potentially

work with other such component (even if they were not originally designed to do so).

In an attempt to gain widespread interoperability among components designed for similar

environments, the notion of reference FOMs has long been employed within the defence

domain. The creation of a central, standard F O M for a specific purpose (such as the Real

time Platform Reference F O M [108]) allows components to be created with

40

interoperability in mind. While such components may not be created with the express

intent of interoperability with another given federate, the fact that both support the

reference F O M opens this possibility. There is nothing specific to reference F O M s that

supports this behaviour beyond the creation of a shared syntax and the implicit agreement

of shared semantics (often codified in supporting documentation). Federates designed to

work with different models can still be brought together if there exists significant overlap

between the models.

Beyond defining what is required of simulation components if they are to work together in

a distributed simulation, the F O M also helps overcome platform differences. Assuming

very little about the target platform, all communication within the H L A is achieved

through the passing of an opaque series of bytes. Where structured data may have

different representations on different platforms, a group of bytes as used within the H L A

will always remain the same, regardless of platform.

This naturally raises issues when attempting to reconstitute any received information into

a format that is both usable and has some sort of semantic meaning. Object models thus

form a primary mechanism through which interoperability is achieved. Describing the

structure of information that is to be exchanged within a distributed simulation, the F O M

acts as a recipe for the reconstitution of received information into its intended format. The

exact manner in which this process occurs is dependent on platform and simulation. With

the introduction of the IEEE 1516 specification, the O M T format was extended to include

all information necessary to define the structure of information [49]. Whether it be

simple, primitive data types or large, complex structures, the F O M now contains all the

necessary information to both render an opaque series of bytes in some semantically

useful form, and to reduce a structure into a series of bytes ready for transmission.

How Interoperability Helps the Wider Business Community

As discussed above, the wide and varied landscape of tools used within the wider business

community can have many negative effects on simulation development, costs and return-

on-investment. The interoperability benefits of the H L A can help address these problems

by allowing models developed across different tools to work together. Development costs

can be reduced through the ability to leverage pre-existing simulation components that

were previously unusable. Simulations can work together to form larger and more

complex models, in turn delivering a greater depth of information and better equipping

those who rely on such feedback for decision support. This also enables the reuse of

existing component, increasing the return-on-investment made in their development of

purchase.

41

3.4 Summary
While use of the H L A within the wider business community would provide many potential

benefits, the application of this technology beyond the domain of defence has thus far

been minimal [116]. Despite offering many proven interoperability benefits, the H L A still

presents many sizeable shortcomings that must be addressed before it can be readily

employ beyond the defence community. Although the IEEE 1516 standard is currently

undergoing periodical revision and is addressing some of these shortcomings, many

problems still remain. This chapter has introduced the HLA, its processes and

components. Chapter 4 discusses the shortcomings of the H L A as it is specified, and

outlines some of the research and development efforts made to address them.

42

Chapter 4

The HLA: Problems and Solutions

A proven, international open standard, the HLA has the potential to enable increased

interoperability and reuse of simulations within the wider business community, in turn

lowering development costs, increasing return-on-investment and allowing larger and

more encompassing models to be developed. However, while capable of delivering

considerable advantages, the H L A as specified presents numerous sizeable problems. This

chapter introduces and discusses these issues, before outlining the research and

development efforts that have attempted to address them.

4.1 Shortcomings of the HLA

While the H L A presents significant advantages when considering it for use within the

wider business community, there are a number of shortcomings that currently prevent any

wider uptake of the technology beyond the defence domain. The problems of the H L A are

well known and have been the subject of much work within the community.

4.1.1 Development Complexity

Development complexity is perhaps the single largest noted deficiency of the HLA. Having

been the focus of considerable attention and research, these issues have been widely

identified as increasing the time and costs involved in distributed simulation

development.

Access to the simulation services offered by the RTI is only available through the low-level

facilities defined in the interface specification which area complex and difficult to work

with [20]. In use, these interfaces can be unintuitive and require expert knowledge to use

effectively. While quite powerful and flexible, the interface specification causes many

problems at an implementation level.

Code-Space Inefficient

The application code required to utilize the H L A services is extremely code-space

inefficient, often requiring hundreds of lines in order to achieve simple outcomes. The

process of programming a federate is a complex and laborious task [82]. Further, the

asynchronous programming model used by the H L A requires that the client manage the

association between event responses and their original requests. This approach results in

43

the need for an additional coding effort and in turn increases the amount of code that

must be developed and maintained [83].

Unstructured Development

The low-level nature of the facilities provided by the interface specification means there is

no consistent, accepted model driving their use. As such, simulation developers often

resort to the development of their own infrastructure and middleware solutions in order to

reduce the development effort required [83]. This in turn results in a duplication of effort

and creates an additional source of development and maintenance. Further, the process of

testing and debugging federations is recognized as a difficult and time-consuming process

[84].

Code Tangling and Tight Coupling

Without a formal standard defining the proper separation of model code from the

integration logic required to support the RTI ambassador interface, the two often become

entangled and are unable to be considered separately. Such tight coupling of business

logic (in this case, a simulation model) and underlying support code is widely recognised

as a major factor in constraining reuse potential.

Code required to communicate with the RTI and handle incoming information ends up

scattered among the pure logic of the simulation, making models more difficult to

comprehend and creating maintenance issues [92]. This entanglement harms model

comprehension and can make it more difficult to spot errors or bugs. The tight coupling

that exists between model logic and the underlying H L A infrastructure code also makes it

difficult to reuse that effort in situations where the infrastructure must be changed.

Data Interpretation

The IEEE 1516 O M T standard defines a format that allows object models to fully specify

their contained types. This information can be used to construct properly formatted data

from the opaque series of bytes received from the RTI. However, the process of

serialization and de-serialization is left entirely to a federate developer. While this is a

simple process for primitive data, when considering larger data structures, it can become

complex and burdensome.

The simulation specific services provided by the HLA require expert skills and training not

generally found in the wider business community. While general programming knowledge

is widespread and pervasive within such domains, the knowledge required for H L A

federation development is not. Despite being available as an internationally defined open

44

standard for numerous years, the H L A has yet to gain traction beyond the defence

domain. Given this minimal uptake, it is clear that the skills required, and the complexity

involved with the H L A as it currently exists, render is undesirable in such contexts.

4.1.2 Interoperability and Reuse Shortfalls

A major strength of the H L A is the interoperability benefits it provides. Linking

simulations and components on diverse and disparate platforms together, the H L A

enables the interoperation of many different simulation styles. Central to the

interoperability benefits of the H L A is the notion of a shared object model (the F O M) .

However, while successful in enabling a broad level of interoperability and reuse, there are

situations in which the H L A falls short of its goals. Most commonly, H L A interoperability

breaks down when attempting to use a particular federate in a context it was not

specifically designed for.

Syntax v. Semantics

Defining the shared vocabulary of a particular federation, any federate that conforms to a

given F O M can work in the same distributed simulation as other such federates. However,

the F O M only defines the syntax for interoperability, not the semantics [112]. While direct

conformance with a F O M is the first step towards interoperabihty, there are many

situations in which semantic differences in the behaviour of a federate lead to

incompatibilities. Broadly speaking, these can be broken down into three distinct

categories:

Execution Management

Differences relating to the way a federate may manage its execution within a federation.

Different federations have different execution processes. Some use synchronization points

to tell federates when to start and stop execution, others may use interactions. Certain

federations m a y have defined points at which they publish and subscribe or pre-regjster

all their object instances. In order to enable repeating simulation runs without exiting, the

Virtual Maritime Systems Architecture (VMSA) simulation mandates that a federate must

go through a simulation state save and restore process before each run [11]. If a given

federate can not conform to the execution management procedures expected by other

federates, the simulation may never be able to start.

Model Differences

Model differences relate to the way a given simulation component may produce or

consume information, and the assumptions it makes about simulation data. Two models

m a y produce information about the altitude of an aircraft as a 32-bit integer, but one

45

interprets it as meters while the other as feet. While the O M T supports the definition of

such information in the F O M , it is formed as free text and cannot be processed directly by

a computer. As such, to adapt one federate to a new F O M would require code-level

changes.

Problems can also arise when federates do not agree on policies relating to the items such

as update production rates. While some federates may attempt to reduce bandwidth by

sending infrequent updates (relying on dead-reckoning to make assumptions in the mean

time - as was popular with DIS), other federates may depend on a continual stream of

information.

HLA Service Usage

The interoperation of federates depends heavily on the H L A services they may use of and

depend on. While two federates may be compatible at an execution and model level, if one

depends on co-operative modelling through the transfer of attribute ownership and the

other does not, significant problems arise. C o m m o n areas of concern relate to models that

do or do not depend on ownership or time management.

FOM Agilitv

Compliance with a particular F O M is no guarantee that a given federate can interoperate

with another compliant federate. Interoperability within the H L A is dependent on the

F O M acting as a shared contract describing the data (and structure) federates wish to use.

FOM Agility is concerned with the processes involved when a significant functional

overlap exists, yet the way data is represented within the F O M is different [40]. In order to

invoke RTI ambassador services, FOM-specific information must be known. Information

such as object class and attribute names are often hard-coded into a federate, and as such,

switching to a different F O M necessitates alteration of a federate at this level. In situations

where this is not possible, the ability to reuse such a federate is lost

The FOM-centric approach of the HLA leads to issues of cross-federation interoperability

and significantly reduces the ability to reuse existing work in a context for which it was not

originally intended. The use of reference F O M s is seen as one way to avoid this problem

(by standardising on a specific model). However, this workaround does not solve the

underlying problem. Further, it is only of benefit when all use of a given federate is

intended to be with regard to the same model.

Link Compatibility

46

While FOM-Agility and semantic differences are classes of interoperability problems that

relate directly to the underlying model, the issue of link compatibility is a problem the

infrastructure used to enable a distributed simulation.

To allow unprecedented flexibility with regard to the way HLA types3 are represented

within a specific RTI implementation, the IEEE 1516 interface specification mandated a

set of abstract, vendor neutral types [48]. This allows a vendor to implement such types in

any manner they desire, while insulating federates from the underlying semantics.

However, sufficient means of creating and obtaining these types was not supplied,

requiring federate developers to make direct use of vendor-specific types. This in turn

required source code alteration and recompilation when attempting to move a federate to

a different RTI implementation [43].

The lack of link compatibility further reduces the interoperability and reuse potential of

existing federates. The dependence on a specific RTI means a federate can only be used in

situations where the implementation it was designed for is also in use. To address this

problem, the Simulation Interoperability and Standards Organization (SISO) developed

the companion "Dynamic Link Compatibility" specification (otherwise known as the DLC)

[41]. The focus of the D L C is to remove these anomalies and enable a smooth transition

when moving from one RTI implementation to another [45]. However, while the D L C

specification does address many of the situations in which link compatibility problems

arise, in its current form it fails to realize this goal with regard to LogicalTime types.

Standards Compatibility

Having been in use for many years, the H L A has undergone several specification

alterations and upgrades. At the time of writing, there currently exist several different

versions4:

• HLA 1.3 (initial DMSO version)

• IEEE 1516

• SISO D L C

3 Types such as LogicalTime implementations, abstract handles that identified a specific object instance, class,

or attribute (for example).

4 The H L A Evolved has come about as part of the general process of refreshing IEEE standards after a certain

period of time. At the time of writing it is about to be voted on and release is anticipated in late 2006.

47

The D L C standard was an extension of IEEE 1516 to address link compatibility issues. As

such, the two are mostly compatible. However, the changes to the interface specification

between H L A 1.3 and IEEE 1516 were significant.

While the evolution of a standard is necessary to keep it current and avoid stagnation, in

the case of the HLA, backwards compatibility has not been preserved. Incompatible

alterations to the interface specification have been made such that alteration of a federate

at a code level is required when attempting to work with different versions. Especially

vexing is the choice to change the names of various types; even when there is no semantic

difference in the way they are used. This is further exacerbated by changes made to the

names of object, attribute and interaction classes. As these types must be referenced by

name within a federate, such an action immediately invalidates all federates of the

previous versions, excluding them from operating correctly.

As the standards are no longer compatible, in order to maintain a federate capable of

working in either situation, two separate lines of development must be created. While

adding additional maintenance costs, these actions reduce the reuse and return-on-

investment potential of a simulation component.

4.1.3 Barrier to Entry

Rather than being a single problem that restricts the broader uptake of the HLA, barrier to

entry problems are the product of many shortcomings. The current environment

surrounding the H L A actively inhibits an expansion of the community into the

mainstream business environment.

Infrastructure Costs and Open Source Software

While c o m m o n in the broader business community, the H L A has a distinct lack of Open

Source Software (OSS) involvement. While in and of itself this is not necessarily a

negative, the prohibitive costs of commercial infrastructure and support tools serves to

magnify any issues it may raise. In relative terms, compared with general simulation tools,

the H L A is a niche market. As is common in such situations, commercial infrastructure

and tools are expensive.

RTI software is essential for HLA and without it, the development and execution of

simulations cannot occur. While robust and mature commercial offering are available at

considerable cost, the lack of any basic tools that can help expand use of the H L A is

noticeably absent. Without such options, those exploring the potential of the H L A to help

solve their problems have no support in assessing and evaluating its advantages without

48

the involvement of significant financial commitment. Further, the expense involved in

commercial offering also restricts the ability of small-to-medium enterprises to compete

with larger competitors.

Up until December 2002, the US Defense Modeling and Simulation Office (DMSO) made

their RTI implementation widely available (subject only to International Traffic in Arms

Regulations - ITAR). With this contribution, anyone interested in learning or assessing the

H L A had at least the minimum required tools at their disposal. However, citing a growing

commercial RTI market, D M S O removed their offering from public availability [52],

leaving no non-commercial options available. With no freely available option, the already

significant barrier to entry is raised yet again.

The need for publicly available tools has not gone unnoticed and the potential of Open

Source Software (OSS) has been identified as a potential solution [113]. While pervasive in

the mainstream community, OSS has yet to make any significant inroads into the H L A

community. However, recent times have seen a number of projects begin to emerge [1, 74,

93]. Despite being early in development or relatively incomplete when compared to

mature, commercial offerings, these endeavours hold considerable potential for

addressing the lack of free tools. Reducing the barrier to entry, they may be able to help

grow the community and in time feed into the market for more mature, commercial

options. With this in mind, the general availability of basic tools is becoming a much

smaller hurdle.

Despite offering many advantages for the development of distributed simulations, the

environment described above significantly restricts a broader uptake of the technology.

These problems arise directly from the requirements of the H L A as specified and group

together to make the prospect of H L A use both excessively complex and costly.

As the expression of a model within the HLA is so inherently tied to the directly

exploitation of RTI services, specialist knowledge and training is required (and the

learning curve is steep). The complexities involved in H L A simulation development in

addition to the considerable amount of code that must be written leads to longer initial

development timelines and increased maintenance costs. Shortcomings in the ability to

reuse existing work lead to an increased duplication of effort, resulting in additional cost

and time commitments. The lack of model composability caused by these reuse problems

reduces any capacity for the rapid development of even small models.

Taken together, all these issues combine to vastly reduce the attractiveness of the HLA

despite the potential benefits if can offer. The high barrier to entry is the combination of

49

all the problems discussed in this section and serves to restrict a broader uptake of the

H L A within the wider business community.

4.1.4 Summary

Section 4.1 has introduced the common problems associated with H L A simulation

development. The issues of development cost and complexity, a requirement of expert

skills and training, and interoperability and reuse shortcomings have been highlighted as

the major deficiencies of the H L A as specified. W h e n considered alone, these failings

render the H L A unsuitable for use within the wider business community; considerable

research and development effort in recent times has focused on solving the issues. Having

identified the primary shortfalls of the HLA, this section has provided the background for

a discussion on recent research and development efforts aimed at addressing the

problems.

4.2 Addressing the Problems

The problems of the H L A are well known within the research and development

community. While the H L A has long enjoyed pervasive use within the defence domain

despite these issues, compelling solutions must be found before the H L A can be made fit

for use in a mainstream simulation context. This section introduces and discusses some of

the research and advancements aimed at addressing the shortcomings, their successes and

failures.

4.2.1 FOM Agile Federates

The term F O M Agile federates refers to a concept that involves creating mappings to

describe the transformation between the model that a particular federate requires and that

which is being used in the wider federation [124].

As the process of moving a federate to a new federation can involve both semantic and

vocabulary differences, some changes need to be applied to the federates before they can

work in their new setting. One option is to modify the source code for the federate directly.

This approach, while effective, requires a user to come to terms with not only the model

that the federate uses, but also the way in which the federate was developed. The amount

of time it can take to port a particular federate can be significant, and as such, costly.

Further, once a federate has been ported to a new federation object model, two separate

versions of the federate now exist. This raises maintenance concerns and again requires

significant investments of time and money.

50

The F O M Agile approach seeks to use middleware as a kind of Rosetta Store. The

middleware can be configured to perform transformations both in terms of simple naming

changes, right the way up to complex data transformations [40]. By placing middleware

between the federate and the RTI, these types of transformations can be performed,

essentially fooling federate into believing that the federation is communicating in terms it

natively understands.

The problems of FOM Agility have been the focus of considerable research and

development effort in recent times. Through the ideas and concepts presented here, many

of the issues can be mitigated. Any solution that intends to offer simulation services to the

wider business community must provide the ability to integrate such approaches so that a

fuller picture of interoperability and reuse can be realised. As part of the periodic revisions

to the IEEE 1516 standard, the notion of "Modular F O M s " is being introduced. This allows

individual federates to describe only the parts of the F O M they have interest in. The RTI in

turn merges all the constitute modules from all the federates into the actual federation

model. This particular enhancement is one such effort that is being made to allow

federates to become more agile, letting them focus purely on the parts of the model of

interest to them. Although it helps, it does not provide a solution to problems of agility

when modules overlap and make use of different semantics. In this situation, more

traditional mapping and transformation techniques are still required.

4.2.2 Code Generation

Section 4.1 identified the problems of development cost and complexity as significant

factors holding the further expansion of the H L A back By automating the creation of large

portions of a simulation component, code generation can help to reduce development time

and costs. Unlike the other technologies presented in this section, code generation is not a

general solution that is used in isolation. Rather, such techniques normally form part of a

larger overall strategy (as will be discussed in relevant parts of section 4.2).

Code Generation Overview

A code generator is a program that produces other programs [51]. The basic process of

code generation involves the automated conversion of a high level description of a piece of

logic or entity into the actual code required to implement it. There are many advantages to

using this process [70]:

' Reduction in the amount of code which must be authored by hand

51

• Improved code quality as output is automatically generated, not written by hand

(and subject to the mistake people make)

• Reduction in maintenance costs as local at which bugs are produced is centralised.

If there is a bug, it is everywhere code generation was used and is thus easier to

find.

There are two general types of code generators, each of which is discussed below:

Binary Runtime Code Generator

A runtime code generator creates code dynamically during the execution of a program.

These types of generators work at a low level and are generally not exposed to a developer

(they are hidden in an execution environment) [51]. Such code generators create code for

use during a particular execution, with the code produced not persisting beyond the

runtime of the application. Runtime generators can be found in places like the Java

Virtual Machine [115]. Here, Java byte-code is turned into machine executable code at

runtime.

Source Code Generators

As opposed to runtime code generators, these types emit actual source code [51]. Used in

many environments that provide application development support, source code

generators create code on behalf of a user. Used to generate code for common, repetitive

or monotonous tasks, the code created by this type of generator is intended to be

persistent, and often times is extended or directly leveraged by a developer. Many

applications make use of this type of generator, examples of which include Rational Rose,

Microsoft Visual Studio and Calytrix SIMplicity (a H L A simulation development tool

discussed in section 4.2.5).

Successes and Failures

In situations where significant amounts of repetitive code must be written (such as the

HLA), code generation can help to reduce the burden on developers. As the volume of code

produced is decreased, so to does development timelines and costs. However, in and of

itself, code generation does not solve many problems of the wider business community.

Generally, code generation is a low-level technology that is leveraged in the context of a

broader solution, such as those discussed next.

52

4*2.3 Component Models

Considered an important solution to many of the c o m m o n problems faced in software

development, component models are credited with improving both productivity and code

quality [55]- Through the use of component based development many organizations have

claimed significant benefits from the increased reuse and interoperability they offer [44].

Component based development involves the process of separating the core business logic

from the platform that it aims to exploit [46]. Separating the business logic from the

underlying integration code allows for either to be changed without the need for extensive

redevelopment, resulting in the realisation of reuse and interoperability across differing

platforms.

A component model is an architecture that allows application developers to define

reusable fragments that can be combined to create a larger application [87]. These

fragments are known as components and they form the basic building blocks through

which applications are assembled. Behind the abstractions provided by a component

framework is the container. The container provides the concrete environment in which

components execute.

Components

A component is a self-contained, self-describing unit of functionality [84I that is deployed

in a managed environment. Components themselves do not necessarily constitute entire

applications; rather, they provide small pieces of logic that may be aggregated to form an

application [97].

A component is composed of two parts: the logic it implements (its interface) and the

description it provides of itself. The interface provides programmatic access to the internal

state of the component and is provided through the use of abstractions defined by the

framework Metadata provides information about the component, such as vendor and

version descriptions in addition to the container services it wishes to leverage [84].

Rather then acting as a standalone piece of software, components are deployed into a

container that provides an execution environment. A component contains the core or

business logic required to complete a task. Rather then combining the code required to tie

this logic into the execution environment a component interacts with its container through

an abstracted interface. Separating the business logic from the underlying platform details

allows a component to be deployed into any container that conforms to the component

model [83].

53

Component Containers

The middleware services required by a component are collectively described as the

component container [84]. A component container provides a concrete implementation of

the abstract interface to which the components conform and may provide access to a

number of services that are transparently applied to deployed components, such as [84,

87, 97]:

• Transactional Services

• Naming Services

* Security Services

• Messaging Services

• Persistence Services

• Quality of Service (QoS) Services

The abstraction of the actual container implementation from the business logic contained

in the component allows for the drop-in replacement of either the component or the

container (thus providing a substantial increase in the level of reuse and interoperability

possible).

Component Based Development

Component based development advocates the partitioning of the application logic into

smaller, reusable components [6] that communicate with a platform through an

abstracted interface. A n application is logically partitioned into a number of software

components where each of these components conforms to a common component model

[84].

Given that the actual platform implementation details of the container in which

components execute remains hidden, it becomes possible to switch implementations of

this container without the redevelopment of the application logic (which would otherwise

be required). This same principle applies for components. Since components are self-

contained units with shared assumptions regarding the manner in which they interact and

connect with their executing environment, they can be swapped for other components that

provide the same level of functionality [39]. Additionally, the specification of a standard

interface allows components to remain portable across many physical container

implementations.

While increasing the reuse potential of developed components, this process also helps to

increase developer productivity by removing tedious tasks from the process. Further, a

54

significant reduction in maintenance can be achieved through the reduction in developed

code. With the application logic partitioned into self-contained components it is possible

to develop and maintain each component separately. Beyond this, the use of standard

supporting infrastructure can significantly reduce the amount of code that must be

authored to provide communication between components [3], easing the development

burden associated with inserting new functionality into an application. From this

description we can see that the primary goals of component-based development are [46,

84]:

• to develop software from pre-existing parts

• to reuse these parts in other applications

• to easily maintain and customise these parts to produce new functions and features

Successes and Failures

The H L A was developed by the U S D o D in order to increase the reuse and interoperability

of distributed simulations; however, although significant advances have been made, the

full realisation of this goal has thus far remained unachieved. As discussed in the section

4.1, issues such as F O M Agility and the tight coupling of simulation logic and

infrastructure code all impede the ability of H L A simulations to achieve the level of reuse

and interoperability desired [42, 63, 83]. The application of component-based

development methods has the potential to help rectify this situation and realise the goals

of reuse and interoperability.

The Simulation Component Model (SCM) has been developed specifically to address the

needs of the HLA. The S C M applies component-based development techniques to the H L A

in an effort to realise greater reuse and interoperability of the core simulation model logic

involved.

The Simulation Component Model (SCM) provides support for the development of

reusable H L A based simulation components [83]. While the H L A provides a solid base for

composing distributed simulations in a reusable manner, realising this goal is difficult to

achieve. The S C M applies component based development techniques to the H L A in an

effort to realise greater reuse and interoperability of the core simulation logic involved in a

simulation. Reproduced from [83], Figure 4-1 shows a top-level view of the S C M and the

component/container relationship:

55

Si omponent

Simulation
Logic

mm.

Integration Logic

Simulation
Framework

Figure 4-1: Simulation Component Mode! [CC]

As shown above, the S C M separates model logic into reusable components and defines a

container in which they can be deployed and access the hidden, underlying H L A services.

Building on previous work, the integration logic required to connect the component to the

simulation framework can be automatically code generated from metadata information.

Component models such as the S C M offer many advantages with regard to the

development time and costs involved with the creation of HLA-based simulations.

Through their connection to the HLA, considerable interoperability and reuse potential is

also possible. Through the execution container, an S C M component appears just like any

other federate within a federation. It may interoperate with other SCM-based components

or federates that are built directly on the H L A interface. As such, the reuse of existing

components in new works is entirely possible. To overcome F O M agility issues, the

container can transparently use facilities such as those described earlier.

Despite offering many compelling advantages with regard to the development,

interoperability and reuse of simulations, component models such as the S C M still depend

on specialist H L A knowledge not present within the wider business community. A more

general solution that abstracts the H L A itself is required to help realise an enhanced

uptake of HLA-based distributed simulation.

While this shortfall means that component models such as the SCM do not themselves

provide an environment entirely suited to the problems of the wider business community,

such techniques can find use within the underlying implementation of a more general

56

abstraction. Just as component models hide infrastructure services, a more generalised

approach is needed to hide H L A knowledge (and the complexities involved) from an end

user.

4.2.4 Middleware

Much like component models, Middleware solutions are designed to substantially improve

developer productivity through the abstraction of low-level, tedious and repetitive tasks.

While component models could be viewed as a form of middleware, generally speaking,

component models tend to provide more advanced services transparently through the

container. Unlike component models, the middleware approach is generally more

lightweight and the focus (within the HLA) is still on developing federates as opposed to

reusable components. One example of this is the pSISA (Proposed Standardized Interface

for Simulation Applications) middleware, which places various layers between underlying

simulation logic and raw H L A in an attempt to abstract the complexities and provide

additional useful services [69]. Another example is ProtoCore. Created by the U S Army as

a unifying API that simulations could be developed, the goal of ProtoCore is to again

remove the specifics of the underlying distributed simulation technology from the

simulation itself. This in turn would allow simulations to be quickly and easily deployed

with newer versions of the HLA, or, in the case of ProtoCore, other simulation

technologies such as DIS [109].

Successes and Failures

Given the close alignment between component models and middleware solutions, the

successes and failures of each are virtually identical. Frameworks such as Middlesim [93]

allow users to achieve increased productivity through the abstraction of the H L A interface.

While Middlesim does not incorporate such facilities itself, F O M agility issues can also be

overcome through the application of techniques described in section 4.2.1. Given this,

middleware based simulations can provide much the same level of interoperability and

reuse benefits as component models.

However, while displaying the same typical gains in development time, interoperability

and reuse as component models, middleware solutions also present the same drawbacks.

With regard to this work, it is the requirement of specialist H L A knowledge that reduces

their effectiveness in the context of the wider business community.

57

4.2.5 Tools Support

Throughout the maturation period of all successful infrastructure standards, a key

development has been the production of tools that simplify their use [49]. The H L A

provides a strong foundation for distributed simulation development; however, it is an

extremely complex framework to use and would benefit considerably from tools designed

to support the development process. The notion of an Integrated Development

Environment (IDE) supports this idea. A n IDE is designed to automate or hide many of

the tasks found in every development effort. Wizards and visualisations of certain

problems present a user-friendly interface that the IDE can use to generate large amounts

of code and configuration data on behalf of the user.

Tools Support in the HLA

In the context of HLA-based distributed simulation, such tools generally fall into one of

two categories: generic or FOM-specific. FOM-specific tools tend to focus on the Real-time

Platform Reference model. As the object model is consistent across all situations, tools

such as OneSAF [128] tend to focus on the composition of entities and scenarios from pre-

built components rather than the creation and coding of those entities. The ability to drag

and drop together a simulation is a clear benefit both in terms of usability and

productivity. However, given the specialised nature of these tools, they are of little use

beyond their context.

On the other hand, generic applications provide an environment free from such

constraints. The SIMplicity [86] IDE currently represents the state of the art with regard

to such HLA-based simulation development tools. SIMplicity is a commercial product

developed to support the H L A development process. The SIMplicity environment

embodies many qualities that ease the burden of simulation development and reduce the

time and effort involved, help realise increased simulation interoperability and aid in the

process of deploying and executing a distributed simulation.

SIMplicity relies heavily on the use of visual tools and automated code generation to help

abstract many of the underlying problems of the HLA. Graphical interfaces are used to

compose and visualise many H L A development artefacts or processes such as:

• FOM Development: Object models can be composed through the use of

standard diagramming techniques [16]

• Federate Development: The publication and subscription interests of a set of

federates is described via a custom diagramming process [17]

58

• F O M M a p p i n g and Agility: Mapping rules can be visually composed to help

bridge the gap between the object model of a given federate and that of the

federation it is to participate in [18]

• Deployment and Execution: Graphical interfaces are used to aid the process to

deploying a simulation component to a given computing resource and to centrally

control its execution [19]

Through the use of code generation, SIMplicity is able to produce a large amount of

infrastructure code on behalf of a developer. Once the simulation model has been

specified, the code generation process can begin [86]. In order to provide a structured

process for the development of distributed simulations, the code generated by SIMplicity

conforms to the S C M discussed in the previous section (the S C M was initially developed as

part of SIMplicity). This provision supports the clean separation of simulation logic and

infrastructure code and simplifies the process of developing a H L A based simulation.

Following code generation, a developer is tasked with the role of authoring model code

required to complete a federate.

Successes and Failure

The tools and processes put in place by the SIMplicity development environment

considerably reduce the effort required to create a H L A simulation. Through the use of the

S C M developers are insulated from the low-level details of the H L A and are able to rapidly

create simulation components. However, despite the many advantages SIMplicity

provides, knowledge of the H L A is still required when filling out the code that it generates.

In the context of this research, the requirement of such knowledge must be further

removed.

4.2.6 Migration of HLA Services to Civilian Applications

One of the problems with the H L A is that its implementation infiltrates a simulation

modeller's entire development process. Rather than providing optional support for

simulation distribution, use of the H L A necessitates that it be considered during every

step of the development process. One natural way to reduce complexity would be to allow

simulation modellers to optionally access H L A distribution services as just another

function of their chosen modelling environment Grafting the H L A onto applications used

within the wider business community for modelling purposes would allow access to those

services from a setting in which modellers are already comfortable.

The notion of coupling HLA-based distributed simulation with tools commonly found

beyond the domain of defence is not new. In [112] StraBburger explored approaches for

59

applying the H L A within "civilian" simulation applications. Investigating the similarities

and differences between the two communities, [112] established that the H L A could

provide benefits to in the mainstream domain (citing interoperability as a primary

concern). Accordingly, a major focus of that work was the development of exemplars that

combined the H L A and c o m m o n simulation development applications.

Strafiburger identified many requirements for the connection of HLA and civilian

simulation tools. W h e n considering how H L A simulation services would be accessed from

within such tools, the notion of implicit and explicit access was presented.

Implicit and Explir.it Access

W h e n attempting to allow use of the H L A through mainstream simulation tools,

consideration of h o w a user will access H L A simulation services is paramount. To this end,

Strafiburger identified that there are two general categories: implicit and explicit access.

Explicit access defines all situations where a user has direct contact with the HLA, much

as a
"It is especially interesting to note that the implicit approach, which in the opinion of

the author is the best approach for hiding HLA functionality from the user, has not

been implemented by anybody else. This is very unfortunate, since this approach

requires the least user involvement for building HLA federates. For avoiding the

symptoms of the parallel simulation community in terms of lacking impact of the

general simulation community, the implicit approach seems to be the best solution. It

requires no adoption of new modeling paradigms, world views, etc."

regular federate developer would. Simulation services are invoked manually, and as such,

this approach requires knowledge of the H L A and h o w to use it. In many ways, explicit

access is akin to authoring a federate manually; with the major benefit being that the

environment used to develop a pure model is the same as the environment used to develop

its distributed version. While the development tool m a y be different (and able to provide

extended services), the explicit approach still necessitates manually supporting the RTI.

Conversely, the implicit approach focuses on the abstraction of the HLA behind the tool-

specific view of a simulation world. Simulations are developed in the manner applicable to

the tool in question. From the perspective of a user, underlying support for the H L A is

transparent. This approach naturally does not require the intimate knowledge of the H L A

that is necessary when manually authoring a federate, of making use of a tool that

embodies the explicit approach.

60

http://Explir.it

While the explicit approach provides easy access to the H L A from mainstream tools, a

requirement of H L A knowledge renders it unsuitable in the context of this work. However,

the implicit approach described by Strafiburger raises many potential benefits with

regard to the goals of this research. In [112], Strafiburger takes the first real steps towards

the use of H L A within the wider business community. His dissertation investigates,

compares and contrasts the explicit methods, highlighting the strengths and weaknesses

of each. The primary experimentation carried out involved the grafting of the H L A onto

existing simulation modelling tools. For each tool, a specific interface to the H L A was

defined (each falling into either the explicit or implicit category).

In his concluding remarks, Strafiburger notes [112]:

Where Strafiburger demonstrated how the HLA and civilian simulation tools could be

combined through a group of tool-specific interfaces, the goals of this research are to

extend the implicit approach into a generalised, non tool-specific context. Building on

[112], this research seeks a general method that allows pure models to be rendered as H L A

simulation components.

In order to realise these goals, facilities that can be used to separate the process of

developing a pure model from that of enabling it as a distributed simulation component

are necessary. While capable of reducing the complexity involved in working with the

HLA, the technologies presented thus far in this section still require some specialist

knowledge. As such, the use as an underlying platform to support this research is not

possible. Facilities that allow for the complete abstraction of H L A semantics are needed.

The next two sections introduce two technologies that have been the subject of significant

amounts of recent research and have the potential to help realise the goals of this work

The Model Driven Architecture (MDA) has been the focus of much research within the

modelling and simulation community in recent times. Applying an implicit approach to

system development, the M D A process advocates raising the level of abstraction such that

a model is created free from any implementation information. Additionally, these models

are specified in a visual modelling language. The richness of a visual medium theoretically

allows for simpler comprehension of h o w a model fits together and helps to speed its

development. Before deployment, these models are transformed into an executable

implementation. Section 4.3 introduces and discusses the M D A .

Aspect-Oriented Programming (AOP) is a slightly different approach to systems

development. The primary focus of A O P is on the separation-of-concerns, whereby the

implementation of business logic and that of implementation logic is kept separate. This is

61

very similar to the M D A approach, however, rather than relying on a largely visual

approach, A O P operates at the programming language level. Section 4.4 introduces and

discusses AOP.

4.3 The Model Driven Architecture

The focus of considerable attention and research in recent times, the M D A has been

suggested as a potential solution to many of the problems facing simulation development.

Developed and standardised by the O M G , the M D A is an attempt to dramatically simplify

the development complex systems through a focus on modelling rather than code

authoring. Utilising the Unified Modelling Language (UML), systems can be composed via

a largely graphical process, focusing on the pure model rather than the underlying

infrastructure platform. Through an enhanced focus on the problem, insulation from

changes (or the complexities) of the underlying implementation platform is provided.

Many advantages have been claimed by the MDA relating to decreased development time

and complexity, increased reuse and interoperability. While the M D A vision represents a

substantial advancement, its full realisation has thus far proven difficult [90]. This section

investigates the processes involved.

4.3.1 MDA Overview

The Model Driven Architecture is described by the O M G as their next step in ensuring

interoperability, portability and reusability [110]. Moving the focus of a developer or

architect away from the technology on which a solution will eventually be implemented

and onto the core business problem, the M D A is a new way to specify software [110]. In

order to provide an open, vendor neutral approach, the M D A has been based on O M G

modelling standards such as the Unified Modelling Language (UML) and the extensible

Metadata Interchange (XMI) [75] (which describes how a U M L model can be serialized

and accessed in a structured way). The processes that make up the M D A can be split into

three distinct sections, broadly concerning three different representations of a system.

These processes and representations are discussed below.

The Platform Independent Model

Under the M D A development process, a model of the core problem or system becomes the

central artefact of the development effort. This model (known as a Platform

Independent Model or PIM) is intended to define the pure problem, containing no

reference to any platform or implementation technology. Through the removal of such

62

considerations, the M D A allows developers and architects to focus solely on the business

processes and the behaviour of the actual underlying system, rather then having to

simultaneously deal with complex technological considerations [85].

Platform
Independent

Model

mmmmmmmm*

Other Model
Entities

Figure 4-2: Development of a PIM

In line with the goals of the OMG to base the MDA around open, industry standards, a

PLM is defined using the Unified Modelling Language. The use of U M L enables the ability

to leverage U M L profiles during the development of a PLM. A U M L profile is an extension

of the basic U M L standard to describe various domain specific entities [j/]. For example,

a Financial Modelling U M L profile might define a "cash flow" entity, its properties and

behaviour. The use of U M L profiles allows PIM developers to rapidly create their model

using predefined, standardised entities.

The Platform Specific Model

Once the pure problem has been modelled independent of any platform complexities or

details, it must then be transformed into a Platform Specific Model (PSM).

Encapsulating a shift in emphasis from the business aspects of a system to its technical

issues [85], a P S M is in effect a "redrawing" of the PIM to include implementation details.

Put another way, while the PIM defines the necessary functionality, the PSM specifies

how this functionality is realised on a specific platform [117].

Through standardised transformation rules, a P S M is to be derived from a PIM [116]. The

use of automated tools is intended to complete this process, removing the need to make a

manual transformation from one model to the other. While a manual transformation

63

would necessitate an intimate knowledge of the target platform and would require a

substantial amount of time, an automated process would remove this requirement, thus

providing obvious productivity benefits [105]. However, while the ideal of an entirely

automated conversion process is appealing not only in terms of productivity, but also in

terms of cost and time-to-market factors, it is recognised that currently, even the most

advanced M D A tools are not able to realise this goal; instead "arguably leaving the most

complex considerations to the programmer" [85].

Platform
Independent

Model
\mwmmmmimm* Automated

Model
Transformer

Mapping
Rules

Sw
Figure 4-3: PIM to PSM Conversion

As with the PIM, a PSM is a UML model. However, unlike the PIM, the PSM is expected to

capture implementation details in a satisfactory level of detail so as to enable an

automated transition to the next stage. Developments such as the Action Semantics

specification (ASL) [78] and Object Constraint Language (OCL) [68] have been created to

allow the definition of behaviour within or between entities more concisely than is

possible with pure graphical diagramming.

The Implementation

With the creation of the P S M as a rendering of a model for a target platform, the next step

in the process is to convert the P S M into an actual implementation. Again, as the P S M is

implemented in U M L , automated tools are able to access and manipulate it, in this case

generating program code (perhaps in a 3rd generation language such as Java or C++) and

other required artefacts to enable its deployment. This is the final step in enabling the

M D A process. With the ability to generate a complete implementation, the need to author

code by hand is replaced with an automated process.

64

file:///mwmmmmimm*

Code
Generation

Engine

mm

Application

^mmmmmmmmmm
Figure 4-4: PSM to Implementation Conversion

However, as with the PLM-to-PSM transformations, even the most advanced M D A tools

are not able to fulfil this goal entirely [86]. While much code can be generated from a

functionally complete platform specific model, a significant amount must be manually

added in order to produce a complete, executable, deployable component or application.

4.3.2 Advantages and Proposed Successes of the MDA

The M D A process defined by the O M G proposes many advantages, including a reduction

in development cost and complexity and an increase in interoperability and reuse.

Through a process that embodies the implicit approach also presented in Strafiburger's

work, the M D A raises many potential benefits.

Focus on the core problem

Through the PLM, the M D A prescribes a process that narrows the initial focus of

development to the pure problem, removing the distraction and complexity of the

underlying implementation technologies. One of the main contributors to the high

probability of failure in large projects [79] is the inability to develop an adequate solution

for the user requirements. Through a focus on modelling only the core problem, a given

solution is much easier to comprehend and the ability to identify deficiencies in a design is

enhanced.

Interoperability and Reuse

65

The enhancements to interoperability and reuse are perhaps the most promoted

advantages of the M D A . The information presented here outlines how the O M G describes

its function.

Under the MDA environment, reuse exists at many levels:

" Reuse of entities and data types from a PLM in other PIMs

* Use of U M L profile entities and data types in many PIMs

• Reuse of standardised mapping rules across many models

• Reuse of a given PIM as the model for many differing PSMs and implementations

The MDA supports the reuse of predefined model entities and types within a PIM through

the specification of U M L profiles. Removing a duplication of effort, this reduces

development time and effort. Further, the ability to reuse a previously created PIM as the

base from which a number of different implementations (based on different technologies)

can be derived is perhaps one of the biggest advantages of the M D A .

Interoperability benefits are one of the major proposed advantages of the MDA. As

platform details within the M D A are generally hidden from the developer, interoperability

problems are also. Described as an "exciting side effect" of the M D A development process

by the C E O of the Object Management Group [no], it is stated that because two

implementations can be derived from a common PIM (which defines a single set of data

types) and because the mappings from a PLM to a given implementation technology are

known and standardised, then generating a bridge between two implementations is a

straight forward process [no]. This bridge would provide communication between two

given implementations of a PIM, thus providing interoperability between the two

implementations of a system.

Taking this concept and coupling it with the ability to reuse a given PIM to generate an

implementation for whatever technology is to become popular next, it is then possible to

realise a much more powerful vision of future-proofing. With the standardisation of

mappings for the next technological advancement, it is possible to generate a bridge

between a new implementation and any legacy implementation based on a technology that

also has a set of standardised mappings (under the same bridging process proposed by the

O M G) . Basing the M D A around open, supported standards allows all models, data types

and entities to be represented in a single, consistent manner. In this environment, both

interoperability and reuse can thrive.

Improved productivity

66

While the O M G is "not claiming to generate all your code" [no], the emphasis of

automation in the M D A process allows for clear productivity benefits. Through the use of

tools that leverage automated transformations and code generation, large benefits in

developer productivity are possible. In turn, this reduces the costs associated with

developing an application. Further, as code generation is widely recognised as a method

for increasing the quality of application code (through the removal of human error) [84],

maintenance costs are also reduced, thus increasing the return on investment for a given

development.

4.3.3 Shortcomings and Failures of the MDA

Within the modelling and simulation community, support for the M D A has been

significant. However, while the benefits proposed by the O M G are numerous and

substantial, sizeable resistance and criticism has been raised within the software

development community. While the advantages of the M D A function smoothly in theory,

the lack of concrete details has rendered their realisation difficult. This section discusses

some of the objections and shortcomings that have been identified.

UML: The "Unwanted" Modelling Language

W h e n the Unified Modelling Language first appeared in 1996 as a combination of other

notations that existed in the software development world [76], it became the standard for

describing systems in a notational form. U M L is taught in universities as part of every

software engineering undergraduate degree and is known to some extent by all

professional software developers. However, given the goals of the M D A , is U M L the

appropriate option for the specification of models?

Perhaps the largest question surrounding UML is the extent to which it should be used in

the development process. As mentioned above, U M L is extremely popular and understood

to an extent by every professional software developer, and therein lies the problem. Being

very well suited for conveying ideas between developers, the notion of " U M L as

Sketch" [36] has long been employed in the software world. Under this concept, U M L is

used in a very loose style and only the core and most important or particularly difficult

parts of a system are modelled formally [65]. In this context U M L is used more to express

the intent behind some facet of system design rather than to rigidly specify the structure

and behaviour (as is proposed by the M D A) . While it can be assumed that all software

developers know the basics of U M L and therefore can benefit from using it in a less

formal, less rigid style such as that described above, the same can not be said for situations

such as the M D A which demand an in-depth knowledge of the diagrams and rules of U M L .

In practice, U M L is employed far more frequently and far more effectively when it is not

67

used in an attempt to entirely specify the make up, processes and behaviours of an entire

system.

The UML is not at all well suited to the task of fully specifying a system [36]. When the

O M G first began its efforts surrounding the M D A it realised this fact and set out to remedy

the situation by introducing new specifications designed to subsidise the shortfalls. Some

of these extensions manifested themselves in the Action Semantics and Object Constraint

specifications introduced earlier; others were to be part of an extension to the U M L itself,

embodied in the U M L 2.0 specification. While the new specification includes many

advancements designed at addressing the shortcomings of U M L , it still fails to recognise

the fundamental problem: people are either unable or unwilling to specify their systems to

the extent and with the type of rigor demanded by the M D A .

When Standards Aren't Standards

The M D A is based around open standards for many reasons, the most compelling of which

is the prevention of vendor lock-in. If all tools support the same standards then it is

theoretically possible to develop and use a model regardless of the tool or its vendor.

While this is a noteworthy advantage, it is reliant on the provision of standards that are

comprehensive and complete. Those standards on which the M D A is currently based have

thus far fallen short, leading application vendors to fill in the gaps in non-compatible

ways.

For example, the XML format specification has proven sufficiently open that in practice,

the documents emitted by one tool cannot be readily imported into another. Resulting in

development becoming dependent on the solution of a specific vendor, the reuse value of

models and entities is reduced.

Beyond incompatible model representations, a much larger problem exists. As discussed

above, in order to provide the ability to adequately model behaviour within models, the

Action Semantic Language specification was produced [78]. Despite identifying the need

for such a facility, the O M G neglected to describe the syntax for such a language [68]. In

the absence of a standard A S L representation, vendors are free to create proprietary,

competing standards, the use of which again reduces the reuse value of models and

entities.

Development Process Complexity

While the concept of automation is central to the M D A development process, the

realisation that 1 0 0 % automation is not possible (thus requiring manual intervention and

68

elaboration) serves only to introduce a new level of complexity to the development

process.

In order to illustrate the new source of complexity, consider what must happen when a

model needs to be changed. If the change is to the platform independent model, once it is

completed a new P S M must be generated, followed by new implementation code. Further,

without complete automation, further manual work must be competed at each step.

Problems arise when considering that the regeneration of a PSM means replacing the old

one. Given that complete conversion is not possible, this also means that elaborations

previously made to the P S M in earlier iterations may also be "replaced". Thus, rather then

regenerating a new P S M and moving on to code, the old P S M must be merged with the

new before expanding on it to cover the new additions which were made in the PIM. With

this process complete, the exact s a m e situation occurs when converting a P S M to

implementation code. The first rule of code generation is that under no circumstances

should generated code ever be edited for just this reason. Where previously all changes

would be done at the implementation level, under the M D A there are now three levels at

which a model (and the changes to that model) must be maintained. This dramatically

increases complexity and as work must be done at each step, fails to insulate a developer

from implementation platform considerations.

While the process becomes complicated in the situation described above, consider the

impact of altering a PIM for legacy implementations. Removing an entity that is no longer

required could m e a n the introduction of an incompatibility with all legacy

implementations generated from the same PIM. These are just some of the

synchronisation issues raised when considering a small change when two additional layers

are added to the development process. While these are not problems that exist in the

theoretical world where 100% conversion from PIM to implementation is possible, it is an

example of how the M D A vision falls short.

The Mvth of Interoperability

Interoperability is perhaps the most celebrated of all the professed advantages of the

M D A . The ability to integrate what you have already built, with what you are building with

what you will build in the future [105, 110] is a powerful vision, yet one which seems

somewhat logically impossible.

The OMG states that because two implementations can be derived from a common

platform independent model (defining a single set of data types) and because the

mappings from a PIM to a given implementation technology are known and standardised,

69

the process of generating a bridge between two implementations is a straightforward one

[no]. However, a simple example can demonstrate the flaw in this assumption:

For a given PIM, having standard mappings to FORTRAN and standard mappings to

Python-based W e b Services DOES NOT automatically provide m e the ability to build a

bridge between these two platforms. In order for a bridge to be built, there must be some

underlying capability within the technologies themselves to support this. While this

example may seem extreme (and it is) it does demonstrate the point that unless there

exists some capability in the underlying technologies, a bridging cannot occur, regardless

of the existence of standardised mappings.

If a bridge cannot be built, then legacy implementations cannot be leveraged and must

either be lost or re-implemented. Whatever the situation, the M D A does nothing to enable

this ability to integrate or interoperate with legacy implementations, despite claims to the

contrary.

Culture Concerns

Numerous technical shortcomings and questions regarding its technical viability plague

the M D A . However, beyond these practical shortcomings, there is also a culture problem

that envelops the M D A community.

The OMG has been a target of significant criticism for producing standards without a

reference implementation. The various standards are designed by a committee made up of

paying industry members, with seemingly little thought given to the practicality or

useability of what they are producing. In any situation where standards are produced

without reference implementations, a number of problems arise.

Technical problems that would have otherwise been recognised and rectified form part of

the formal specification. While they can sometimes be minor, they can also lead to

incompatibilities even between various sections of the specification. In the case of the

M D A , which depends on a number of different specifications, the combinations of errors

results in standards that gain reputations are notoriously difficult to implement and use.

Another major concern with unsubstantiated standards is that they are open to wide

interpretation by the various implementers (tool vendors in this case). Without a common

point of reference for resolving interpretation conflicts, different vendors can produce

tools that are standard-compliant, yet incompatible with one another.

70

To exacerbate this problem, a number of vendors have begun to market their various

offerings as " M D A compliant," without actually embodying a development process that

conforms to the lofty goals of the PIM->PSM->Implementation process. At the same time,

the O M G have failed to act on this situation, preferring to acknowledge these tools as

proof of the MDA's viability.

With the standards body openly recognising tools that do not meet their definition of the

M D A as a success, it becomes clear that vendors do not have to address the difficult

sections of the process (the sections that provide the actual innovation) and can still rely

on the O M G for support. As a result of this mismatch between vision and "realisation," it

has become increasingly difficult to identify an MDA-compliant tool on feature set alone

(rather than marketing). Without any firm criteria by which compliance is measured, the

value of being "MDA-compliant" ceases to exist.

4.3.4 Summary

The M D A has been identified as a potential source of many benefits for the modelling and

simulation community [85,117]. Sadly, to this point in time, the M D A has failed to live up

to its lofty expectations, as the combination of technologies chosen by the O M G to help

realise the vision of the M D A is unable to meet its demands. Despite not yet achieving its

goals, the motivations behind the M D A do raise a number of critical points, especially in

the context of M & S .

The MDA promotes a strict separation of the pure model or process from the underlying

technology required to implement it. As seen with other technologies presented in this

chapter (component models for example), such an endeavour can help increase the reuse

of that model and its entities and reduce development complexity. While the move to

visual-based development techniques such as U M L may not be ideal for capturing the

behaviour of complex systems, the simplification of development it was designed to bring

is sorely required when considering the HLA. Finally, the pursuit of automation and code

generation techniques help to reduce development time, increase quality and insulate a

developer from low-level details.

The need for these attributes to be some how amalgamated into the way HLA-based

distributed simulations are written has been identified within the community as a

requirement of the utmost importance [117]. Although the M D A fails to remedy the

problems, developments such as Aspect-Oriented Programming provide an alternative

that comes from similar motivations, yet is viable now - having already gained widespread

71

use within the open source world. The next section will focus on this technology and

discuss how its application can address the underlying concerns motivating this research.

4.4 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a technology whose motivation is very similar to

that of the M D A : separating business logic and implementation. However, unlike the

M D A , A O P works at a level that is familiar to any software developer, the application code.

A O P is a methodology based around the management of concerns. A concern is a specific

requirement or consideration that must be addressed in order to satisfy the overall goals

of a system [24]. Software systems are the realisation of a combined set of concerns. For

example, a banking system might involve the combination of concerns covering account

management, interest calculations, statement generation, funds transfers, account

information persistence, authorisation management, logging and so forth [56]. These

concerns can be grouped into two distinct categories:

• Core Concerns: Concerns that directly address primary domain requirements

and are central to the behaviour of a software system

• Crosscutting Concerns: System wide peripheral requirements that cut across

many other concerns

In the example above, concerns such as account management, interest calculation, funds

transfers and so forth would be considered core concerns. These application or domain

specific problems are central to the behaviour of the solution. O n the other hand, concerns

such as persistence, authorization and logging are "system-level" problems that cut across

many other concerns [24]. For example, authorization is required for account

management tasks in addition to funds tasks (among others).

Object-Oriented Programming (OOP) is the most common methodology employed for the

creation of software systems today. While O O P provides an excellent environment for

modelling and modularising core concerns, significant issues arise when attempting to

manage crosscutting problems. W h e n implementing functionality that intersects and

interacts with many concerns, O O P approaches typically result in tightly coupled solutions

that are difficult to maintain and reuse. These traits are also some of the primary problems

often associated with the H L A and cited as characteristics that restrict its broader uptake.

AOP represents a new methodology that builds on OOP, addressing these problems by

providing a unit of modularisation known as an Aspect [102]. Aspects are designed to

72

encapsulate and centralise the manner in which crosscutting concerns interact with a

given application. The final system is composed by an Aspect-Weaver, which combines

the core and crosscutting Aspects (according to a set of rules) in a process similar to code

compilations This allows concerns to be developed independently of one another,

removing the tight coupling otherwise required.

This section introduces and explores AOP, outlining its motivations and development

processes.

4.4.1 Introduction to AOP

Identifying and absfracting software systems into sets of concerns has long been

recognised as one of the best methods for reducing complexity [102]. The "separation of

concerns" approach advocates breaking a system down into modules, each of which

provides a well defined, related set of functionality, and can be treated as a group of

opaque entities [34]. As the inner workings of such modules are hidden from external

view, the complexities involved in their development and behaviour does not infect other

modules that use it. Further, modules are implemented independently, and have no

dependence on other modules, thus making them more portable. To provide points at this

models can be pointed, contained entities can implement common, standard interfaces,

allowing entire systems to be constructed from loosely coupled components, rather than a

group of elements that share common interdependencies on one another [30].

OOP provides powerful semantics that easily accommodate the creation and encapsulation

of functionality as modules. Its ability to support a separation-of-concerns approach and

simplify software development has seen it become the standard methodology used for

constructing and implementing software systems [56]. However, while capable of

specifying core concerns, O O P does not handle crosscutting problems well.

By their nature, the implementation of crosscutting concerns span many separate

modules. Although the O O methodology supports encapsulating and separating core

problem concerns, crosscutting interests necessitates the pollution these modules with

system details.

5 Depending on the A O P framework used, the weaving process can be completed in one of two possible

manners: static or dynamic. Static weaving is much like the regular code compilation process where source is

compiled into some executable artefact. Dynamic weaving involves the alteration of modules as they execute

and does not require an intermediate weaving step.

73

Consider as an example the system-level crosscutting concern of logging. As the various

modules involved in an implementation complete some work, they log their activity,

providing a persistent record that can be used to identify the actions taken or defects in

behaviour. However, even in situations where the core logging functionality is itself

modularised, invocations of that module must still be directly implanted in the

implementations of other concerns. Figure 4-5 demonstrates this visually:

API invocations

Database Module

Figure 4-5: Code Tangling (reproduced from [56))

When attempting to log its actions, each implementation module must directly invoke the

logging component, thus creating a dependency on it. This process is known as code

tangling as the details of multiple concerns becomes tangled within one another. Code

tangling introduces an unnecessary dependency and results in modules that are tightly

coupled and which cannot be considered individual, reusable entities.

It is in crosscutting situations such as these where OOP fails to provide adequate support

for proper modularisation. While the Accounting, ATM and Database modules

encapsulate the logic for their respective core tasks, there is no support for quarantining

the logging module. Some effects of this situation include [33,92]:

• Higher Complexity: With implementation details of multiple concerns scattered

throughout the core ones, a developer must have some knowledge of all facets

involved. Further, the tangling of multiple concern details makes the

74

implementation more difficult to comprehend and enforces a larger mental load on

a developer as their mind switches between contexts

• Poorer Quality: Tangling makes it difficult to examine an implementation and

spot problems or defects (given the constantly high level of background noise in

the form of crosscutting concerns). This in turn leads to more bugs and errors

• Increased Maintenance: The higher complexity and lower quality of work

results in increased maintenance, and as such, increased costs

• L o w e r Productivity: Because of concurrent implementation of multiple

concerns, a developer's focus must constantly shift between primary and periphery

considerations. Time is lost as developers are distracted from the prime objective

• Reduced Reuse: With modules implementing multiple concerns, other systems

that require similar functionality may be unable to reuse the implementation if

they have an altered set of crosscutting requirements

To address these problems, the AOP methodology defines a new unit of modularisation

know as an Aspect. Aspects represent the implementation of a pure concern, be it business

case driven or crosscutting. Where O O P would require the implementation of the

crosscutting concerns to pollute that of the core ones, A O P compels developers to omit

such details and implement all concerns in isolation [30]. It is important to note that A O P

builds on previous technologies and as such, O O P is still used to build Aspects6.

Once all concerns have been implemented, a set of rules defining how each Aspect maps to

the others must be defined. These rules describe when the functionality of a certain Aspect

should be invoked [34] in the context of the other modules. These rules they take the place

of code that was previously scattered throughout the implementation of the various

concerns. Thus, the code implementing each Aspect remains independent of others, with

affiliations defined in separate mapping rules that can be thrown away or altered without

modifying the Aspect itself.

The mapping rules, along with each of the Aspects involved, are passed to an Aspect

Weaver. A weaver will take the defined mapping rules and use them to bind the various

aspects together. For example, at the points defined in the mapping rules, code will be

inserted into the core aspects to invoke logging functionality. Through a compilation-like

process, the weaver will bind the Aspects together and produce the final system [23].

6 A O P does not explicitly build on OOP. While O O P is the most commonly used approach for the

implementation of Aspects, A O P frameworks do exist for older, functional programming languages. In the

context of this research however, the focus will remain on O O P given the overlap that exists between it and the

HLA.

75

A potential point of confusion often encountered with A O P is the fact that the final system

exhibits all the problems that A O P claims to solve. From a logical point of view, the final

implementation still looks like that presented in Figure 4-5, where the constituent

modules exhibit explicit dependencies on a certain set of other modules. The key to

understanding the A O P methodology is to realise that although this is true, it is only when

the final system is being constructed that the interdependencies are manifested. A O P

pushes the tight coupling and tangling problems away from the development context. The

implementation of modules occurs separately, and each module remains an independent

entity that can be reused in another application (given a different set of weaving rules). On

the other hand, O O P requires that the artefacts produced by a developer display the

problems identified above, and that these problems be confronted at development time.

A final AOP system, with all its flaws, is just the result of the weaving process in much that

same way that the low-level details of executable binary code are just the result of the code

compilation process. A n application can be composed as a combination of any set of

Aspects, without the need to modify their implementation directly. However, if the

concerns were mixed at the source code level (as is necessary with OOP), a developer

would need to make manual changes, and those changes would be forever tied to the

module they were made in.

The fact that AOP is able to build on OOP approaches and leverage its advantages is a

significant aid. While many of the A O P concepts are new, the process of building software

applications is not fundamentally altered in any incompatible fashion. W h e n comparing

this to an approach such as the M D A , it becomes clear why A O P has already achieved

significant success and been readily used and deployed in widely popular frameworks

(such as the Spring Framework often used in web application development [122]).

Concrete tools that conform exactly to the A O P methodology already exist and are useful

in production environments.

The AOP Methodology

The development of systems using A O P is very similar to that of other methodologies.

Broadly speaking, the process can be broken into three steps:

1. Aspectual Decomposition: In this step, the application requirements are

decomposed into the set of core and system concerns required to realise them.

Each required module would be identified and its interfaces designed and specified

such that development can progress to the next stage.

76

2. Concern Implementation: The typical implementation phase. Modules are

developed in an entirely contained and independent fashion. Object-oriented

programming languages are generally used for this task, although the use of

alternatives is not restricted. Once the set of modules has been implemented, the

next stage can be completed.

3. Aspectual Recomposition: The final stage of the AOP process involves the

weaving together of the various modules. Rules defining how each concern fits

together are defined as Aspects. These rules are fed to the Aspect-Weaver that will

then update the modules (creating the required links) and produce the final

system. Depending on the A O P framework in use, this process can be static

(compiler like) or dynamic (weaving occurs at runtime) [2].

Figure 4-6 below has been reproduced from [56] and provides a graphical overview of this

process:

Aip#ctu«l A*p»c*w#i

Figure 4-6: AOP Development Stages (reproduced from [56 3)

In the diagram above, the requirements of a system are represented much like a beam of

light. During the aspectual decomposition stage, the separate concerns are identified and

the application is broken down into modules. The final step involves the creation of

Aspects that are passed to the weaver. The weaver then combines the individual modules

together and produces a single final system.

Benefits of AOP

The process defined under the A O P methodology results in several beneficial outcomes

when compared to the alternatives it builds on. These include:

• Increased Separation

77

Under the A O P methodology, modules are developed in isolation from one

another. Links between disparate modules are only created by the aspect-weaver

when producing the final system. As such, systems are created from a set of loosely

coupled components while the persistent development artefacts are kept separate.

This separation-of-concerns reduces code scattering, where pieces of a concern are

implemented in multiple modules. Scattering can be thought of as another face of

code tangling. Where tangling refers to the way separate concerns becoming

entwined with one another, scattering refers to the way code for a specific concern

is spread across many places.

• Simplification of Development

The development of A O P applications focuses on the independent creation of

individual concerns rather than the complex combination of multiple core and

crosscutting considerations. Models or programs under development are easier to

comprehend, as each concentrates on a single issue. The core problem does not

become polluted with the lower-level system concerns required to provide

crosscutting features such as application distribution or persistence. As modules

are developed in isolation, problems arising from buggy or incomplete

dependencies are also reduced.

* Enhanced Reuse

Modules are developed separately and only combined as a complete and final

system according to an independent set of replaceable rules. As such, modules are

generally independent of a given application and can be easily reused in other

contexts. By specifying additional weaving rules and passing a different set of

modules to the Aspect weaver, entirely new systems can be created from

components not originally explicitly for that particular environment. Enhanced

reuse also increases the ROI for a particular development.

• Easier System Evolution

A O P separates individual concerns such that they are oblivious to the components

they are coupled with [56]. As such, extending a system to implement additional

concerns is vastly simplified. With the creation of new mapping rules defining how

a given concerns must interact with or crosscut existing modules, systems can be

extended without needing to manually edit the existing implementation.

• Reduced Development and Maintenance Costs

Partitioned and modular systems are simpler to compose and easier to understand.

As modules are not dependent on one another, their development can occur in

78

parallel, saving time and reducing costs. Further, the simplified process of system

evolution mentioned above helps to reduce ongoing development and maintenance

costs.

4.4.2 Working with AOP

The previous subsection introduced and investigated the A O P methodology and the

advantages it can provide. It has been established that A O P can enable enhanced

modularisation and isolate crosscutting concerns in a way that is not previously possible.

This section takes a deeper look at the processes and entities used to make A O P work.

AOP Languages

Weaving rules define what actions to perform when certain points in the execution of a

program are reached. While core and crosscutting modules can themselves be defined

using existing programming techniques (OOP most notably), they do no posses the

requisite expressive ability to describe how crosscutting behaviour should be woven into

the implementations of core concerns. As such, a special A O P language is required.

It is important to note that there is no canonical AOP language. The underlying theory

behind A O P was b o m out of research conducted by Gregor Kiczales and his team at Xerox

PARC [56]. There exist many different A O P implementations and languages, each of

which is targeted at a particular platform or programming language7 This thesis uses one

of the most widely used A O P implementations: Aspect! (for Java) [53]. As such, all the

AOP examples throughout this thesis focus on the Java programming language.

Join Points

A join point is a location in an applications code where AOP can be used to alter

behaviour. Join points are quite low level things. For example, a join point would exist

anywhere a new object is created, anywhere a method is called, anywhere a variable has a

value assigned to it, etc...

Join points are like passive location markers within an application. When using AOP, a

programmer will attempt to "capture" a number of join points that satisfy some general

pattern. If you consider an entire application as a whole, the set of join points that make

up the application really just represent all the possible places where new behaviour or data

could be woven in.

7 Implementations based on Java seem to be very popular, with many different frameworks existing, each

providing different value-adding features.

79

Point Cuts

Apointcut can be considered an opening through which new behaviour is inserted into an

application. Pointcuts define a set of patterns that capture a particular group of join

points. They allow a user to define a number of patters and to group them under a single

name. For example, consider the following pointcut definitions:

1 /** pointcut to exclude things we're not interested in */
2 protected pointcut ignoreListQ :
3 !within(hla..*) &&
4 !within(simspect..*) &&
5 !within(com.lbf..*) &&
6 !within(org..*) &&
7
8 /** pointcut to get all consturctors */
9 protected pointcut constructors(Object newObject) :
10 initialization(public *.new(..)) &&
11 ignoreListO &&
12 targetC newObject);

Listing 4-1: Point Cuts

Here, two pointcuts are defined: ignoreList and constructors. Each of these pointcuts

describes a number of patterns that in turn describe a set of join points to capture (or not

to capture). The ignoreList pointcut is used as a convenience to describe all the Java

packages that contain code the user is not interested in capturing. The constructors

pointcut specifies that public constructors for any class (and contain any number of

arguments) should be captured, as long as the classes do not reside within any of the

packages specified by the ignoreList pointcut.

Advice

In AOP, Advice is the name given to the logic that is inserted into an application through

all the join points identified by a point cut. It is the advice that provides the new code that

gets woven into the model.

When defining an advice, a user must also declare how that advice is to be woven into a

model relative to existing code. Given a pointcut that captures all calls to the

connectToDatabaseO method, should the advice be inserted before the call, or after the

call? The following example demonstrates a different kind of advice known as an "around"

advice:

8o

1 /** pointcut to get the main method */
2 protected pointcut mainMethodO :
3 execution(public static void main(String[]));
4
5 /** advice to decide whether or not to execute main method */
6 void around() : mainMethod()
7 {
8 if(Math.randomO > 0.5)
9 proceedO;
10 else

11 System.out.println("Not running main method");
12 }

Listing 4-28: Advice

Here, the around advice wraps around the execution of any method that was captured by

the mainMethod pointcut. Unlike other kinds of advice (such as before or after advice),

around advice can determine whether or not the method that has been captured can

proceed. In this case, if the result of a random number generation is greater than 0.5, then

the method call is allowed to proceed.

Through these facilities, points in an application can be identified, and new logic or data

can be woven in. This is what provides the A O P development model with its power. If a

developer was attempting to weave together their business modules with a system logging

Aspect, the code that would call into the logger (the advice) could be inserted through a

point cut at all the join points that exist for the beginning of a new method call. This would

allow the core logic to remain small and clean.

4.4.3 AOP Viability

Sharing similar motivations, the M D A and A O P have much in common. However, A O P

currently maintains one crucial advantage: it works now. From the standpoint of

functionality, the M D A is still a long way from being able to achieve its goals. O n the other

hand, there already exist many mature A O P implementations. Within the Java

community, A O P widely used either explicitly [57], or as part of a larger framework (such

as the immensely popular Spring framework) [13, 60]. These implementations have

already gained wide acceptance and are being used to power many mission critical

applications. Beyond these examples, many A O P implementations exist for many different

For those who wish to see a full example of how Advice is specified, the full code for the reference
implementation developed in this thesis is provided in the supplementary package that accompanies this
thesis. Alternatively, [56] provides many excellent examples.

81

programming languages, with [127] listing well over 50 such projects for more than 15

different languages.

4.4.4 AOP: A Potential Solution?

Significant overlap exists between the issues that motivate A O P and those that currently

afflict the HLA. Many of the current development shortcomings stem from the tangling of

pure model code with a complex distribution technology. This in turn obscures the real

value of a simulation (the model itself), while tight integration and coupling reduce any

reuse potential and return on investment. The A O P development process has the potential

to considerably ease these limitations and help enable a broader uptake of distributed

simulation.

The HLA is a system-level crosscutting concern, the focus of which is the distribution of

simulation information between many disparate simulation models. Distribution

technologies like these typically suffer from the tangling of concerns discussed previously,

making them an ideal candidate for A O P [21]. However, although A O P methodology

prescribes a separation of concerns, such an approach would still necessitate the authoring

of a H L A Aspect and weaving rules that define where it crosscuts the core concerns. The

development of H L A Aspects requires skills and training that do not exist within the wider

business community. Further, depending on the needs of a simulation with regard to

elements such as time and execution management, the requirements for such an Aspect

could vary widely.

To address this problem, the development of a Generic Aspect is needed. Consider Figure

4-7:

82

Model code state changes
are sent to aspect

State changes for published
data sent to federation

Model Code

mm

Model Code

4-»

u
0} a
<
u
L.

r"

1 ,
x 2
O a>
L. «Q
Q- aj

V "-

Updated information pushed
into pure model code

Remote state changes for
subscribe data received

Figure 4-7: A Generic Aspect (CE]

In this figure, changes within the model trigger logic within a Generic Aspect. Through the

process of Aspect weaving (via a general set of rules), the Generic Aspect can capture

changes within the pure model code. As changes occur in the model, they are pulled into

the Generic Aspect and processed by the proxy federate. All interaction with the H L A is

isolated from the pure model code. Changes made in the simulation are pushed back out

of the proxy, into the pure model.

Generic proxy federates have been used to achieve similar ends in other applications. The

goal of the fedWS2 project was to provide access to information from an active simulation

in a manner that hides the underlying H L A details [88]. A configurable generic proxy

federate was successfully used to allow interaction with any H L A simulation without the

need for end users to author code [89]. The use of a proxy environment also provides an

ideal location into which additional supporting technologies (such as those described in

section 4.2) can be deployed. To help solve common H L A problems such as F O M Agility,

approaches defined in existing research can be deployed within the proxy, alleviating

those issues identified in chapter 4.

Leveraging a generic H L A Aspect in combination with A O P methodology yields a solution

that would allow pure model code to be developed independently from any H L A

concerns. Figure 4-8 presents an overview of how this process would occur:

83

:x
Model Code

^
\

Model Code
Generic HLA

Aspect

Step One: The pure model code
is developed, free from any HLA
or application distribution logic.

Step T w o : The created model code
and the generic HLA aspect are passed
into the Aspect Weaver. Here, the
weaver inserts into the model all the
code required to trigger logic within
the HLA Aspect. This process results in
the production of a complete HLA
simulation component (a federate).

Weaver

Simulation
Component

Figure 4-8: Simulation Component Generation Process

First, the pure model logic is developed./ree./ro7n any HLA considerations. Following this,

the developed modules and the Generic Aspect (containing mapping rules) are passed to

the weaver that combines them, producing the final system. Such a solution fulfils the

goals of an implicit H L A simulation environment. Some of the primary benefits include:

Barrier to Entry: Remove the barrier to entry that requires expert skills and

tiaining, thus alleviating one of the primary restrictions limiting a broader uptake

of the HLA

Generally Applicable: The A O P methodology is not tool-specific, and as such,

the methods developed and discussed later in this document could be employed in

any environment

Leverages Existing Advancements: The use of a proxy environment provides

the ideal point at which research discussed in section 4.2 can be applied

Reduces Development Time and Complexity: The separation-of-concerns

approach allows developers to focus on the core problem free from low-level

system details

84

• Increased Reuse: As the model components are no longer tied directly to the

H L A or a specific F O M , they are more readily reusable. The employment of F O M

Agility techniques within the proxy environment also aids this cause

• Beneficial to Existing Community: The advancements made possible in the

described environment are beneficial not only in enabling a broader uptake of

distributed simulation technology, but also of benefit to existing H L A users

The application of AOP within the modelling and simulation environment has the

potential to provide many benefits. In [112], Strafiburger identifies the implicit method as

allowing simulation developers to continue working in a comfortable and familiar

environment, while benefiting from the advantages use of the H L A enables. The use of

A O P in the manner presented here can help realise a more generally applicable version of

the implicit approach. While Strafiburger focused on the development of tool-specific

interfaces in the pursuit of realising his goal, this research seeks a broader, more generally

applicable solution.

AOP techniques are not tool-specific, and as such could be applied in many environments.

Many A O P implementations for many programming languages and platforms exist,

meaning that likelihood that A O P could be incorporated into a given simulation tool is

high. Through the use of AOP, the methods developed within this research can safely

ignore the technical nuances of any given simulation tool, instead focusing on generic

techniques that are applicable in a broad sense. In situations where simulation code is to

be developed directly, A O P provides many immediate benefits with regard to the

separation of core and crosscutting concerns. Where models are constructed and executed

with specialised, proprietary tools, A O P platforms can be incorporated into those tools,

also enabling them to realise the same benefits.

4.5 AOP Shortcomings

Section 4.4 introduced A O P as the most viable source of potential advantages with regard

to the goals of this research. However, use of A O P alone cannot provide a complete or

comprehensive solution to the problems motivating this work. Of primary concern is that

A O P only describes a methodology for separating the development of core, business logic

modules from that of the crosscutting system modules. There are a number of questions

beyond the domain of A O P that must first be addressed before the goal of automatically

rendering pure models as H L A simulation components can be reached.

85

Aspect-Oriented Programming mandates that the development of different system

concerns be completed separately. This way, the individual modules that are created do

not form any dependencies on system level tools (such as those used for authentication,

persistence or application distribution). Additionally, this process simplifies system

development, as the needs of multiple modules, spanning both core and platform logic, do

not need to be considered. It is only at the final stage, when the system is being composed

from the collection of modules, that the pure business logic is coupled with the required

system-level details.

This type of development process fits very well with the objective of simplifying HLA

simulation development. Pure model modules can be constructed independently of the

HLA, and be bound together at the last minute, rather than forcing H L A concerns to be

handled throughout the entire development process. However, from the perspective of this

research, a number of problems remain.

The HLA Aspect

Use of the A O P process is predicated on the development and availability of a H L A Aspect.

Although model code can be developed independently, unless there is a H L A Aspect to

weave into it, a HLA-compliant component will never be produced. However,

development of such an Aspect would necessitate intimate H L A knowledge, a requirement

that has previously been identified as insufficient in the context of this research.

Weaving

Although A O P facilitates a separation of concerns approach during development, the

process of defining how modules are to be woven together still necessitates a fundamental

understanding of both the core and crosscutting concerns. Even if a H L A Aspect existed,

decisions regarding where H L A behaviour must be inserted into the pure model must still

be made. Further, users must be able to identify the type of H L A logic to weave in at these

points. Once again, this demands specialist knowledge of the H L A that is not tolerable

within the goals of this research.

Deployment Artefacts

A central artefact in any H L A simulation is a shared model (known as the FOM), defining

the vocabulary of information exchanged between the participants. This is required to

perform actions such as publication and subscription, or to register and update attribute

values. Without this information, an individual simulation cannot function correctly in the

shared space, and as such, is not of any use. Although A O P provides support for

intercepting actions within a model and injecting specific behaviour at those points, it

86

provides no facilities for generating the necessary artefacts or configuration information

required to deploy a federate. The lack of support for these types of artefacts is to be

expected as they often fall beyond the realm of source code (the level at which A O P

operates). Additionally, this problem is H L A specific, and only of concern in a H L A

environment

Federate Level Agreements

Each HLA-based distributed simulation involves the co-operation of many individual

simulation components. While the interesting portion of a simulation is the data it

produces during execution, there are many additional "housekeeping" actions that must

be performed.

Each federation has its own (potentially unique) series of steps it takes to ensure that

components are able to synchronise with one another and work in step. There are

understandings in place that define how and when data will be registered, the frequency

with which it will be updated and so forth. There may be yet more requirements that

define how specific additional information is formatted and passed between federates.

Within the H L A specification, the developers of each federation are free to define the steps

they expect federates to take, and facilities they expect federates to use, in order to co

operate correctly with the other components in a federation. These facets of simulation

execution are known as federate level agreements (also often referred to as "federation

level agreements") as they define various behaviours expected at a federate level9.

However, federate level agreements are governed much like the colloquial "gentleman's

agreement," in that they are not explicitly documented (in a configuration sense) nor

enforced. Failure to meet one of these agreements often manifests itself in unusual ways.

While data formatting omissions may trigger explicit errors, execution management

mistakes are often more subtle.

Each federate must be manually programmed to observe any federate level agreements,

and this step must be completed for every federation in which that federate intends to be

deployed. Given the arbitrary nature of such concerns, providing generic support for such

requirements presents a somewhat insurmountable problem. Beyond the hand

development of a specific agreement aware H L A Aspect, there is nothing within the A O P

realm that can help address this issue.

9 These are also often referred to as the Execution Management requirements for a federation.

87

Monolithic v. Distributed Environment Mismatch

Perhaps the biggest concern involved in rendering a pure model as a H L A distributed

simulation component is the inherent mismatch between the expectations of each

approach. H L A support is a system level, crosscutting concern, and an ideal candidate for

being separated from business logic. However, this separation also removes

considerations of application distribution from the development of code modelling

components. Practically speaking, these models become monolithic, self-reliant

implementations. In a distributed simulation, the creation and manipulation of data is the

shared responsibility of all participating components. In a monolithic simulation, the

model code is given unquestioned dominion over its data.

The tension between monolithic and distributed environments manifests itself in two

primary ways: the problems of data introduction, and management of the strict

ownership rules imposed by the HLA, In a monolithic simulation, the model is entirely

responsible for the creation and storage of all data. In a distributed situation, data may be

created externally. Given this, there are considerable questions about how data can be

introduced into a model that is not expecting it.

Further, the HLA specification mandates rather strict data ownership rules, prescribing

that only a single federate may own a piece of data, and only that federate is entitled to

modify it. In the selfish realm of a monolithic simulation, the model is able to alter any

piece of data at any time; it has no notion of sharing or ownership.

The HLA also introduces publish and subscribe facilities. These mechanisms are used to

define what remote data a federate is interested in, and what data it produces for remote

consumption. Often times this information can also be used to describe which data from a

model is meant to be kept private, and only used within a federate, and which is meant to

be available to other federates within a shared federation. Although object-orientation

includes something similar in the form of its data access rules, these alone are not

expressive enough in a distributed context. For example, consider an O O component that

describes some information as having public access, thus allowing other components

within the model to access it. Just because the information is meant to be available to

other model entities, does not meant it is meant to be available in a distributed context. In

a H L A setting, the information may still need to be marked as puMic (so that other parts of

the federate can access it), yet it may not necessarily be intended for publication to the

federation. Once again, this problem stems from the disconnect that exists between a

monolithic and distributed environment.

88

Although A O P does provide a number of enticing opportunities for the simplification of

H L A simulation development, when considering its use within a generalised, automated

environment, there are still many questions that must be answered. As this section has

shown, the remaining problems broadly pertain to the mismatch that exists between a

pure-00 environment, and the distributed, shared simulation environment of the H L A

The next section builds on the information presented here and outlines a number of

research questions that this research addresses.

4.6 Summary
Much of the research presented in this chapter has focused on the simplification of H L A

simulation development. Through the abstraction of low-level tasks, considerable

productivity gains can be made. A n increased focus on separating the pure simulation

model from the underlying implementation infrastructure has served to enable greater

levels of interoperability and reuse. As too have techniques to help manage object model

differences.

With the work presented in [112], Strafiburger introduces the notations of explicit and

implicit access to the H L A through simulation tools specific interfaces. While explicit

access to the H L A is not suitable in the context of this research (as it also requires

specialist knowledge), the implicit approach realises the desired goal. Strafiburger was

successful in exposing civilian simulation applications to the H L A via tool-specific

interfaces. In the case of the implicit approach, this involved the translation of simulation

events into the relevant H L A counterparts.

The focus of this study is to build on Strafiburger's implicit approach and investigate

methods for implicit model development that are generic in nature. While the solutions

presented by Strafiburger in [112] show how this approach can work for a particular tool,

this research seeks the development of a general-purpose solution that can provide H L A

simulation services transparently to generic simulation models, free from ties to any

individual application.

AOP and the MDA both describe approaches that reinforce the idea of separating core

business logic from that of implementation concerns. Although the simplicity of the M D A

process is desirable, particularly in regard to its considerable use of automation, the reality

is that the technology does not yet exist to back up its claims. As such, it is not suitable for

use within this research. Despite working on a much lower level (one for which expertise

89

already widely exists within all corners of the information technology industry), A O P is

not only feasible, but already proven and deployed in copious amounts of production

environments.

Aspect-Oriented Programming outlines methods for transparently combining platform

specific considerations with those of a core problem. Additionally, the concepts and theory

of A O P are not tied to any specific tool, with implementations existing for many platforms

and programming languages. As this chapter has shown, A O P can form a solid foundation

upon which this research can build techniques for the transparent rendering of pure

models as H L A simulation components. In such a context, A O P acts largely as a facilitator,

providing the ability to intercept and alter a model, allowing H L A behaviour to be injected

transparently. However, the use of A O P alone does not address a number of considerable

theoretical issues about the form that behaviour should take, and where it needs to be

interested.

While sharing many similarities, Object-Oriented theory and semantics do not align

perfectly with those of the HLA. The normal process of converting a model to be HLA-

compliant necessitates human intervention. This in turn demands specialist H L A

knowledge that does not exist within the wider business community. As has been

highlighted time and time again, within the context of this research such knowledge

cannot be expected and is deemed unacceptable. Given these constraints, the involvement

of automation in the conversion process is necessary. A number of questions still require

answers when considering the application of A O P to the H L A as a potential solution. As

the next chapter explains, the contribution of this research is to address these problems,

defining the requirements and methodology involved in automatically rendering a pure

O O model as a H L A simulation component.

90

Chapter 5

Research Questions and Experimental

Framework

This chapter outlines the the major remaining questions that blind application of AOP to

the distributed simulation domain alone cannot answer. It is the answers to these

questions that form the contribution of this work. The final section of this chapter

establishes the experimental framework that will be used to assess and validate the

solutions that are posed in the coming chapters.

5.1 Research Questions

A O P alone is not sufficient for realising the goals of this research. While providing a strong

supporting framework, the use of A O P as a mechanism for entirely abstracting the

complexities of the H L A raises many sizeable questions [92]. This section introduces those

questions that drive this research.

Object Models

Shared object models are a central part of the H L A While the notion of an object-

hierarchy is implicit to object-oriented programming, a H L A object model requires more

than pure lineage and inheritance information. Without the requisite manual direction,

some method for automatically extracting object model data must be devised.

"How can a HLA object model be extractedfrom a pure OO simulation model?"

Public and Private Data

Through join points and point cuts, A O P allows for the specification and insertion of

crosscutting behaviour. In a typical A O P situation, a developer would use semantic

understanding of the model to identify where certain point cuts would need to be made

and what advice would need to be inserted at those locations. However, linking a model

and the H L A Aspect would require specialist knowledge. Without semantic

understanding, determining data that is public and meant to be shared with a simulation

from that which is private, and meant for internal processing, becomes difficult

"How can the public and private data of a pure model be automatically identified?"

9i

and

"How can the publication and subscription requirements of a pure model be identified?"

Object Data

The concept of an "object" is a common link between O O and the HLA. Although the

notion of an object class carries different meaning in both, the notion of an object instance

representing a unique set of data is shared idea. However, for a distributed simulation to

function correctly, data must be shared between the participants. H o w this behaviour can

be transcribed into a model that has no distribution concerns presents a problem.

"How can the creation, removal and alteration of data within an OO model be replicated

into an active HLA federation?"

Many of the problems this research addresses are inherently linked. This question is

intimately connected to the problems of public/private data identification, as only changes

to public data should be shared with a federation. Further, this question is also linked to

the following problem relating to data introduction.

External Data Introduction

A O P provides excellent facilities for capturing changes made to pieces of data within a

model. At these times, if the information is relevant to the greater simulation, it can be

easily sent to the federation. However, problems begin to arise when pondering how data

created and managed in remote federates can be feed into an object-oriented model that

would not be expecting it. Although central to the HLA, O O models have no notion of

application distribution; and as such, the introduction of foreign information is a

significant concern.

"How can the creation, removal and alteration of data within an active HLA federation

be replicated within a pure OO model that is not expecting it?"

As pure simulation models are monolithic in nature, they have complete control over their

data and implicit permission to alter it at any time. Under the HLA, the rules of data

ownership contradict this and will not allow for such events to occur.

"How can the data ownership rules of the HLA be reconciled with the monolithic world-

view of pure object-oriented models?"

92

Grouping Behaviour: Methods and Interactions

It is generally accepted within the H L A community that the relationship that exists

between interactions and OO-style methods is parenthetical. Although similar, they were

each designed with distinct purposes in mind. In object-oriented methodology, methods

are directly associated with a specific object type, and are considered to describe the

behaviour that the type may implement. Interactions on the other hand are designed more

like messages. Although their structure is independent of any object class, they may be

arranged within a hierarchy with regard to one another. This is a significant point of

difference.

Regardless of these differences, the fact remains that methods play a vital role in the

development and execution of object-oriented application, and as such, the actions they

perform (and the consequences of those actions) must somehow be translated to the H L A

world.

"How do object-oriented methods translate into HLA interactions?"

Federate Level Agreements

As highlighted in section 4.5, with any H L A federation there are a number of

undocumented agreements that describe how federates should behave in certain

situations. These federate level agreements are generally the domain of execution

management concerns. Although they are not always consequential to the actual core

processing of a simulation, they do express the requirements necessary to cooperate with

other components.

These agreements can generally be considered housekeeping requirements for executing a

distributed simulation, and as such, are specific to the HLA. In the monolithic realm of a

pure-00 model, there is no need for such considerations, and as such, there is no parallel

from which an automated process can extract the necessary information. This raises a

further concern:

"Can the definition of federate level agreements be expressed without requiring manual

intervention?"

Logical Time

Any given simulation model may represent logical time in any number of ways. Other

models may choose to ignore the concept of time entirely. As it currently stands, many

within the H L A community consider time services to be a periphery consideration.

93

However, when time is used, one of the primary advantages of the H L A is that it provides

facilities for the shared management of advancement. Federates are able to keep

synchronized with one another through adherence to a single shared value, whose

advancement is controlled by the RTI (as discussed in section 3.2.3.4).

Given the multitude of different ways in which logical time can be represented in a model,

it becomes virtually impossible to automatically pick how a given model handles this facet

However, if this information is known, is there even a way to enforce synchronization

between a pure model and a federation? As highlighted above, pure models are monolithic

in approach, and expect the freedom to modify any variable at any time (including that

which may represent time). In the shared environment of a distributed simulation, these

actions need to be controlled.

"How can logical time be synchronized between a monolithic pure model and a shared

distributed simulation?"

Authoring Distributed Models

The questions introduced above share a common thread: they stem from the inherent

misalignments that exist between the object-oriented and H L A worlds. While each

question is driven by a significant problem that arises when attempting to combine these

two distinct ontology's, they all form part of a larger, deeper question.

"How can pure models, that know nothing of application distribution, be created to

depend on and work co-operatively with other remote models?"

Part of the power of distributed simulation is that it allows work to be partitioned among a

number of disparate models. However, with no notion of application distribution, each

pure model is essentially monolithic. This raises questions about how they can be designed

to participate in a co-operative environment, where some of the information will be

generated and manipulated remotely.

Other HLA Services

The questions presented in this section outline the areas of O O / H L A crossover that this

research considers. While the list is comprehensive, not all H L A services are addressed in-

depth, or even at all. Some services, such as time management, could easily form the basis

of entire theses in their own right. Addressing these periphery issues in such depth is well

beyond the scope of this work. Discussion of other H L A services, such as Data Distribution

Management (D D M) and Save/Restore support have been omitted entirely. Again, as the

94

core focus is to address the initial problems involved in producing a generic, implicit

development environment, these additional topics are of a periphery concern. Perhaps, if

time possessed some infinite quality this would be possible. However, in this realm, the^e

issues are out of scope and form a fertile target for further work (as discussed in the final

chapter).

To fulfil the goals of a generally applicable, implicit HLA simulation environment, this

research addresses the questions presented here. In doing so, this work forms a significant

contribution to the current state of the art; vastly reducing the complexity involved in

authoring distributed simulations and substantially reducing the primary barriers limiting

an uptake of the H L A within the wider business community.

5.2 Experimental Framework

The goal of this research is to allow pure object-oriented models to be transformed into

H L A simulation components through a process that removes the need for specialist H L A

knowledge. The crosscutting nature of the H L A results in the pollution of pure model code

with complex, low-level infrastructure details. Aspect-Oriented Programming represents a

potential solution to these problems by separating the development of model and H L A

Aspects. However, as discussed in this chapter, despite providing separation, use of A O P

still leaves many unresolved questions.

To address these concerns, the following chapters propose a design for a generic HLA

Aspect and a methodology for extracting H L A semantics from a pure-00 model. In

combination with AOP, these two advancements can be used to automatically render pure

model code as a H L A simulation component. This section describes the experimental

framework used to test the validity of the solutions presented in later chapters.

5.2.1 Overview

The experimentation process employed by this research is broken down into three

separate stages. Beginning with a fully manual A O P process, the experiments show how

A O P can be used to quarantine H L A concerns from model development, and then how

automation can be used to remove the requirement of H L A knowledge.

The main experiments use a set of two synthetic simulations that have been created for

this research. Introduced below, these simulations exist only as standalone object-oriented

applications (no H L A versions have been created). They have been purposefully designed

95

to incorporate many facets of object orientation and are able to function entirely on their

own. The final experiment ignores these test cases and instead puts the developed theories

to test with an existing distributed simulation. This purpose of this test is to demonstrate

to co-operation of H L A and non-HLA models in an existing setting.

5.2.2 The Test Simulations

This section briefly introduces each of the test simulations used in the various

experiments. The code for all simulations is provided in the supplementary package that

accompanies this thesis.

The Race Car Simulation

The "Race Car Simulation'' was designed to model a very simplistic car race. The primary

design goals of the race simulation were:

• Repeatability: The race should be deterministic to help ensure that any observed

behaviour should occur consistently.

• Structural Simplicity: The overall structure (object composition, inheritance

hierarchies, etc..) should remain as simple as possible. This model is meant to test

the basics.

Each car in a race has a specific top speed, which in this case acts as its constant speed. As

logical time advances for a race, the car is assumed to be travelling at its maximum speed.

As such, the results of the race (and the position of a given car at a given point in time) are

deterministic.

The purpose of this test case is to provide a baseline of behaviour, just enough to ensure

that the developed solutions work, without requiring additional complex behaviour. As

such, the structure of the model is kept simple, with no inheritance hierarchy and minimal

object composition. For a detailed explanation, see Appendix A.

The Sushi Boat Simulation

The "Sushi Boat Simulation" is designed to be slightly larger and more complex than its

counterpart. This simulation is a loose adaptation of the case study used in [26]. It has

been designed to include:

" Repeatability: As with the first test scenario, this simulation has also been

designed to be repeatable.

96

• Inheritance Hierarchies: The structure of the dishes forms an inheritance

hierarchy that must be accounted for in both the generation of an H L A object

model and the encoding and decoding of simulation information.

• Object Composition: This scenario includes many objects that reference other

objects. While common in object-oriented environments, this type of relationship

is foreign to H L A models.

• M e t h o d Dependence: It is common for O O models to depend on methods to

carry out large amounts of functionality. This can be a problem for the HLA, given

a misalignment between the concept of methods and interactions. This simulation

depends on the use of methods to perform the main behaviour.

The scenario revolves around a simulation of a Sushi restaurant. There are a number of

Dishes on offer within the restaurant, each of which is a Starter, a Main meal or a

Desert. The meal objects form an inheritance hierarchy. Dishes are prepared and travel

along a small "river" past a number of tables. At any point, a table may pick up a dish and

eat it (thus purchasing it). At the conclusion of a meal, the information about all the

consumed dishes for a table is calculated into a Receipt and the table is cleared.

For a complete explanation of this test model, see Appendix B.

The Air Transport Operations Simulation

The Air Transport Operations (ATO) simulation is a simulation that is primarily used as a

teaching aid at the University of Ballarat [119]. The scenario consists of three main

federates (although a fourth optional one is sometimes also used).

The Aircraft Manager (ACM) federate is responsible for creating Aircraft objects and

updating their state as they fly around the simulated environment. The A C M federate

receives interactions when other federates need to control its actions. For example, when

an aircraft is permitted to land at an Airport, a "Land" interaction is sent.

The Air Traffic Control (ATC) federate is responsible for all the airports and associated

Runways. It controls which planes can land at the various airports and when, potentially

telling aircraft to loiter, divert or land.

The Flight Manager (FM) federate is responsible for deciding where each plane should

fly to, how long it has to wait between flights and when maintenance is required. W h e n a

plane has landed, the F M issues it directions as to what to do next.

97

In the final experiment, a pure-00 Airport model will be created and placed into the

existing simulation. Aircraft should then be able to fly to and from this destination as if it

were created and managed by a normal HLA-federate. For this experiment, an

implementation of the A T O federation developed by UoB students will be used. This

implementation includes an additional federate that provides a visualisation of the

federations activities.

5.2.3 Experiments

The experimentation for this research focuses on three separate stages. Each stage is

necessitates the answering of a specific set of research questions, with subsequent

experiments building on their predecessors.

Broadly speaking, the problem of extracting HLA specific information from a pure model

and allowing it to participate in a H L A federation involves two considerations:

• Information introduced, updated and removed within a pure model must be

distributed via the HLA

• Information introduced, updated and removed by external federates must be

made available within a pure model

The provision of an environment and methodology that is capable of meeting these broad

objectives is the focus of experimentation.

Each of the experimentation descriptions below is broken down into four areas:

• The Purpose section provides an overview of the experiment and states it goals

• The Prerequisites section describes the work that must be completed before the

experiment can run

• The Procedure section defines the steps involved in executing the experiment,

and how the results will be collected

• The Qualification of Success section defines what must be observed for the

experiment to be considered a success

In the remainder of this chapter, the pure object-oriented model will be referred to as the

pure model. The HLA-compliant version of this model will be referred to as the AOP-

model.

98

The captured log file information will be analysed to determine the actions that occurred

throughout the experiment

Qualification of Success: For this experiment to be considered a success, a number of

criteria must be met:

100

Success Criteria Validation M e t h o d 1

Pure-model must remain free from any

H L A considerations

AOP-model must execute without error in

federation with companion federate

Object-data created bv AOP-model must be

sent to federation (objects)

Object-data created by companion federate

must be received by AOP-model (objects)

Object-data changes inside AOP-model

must be sent to federation (attributes)

Object-data changes inside companion

federate must be received by AOP-model

(attributes)

Relevant method calls within AOP-model

must be sent to federation (interactions)

Relevant interactions sent by companion

federate must be converted in method calls

in AOP-model (interactions)

The results generated by the pure model in

standalone form must not match those

generated when run with companion

federate.

Visual inspection of pure-model code.

Non-Error execution of federation deemed

a success.

Inspection of log file for companion

federate to validate objects were created.

Inspection of log file for AOP-model for

presence of remotely created data.

Inspection of log file for companion

federate to validate reflections received.

Inspection of log file for AOP-model for

presence of remotely altered data.

Inspection of log file for companion

federate. Ensure interactions are received.

Inspection of log file for AOP-model and

inspection of pure-model results to ensure

methods are called.

Compare results log generated by pure-

model when executed standalone and when

executed with the companion federate.

Table 5-1: Experiment One Success Requirements

An important point to note is the specification of final criteria. In its pure form, the model

will produce a set of results (a fist of positions for the Race simulation, or a list of receipts

for the Sushi Boat simulation). W h e n running as a H L A federate, this same model should

be acting on additional data created by the companion federate. Accordingly, the results

should not be the same as when the models are run by themselves.

Experiment Two: Consuming HLA Information
Purpose: The purpose of this experiment is to build on its predecessor and validate the

automated production of all components requiring H L A knowledge in experiment one.

The results yielded by this experiment should match those that were produced in the

101

previous experiment, however, unlike its predecessor; the process used to produce those

results should be free from any H L A considerations.

The first experiment requires a number of artefacts to be hand generated by a user before

the AOP-based framework could be used successfully with an O O model. Before this

experiment can be completed, approaches for automating the production of that

information are necessary.

Prerequisites: Before this experiment can take place, a number of research questions

must be addressed. These questions generally relate to how the many of the manual

processes of experiment one can be automated. As we are building on the previous

experiment, its prerequisites are implicit in this list.

• Automatic determination of the relevant locations within a pure model to capture

information creation, modification and removal

• Automatic extraction of H L A Object Model based on the structure of the pure O O

model

• Automatic determination of public/private data within a pure model

• Automatic determination of public/private methods within a pure model

• Automatic determination of publication and subscription interests for a pure

model

Each of these requirements is necessary to generate all the appropriate information

needed by the AOP-based runtime when interacting with a pure-00 model and to ensure

that information flows smoothly between the O O model and the companion federate.

Procedure: For each of the two primary test models, the following steps will be taken:

l) The pure model will be first run standalone. The results of the simulation will be

recorded

2) The pure model will be run through an automated process, producing the AOP-

model necessary for simulation

3) The AOP-model will be run in a federation with the companion federate

4) Log file information will be captured for both the AOP-model and companion

federate

The captured log file information will be analysed to determine the actions that occurred

throughout the experiment.

102

Experiment One: Manual AOP

Purpose: The purpose of the first experiment is to validate the use of A O P as a means of

abstracting H L A concerns. It will ensure that the business logic of a simulation can be

developed free from H L A considerations. At the completion of this, the model and H L A

Aspects will be manually mapped together, mimicking how the A O P development process

would occur if H L A expertise were available. In discussions below, the term "AOP-

model" refers to the version of the pure-00 model that has had Simspect woven into it.

Prerequisites: Before any testing simulation can be run, there are a number of

prerequisites that must first be addressed. These include:

' A generic HLA Aspect must be created

' Manual determination of appropriate Aspect-Weaving locations

• Manual object model creation

• Manual determination of publication and subscription interests

' Manual determination of public and private data

• Manual handling of any execution management or federate level agreements

" Manual translation of data between OO-model and H L A

Additionally, to validate that information is indeed being sent to and received from the

HLA, a custom logging federate must be created. This federate will have two purposes.

Firstly, it will log the information it receives (ensuring that the AOP-model is generating

the appropriate events). Secondly, it will create and modify information, to help ensure

that the AOP-model is receiving remote information that is being noticed by the pure-00

code. Versions of this federate exist for both the race and sushi simulations. From this

point on, this will be referred to as the companion federate.

Procedure: For each of the two primary test models, the following steps will be taken:

l) The pure model will be first run standalone. The results of the simulation will be

recorded

2) Each of the necessary manual processes will be completed, producing an HLA-

compliant version of the model, known as the AOP-model

3) The AOP-model will be run in a federation with die companion federate

4) Log file information will be captured for both the AOP-model and companion

federate

99

Qualification of Success: For this experiment to be considered a success, a number of

criteria must be met:

Success Criteria Validation M e t h o d

All necessary artefacts m u s t be

automatically generated

Pure-model must remain free from any

HLA considerations

The results generated by the pure model in

standalone form must not match those

generated when run with companion

federate.

Successful if process consumes pure-model

and generates AOP-model that is run

without intervention.

Visual inspection of pure-model code.

Compare results log generated by pure-

model when executed standalone and when

executed with the companion federate.

Table 5-2: Experiment T w o Success Requirements

The first criteria is the main focus of experiment two. To be deemed successful, the

creation and execution of the AOP-model must not necessitate the manual construction of

any deployment artefacts. These items require H L A knowledge and this experiment is

designed to test their automatic generation (removing this burden from the user).

The second and third criteria both come from experiment one. The second mandates that

the pure-model code must not contain any H L A information, as again, this would dictate

H L A knowledge on behalf of the user. The final criteria mandates that the results of the

standalone and H L A executions must differ, reflecting the fact that remote data plays a

role in determining the results for the H L A version.

It is not necessary to retest all operational criteria from the first experiment as the

operation of the framework is not the focus this time. The previous experiment validated

that those processes worked whereas this experiment seeks to validate that everything still

works when an automatically generated object model and set of mappings are used. The

successful completion of those tasks is implicit in the meeting of the third criteria. If for

some reason any processes suddenly fail, the AOP-model and companion federate would

cease to interoperate correctly and the final results for each simulation would reflect this

lack of communication. Thus, the meeting of criteria three is depends on all the criteria

from the first experiment also being successfully met.

Meeting all the criteria for this experiment means that the same level of functionality that

was required in experiment one has been met, except without the use of manual processes

103

that require specialist H L A knowledge. To a large extent, success here in these two

experiments realises the goals of this research. The final experiment tests that the

developed methods work with an existing federation.

Experiment Three: Existing Simulation Test

Purpose: The purpose of this final experiment is to validate the methods that have been

developed and tested through the previous experiments in the context of an existing

federation. Thus far, the experimental subjects have been small scenarios, custom

designed for use in this thesis. Experiment three involves the creation of a pure OO-model

that will interact with an existing implementation of the A T O federation. The major aim of

this research is to allow pure-00 models to be developed and automatically rendered as

H L A simulation components, capable of being used within live H L A distributed

simulation. This experiment is used to further validate that the methods proposed by this

research are valid beyond the testing environment used previously.

Prerequisites: The primary prerequisite necessary for this experiment is the

development of a pure-00 model that will control an Airport in the A T O federation. There

are two final research questions this experiment will help to address. In any situation

where a user is attempting to write an OO-model destined to operate as part of a

distributed simulation, the tension that exists between a monolithic and distributed

environment will be a factor. In a distributed simulation, components must be willing to

accept that parts of the calculations are going to occur outside of its boundaries. However,

without having specific knowledge of application distribution semantics, this presents a

problem.

"How can pure models, that know nothing of application distribution, be created to

depend on and work co-operatively with other remote models?"

The previous experiments involved a 'legacy" HLA simulation whose primary intent was

to log the activities of the federation in order to validate behaviour. In an existing example

such as with the A T O federation, co-operative modelling must be undertaken.

Secondly, to be able to operate within the environment of the ATO federation, the pure-

O O model must be able to conform to all the relevant federation-level agreements that

dictate h o w the execution of a simulation is managed and h o w data is exchanged between

federates within a simulation.

104

"Can the definition of federate level agreements be expressed without requiring manual

intervention?"

This experiment seeks both to validate that the broad concepts tested previously work in a

co-operative modelling scenario and to asses the extent to which comprehensive answers

to these additional questions can be developed.

Procedure: The procedure for this experiment is quite straightforward. The pure-00

model must be executed in a federation with live A T O federates. Once again, log files will

be collected to ensure the proper operation of the model.

Qualification of Success: The primary signature of success for this experiment is the

successful execution of a pure-model within the A T O federation. Previous experiments will

have validated the behaviour of the methodology generated in this research. Although log

files will be collected to ensure that the proper actions are taking place, success in this

context is a rather binary proposition: the model either runs to completion, or it does not

(generating errors and crashing). As a primary measure of this, some logging from the

pure model will be obtained and visual confirmation of the models affects on the

simulation will be captured through the GUI visualisation federate that exists in the A T O

implementation being used.

Success Criteria

OO-model runs to completion without

error

Validation M e t h o d

Manual inspection of simulation run.

Supplemented by inspection of log files to

validate the lack of any errors

ATO entity information is discovered and

used within the OO-model

Inspection of log files to demonstrate that

remote data has been found and is active

within the pure model

Alterations and actions generated by the

OO-model affect simulation state

Capture of visual data demonstrating that

aircraft can interact with the pure-00

airport

Table 5-3: Experiment Three Success Requirements

5.3 Summary

This chapter has introduced the shortcomings of A O P when considering its use within the

goals of this research. The questions that this work addresses have been raised, and the

experimental framework used to validate the generated solutions has been introduced.

105

This has provided the foundation for the following chapters, which present a discussion of

the techniques developed to overcome the problems established here.

Chapter 6

Manual AOP: Separating Model and Platform

Aspect-Oriented Programming provides a methodology that allows developers to isolate

crosscutting, system level concerns, thus allowing them to be implemented separately,

keeping core business logic free from such considerations. As discussed in previous

chapters, the motivations for implementing HLA-behaviour with such an approach is both

beneficial and attractive. However, as highlighted in chapter 5, there are a number of

serious shortcomings that need to be addressed.

Under the AOP model, it would be common to reuse business logic in a different setting by

weaving it into various sets of system-level Aspects. It would also be common for these

Aspects to be tailored for their specific environment. With regard to the goals of this

research however, this approach presents a significant problem. Applying this approach in

the H L A space, one might write a H L A Aspect targeted at a particular simulation.

Although this would be useful when attempting to expose new logic to that simulation, it

would also be specific to that situation. If a user wanted to expose that same logic to a

different H L A simulation, they would require a separate H L A Aspect and weaving rules.

Quite clearly, the development of a H L A Aspect would require intimate H L A knowledge,

and would thus be unsuitable for this research. It is for this reason that a generic H L A

Aspect is necessary to fulfil the goals of this work, and is a prerequisite for experiment one.

This research seeks to define a generically applicable solution to such problems, with the

expectation that it will free mainstream developers from the considerable development

burden imposed by the H L A specifications. The first step towards achieving this goal is to

demonstrate that a sufficiently generic AOP-based environment can be combined with a

pure-00 model to create a H L A simulation component (a federate).

In a typical situation where AOP is leveraged, the process of creating the various Aspects

and defining h o w they are woven together is a manual process. Although the overall

objective of this research is to automate this process and thus remove the need for any

H L A specific knowledge, the first step is to prove that general notion is viable. For this

reason, Experiment One (as introduced in section 5.2.3) focuses on the definition of a

generic HLA-Aspect that can be woven into pure model code via a manual process.

Subsequent experiments (presented in chapters 7 and 8) remove the manual requirement,

automating the steps that are deemed acceptable as part of Experiment One.

107

This chapter defines the proposed structure for the Generic Aspect, describing its inner

workings and discussing h o w it addresses some of the research questions identified in the

chapter 5. To conclude the chapter, the results of Experiment One are presented.

6.1 Requirements of a Generic Aspect

For any proposed solution to truly enable the automatic rendering of a pure-00 model as

a H L A simulation component, a generic H L A Aspect is necessary. Before investigating the

design for such an Aspect, it is important to consider the exact requirements.

6.1.1 Defining "Generic"?

A generic H L A Aspect is one that can be combined with any pure model to create a

complete simulation component. That said, in order to function correctly with a particular

model, the Aspect must have some knowledge of the interesting information specific to

that model, naturally implying some sort of semantic understanding. This leads to a

conundrum: what does the term generic actually mean in this context?

Primarily, "generic" in this situation refers to a component that is capable of working with

an arbitrary model without the need for modification. W h e n talking of modification, I am

referring to changes to the Aspect at the source code level. The internals of such a

component must also remain free of any model-specific considerations, thus allowing it to

be portable.

Despite this requirement, for the final simulation component to function properly in a

H L A federation, specific information about it is still required by the federate (such as

publication and subscription interests, or model-to-SOM mapping details). To remove the

need for code-level alterations, this research favours a configurable approach. The

provision of model-specific information via configuration data allows the generic H L A

component to be used in many situations, yet still have it possess behaviour that is context

aware and specific. Viewed holistically, configuration information is still part of the

system, and thus can make it model specific. However, when looking at most generic

software components in use today, configuration information is the natural way to

quarantine and isolate situation specific concerns. RTI implementations are a perfect

example of this. They are capable of supporting any simulation model, but this

information must be provided to them via configuration data in the form of a F O M .

108

In AOP, it is the weaving rules that form something akin to configuration information. In

most A O P environments, weaving rules are themselves code [5], and as such, require

recompilation before use. Although perfectly acceptable, this process does necessitate an

extra step to compile the code, a process that could be avoided if separate configuration

files were used in the place of hard coded model-specific weaving rules.

6.1.2 Research Questions Addressed

Having established what exactly is meant by the term "Generic Aspect," there are many

other services that such a component would also need to provide. Section 5.1 highlighted a

number of research questions that identify the shortcomings of a typical A O P approach

that must still be addressed.

These questions can be broadly split into two categories:

• The technical questions refer to how a proposed solution should behave and

react within a distributed simulation

• The automation questions refer to how the creation of model-specific items

(such as object models and configuration files) can be automated - removing

otherwise manual processes

To fulfil its duties, the Generic Aspect solution presented in this chapter must address the

first category of questions. With regard to the first experiment, there is no need for

answers to the second category of questions. Manual processes are permitted at this early

stage.

Of the research questions presented in section 5.1, six fall into category one.

Obiect Data

"How can the creation, removal and alteration of data within an OO model be replicated

into an active HLA federation?"

Data in the form of objects and attributes sit at the core of both OO and the HLA The

Generic Aspect must be able to inform the RTI of the creation, modification and deletion

of appropriate data within the pure model. Further, when interesting information is

created remotely, proxies containing updated values must be created and made available

to the pure model.

109

What exactly defines "interesting data" is rather subjective and model specific. In the first

experiment, this information would be provided as model specific configuration data.

Data Introduction

"How can the creation, removal and alteration of data within an active HLA federation

be replicated within a pure OO model that is not expecting it?"

As mentioned above, the Generic Aspect must make available proxy instances for remotely

created data, and in a form that can be consumed by the pure model. H o w this

information can be successfully made available to a pure model depends largely on how

the model stores and accesses its own data.

The open ended nature of object oriented programming means there is a myriad of

options available to a developer when deciding how to structure, store and access data. In

many situations, relevant data is stored in collections (such as lists and maps). Proxy data

could be placed directly into these collections in order to make it accessible by the pure

model. However, this approach is dependent on the use of single collections within the

pure model. In other situations, newly created information might be passed to some

model-specific method that then inserts the information in the appropriate places. An

example of this is the enterCar(Car) method in the Car Race experimental model.

Support for introducing data via this type of approach is also necessary.

Data Ownership

"How can the data ownership rules of the HLA be reconciled with the monolithic world-

view of pure object-oriented models?"

A monolithic model may attempt to update any piece of data it encounters, even if it is

remote data that is not controlled locally. The ownership rules of the H L A only permit this

if the model itself either created that information, or has since obtained the specific right

of ownership on that information. If pure models are going to co-operate with one

another, and with other federates, some method for overcoming this problem is needed.

Interactions and Methods

"How do object-oriented methods translate into HLA interactions?"

In OO, methods form an integral part of behaviour representation. While interactions and

methods do not share a complete conceptual overlap, they are alike in many ways. To

no

facilitate the proper and consistent behaviour of a model, some synthesis between these

two facilities must be present.

Federate Level Agreements

"Can the definition of federate level agreements be expressed without requiring manual

intervention?"

Perhaps one of the single most arduous tasks involved with any HLA simulation is the

process of merely getting separate components in synchronisation with one another.

Unfortunately, the open nature of federate level agreements makes a complete solution to

this problem largely intractable. This chapter outlines the problem of federate level

agreements, describing when and where they can or cannot be supported.

Logical Time

"How can logical time be synchronised between a monolithic pure model and a shared

distributed simulation?"

Many simulations incorporate a notion of time, even monolithic ones. The rules governing

time in the H L A exist to ensure that information is delivered correctly and that the logical

ordering of events is maintained. Although the H L A defines a shared notion of time

representation, the location and structure of time within a pure model is subjective. Any

proposed solution must be able to keep watch on the portion of a model that represents

time, only allowing it to be altered in accordance with notifications from the RTI.

Each of these questions must be addressed in the design and methodology employed by

any proposed solution that seeks to provide a generically applicable H L A Aspect. Section

6.2 of this chapter begins the account of such a solution, and describes how these

questions can be answered.

6.1.3 The Reference Implementation

Before moving on to discuss the precise structure and behaviour of the Generic Aspect

solution, it is first necessary to briefly outline the technology chosen to implement these

ideas during experimentation (and the effects of this selection). A O P is a methodology, not

a technology [56]. Although it is somewhat natural to think of A O P in a low-level technical

sense, all A O P tools operate in a manner consistent with a shared methodology. The use of

an A O P approach is not specific to a single programming language or tool. This is

important when considering the motivations of this work. The sheer number of simulation

environments available in the wider business community is enormous. To focus on any

ill

one simulation tool would introduce a number of restrictions that are relevant only in that

environment

As such, in an attempt to provide a more broadly applicable solution, this research takes a

step back, using Object-Oriented programming as its starting point. Just as there are a

great number of tools used for simulation purposes in the wider business community, so

too is there a great number of programming languages used for their implementation. The

experimental items developed as part of this research make use of one such language, but

the concepts and approaches taken are not specific to that language.

For the purposes of testing and experimentation, the Java programming language has

been chosen. Java has a long history with AOP, and as such, the tools available are both

highly stable and mature. The reference implementation makes use of the open source

Aspect! package [5] in order to gain A O P capabilities.

The various tools used were chosen for a number of reasons, primary among which is their

open source status. All tools (both H L A and A O P) used in the development of

experimentation items make use of open source libraries. Access to the source code has

been important in this case, facilitating a deeper understanding of the tools, their

structure and function.

The Generic Aspect framework presented in the following sections also makes moderate

use of the reflective capabilities of the Java programming language in order to meet its

requirements. One potential concern here is that these services are specific to Java, and

analogues may not be available in other languages (such as C++). In this work, Java

reflection is used primarily as a convenience. Rather then subjecting pure-00 code to

greater levels of static analysis, reflection is used to gather the necessary information

about a particular set of classes.

In cases where these facilities are not available (such as with non-reflective languages like

C++), a custom code parser could be implemented to gain the same information that is

extracted via reflection in the reference implementation. Although the development of

such a parser would entail a non-trivial amount of work, the same information could still

be obtained, and thus, allow the same methods presented here to be ultimately used.

112

6.2 Simspect: A Generic AOP Environment

The generic H L A Aspect developed as part of this research has been dubbed

"Simspect" (Simulation Aspect). To meet the requirements discussed in the previous

section, Simspect incorporates both a generically applicable set of weaving rules and a

self-contained, intelligent runtime component. Two simple facades isolate the internals of

the runtime from the outside, model-specific world. Figure 6-1 is an illustrative overview

of the Simspect framework.

113

>

>

O
—i

u
v
a
<A

E
<
• *

H
I
3
cn

114

As shown in the figure above, the Simspect environment consists of four major

components, each of which is discussed in the following subsections:

l. The Generic Aspect

2. The Model Facade

3. The Simspect Runtime (contains proxy and execution manager)

4. The Simulation Facade

6.2.1 The Generic Aspect

In Aspect! terminology, an Aspect refers to both the weaving rules and the advice that

should be executed at the captured join points. In a typical A O P scenario, the final step of

the development process would be to write these weaving rules and the relevant advice

that would make the appropriate calls into the crosscutting Aspects. For example, a

weaving rule might capture any call to a constructor of the Car class (from the race

simulation - see Appendix A) and cause a corresponding H L A instance to be created.

These rules, and the advice that is executed when they occur, are designed to be the

application specific glue that binds together the various core and crosscutting modules. It

is generally thrown away or rewritten when attempting to apply the modules in different

circumstances (much like configuration information).

As mentioned earlier, when designing a generic solution, application-specific information

must be provided at some point. Weaving rules and advice are one example of how this

information could be specified. The approach taken by Simspect however, is a little bit

different. Rather than tailoring weaving rules and advice to the specifics of a given O O

model, Simspect employs weaving rules that focus on a generic class of events. For

example, rather than just capturing the constructor calls for the Car class, it captures

constructor calls for every class. In this way, the decision about the relevance of a model-

specific entity is delayed. Rather than defining this information statically at compile time,

it is pushed back to be a runtime consideration.

There are advantages and disadvantages to both approaches. When using a catchall

solution like totally generic weaving rules, a large amount of uninteresting information

that is captured needs to be dealt with at runtime. For example, while the Car class maybe

of interest to wider simulation, the creation and alteration of a logger class would be

deemed of only internal interest. As the generic weaving rules cannot themselves identify

externally interesting information from data that is for internal model processing, some

115

filtering will need to occur further down execution path. Additionally, as such filtering

takes some time; there are potential performance penalties to this approach.

On the other hand, custom weaving rules would remove this problem, ensuring that only

relevant information is ever captured. However, this too comes at a cost. To implement

such a feature, one must know this information at compile/weaving time. Further, the

weaving process will hard-code this information into the final product, necessitating a re-

coding and recompilation step for even a minor change.

The primary benefit of the "catch-all" approach is that a single set of weaving rules (and

associated advice) can be employed with any pure-00 model, regardless of its structure.

By capturing all constructors, there is no need to have prior knowledge of what is and is

not a relevant piece of information. The authoring of Aspect weaving rules and advice

necessitates knowledge of both A O P and the syntax of the particular framework in use.

Although the "separation of concerns" concept is quite simple to grasp, the low level

details of weaving together core and crosscutting concerns in a manner suitable to a

particular A O P framework is perhaps unnecessary for most users. Once again, the use of

generic weaving rules means that they only need to be defined and written once, rather

than over and over again for every different model.

For all of these reasons, Simspect uses generic weaving rules and advice, relying on

configuration data to provide the model-specific information necessary to filter out

unnecessary information at runtime.

The Generic Weaving Rules and Advice

Having settled on the use of generic weaving rules and advice, attention must be turned to

exactly what type of events these rules are going to capture. Rather than focusing on the

model-related entities themselves, the Simspect Aspect seeks to capture typical classes of

events that occur during the execution of any O O application.

The Simspect Aspect captures the following types of events:

l. Main Method Invocation

2. Constructor calls

3. Field alterations (both instance and class fields)

4. Method Calls

5. Object Removals

116

As one might expect, each event class represents a rather broad concept. What may be

surprising is the size of the list, with only five types of events holding any interest. Despite

this, the list represents the full gamut of information needed by Simspect to perform its

duties. Despite the considerable complexity of the goals of this research, the specification

of the weaving rules is remarkably simple, consuming fewer than 35 lines of code in the

reference implementation10.

The generic advice that is executed for each of the weaving rules above is equally

straightforward. Its primary purpose is to pass information about the event on to the

Model Facade (discussed in the next section) where it can be filtered. To illustrate this

point, consider h o w object construction is handled.

The specification of the weaving rule is as follows:

1 /** pointcut to get all constructors */
2 protected pointcut constructors(Object newObject) :
3 initialization(public *.new(..)) &&
4 ignoreList() &&
5 targetC newObject) ;

Listing 6-1: Constructor Point Cuts

This statement basically says: "capture every call to a. public constructor on any (*) class,

as long as that class is not on the ignore list". The final line is necessary to capture the

context at the join point [23] (in this case, the object being created).

The advice associated with this weaving rule is perhaps even simpler than the weaving rule

itself:

1 before(Object newObject) : constructor^ newObject)

2 {
3 // notify the runtime //
4 this.facade.onConstructor(newObject);
5 logger.debug("{NEW} " + newObject.getClassO);

6 }

Listing 6-2: Constructor Advice

This advice consists of a single line of effective code (and some logging), passing the

information about the constructor to the model facade. H o w Simspect reacts to this

information (if it reacts at all) is of no concern to the Aspect. Its purpose is to capture the

A listing of the generic weaving rules and advice is provided in Appendix D

117

information and pass it onwards to the facade which can then respond appropriately. Not

all the events captured by the Aspect involve a single action. The table below outlines what

happens for each event

Event Action

Main Method

Constructor

Field Alteration

Method Call

Object Removal

l. Instantiate Model Facade

2. Inform facade that model is starting

3. Proceed with main method (model executes)

4. Inform facade that model is finished

1. Inform the facade

1. Inform the facade

2. If response from facade is true, proceed with field

alteration, if it is false, skip the alteration

1. Inform the facade

2. If response is from facade is true, proceed with

method, if it is false, skip method execution

1. Inform the facade

Table 6-1: Model Event Actions

As shown in this table, with the exception of object removal, the other events include

additional steps. These additional steps may also be a point of some confusion. The main

method event is known as an "around" advice [57] and it has the effect of wrapping the

execution of the main method and allowing advice to be executed both before and after the

main method call. If the advice so decides, it can even skip the call to the wrapped method

altogether.

The method-call and field alteration events also use "around" advice. In these cases, the

facade is notified of the event, and a value indicating whether or not the event should

proceed is returned. This is useful in situations where requests must be ignored because

they relate to remote information. For example, when a method is being called on an

object that was not created locally. In a typical H L A simulation, changes to remote data

are subject to the processing approaches used in the models that have ownership over that

data. By introducing new models that contain different processing rules, sets of objects

can be updated via differing approaches. For example, a Car created in a remote federate

could implement a different advancement algorithm to the Cars that were created in other

federates (or indeed, those created locally). In order to allow this polymorphism, methods

118

called on remote objects are quietly discarded by the runtime when they are called. The

return value provided by the facade indicates to the advice whether or not the underlying

method call should proceed. If the data is local, there is no concern and the method can

proceed as normal. This process however places the specifics of that decision beyond the

facade, allowing the advice to have no knowledge of how the decision was reached and to

remain quite simplistic.

Weaving Exclusions

It is worth highlighting that within the reference implementation there are certain

exclusions placed on each of the weaving rules that capture these events. One might expect

that in any non-trivial model there will be thousands of constructor calls, and many times

more field modifications and method calls. Many of these will be to default class libraries

and will be of no interest to the model at all. Exclusions act much like a veto, ensuring that

advice is not woven into a model if the class in question happens to reside in a certain Java

package. For example, no advice will even be executed for constructors, method calls or

field alterations on classes that make up the core Java class library. Further, any code

within Simspect itself is also excluded from these rules (as is code from the libraries used

by the framework). The interesting parts of a model are provided in the model code itself,

and these exclusions are a simple way of ensuring that the focus remains purely on that

logic.

Simple Yet Effective

The purpose of the Generic Aspect is simple: capture the events and notify the fagade so

that it may trigger the necessary processing required and take action. Isolating the Aspect

and the processing logic in this way helps to keep the Generic Aspect both small and

straightforward.

6.2.2 The Model and Simulation Facades

The facade is a well-known design pattern [38] implemented in an attempt to lower

cohesion between two components by hiding potentially complex actions behind an

opaque interface. Figure 6-1 identifies two facades within the Simspect environment: One

for model events and the other for simulation events. Much like the Generic Aspect, the

actions taken by the facades are exceedingly simple. They exist primarily as something

akin to a traffic policeman. W h e n an event occurs, they pass the information on to the

Simspect runtime, which then does all the necessary processing and informs the facades of

the results.

119

As is discussed in the next section, the Simspect runtime does little but provide a

superstructure into which event information can be dropped. Internally, the facades follow

the Command design pattern [38]. This pattern describes a situation where event

information is wrapped up inside an instance of a special class. This instance conveniently

encapsulates all the relevant information about the event in a single entity. In Simspect,

these instances are generically referred to as Messages. The facades are responsible for

creating the message objects (from the information they receive) and passing them into

the Simspect Runtime. This is not a particularly involved process, generally involving only

one or two steps.

To once again illustrate this simplicity, consider the actions taken by the Model Facade

when it is informed of an object construction:

1 public void onConstructor(Object object)
2 {
3 // create and process the message //
4 fireMessage(new MDL_OnConstructor(object));
5 }

Listing 6-3: Model Constructor Notification

The code above is taken from the Model Facade in the reference implementation. In this

listing, the MDL_OnConstructor class is the specific message type. It is given all the

relevant information, and then the fireMessageO method informs the Simspect

Runtime11.

The Simulation Facade provides simulation relevant functions for handling any

information received from the RTI. It behaves in exactly the same manner as the Model

Facade, packaging all the relevant information up into message types and passing them

into the Simspect Runtime for processing. As discussed in section 6.2.3, each runtime

contains a proxy federate that sits inside an active federation and represents a pure model.

While the Model Facade is invoked via A O P advice when relevant model events occur, the

Simulation Facade is notified via the Federate Ambassador of the proxy federate. W h e n

the RTI provides information to the proxy via an ambassador call-back, that information is

then passed directly to the Simulation Fagade where it can be packaged and sent to the

runtime.

11 The fireMessageO method performs some general housekeeping. It packages the message into a special

container type (which includes room for a response). It also serves to extract the response once the runtime is

finished, and performs some basic error handling.

120

The facade classes are simple components. Beyond packaging request information into an

appropriate form and passing it to the runtime, they play no further role in the processing

of model or simulation events. The responsibility of acting on the events and performing

the necessary actions is delegated to the Simspect Runtime itself.

6.2.3 The Simspect Runtime

The runtime represents the nerve centre of the Simspect framework. To this point,

discussion has focused on how events are captured (the Generic Aspect and proxy

federate) and delivered (through facades) to the Simspect Runtime. This subsection briefly

introduces the components and internal structure of the runtime framework itself.

In isolation, the Simspect Runtime is capable of very little. Rather, it provides a

superstructure into which specialised processing units can be inserted. These units, known

as Message Handlers, are responsible for performing the appropriate actions when the

runtime is notified of an event via a message from the facades. The message handlers can

be seen as the drivers of the Simspect Runtime, using other parts of the framework to

perform any necessary actions. Figure 6-2 shows the internal structure of the Simspect

Runtime. The role of each component is discussed below.

121

caches

drops
messages

into

created
remotely

updates

passes
events to

Execution
Manager

Internal View of

Simspect
Runtime

Federation

calls back

Figure 6-2: Simspect Internals

The Message Sink

As figure 6-2 shows, each of the facades passes message instances directly into the

Message Sink. The role of the sink is to aggregate together a group of handlers; recording

which messages a given handler is interested in processing. When the sink is given a

message, it consults its internal registry and finds the handler associated with the type of

122

message that has been received. The message is then passed to the handler so that it may

perform any necessary actions. Each handler has a dedicated task to perform and may

make use of some other components (such as the Cache or Mappings information) to this

end.

The entire process is very similar to both the Observer design pattern [38] and the

publish/subscribe facilities described in the H L A specification itself. There is no

outstanding requirement that dictates the Simspect Runtime must take on a processing

form such as that described, but the command/observer pattern mix does provide

considerable advantages.

Primary among these advantages is the ease of adaptation and extension this approach

provides. Should the runtime at some point need to process new types of events,

additional handlers can be readily inserted directly into the framework without

necessitating extensive refactoring. Further, should the requirements for a handler change

in any way, the effect of this is limited to that handler. This is of particular interest when

considering the reuse of this design in a programming language or environment that

differs from that of the reference implementation.

For example, the reference implementation handlers make considerable use of reflection,

a dynamic introspection facility provided by the Java platform [35]. In other languages

(such as C++) this mechanism is not immediately available, necessitating an alternate

approach to be used (as discussed in section 6.1.3). The important point is that regardless

of how that information is accessed, the general runtime structure does not need to be

altered in any significant way. This information can be localised to the specific handlers

that use this information, while the Aspect, facade, proxy and so forth all remain as

defined here.

As mentioned above, the handlers represent the interesting portion of the reference

implementation and define solutions to the problems referenced in the research questions.

The methods used by these handlers to address the problems raised earlier are discussed

in detail in section 6.3.

The Cache and Mappings

The Cache and Mappings components depicted in figure 6-2 are utilities used by the

various handlers when completing their tasks. They store both useful information needed

by the runtime to determine whether or not action should be taken, and, links to the

relevant data on which operations should occur.

123

Mappings

As discussed in section 6.2.1, the weaving rules and advice are entirely generic. They

capture events that are potentially interesting, rather than restricting this to only those

that are known to be interesting for a specific OO-model. These captured events need to

be filtered at some point so that only those of some consequence to the remote federation

are acted on (while the rest are ignored and deemed "internal model processing"). The

Mappings component was defined as a container for this critical information.

Filled from configuration data, each entry in this component describes how a particular

object-oriented class maps to its HLA-based counterpart. From this list, the relevance of a

particular class can be quickly determined: if it has no entry, it is of no interest. This

enables the required filtering to occur when OO-model events are received. It is important

to note that the same functionality is not required for received H L A data. Through the

declaration of subscription interests, the RTI will only deliver to the proxy federate data it

has previously signalled an interest in. In this case, the RTI performs the filtering on the

runtime's behalf.

Mappings data is not used purely for filtering purposes; rather, it has many other roles. As

mapping data defines h o w OO-model constructs relate to their H L A counterparts, it is also

useful in determining the publication and subscription interests of the proxy federate. The

exact way this data is used for this purpose is discussed in section 6.3.

Mappings data also contains transformation details. As the HLA represents data as an

opaque series of bytes, some knowledge about the intended structure of those bytes is

necessary. Mappings data provides this. The transformation of data between the model of

a specific simulation component (SOM) and the shared model of a federation (FOM) has

been the subject of considerable prior research (see section 4.2.1). Rather than define a

solution to the complex issues surrounding this topic, this research defers to that work,

whose approaches could be implemented inside the Simspect Runtime as required. That

said, the reference implementation requires some basic transformative capabilities, and

the mappings data provide this information. Unlike the previous work, these capabilities

deal only with simple, primitive types (such as strings, integers and floating-point

numbers). In situations where a more robust solution is required, the work highlighted in

section 4.2.1 should be drawn on.

Cache

Unlike mappings data, the Cache is populated at runtime. It links together instance

information that exists in the OO-model with the parallels that exist in the HLA. In figure

124

6-2, as with figure 6-1, the circles containing a "J" (for Java) represent local information,

while H L A data items contain a "H". For data that was created locally (by the proxy

federate) in response to an object constructor call, the cache maintains a link to the O O

object instance in addition to other information the proxy federate will need (such as the

object handle). For data that was created remotely and discovered through the RTI, this

same information is maintained, along with the last known values that were received as

part of an attribute reflection for the instance. The way this data is created and used is

detailed in section 6.3.

The Proxy Federate

The Proxy Federate is the gateway to the H L A for a pure-00 model. Each runtime

instances contains a single proxy federate through which engagement with the H L A is

achieved. W h e n the handlers deem it necessary to forward information to the HLA, it is

routed through the proxy federate. W h e n information is received from the RTI via the

Federate Ambassador for the proxy federate, it is passed directly to the Simulation Facade,

where event information is created and dropped into the message sink.

The Execution Manager

The Execution Manager is a sub-component of the proxy federate. The problems of

federate-level agreements were highlighted at the beginning of this chapter, and the

Execution Manager is a direct response to some of those concerns. The main difficulty of

federate-level agreements is that there is no standard approach for defining or describing

them. Any federate can define rules for how they behave within a federation, and any such

combination of actions is perfectly valid. The execution manager is the facility through

which execution management federate level agreements can be specified.

Furthering this problem is the lack of a parallel for execution management within OO.

Once again, the differences between a monolithic pure-00 model and a co-operative,

distributed simulation are a chief cause of this disconnect. These agreements are an

artefact of the H L A and remain entirely in that realm. In practice, the only way to

overcome such issues is through the standardisation of a particular execution model.

Regrettably, no such standard exists and this problem persists. Despite this, some

recourse for addressing these issues is necessary.

The Execution Manager component is the facility through which different execution

methods can be supported. W h e n certain simulation events occur, it is notified and may

take any appropriate execution management actions necessary. These events include:

125

• Synchronisation Points: announcement, registration, federation

synchronisation

• T i m e Advancement: time advance granted

• Data Received: interaction received, object discovery/reflection/removal

• Save and Restore: save/restore initiated, started, achieved

These types of events cover the full spectrum of call-backs from the HLA, any of which

could contain information pertinent to execution management procedure. The Execution

Manager for the runtime can be easily replaced, allowing different execution models to be

supported without affecting the entire framework. A default manager should be provided

with any implementation of the Simspect runtime, thus only requiring a new one to be

authored when O O models must interact with existing, non-compliant H L A simulations.

Naturally, the development of an Execution Manager implementation would require HLA

knowledge and skills. While this requirement is generally not tolerable within this

research, in this particular situation it is unavoidable. That said, this would be limited to

the execution of OO-models in specific scenarios, and would not affect model

development.

Much like mapping data, the specification of the relevant Execution Management

implementation used by the runtime is defined through configuration data (discussed

below).

Unfortunately, there is no genuine solution to the problem of broader federate level

agreements (such as data structures or attribute update intervals). While the H L A 1516

standard does help with some classes of these problems, the open nature of the

agreements means that there is no generic solution to the problem outside of mandating

that the agreements be based on well-accepted conventions.

6.2.4 Customising Simspect Through Configuration

Earlier in this chapter the generic nature of the Aspect weaving rules and advice was

discussed. In that section, it was conveyed that the approach taken by the solutions

presented here was to push the customisation for a particular situation into configuration

data rather than the rules that capture information themselves. This has the benefits of

being adaptable without necessitating re-coding of the framework, and also allows

additional information (such as H L A related data) to form part of the configuration,

whereas A O P weaving rules and advice only relate to the pure model.

126

In the previous sub-sections the notion of the Mappings and Execution Manager were

introduced. Each of these components depends on information provided as part of the

configuration data. This section briefly introduces h o w this data is provided to the

Simspect runtime, as it exists in the reference implementation used for experimentation.

Figure 6-3 highlights the process involved in the creation of the runtime and the reading
of configuration data.

1. captures \
mainO method)

3. creates
runtime

2. creates
facade

Model
Facade

4. reads
configuration
and populates
components

Figure 6-3: Simspect Configuration

W h e n the Generic Aspect realises that the OO-model is about to begin, it triggers the

process that creates the entire Simspect runtime. At this point configuration data is

obtained from an X M L document and used to populate the Mappings and create the

appropriate Execution Manager implementation. In this way, the data interests of the

runtime, or the concrete implementation of the Execution Manager can be manipulated

without the need for authoring any code within Simspect. The runtime remains entirely

generic, with the customisation data that ties it to a specific O O or H L A model being

gathered from an external source. Within the context of the first experiment (discussed in

section 6.4) this configuration data is generated manually. Further experiments focus on

127

automating the generation of this information following the inspection of a particular OO-

model.

6.3 Handler Methodologies

The previous section introduced the structural design of the Simspect runtime. This

section talks about die various approaches and methodologies used by the handlers inside

that framework that address the research questions highlighted at the beginning of this

chapter. This will explain h o w those questions are addressed, leading into a discussion of

experiment one, which validates the approaches defined here. The following subsections

are broken down by research question, with each one discussing the various approaches

taken for addressing it.

Throughout this section, various parts of the reference implementation and underlying

platform are discussed directly. This is done purely to provide some context to the

discussion. It is important to keep in mind that the methodology employed in the

reference implementation is the important part of the discussion, and that these ideas can

be implemented in alternate settings, not just with the technology leveraged in the

reference implementation created for experimentation.

6.3.1 Composite Objects and Complex Data Types

As first introduced in section 3.2.2, the H L A does not represent data in the same manner

as object-orientation. Although similar notations (such as inheritance) exist in both

domains, on the whole, there are significant differences that must be considered. Primary

among these is the representation of complex data types.

Unlike object orientation, HLA object models do not support the expression of explicit

relationships that may exist between the instances of various classes [62]. For example,

there is no standard mechanism within the H L A for defining that a relationship exists

between an instance of a Wheel class, and an instance of a Car class. Although they are

intimately linked conceptually, associating one instance with another requires explicit

action on behalf of a federate developer.

The IEEE 1516 specification provided considerably more powerful support for expressing

the structure of complex data types [49L Complex structures could be defined, and

attributes would be declared to contain data conforming to those types (as is typical in

OO). Despite enabling composition, this advancement came at a cost.

128

A primary feature of the H L A is its support for defining interests in data at the attribute

level. For example, a viewer federate may subscribe to only the distanceTravelled

attribute of the Car class. Enabling publication and subscription to occur at higher levels

of fidelity removes any need for the transmission of redundant data, with only that

information that has been explicitly requested by a federate being delivered to it. However,

if Car were to be defined as a complex data type, this ability would not exist. A particular

attribute could be a Ca r, but as subscription works at the attribute level, there would be no

way to subscribe to individual pieces of the car. IEEE 1516 data types exist only to provide

some information on h o w to decode opaque values associated with attributes, and as such,

do not allow for the individual pieces of the type to be considered.

The situation becomes something akin to "all-or-nothing," resulting in the potential

communication of redundant information, and the inability of federates to co-operatively

model the constituent parts of that type. It is for this reason, that the use of such types has

been avoided in this research. Rather than reducing the fidelity of the model itself, another

approach for representing composition relationships is needed.

Fortunately, this problem can be solved via simple substitution. When an attribute is to

aggregate another object instance, the value of that attribute should be a reference to the

instance. This is the same approach used in virtually every modern programming

language, where pointers or memory references are used to fink together otherwise

separate structures. While an O O approach would support this mechanism at the language

level, it is unfortunate that within the H L A the federate developer must handle it

manually.

Throughout the Simspect framework, wherever an aggregation or other such reference

(such as in a parameter to an interaction) much be used, a substitution of actual instance

data for it the objects federation-wide unique handle is transparently made. Thus, it would

appear to the pure model as if a reference to the instance were passed, rather than an

object handle.

Collection Representation

Collections types are used extensively in typical object-oriented model development.

Grouping together multiple instances, they provide a nice way to represent many objects

in a single reference. Although the IEEE 1516 specification introduced support for defining

arrays of data types, those advancements are being overlooked by this research for the

reasons mentioned above.

129

However, once one has accepted that object references are to be represented as their H L A

object handles, the transfer of collection information can also be easily solved. A collection

is a sequence of objects, thus, when communicating via the HLA, the Simspect runtime

represents collections as a series of object handles. The byte value transferred for an

attribute that represents a collection is equal to the byte value of each handle in the

collection, stored end-on-end. As with single object references, it would be expected that

any Simspect runtime implementation would transparently transform each handle into a

reference to its associated local object, and each series of handles into a collection of those

objects.

Subsequent sections make little, it any reference to the manner in which object references

are handled. The methods described here are used throughout the processes discussed

over the remainder of this chapter. Notably, the definition of this approach ends up

constituting a federate-level agreement, and for pure models to co-operate properly with

HLA-only simulations, those simulations would need to conform to the expectations

outlined here.

6.3.2 Object Data

One of the most obvious problems facing this research is how information is extracted

from an OO-model and pushed into an active H L A simulation. The previous sections of

this chapter have covered h o w information is extracted from a pure model (via the Generic

Aspect) and sent to the runtime. This section discusses what happens after that point.

There are three major events of interest that overlap between a pure model and a

distributed simulation: object creation, field updates and object removal. Fortunately,

parallels for each of these events exist in both domains.

Object Creation

Object creation is triggered when the runtime is informed that a constructor has been

called. The primary decision that must be made is whether or not this creation should be

relayed to the active federation. Figure 6-4 is a flow chart describing the process involved

in making this decision.

130

ctor
Called

9 Does Mapping
Exist for Class?

mm
Yes

V

9 Has this object
already been
constructed?

*m

No

V

A action

Get HLA Object
Class for
Mapping

No

Skip
Constructor

A action

Register HLA
instance via RTI

v

A Create association

between Java and
HLA instances.

action store in Cache s
V

Finish

Figure 6-4: Constructor Called Flowchart

131

The first decision that must be made is whether or not the class of which an instance is

about to be constructed holds any interest within the connected federation. Put another

way, does the class have a parallel in the F O M ? Within the Simspect framework, the

process of determining this is quite straightforward. If the class is of some interest, it will

have been included in the configuration data that was read by the runtime when it started

up. Thus, if there is nor an entry in the Mappings entity (see figure 6-2) for the class in

question, then it is merely internal data. It is this step that performs the filtering

necessitated by the use of an entirely Generic Aspect (discussed in section 6.2.1). If there is

no mapping for the class, the constructor is ignored (filtered out) and processing of the

model continues. If there is a mapping for the class, then the information about the event

must be relayed to the federation.

Following this, another decision must be made, although this one seems slightly

confusing. It must be determined whether or not the instance has previously been

registered. Initial thinking might believe one to think that each instance can only be

constructed once, and thus, only a single constructor event will ever be invoked once for

each instance. Generally this is true, but this is not always the case when inheritance and

super classes are involved. I will return to this question shortly, but for now, let us just

assume that the instance has not previously been registered and that processing can

proceed.

If this is so, the relevant HLA Object Class handle is extracted from the Mapping entry12

and is used to instruct the Proxy Federate to register an instance. Once this has been

completed, an association is made between the H L A instance information and the Java

instance. At the same time, an additional field association (which is a sub-component of

the general association) is made between all the fields identified in the Mapping (those of

interest to the federation) and the fields of the model instance. These associations contain

additional information (such as the H L A handles of the various objects, classes and

attributes) and are used later as a means to identify which H L A instance to update when a

field value is modified for the associated Java instance. This association is stored inside

the Cache for later access. Once this process is completed, execution returns to the pure

model.

Initial Instance Variable Values

The ordering in which events occur here is important. The A O P advice that captures

constructor events such as this is defined as "before" advice. That is, the advice (and thus

12 During start-up, the Mappings are resolved against the FOM to obtain the various handles as they are

defined for that particular federation execution.

132

the handler) will execute before the body of the constructor call. It is only once the advice

has completed that the body of the constructor is executed. This guarantees that the HLA

instance will be registered via the Proxy before the model instance has finished being

created.

In most constructors, some initialisation of instance fields takes place. It would appear

reasonable that these initial values be reflected into the federation as they are created. The

same pointcuts that capture general field modifications will also capture them in this

setting. As such, the HLA instance needs to exist first, for if it did not, the runtime may

attempt to update the attribute values of a HLA instance that is yet to exist. By creating the

HLA instance first, this situation is avoided, and the process of handling the initial setting

of instance variables can be managed in the same way as any other field modification.

Super Constructors and Constructor Chaining

In any OO language, inheritance is a pivotal feature. Encapsulation is also a central tenet

of object orientation, stating that only a specific class should modify its own data.

Following this notion, it does not make sense for the constructor of a given class to modify

the variables it inherits from a super class. Thus, it is common for the constructor of a

class to first call the constructor of its parent class. The problem with this is that AOP

recognises this as another constructor event, which is captured and sent to the facade.

If the parent class also happens to be of interest within the HLA federation, this approach

has the potential to register additional HLA instances for the same model object. This is

clearly an unacceptable situation. Some mechanism is needed to identify this situation and

only proceed with registration the first time around.

AOP provides a mechanism for identifying whether or not a call is in the "control flow" of

another call. This approach may have some potential to address this problem by

redefining the pointcut such that if the constructor is in the control flow of another

constructor, it does not get captured. However, only further inspection, this approach is

also not suitable. Consider the following code snippet:

1 public Restaurant(String name)
2 {
3 super(name);
4 this.vipTable = new TableO;
5 }

Listing 6-4: Restaurant Constructor and Control Flow

133

If control flow were to be used to ignore any constructors within the Restaurant

constructor, it would also omit the call to the Table constructor. If the Table class were of

interest to the active federation, this would mean that valuable information is not made

known. Thus, using the A O P control flow mechanism is not suitable.

The key to solving this problem is to recognise that only a single instance is created in the

pure model, regardless of h o w many constructors are called for it. As mentioned above,

once a H L A instance has been created, an association is made between it and the model

instance. This association is then stored in the Cache. W h e n the constructor handler is

invoked, it is passed a reference for the instance that is being created. Thus, the handler

can check the Cache to see if an association for this reference already exists. If it does, the

handler knows the event is part of an inheritance chain and that it should be ignored.

This approach allows constructors for other classes to still execute as part of a constructor

(as in the snippet above) but ensures multiple H L A instances will not be registered for a

single model instance.

Field Modification

Field modification events are triggered whenever some piece of code updates any instance

variable. The decision tree controlling how field modifications are handled is considerably

more complex than is the case for constructors, with many alternate processing routes

needing consideration.

Figure 6-5 outlines the decision process used when a field modification event is handled:

134

Yes

A
v action

Request time
advance to new

value >

A Wait for time

advance to be
.action granted

/

Finish

Is the new value
the same as the

old value? action

9 Does the field represent time in
this simulation?

mmmmm
No

V

9 Is there a field
association in the

cache?

mm**
Yes

V

9 Does proxy own
the associated

attribute?

[Yes

\ J\ Update
^ " \ attribute value
action via RTI j

No Update
Needed

Not related
to the HLA

Stop update
from

occurring

Figure 6-5: Java Field Modified Flowchart

The first decision m a d e when the handler receives a field modification event is used

primarily for efficiency. O n occasion, a field m a y be "updated" with a new value that is

exactly the same as the old value. In these scenarios, the handler implements some basic

135

filtering, and no reflection is sent out. If the new and current values are not identical, the

real processing begins, starting with determining whether or not the field represents

"time" inside the pure model. The handling of logical time is discussed fully in section

6.3.5. For now, assume that the field being set is not the same field used to represent time

in the simulation.

Just as with constructor events, a determination must be made about the relevance of the

field that is being updated. Although a particular class of object m a y be of interest, it is

probable that only a small number of attributes within that class are of relevance. The

other variables m a y pertain to internal processing data, or information that simply has no

importance in the broader context of the distributed simulation. The semantics of

determining whether or not a field is of interest is non-trivial, taking into account a

number of characteristics. Fortunately, in the case of the Simspect runtime, the Cache

provides an excellent facility for filtering.

In the discussion of constructor handling, it was mentioned that when an instance is

registered with the HLA, associations are made between each field of interest (as defined

by the mappings) within the Java object, and the cached H L A value. If the Mappings

define that an attribute is not of interest, no such association is made.

The Cache is asked to return the association that finks the Java attribute for the particular

instance being updated with its H L A equivalent. There are three possible situations arising

from this request:

1. The Cache does not recognise the object, meaning no HLA instance has been

registered for it (perhaps because it is not of an interesting type)

2. The Cache finds an association for the object, but it does not contain an association

for the attribute in question. While the object is of a type that contains some

interesting attributes, this particular attribute is not relevant

3. The Cache finds an association for the instance, and inside it, an association for the

attribute

If no association exists (as in 1 and 2), the field is not of any interest to the HLA and no

action is taken. At this point, the modification of the field value inside the model is still

allowed to complete, but no reflection is sent.

When a field association has been located, the new value can be reflected into the

federation. However, the process that covers h o w this happens depends on whether or not

ownership of the attribute rests with the Proxy Federate.

136

As previously noted, a pure model makes no distinction between owned and unowned

data. Being monolithic in nature, it will attempt to update any field value at any time. If

the Proxy Federate has ownership of the relevant attribute, the new value is reflected out

to the federation, and the field modification within the pure-model is allowed to proceed.

However, if the data is owned by a remote federate, no update is sent (as it would result in

an error from the RTI) and the field modification in the local model is disallowed by

causing the around advice to skip the actual field modification. To understand the

reasoning for this, one must investigate the potential approaches for updating unowned

attributes.

Updating Unowned Attribute Data

Altering the value of an unowned attribute is a problem created by the H L A ownership

model. It is a problem that can be solved in a couple of alternate ways. Unfortunately,

c o m m o n approaches fall into the realm of federate-level agreements, requiring

understanding and support from other federates to succeed. The two general

methodologies are: "ownership acquisition" and "update requesting".

Under acquisition, ownership over the particular attribute is passed from one federate to

another. In this case, the Proxy would explicitly request ownership, and the current owner

would need to be programmed to divest this permission. Once ownership has been

transferred, the receiving federate can perform the update. The single advantage of this

approach is that it allows the federate to perform the update itself. However, there are a

number of problems.

Firstly, it requires the co-operation of other federates, and the ownership faculties of the

H L A are generally ranked among those least used and supported. Secondly, it raises

questions about what is to be done with the attribute once the update has completed.

Should ownership be returned to the original federate? Should the new federate maintain

ownership? This is all federation dependent, and extremely difficult to support in any

generic fashion.

Another common solution to this problem is to have the federate directly request an

update of the attribute, generally through some predefined interaction. W h e n a federate

wishes to update an unowned attribute, it issues the interaction with all the relevant

information and relies on the owner to oblige. This approach shares the primary drawback

of ownership acquisition in that it depends on other federates recognising the situation

and behaving according to some federate-level agreement. O n the surface, neither of these

approaches appears desirable, generally for the same reasons. However, when considering

137

how object-oriented models behave, somewhat surprisingly, there are compelling parallels

to be drawn.

Consider the object-oriented approach for attribute value updating. Generally speaking, it

is considered poor form for the instance variables of a particular class to be accessed and

updated externally. If another class wishes to institute a change, the accepted convention

is that this is done via a special method, known as a mutator [28] (or a setter). This is a

method of a class that accepts a new value and applies it to the contained instance

variable. This approach allows any manner of error checking or other necessary logic to be

executed before the variable is updated. Further, in allows the representation of the value

to be encapsulated. For example, a single external property may in fact be implemented as

two separate variables. The mutator convention is usually supported by marking all

instance values as private, or not accessible except from within the functions of the

associated class.

When considering such an approach, a type of pseudo-ownership begins to emerge.

Although at a high level, the data is still considered part of the same model (and thus there

is no inter-model or distributed ownership), there is an element of the update request

methodology to this process. A request to update an instance variable is made from a

function external to the class that contains it. The mutator method of that class can then

decide whether or not to permit this change, and how to alter the internal representation.

In a HLA context, the external class could represent the pure model that wants to update

unowned data. The associated class would be the federate that owns that data. Whether or

not the request is honoured is entirely the decision of the owning federate. Further, how

the update affects the object's state is also controlled by the owner federate. This is the

essence of the co-operative modelling approach that is a pivotal advantage of the HLA.

It is through this line of inquiry that the request/update method appears to represent the

closest semantic fit between the two distinct development models. While incompatibilities

will exist when a federate is not programmed to reciprocate to such requests in the

expected manner, these edge cases are unavoidable, and are equivalent to an OO-model

including a misbehaving class.

Having established that the request/update approach (although flawed) best suits this

particular situation, it may seem surprising that the interaction-based solution presented

earlier is not adopted in the decision tree of figure 6-5. Rather, all requests to update

unowned attributes are ignored by the runtime handler, and it forbids such updates from

proceeding in the pure model. As the field modification is an around advice, the handler

138

causes false to be returned from the facade, which the advice interprets as instruction to

not proceed with the modification.

While this solution could incorporate an explicit update request interaction as suggested

earlier, there is no need. All OO-models should update information through mutators13,

and as such, supporting those requests falls into the same category as supporting methods

calls in general. Given this, requests to update unowned attributes are silently discarded,

deferring handling to the mechanism that supports methods. Method handling is

discussed in section 6.3.3.

Object Removal

Handling object removal is perhaps the simplest of all processes. The process consists of

only a single decision, which determines whether or not there is information worth

removing. Figure 6-6 shows the flowchart describing this:

» Although models can violate this requirement quite easily in any object-oriented language, it is a

requirement of this work that they do not. There is any number of ways an O O program could he constructed

that would render it incompatible with any solution presented. Thus, consideration here is restricted to models

that adhere to standard O O conventions.

139

®
finalizeO
called

V

9
Does cache
contain

association for
this object?

A Remove
associations from

^action Cache

^mmmmmmmm

No

Ignore

Finish

Figure 6-6: Object Removed Flowchart

Here, the Cache is consulted to see if the particular instance being removed has an

associated HLA registered instance. If it does not, no action is taken. If it does, the Proxy

Federate instructs the RTI to remove the object, and any associations are then removed

from the Cache.

140

Despite the simplicity of this process, it is worth noting that with, regard to the reference

implementation, its invocation can be quite unreliable. Being memory managed, Java has

no notion of implicit removal of objects. Thus, a Java OO-model will never remove

instances directly. However, through the finalizeO method inherited from the Object

class, an instance can be notified when it is about to be garbage collected. By capturing

this event in the Generic Aspect, w e can access the closest parallel to object removal. That

said, finalizeO is only called before garbage collection, so the likelihood is that some

time will have passed between when the object is no longer used by the model, and when it

is actually removed. Object-Oriented languages with explicit memory management (such

as C++) provide better facilities with regard to this event. In those situations, the

destructor could be captured in the Generic Aspect.

Summary

Throughout this section, discussion has highlighted answers to the research question:

"How can the creation, removal and alteration of data within an OO model be replicated

into an active HLA federation?"

The processes employed by the handlers discussed here, combined with the Generic

Aspect, facade and runtime explanations provided earlier combine to answer this

question. However, some of these answers make inferences about solutions to other

questions. For example, the conversation on updating owned attribute data is predicated

on the idea that data created by remote federates could find its way into the framework.

The next subsection tackles this exact problem.

6.3.2 External Data Introduction

The problems of external data introduction are strikingly similar to those discussed in

section 6.3.2. Rotating the perspective, these concerns address what happens with data

created in a remote federation rather than that created in the pure model. In section 6.3.2

it was shown that although at a high level the conceptual problem is quite simple (data

events are observed and H L A events triggered), there are lower level roadblocks that must

be addressed. In the case of the previous section, these related primarily to the filtering of

events and the handling of unowned data.

When considering external data, the high level concept is again quite simple. HLA events

are observed (as received from the RTI) and they trigger actions in the pure model.

However, problems begin to arise when pondering how data created and managed in

141

remote federates can be feed into an object-oriented model that might not be expecting it.

H o w will the pure model k n o w where to find this n e w information? H o w will the pure

model even k n o w there is information that needs to be found? This section answers those

questions, discussing the actions taken by handlers as various H L A events occur.

Publish and Subscribe

The filtering of uninteresting data is a major requirement when handling model events

obtained through a Generic Aspect. In the previous section, various tactics were used to

ensure that only information of interest to the wider simulation was relayed to the RTI.

W h e n contemplating the reverse situation, where information is received from the RTI,

publish and subscribe facilities of the H L A perform this task on behalf of the federate.

For the publication and subscription features of the HLA to function, information about

the interests of the federate must be relayed to the RTI. This step is performed when the

runtime first begins, before the model has been permitted to start execution. In section

6.2.1, the model events captured by the Generic Aspect were introduced. The first among

these was the capturing of the main method, the first method run when a Java program

begins. Figure 6-3 presented earlier shows this process. Once the runtime creation process

as outlined in that diagram has finished, the Model Facade is notified that it is time to

start via the onStartupO call. Figure 6-7 is a sequence diagram that illustrates this:

Model Facade M D L
'mmmmmmmmmmm^

onStartupC

mmmm

processWessageO

•*p»

1 '

StartupHandler Proxy Federate

joinfederationO

publishAndSubscribeO

Execution
Manager

mw

notify the RTI

1

onStartupO

Figure 6-7: Runtime Publication and Subscription

Once the appropriate handler has been notified, it joins the federation and issues all the

relevant publication and subscription notices. Having completed this, the Execution

142

Manager implementation (as defined in the configuration data) is informed that it is time

to start up, thus allowing any federate-level agreements covering the synchronization of

events to occur.

One problem surrounding this progression is how the runtime determines the actual

publication and subscription interests. Once again, this has links back to the disconnect

that exists between object-orientation and the HLA. O O has no implicit notion of

publication or subscription. There are design patterns that exist to support such an idiom,

however, mandating their use seems somewhat onerous. Doing so seems to achieve little

more than pushing the development approach of the H L A into the O O realm, regardless of

its suitability for the modelling task. The goal of this research is to keep pure models clear

of H L A constructs, and such an approach does not fit with this desire.

A preferable approach is to once again turn to the Mapping configuration data. This

information describes the overlap in model entities that exist between the pure model and

the F O M . As such, it can also serve the dual purpose of highlighting those parts of the

F O M that are of interest to the pure model. But should this data be published or

subscribed?

The answer deemed most appropriate by this research is both. At one level, publication

and subscription comes down to permission to register information and permission to

receive information respectively. A n O O model demonstrates its desire to register

instances of a certain type by calling their constructor. Before that, there is no way of

knowing, especially in programming languages that have late-binding facilities such as

Java, allowing classes to be instantiated without actually making a direct reference to the

constructor. With regard to subscription, the same concept applies.

With Mapping data representing all the areas of data overlap that exist between the pure

model and the F O M , it seems prudent to issue both publication and subscription

announcements all the H L A types referenced by a mapping. Such a methodology means

that all situations will always be covered. If there is a link between a pure-model type and

a H L A type, there will never be a situation where information is not relayed or received

because the publication and subscription inferences were incorrect. In situations where

both publication and subscription are not necessary, little is sacrificed through the

overstating of interests. This is perhaps the simplest way to link the O O and H L A

approaches.

Having presented the approach to publication and subscription prescribed by the

Simspect framework, attention can now turn to the actions that occur when various data

143

life cycle related events are received from the RTI. Much like those of section 6.3.2, these

fall into three categories: remote object creation, remote attribute updating, and remote

object removal.

Remote Object Discovery

Remote object discovery events are triggered when the RTI notifies the Proxy Federate

that a new instance has been created. The activities required to deal with these events is

minimal. Unlike constructor events for pure-model instances, no determination regarding

the interest in the particular piece of information is necessary. As the data provided in the

Mappings configuration constitutes the entire subscription set, the proxy will never

receive events that should be silently discarded.

Figure 6-8 below outlines the steps used to manage discovery events:

144

^̂ ŵ ^

Object Instance Discovered

V

A action

Get Mapping for
HLA Object Class

mmmmmm

v

A
.action
Smmmm

Create new Java
Instance

•

V

A action

Make associations
and store in

Cache

V

9 Are introductions used for this
class?

Yes

No

V

A action
mmmmmmmmm

Add instance to
appropriate
collection

mm

Finish

Figure 6-8: Instance Discovery Flowchart

Broadly speaking, this process is the HLA analogue of that invoked to handle constructor

events. Mapping information is obtained and used to determine the model class that

145

corresponds to object class of the H L A instance that was discovered. A n instance of the

model class is then created and associations between it and the H L A instance are made

and stored in the Cache for later retrieval.

The only new concept introduced by this diagram is the notion of an introduction. To

examine why this might be necessary, consider the central problem of the research

question these processes address: How can remote data be introduced into a pure model

that is not expecting it? Once the pure-model equivalent of the H L A instance has been

created, how is this information to be made accessible to the model?

Where and How to Introduce Remote Data

Consideration of this problem leads to two basic courses of action, which can rather

concisely be summed up as: doing something or doing nothing. Without access to remote

information it becomes impossible for an OO-model to co-operatively perform a

distributed simulation. If only local data can be located and operated on, the entire

premise of distributed simulation is disregarded. H o w information can be introduced into

a model depends rather heavily on the design of that model.

One common way that many applications access sources of relevant information is

through collections. Within some location, specific groups are defined to which entities

can be added. At some other time, a process may iterate over the contents of these groups,

drawing the necessary information. For example, consider the car race scenario. Given a

semantic understanding of the situation, it is simple to identify a Race as a container of

Cars. It is reasonable to expect that inside a Race class would be some kind of collection (a

list or perhaps a set) in which all the Cars entered in the race are stored. W h e n a discovery

event triggers the creation of a new Car representing some remote object, it could be made

accessible to the model by placing it inside this collection.

However, this approach has many significant drawbacks. Firstly, if the collection data

were private, introductions in this manner would violate encapsulation, a central O O

concept. Further, the Race class m a y implement some kind of mutator method that inserts

a Car only after it has passed some checks. Directly inserting information into a collection

circumvents this process, potentially breaching the specific rules the mutator enforces.

Building on this problem, the Race class may maintain more than one collection of

information about Car instances (perhaps a second collection stores just the driver

names). While a custom mutator method could support this by inserting valid instances

146

into the appropriate locations, the sheer volume of alternative approaches for storing

information makes direct introduction unattractive. Encapsulation allows these

considerations to be hidden. Finally, identifying where information should be stored in an

automatic fashion is extremely difficult for all of the reasons mentioned above. While this

is not a problem in the context of the first experiment (as configuration data is manually

produced), automation is still a major motivation of this research.

Having identified a number of reasons why direct introduction is a brittle solution, the

problem of alerting the model to the presence of new data remains. It feels natural or

implicit that a solution to this problem necessitates alerting the model to the existence of

new data so that it can directly take action. Given this, it seems somewhat contradictory to

suggest that the best approach for introducing remote data into a pure model is to totally

ignore it. Yet that is precisely the default action this research recommends.

like many of the methods employed in the Simspect runtime, the root of this approach is

an attempt to mimic the typical object-oriented approach. W h e n an instance is first

constructed, it is not necessarily assigned to the location where it needs to be. It is only

during later processing that the instance is introduced to the location it must reside in.

Following the previous example, when a Car instance is first created, it generally would

not reside in, or be reference by, the appropriate Race instance. At some point following

its construction, it will most likely be introduced to the race via a mutator method.

The important point to note is that these are two separate actions, and following

instantiation, no introduction has occurred. Thus, it follows that subsequent to

instantiating an appropriate model instance in response to a discovery event, it is not

actually necessary to carry out an introduction. This event occurs later, via some model-

specific mechanism. As the manner in which this occurs is dependent on the expectations

of the model itself, creating something akin to an O O version of a federate level agreement

(e.g. Cars must be introduced to a Race via a specific mutator).

In this light, such an approach makes obvious sense. However, it merely defers the

problem of data introduction, rather than actually solving it. Depending on the invocation

of certain model-specific methods necessitates a mechanism through which those methods

can be called. Further, as it is the remote model that has caused this data to come into

existence, the responsibility for ensuring that the appropriate sequence of actions

executed also resides with it.

147

While it lacks the simplicity of a direct introduction, this solution does mimic the way a

pure-00 model behaves. To find examples of this, one need look no further than the two

test-models used for experimentation. In the car race model, the Race class provides an

enterCarO method. In the sushi boat simulation, Customer instances are introduced to a

Restaurant through the seatCustomerO and seatvTPO methods, while Dish objects

are made available for consumption via the queueDishO method.

Clearly, supporting this style of introduction is not a concern during the handling of

remote instance discovery events. The full solution to this problem requires the co

operation of both discovery handling and some facility that allows remote method calls to

be identified. The conclusion to this discussion is therefore postponed until section 6.3.3

where the overlap between methods and interactions is presented. In relation to remote

data discovery events however, the default action is no action.

Before moving on it is worth mentioning that the reference implementation of the

Simspect runtime does support explicit data introductions. Although they were only used

in early experimentation (before their limitations were recognised), there are plausible

situations where such a facility is appropriate. As stated above, deferring introductions to

a later process does create the equivalent of a federate level agreement, and in certain

situations, the simplicity of automatically introducing newly created data into a collection

is both appealing and appropriate. To enable direct introductions, mapping configuration

data is annotated with the name of the variable containing the appropriate collection into

which new instances should be inserted is all that is required.

Remote Attribute Reflection

Once a local representation of remotely created and managed data has been instantiated

(and potentially introduced), some support must exist for ensuring that the values

contained within that object are updated. In a typical H L A scenario, attribute reflection

services (introduced in 3.2.3.3) are used to convey changes in attribute values. The

occurrence of these events can therefore be used by Simspect to update local values.

Figure 6-9 outlines the decision process involved in handling such events.

148

/

A
V

Get association
for updated HLA
instance from

Cache

•t>

v

9 Are there any
more attributes in

reflection?
*mmw

Yes

V

A Fetch field

mapping for next
action updated attribute mmmmmm

v

A action

Update Java field
with reflected

value
PI^ J

No

Finish

Figure 6-9: Attributes Updated Flowchart

The central task of Simspect for a reflection event is to locate the associated model data

and update its attributes with the new values. Once instance information has been

obtained from the Cache, each of the new values received as part of the attribute reflection

is applied to the associated attribute in the local object.

149

The mapping information for a particular field describes h o w the incoming data should be

interpreted. Data is delivered to the Proxy Federate as an opaque series of bytes. As such,

Simspect needs some guidance to interpret the data and transform it into a form that is

useful. For example, should the field represent another object instance, the incoming

information would be expected to take the form of an integer (as discussed in section

6.3.1). The serialisation information contained in the mapping would inform Simspect that

it must first convert the byte data into an integer, and then interpret that integer as the

handle of the object that should be applied as the new attribute value. Alternatively, the

byte data might represent a string, or a floating-point number. Either way, the mapping

contains the information necessary to convert incoming data into useful information.

Although the processes introduced above is quite simple, there is one source of potential

problems. In a typical O O setting, attribute data is often declared as being private. This

has the effect of restricting access to such an attribute to code within the immediate class.

As these values are held in model classes, access to attribute data may not be directly

possible. With regard to the reference implementation, this restriction can be subverted.

Java reflection provides facilities to enable and disable accessibility for a given attribute (a

facility known as self modification [121]). Accordingly, before any new value is assigned to

a private attribute, accessibility is enabled. To ensure that the original intent of the model

developer is adhered to, accessibility for the attribute is then reverted to its original status.

Increasingly, reflective capabilities such as those employed within the Java environment

are becoming more common. Further, efforts to provide reflection-facilitating libraries in

languages such as C + + are beginning to become available [25, 64,96].

In the absence of these facilities, there are other (more complex) approaches that could be

used. A Simspect runtime implementation could depend on the existence of setter

methods for particular attributes. However, there is no guarantee that these methods

would exist, and in the event that they did not, code generation m a y be employed to

generate them. Sadly, this solution is overly complex when compared to the ability to just

set the value of an attribute directly. Regardless, this is a problem that further work

investigating the application of Simspect methods in non-reflective environments would

need to address.

Remote Object Removal

Within the Java language (used for the reference implementation), it is not possible to

directly remove an object. A n instance will be automatically garbage collected when there

are no longer any references to it. W h e n receiving a removal notification from the RTI,

150

there is little that can be done by the Simspect reference implementation to enforce that

the associated local instance is also detached

The main action of the Simspect handler is to delete any association information about the

referenced object from the Cache. If no other objects are holding references to the Java

instance, it will be garbage collected. In languages that support manual memory

management (such as C++) local instance information could be manually deleted when a

remove event occurred.

Much discussion in this section has focused on the problems of data introduction. Just as

data must be somehow introduced to a model before it can be used, when the RTI

instructs the local federate to remove this information, the introduction must be reversed.

In situations where a direct introduction facility was used, removal is simple. The

collection to which information was added (as defined in the mapping data) is located and

instructed to delete its reference to the local instance.

For data introduced via some model-specific series of events, the solution to this problem

is the same as for introducing the information in the first place. The task of triggering

removal is left to the remote federate. Using the sushi model as an example, when a

customer decides to consume a dish, it invokes the Dish.eatO method. This in turn

removes the dish from availability, causing the currentDish attribute of the Table class

to be updated to null. Doing so removes any reference to that particular dish instance14. A

reference would still be held in the association data stored in the Cache, but once a remove

event was received, this link would also be broken, leaving the object eligible for garbage

collection. This process is entirely dependent on the expectations of the model itself, but is

the approach most consistent with the way OO-models operate.

Summary

Throughout this section, discussion has highlighted answers to the research question:

"How can the creation, removal and alteration of data within an active HLA federation

be replicated within a pure OO model that is not expecting it?"

14 This is not actually the case. W h e n a dish is eaten, a reference to it is stored in another location so that it can

be recalled when the Customer attempts to pay for their meal. However, to demonstrate the point, I have

ignored this in the example.

151

The processes employed by the handlers here complement those discussed in the previous

section to describe h o w object and attribute information is created, updated and removed

from a pure model. Where the previous section focused on events that were triggered by

the pure model itself, this section has examined those that result from actions by remote

federates.

A central topic of discussion in this section has been the approaches used for the

introduction of remote data. While useful in some circumstances, processes such as the

forced introduction of information into predefined collections are brittle, relying on the

pure model to take a particular approach for which there is no outstanding convention. On

the other hand, relying on the model-specific procedures for data introduction provides a

facility that mimics the true actions of a pure model. However, as demonstrated in the

examples used throughout this subsection, such an approach depends on the presence of

facilities that allow OO-method invocation, something that does not have a direct

analogue within the HLA. The next section discusses this problem.

6.3.3 Methods and Interactions

The use of methods (or functions) with object-oriented programming (and programming

in general) is central to partitioning work into logical, reasonably sized units. While

attribute data represents the state of a particular instance or class, methods provide the

behaviour; grouping together related actions into a single, callable unit.

Despite being a fundamental building block of all OO programming languages, the HLA

does not provide support for such a feature. Rather, it takes an alternate approach,

providing support for something similar to functions, but lacking any sanctioned

relationship to a particular object class. H L A interactions are much like functions in the C

programming language. Interactions have no association with a particular object class,

existing only in a shared, "global" space. Much like the internals of the Objective-C

programming language [54], interactions in the H L A provide a facility akin to message

passing.

Departing further from traditional programming conventions, HLA interactions can be

arranged in an inheritance hierarchy, where parameters from parent types are inherited in

child interactions. Even more distinctive is the optional nature of parameters. In

152

traditional programming convention, all parameters of a function must be provided1* any

parameter can be omitted when sending an interaction.

Is Method Support Needed in Simspect?

Given the reasons above, the ability of interactions to behave "prima facie" as an

equivalent for object-oriented methods does not exist Nonetheless, considering the

extremely important role methods play within O O , some parallel feature is required.

In a broad context, one could argue that the last statement is a falsehood, and that the only

lasting or important result of any method invocation will be the changes it makes to data

shared among a federation. According to such an argument, there would be no need for a

method support, as the only measurable results would be attribute reflections for any

relevant changed values. This is certainly true to an extent, however, it does miss the

general point of using functions in the first place.

Functions are a grouping facility. While it would be possible to contain all the logic for a

particular model within a single, sizeable, section of code, functions allow this task to be

broken down. Apart from being a primitive feature to partition an action into a set of

smaller components, methods also centralise behaviour, removing redundant code.

Removing methods from consideration in favour of focusing solely in changes in attribute

data would force each federate to understand h o w other federates intend to manipulate

their attributes. A federate that controls a car race would lose its ability to request that all

cars update their distanceTravelled at regular intervals as there would be no

mechanism to pass this message.

Beyond grouping considerations, methods also provide polymorphism. By grouping any

changes behind a function, different Car implementations can respond to the same

message in different ways, altering related attributes according to different algorithms. In

the context of the HLA, this means that one particular federate could contain an algorithm

for calculating the distance travelled in a period of time that is entirely different from that

provided by another federate. Ignoring the message-passing role of functions would

remove this ability.

The use of method-like facilities plays such a central role in the development of 00-

models that to ignore it would necessitate mainstream developers alter their entire

approach to structuring and developing them. There is a clear need for some harmony to

•5 Some languages provide support for "default" parameter values. In these situations, parameters can be

omitted, and the default value is substituted. However, the H L A does not support this feature.

153

exists between 0 0 methods and H L A interactions. Although there are significant

differences, at a fundamental level they can be tasked to serve the same purpose. This

leads to the research question driving the discussion in this subsection:

"How do object-oriented methods translate to HLA interactions?"

Mapping Methods to Interactions

Finding c o m m o n ground between methods and H L A interactions is a considerably deeper

task than it may first appear to be. If invocations of a particular method are to be

communicated to remote federates via interactions, a modicum of conceptual synergy

must exist between the behavioural model of that method and of interactions in general.

The behaviour and usage scenarios of interactions mean that there are limits on the types

of functions for which a reasonable translation can be made. Put another way: not all

methods logically m a p to interactions.

Return Types

Object-Oriented programming language functions have a return type. For situations when

there is to be no return type (perhaps on a request to perform some action, such as the

moveCarO method), a function can signal the absence of any return type by declaring it to

be void. Interactions are transient, asynchronous messages for which no ability to return a

value exists. Even if such a provision were provided, the multiplexing nature of H L A

message transmission (any number of federates can subscribe to an interaction) means

that determining the single valid source of return information would present logical

challenges.

Given this, it is quite clear that no genuine overlap can exist between methods that require

a return value, and any interaction-based representation of them. Although some request/

response mechanism could be constructed to subvert these problems, such an approach

would be seem unnatural, and would constitute too large a misrepresentation of the

purpose of H L A interactions.

Static Methods

Within object-oriented parlance, methods can have differing scopes. Instance methods are

those that are invoked directly on a single instance of a particular class. Static methods are

those associated with the class in general, rather than any specific instance.

154

As discussed later, relatively straightforward mechanisms can be constructed to associate

a given interaction with a specific "target" object instance. However, as the H L A

purposefully omits any link between data and behaviour, there is no class with which a

"static interaction" could be associated. Any mechanism to address this shortcoming

would once again be far too misrepresentative of the H L A model to constitute a valid link

between it and O O . Thus, static methods can also be ruled out as potential candidates for

communication via interactions.

Mutator and Accessor Methods

One final class of method to consider is accessors and mutators. As accessors (or "get"

methods) require a return value, they can be immediately identified as unsuitable

candidates for interaction representation. Mutator methods however fit the general profile

of "interaction friendly" method forms in that they have no return type and they are not

static.

However, some consideration must be given to the purpose of mutator methods. Broadly

speaking, they exist to provide an avenue through which external types can request

alterations to the value of attribute data (some of which may be private). In a H L A setting,

where the responsibility for changing attribute data is seen to be the sole responsibility of

the owning federate, such an action generally has no place. Further, within the Simspect

architecture, should any call to a mutator method actually affect some change, this would

be handled via the field modification processes. Therefore, despite taking a form that can

be represented as an interaction, the use case surrounding mutator methods means that

there is Utile real value to representing them as interactions.

Public and Private Methods

Object orientation introduces the concept of visibility. Each method has an associated

identifier that conveys from whence it m a y be called. Although they tend to differ slightly

between OO-implementations, visibility specification takes one of three forms: public,

private and protected. Unless a method is declared as public, it can only be invoked from

code that exists either within the same class, or within a subclass. The public interface of a

class does not include private methods. Rather, private methods are deemed to be internal

processing, relevant only to the particular class.

If it for this reason that private methods cannot be considered valid candidates for

interaction representation. The manner in which a particular class functions internally is

of no interest to external entities. In O O , these external entities are other classes (or

instances of said classes). In the HLA, these external entities are other federates. The

155

intermediate behaviour of a particular federate as it executes its desired algorithm is of no

interest to a federation. Rather, the results of that manipulation form the lasting interest.

Thus, as private methods are internals working, the need not be represented as

interactions.

On the other hand, methods that have public visibility signal that they can be called from

anywhere, and as such, linking these methods to interactions so that they can be remotely

invoked is logical. Just as external classes can invoke public methods within an OO-model,

external federates should be permitted to invoke public methods for object instances

managed remotely.

Representing Methods as Interactions

The discussion above has outlined the general form a method must take to be considered a

reasonable candidate for representation and transmission as an interaction. To

summarise, within the Simspect framework, candidate methods may only have a valid

interaction representations if they:

• Have public visibility

• D o not have static scope

• Have a void return type

Having established the requirements for a method to be represented as an interaction,

there are still a number of questions that remain.

Association with Object Data

A major difference between methods and interactions is that the latter are never directly

associated with any object data. O O instance methods however are invoked on a specific

object instance. To accurately represent this behaviour there must be some mechanism to

identify the particular object to which an interaction representing a method call is

associated. That is to say, the target of the method must be identified.

To achieve this, Simspect mandates that within an HLA object model, any interactions

that are to represent method invocations should be declared in a specific hierarchy. The

snippet below provides an example of this:

156

1 (class InteractionRoot reliable receive
2 (class MethodCall reliable receive
3 (parameter targetObject)
4 (class Race_enterCar reliable receive
5 (parameter car)
6)
7)

Listing 6-5: Method Call Interaction Hierarchy

This is the mandated hierarchy for those interactions that are used to represent method

calls. Each interaction must extend the MethodCall interaction class, and as such, inherits

the targetObject parameter. This parameter is used to associate a specific interaction

with the object instance to which its invocation refers. The value of the parameter should

be the H L A object handle of the desired instance.

Given that any federate can subscribe to any interaction it desires, there will be situations

where a method call interaction is received by a federate that does not manage the target

object instance. In those situations, only the federate that manages the object in question

is expected to take any action. While other federates can observe, no action should occur

as a result of this interaction.

In the example above, should the enterCar(Car) method be called, subscribing federates

would receive an interaction with two parameters. The targetObject parameter would be

the object handle of the Race instance on which the method was called, and the car

parameter would be the object handle of the Car instance that is being entered into it16.

This approach to making associations between data and functions is not new and has been

used in many situations for many years. A primary example of this is the Objective-C

programming language that uses a similar process to associate C-style functions with

particular sets of data [54] via a process they call "message passing."

Associating Methods and Interactions

Under the O O methodology, a unique method is identified through its signature, and the

class in which is resides. Interactions however reside in their own hierarchy, separate from

any object class. To successfully m a p between a specific method and the F O M name given

to the interaction representing it, additional information is required. Continuing the

16 As discussed in section 6.3.1, object references are serialized into the H L A object ids for the registered

instances representing the object.

157

example from above, there must be some way to associate the enterCar() method with

the Race_enterCar interaction.

This information comes in the form of mapping configuration data. Just as mapping

information defines the interesting elements of a pure model, and how they relate to a

specific H L A object model, the same data identifies those methods of interest within the

model, and the interactions to which they are mapped. Figure 6-10 shows how method

information is mapped to interaction data:

(class InteractionRoot reliable receive

(class MethodCall reliable receive

N. (parameter targetObject)
public void enterCar(Car N c a r) ^ (c l a s s R a c e _ e n t e r C a r r e l i a b l e r e c e i v e

(parameter car) ;; Type.REFERENCE

)

)

Figure 6-10: Mapping Methods to Interactions

This figure is a visual representation of the data contained within the mapping. Within the

reference implementation, the X M L mapping data states that the enterCar() method is

associated with the Race_enterCar interaction, and that the first parameter to the Java

method is associated with the car parameter in the interaction17. In this situation it is

important to note that the choice of interaction name is entirely arbitrary and the idiom of

prefixing the class name to the beginning of the interaction name is purely for illustrative

convenience.

Mapping information for a method/interaction association also must inform the runtime

of the parameter type. For example, consider the following X M L information that is taken

from configuration data used in the reference implementation:

1 <method jmethod="testcode.racesim.Race.enterCar"
2 hmethod="InteractionRoot.MethodCall.Race_enterCar">
3 <param jposition="0" hname="car" type="REFERENCE"/>
4 </method>

Listing 6-6: Method Mapping Definition

17 Java reflection does not support identifying parameters by name, only by position.

158

In this snippet it is possible to see how the first Java parameter is associated with the H L A

model parameter "car". The type information for the parameter is also specified,

providing the runtime with the necessary information to convert the value passed to any

Java method execution into an appropriate form (and back). See section 6.3.1 for more

information on how values are converted.

Method Events Within a Model

During the execution of any pure model, a large number of method execution events will

occur and be passed to the runtime for handling. Figure 6-11 below outlines the processing

that occurs when an event must be handled.

159

t> 9 Does invoked
method have a

mapping?

mmmme1

Yes

V

9 Does cache
contain target

object?

mmm
Yes

No

No

*

Do Nothing

A Find target

object in Cache
and convert to

action bytetl <y

z.
9

Are there more
parameters with
the method?

Yes, A
'^mmmm^mmimmmmimmmmmwmf \

Convert
parameter to

action bVt€U

o
Yes

Finish

A
action

" ^

Send interaction
with parameters

i
9

Does runtime
own target
objea?

mmmmm m

No
* *

Stop method from
being called locally

Figure 6-11: Method Execution Flowchart

160

As with object data, not all of these events will be of interest to the wider federation. The

first step in the decision process outlined in figure 6-11 is to filter out any methods that

should be ignored. Before moving on, a brief discussion on the three-stage process to

method filtering is necessary.

Filtering Potential Methods

As with object data, not all methods will be of interest to the broader federation, and as

such, some filtering is required. The first step to filtering out unwanted method

invocations is to ensure only those of a valid form are captured. This occurs within the

generic A O P Aspect. Consider the following snippet:

1 /** pointcut to capture all valid methods */
2 protected pointcut methodCall(Object target) :
3 execution(public !static void *.*(..)) &&
4 !execution(* *.get*()) &&
5 !execution(* *.set*(..)) &&
6 ignoreList() &&
7 target(target);

Listing 6-7: Method Capturing Point Cut

This pointcut will only capture the execution of methods that take a valid form. line 3

mandates that a method must be declared as public, non-static and have a void return type

to be captured. Lines 4 and 5 rule out any methods beginning with the "get" and "set"

idioms used to represent accessor and mutator methods18. This pointcut forms a kind of

"first pass filtering."

When the Generic Aspect captures a method execution, information of the event is passed

to the Model Facade, and then on to the appropriate handler. It is at this point that the

second level of filtering must be applied. As shown in figure 6-11, if there is no mapping

information for the method that is about to be executed, Simspect will ignore the event,

and no interaction will be sent. This filters out validly formed, yet uninteresting calls (as

interesting methods will have mapping data).

The final step in the decision process is to locate the target object on which the method has

been called. If the method has not been called on data for which H L A information exists

(either registered by the proxy, or created remotely), there is little point notifying the

18 In programming languages that have slightly different conventions for representing get/set methods, these

lines would be modified to suit that convention.

161

federation. In such cases, the method invocation is deemed internal processing, and no

action is taken.

Parameter Serialization

Once the mapping data for a particular method has been located, the parameter values

that are to be sent with the interaction should be created. Each parameter provided with

the method execution in the pure model is converted into a form acceptable to the H L A

using the mapping information. W h e n no more parameter information exists, an

interaction containing all the created data is sent to the RTI.

Method Invocation and Unowned Data

Once an interaction has been sent, the final step required is to determine whether or not

the method should be allowed to execute locally. As with field modification (section 6.3.2),

method execution events are triggered via around advice, and thus, the actual execution of

a method can be stopped from occurring at all. Whether or not this should happen

depends on who created and owns the object instance in question.

If the instance was created locally, the pure model is responsible for managing it. As such,

the method must be allowed to execute. To prohibit it from executing could introduce

errors by removing the ability of the model to manage its own data. However, if the data

was created remotely, some other federate is responsible for managing it. In such a case,

the method is prohibited from executing locally.

This approach is necessary for a number of reasons. Firstly, just as a model must be

permitted complete control over local data for consistency reasons, it must also be

restricted from potentially altering data it is not responsible for. The actions taken by the

local model in response to a particular method may differ from those of the federate

responsible for the data. Allowing the method to execute could impose an invalid

algorithm, altering field values and making them inconsistent with the rest of a federation.

By restricting method execution on unowned data, proper polymorphism is enabled.

For example, consider the flow of events that occur in response to the moveCar(double)

method being invoked on a Car instance. If the Car is a locally controlled instance, it

makes logical sense to execute the model method and to let the pure model update the

instance according to the algorithm it implements. However, if the Car is modelled by a

remote federate, the strategy used to determine how far it has moved may differ from that

used by the local model. Allowing the method to execute locally would alter the values

162

according to the algorithm implemented in the local model, not the algorithm imposed by

the federate responsible for that particular instance.

By making a decision on whether or not the local method execution should be allowed to

proceed, potential errors in a distributed model are avoided, and proper polymorphism is

enabled. Further, exploiting this particular approach also helps when attempting to build a

pure, monolithic O O model that defers certain calculations to remote participants (even

though it has no notion of application distribution). This particular characteristic is

discussed in chapter 9 when talking about authoring monolithic models to behave in

distributed simulations.

Interaction Events Received from HLA

Having seen how model method execution events are communicated to the H L A via

sending of interactions, it is now time to turn attention to how the Simspect runtime

handles such interactions when the Proxy Federate receives them.

Capturing method execution events within the pure model allows Simspect to notify other

federates of that action. In the case of unowned data, this is vitally important, and the

interaction performs a role similar to a very loosely coupled remote procedure call. The

Simspect runtime must also consider the reversal of this situation, where the Proxy

Federate receives an interaction representing a method invocation. If such an interaction

relates to a target object that is controlled locally, the runtime must be able to somehow

invoke the appropriate method within the pure model.

The provision of such a facility provides a rudimentary form of remote method invocation,

allowing O O semantics to be accurately represented within the HLA. Through this

capability, public methods can be invoked by remote federates. If the receiving entity is an

actual H L A federate, these interactions can be called to ensure a pure model behaves in

the proper manner. If the remote federate is another Simspect-based model, these

interactions are converted into method calls. H o w the local model handles such requests

(if indeed it handles them at all) is an entirely separate matter.

As with other Federate Ambassador call-back methods processed by Simspect, there is no

need for the explicit filtering that takes place when model events occur. Section 6.3.2 laid

out h o w publication and subscription is handled when the Simspect runtime starts up.

Just as any object data for which mapping information exists is both published and

subscribed to, any interaction information is given the same treatment. Given this, only

the method related interactions that Simspect has been defined to have an interest in

would ever be received.

163

With the RTI performing the bulk of the necessary filtering on behalf of the model, the

event processor that executes when an interaction is received can ignore such tasks. Figure

6-12 outlines the process taken by the interaction event processor:

164

A
action

Get Mapping for
interaction type

m Interaction
Received

A
action

Find the target
object in the

cache

9 Does proxy own
the target object?

Yes
« •

V

9
Are there more
parameters with
the interaction?

No

A
action

Invoke method
on target object
with parameters

No

Yes

Ignore

Yes

i> A
action

Convert
parameter from
byteU to value

•
Finish

1^ — MP

Figure 6-12: Interaction Received Flowchart

The first step is to locate the appropriate mapping information for the interaction. This

data is guaranteed to exist, as if it did not, the interaction would never have been

165

subscribed to in the first place. Having located the mapping information, the target object

is sought from the Cache. Due to the multiplexed nature of interaction sending in the

HLA, it is probable that over its lifetime, a number of interactions relating to unowned

data will be received. In these cases, the request is immediately ignored.

If the target object represents a locally created and managed instance, the runtime is made

responsible for invoking the associated method within the pure model. Once all the

received parameters have been converted into an appropriate form (as discussed in

section 6.3.1), the model method identified in the mapping data is invoked on the target

object, and the process is complete.

Summary

Just enough common ground exists between method invocations and interactions to allow

a palatable compromise to be found between the two. OO-models depend heavily on

methods to group behaviour and act as a request and communication facility. While

interactions fulfil a similar role within the HLA, their asynchronous nature means that

they can rarely be considered a vehicle through which guaranteed remote procedure calls

can be made.

The hybrid approach proposed in this section blends the core values of both approaches.

Method calls can be made across model boundaries, supporting polymorphism in a shared

modelling environment. At the same time, pure H L A federates can trigger behaviour

within an OO-model, while responding to or ignoring the method invocation semantics of

those models when requests flow in the opposite direction.

However, one quandary that is evident throughout this entire section is the enhanced role

federate-level agreements play (although, in this context, it is perhaps more accurate to

refer to them as model-level agreements). The approach presented here can give rise to

situations where a model has expectations of a remote federate that are never fully met (or

vice versa).

For example, the model controlling a particular Race would expect that all federates would

respond to invocations of moveCarO by advancing the distance travelled for a particular

Car instance. If the instance is managed by another Simspect controlled model, there is no

concern that the method will be invoked through the processed outlined above. However,

it is perfectly valid behaviour for a plain federate to ignore the representative interaction

altogether, thus causing some cars to never move (and a race to never end). Although this

166

likelihood of this particular scenario may be small, it does demonstrate that if the

expectations of a particular model or federate are betrayed, errors can potentially arise.

Despite this, Simspect does provide some consolation. By providing a methodology that

allows models to be developed free from the HLA, rectifying such semantic misalignments

can be achieved entirely via pure-00 code, thus reducing the time and effort required to

solve such problems.

6.3.4 Ownership Management

The topic of ownership management cannot be considered in isolation of other concerns

relating the operation of the Simspect runtime. It is intimately finked to problems like data

management (6.3.2) and method/interaction crossover (6.3.3). As such, the answer to the

research question presented at the beginning of this chapter has been split up and

addressed during discussion in the relevant areas.

That said, the general theme arising from these discussions is that the best approach to

reconciling the monolithic world-view taken by a pure model with the shared approach of

the H L A is to ignore any requests for processing data that is not managed locally. W h e n

methods are invoked on data for which a remote federate is responsible, it does not

proceed within the model itself. W h e n the proxy attempts to directly manipulate an

attribute belong to an object modelled externally, that request is also stopped from

proceeding.

External data is the responsibility of external federates, and allowing any local

modification that is not the result of an explicit instruction (such as an attribute reflection)

serves only to introduce potential errors and inconsistencies in the representation of that

data across a federation. The major benefit of this methodology is that it enables true

shared modelling to occur, and polymorphism to be implemented across a federation.

6.3.5 Logical Time

The concept of logical time is used within the H L A to guarantee the ordering of events and

provide some level of synchronization in execution among multiple federates. Time

management and advancement is a complex topic, and one that could easily warrant

considerable discussion in its own right. Determining the best way to generically support

the many potential mechanisms for representing time within a pure model is a topic on

which an entire study could focus alone. However, the primary goal of this research is to

define a broad level of solutions in the pursuit of providing an environment in which

167

object-oriented models can function as distributed simulation components. As such, an in-

depth consideration of time management is well beyond the scope of this work.

That said, time management is a central concept within many HLA simulations, and as

such, this work must present at least a rudimentary solution for synchronizing a

representation of time between a monolithic pure model and a H L A federation.

Representing Time

To this point in time, the H L A has refrained from demanding that time be represented in

any particular manner. Abstract types are used to represent time, allowing custom

representations to exist depending on the requirements of the federation. This approach,

while valuable, has also often been recognised as a significant contributor to the lack of

federate portability at an API level [107].

Although it allows absolute flexibility, leaving decisions on how to represent time within a

simulation up to the developers introduces many problems, and as such, the Simspect

runtime must introduce some restrictions.

Firstly, time must be represented by a single, static variable in some class accessible within

the model. The visibility of the variable does not matter. The demand that it must be

static, and not an instance level variable ensures that there is only one representation of

the value of time. If instance variables were allowed, some way to tell which instance

contained the appropriate value would be necessary.

Secondly, the variable must be of the primitive type double. This is not actually a

requirement mandated by Simspect, but rather by the reference implementation. Other

implementations could use an entirely different data type, but the important point is that

the type is known. This allows the runtime to make determinations on how to manipulate

the value and reconcile the model representation with that required by the H L A (by

serialising it to and from the appropriate form).

To enable time management, the runtime must be told which static variable represents

time through the configuration data it is given at start-up. By default, this information is

omitted and time management is ignored. However, if it exists, any Proxy Messages will be

sent with an associated timestamp. Further extensions to this work could investigate ways

for allowing finer levels of control over which data is subject to time-stamped updates and

which is not.

168

Managing T i m e A d v a n c e m e n t

Having established how time should be defined within a model, attention must be given to

how the advancement of time can be constrained so as to keep it in step with the rest of

the federation. With knowledge of the representation of time, this process is actually quite

simple.

Casting consideration back to figure 6-5 (in section 6.3.2), there was a provision within the

field modification handler for dealing with any attempted alterations to the variable that

represents time. W h e n such an event is captured within the model, the runtime takes an

alternate path to that normally used to handle field alterations.

The first step is to request time advancement from the RTI to the new value a model is

attempting to assign to the static variable representing time. Following this request, the

event handler stalls execution. It sits in a tight loop, continually ticking until the Proxy

Federate is notified of that the advance has been granted. At this point, the model is

allowed to continue executing, and the field modification is permitted to occur. Any time

the model attempts to change the variable representing time, it is forced to halt until the

RTI permits it to move forward.

The benefits of this approach are clear. There is no need to alter the model in any way in

an attempt to enable the distributed management of time. The model does not know that

it is being halted in order to meet the distributed time requirements, or that it is being

halted at all. The process transparently introduces HLA-based time advancement into

pure-00 models.

The solution presented here will work for any model that conforms to the desired scenario

(where time is represented as a single, static variable). However, it does only provide a

solution for a method of time advancement known as "time stepping." The H L A itself

supports other forms (such as event-based and optimistic time advancement) for which

this method provides no solution. As stated at the beginning of this section, the topic of

time management in the H L A is a complex and sizeable topic. The simplistic approach

presented here, although not ideal, will work in a number of common situations. Any

consideration for a more robust approach is a topic for further work.

6.3.6 Federate Level Agreements

The problems of federate level agreements have been highlighted throughout this chapter,

and in attempting to blend O O and H L A style approaches, Simspect itself introduces

restrictions that can fall under this banner. The simple fact of the situation is that

169

providing automated support for the individual expectations of particular federates in a

generic fashion is just not possible. The sheer number of services that can be broken as a

result of different usage patterns puts this goal beyond reach. The situation gets worse

when considering the potential combinations of those services that could be embodied in

the expectations of a particular federate.

These problems are not specific to the HLA, but rather, to software development in

general. In any situation where a model makes use of a particular API, it is creating a

dependence on that interface and demanding its existence in order to operate correctly.

Earlier subsections pointed out that although many of the methods proposed in this

chapter help bridge the usage gap that exists between monolithic O O models and H L A

based distributed simulations, these same approaches introduce new areas for potential

semantic misalignment. The experimental car race model expects remote federates to

behaving in specific ways, responding correctly to interactions that ask them to advance

instances of the Car class that they are responsible for. If a remote federate cannot fulfil

this obligation, execution will break down and error will occur.

Despite all this, the use of Simspect does provide some significant advantages for anyone

wishing to address these concerns. The Simspect methodology allows pure object-oriented

code to execute a model co-operatively with other federates. Without the need to consider

low-level H L A details, the amount of effort required to alter a model so that it conforms to

the expected behaviour is drastically reduced.

Further, a solution for dealing with the execution requirements of a legacy HLA simulation

is provided through the Execution Manager. Although the development of such a

component would demand H L A knowledge, it is only necessary in situations where an

existing H L A simulation must be dealt with. In those circumstances, it seems entirely

reasonable to expect that some H L A expertise would be available. By providing a strong

framework supporting the development of an execution manager, the burden of producing

a component for such specialised, fringe situations is reduced further.

Although it is beyond the reach of this research to support entirely arbitrary federate level

agreements in a generic manner, the approaches discussed in this chapter have outlined

how the burden of addressing such demands can be minimised.

6.3.7 Ticking and Call-back Invocation

One facet of the H L A that has yet to be discussed anywhere in this chapter is the notion of

"ticking". It is the responsibility of all H L A federates to inform the RTI when they are

170

ready to receive Federate Ambassador call-back notifications. This process is commonly

invoked via the RTIambassador classes tickO method1*. If call-backs are not periodically

processed, the federate can become starved, and in turn, adversely affect the behaviour of

other federates within the federation.

This approach only becomes a problem when one considers that a pure model has no

notion of application distribution, or that it needs to process incoming call-back messages.

Identifying points within a model that represent natural "breaks" where notifications

could be solicited is difficult to achieve in any generic fashion. However, the methodology

proposed by Simspect does provide a rather simple solution to this concern.

As discussed in the previous sections, the generic nature of the AOP Aspect means that

many events that hold no interest for the H L A are captured. Although these events are

quickly identified and filtered out by the appropriate event handlers, their volume is

considerable. As such, each of these notifications represents a perfect opportunity to insert

calls to the tick() method.

Inside the advice provided by the Generic Aspect, calls to tick() are executed before any

event information is passed on to the Model Facade. The sheer number of these events

means that the probability of starving the federate of call-back notifications is highly

unlikely. O n the one hand, the considerable quantity of events is beneficial, removing any

concern for proxy starvation. However, in high volume situations, it can also become a

burden, with solicitation of call-backs occurring too often. Although the reference

implementation follows the basic recommendation presented here, a more intelligent

approach could easily be applied (perhaps only invoking tickO once a timeout has

occurred since the last invocation). Regardless of the precise approach taken, by utilising

this by-product of the Generic Aspect, there is no need to delve into complex solutions

aimed at identifying natural pauses within a model where this behaviour can be inserted.

6.3.8 Summary

This completes discussion of the methods proposed by the Simspect runtime framework.

Throughout this section, the research questions identified at the beginning of this chapter

have been addressed, discussing the problems that arise and the proposed solutions.

Through a combination of A O P and the approaches presented here, a pure-00 model,

x9 Although the IEEE 1516 specification altered the name of this method, the general approach remained

same.

171

with no notion of application distribution, can co-operate with and participate in an HLA-

based distributed simulation.

Although the contribution of this research goes well beyond this new ability (as discussed

in subsequent chapters), the only major task that remains in relation to the runtime

framework itself is to validate that it works. Experiment One is designed specifically to

demonstrate this, taking two object-oriented models and placing them into a distributed

simulation where they complete the shared modelling of their respective scenarios.

6.4 Experiment One

Before an O O model is ready for use with the generic H L A Aspect introduced in the

previous section, a number of tasks must be undertaken. These include the creation of

deployment artefacts (such as object models), and the specification of weaving rules that

describe how the model and Aspect are combined. As referenced earlier, in a typical A O P

environment, these are all manual tasks. The purpose of this experiment is to validate that

generic A O P Aspect and demonstrate how model and infrastructure code can be created

separately. Although the manual processes of creating the deployment artefacts requires

specialist H L A knowledge, this is acceptable in this case. Later experiments will show how

to automate these parts.

Before the experiment can proceed, two documents need to be manually produced. Firstly,

a file describing the object model (FOM) for the federation needs to be created. The

contents and structure of this file are intended to be a H L A representation of the object

model used in each of the pure-00 models. Secondly, a Simspect configuration file needs

to be written. The most important part of this file is the mappings data that describes how

Simspect can convert data between its O O form and the H L A form demanded by the FOM.

6.4.1 Experimental Results

The criteria for assessing the results of this experiment were outlined in the table in

section 5.2.3. To help show that the solutions discussed throughout this chapter

successfully meet these requirements, the following items must be gathered and inspected:

• The pure model code

• The output produced by each model in its pure form

• The output produced by each model after it has had Simspect woven into it

• The output of the companion federate

172

The results for each of these criteria will now be individually addressed. For reasons of

brevity, the log files that were captured during experimentation are not provided in the

appendices. Some of them are quite large (greater than 15,000 lines) and rather than

include them in the text, they are provided as part of a supplementary package that

accompanies this work.

Criterion One: AOP-model must remain HLA free

A visual inspection of the code for each pure-00 model can quickly confirm that they are

free of any H L A considerations. To this end, the code for each model included in the

supplementary package that accompanies this work.

Criterion Two: AOP-model must execute without error

The AOP-model is the name given to the pure-model once it has been attached to the

Simspect environment. To ensure that Simspect does not cause any runtime errors, the

AOP-model must be able to run to completion. This can be verified by inspecting the

Simspect Runtime log for each AOP-model. Earlier in this chapter it was noted that the

Simspect Aspect used an "around advice" with regard to capturing the main method. This

type of advice allows the Aspect to wrap around the execution of a method and determine

whether that method should execute or not.

The code from inside the Simspect Aspect for this advice looks like this:

1 // proceed and execute the model main method
2 logger.debug("{BEFORE} main");
3 proceedO;
4 logger.debug("{AFTER} main");

Listing 6-8: Main Method Advice

This listing shows that if the model were to execute successfully, there should be no errors

in the output, and a log entry should be made after the completion of the method.

Inspecting the log files for each simulation, we can locate the following lines, indicating

success:

18201 DEBUG [main] simspect.runtime: {AFTER} main
18202 DEBUG [main] simspect.runtime: facade. onShutdownO: stopping runtime
18203 DEBUG [main] simspect.runtime: facade.onShutdownO: stopped runtime

Listing 6-9: Main Method Capture Log

173

Criterion Three and Four: Object Creating

These criteria relate to the handling of object creation in both the AOP-model and the

federation. To successfully meet these requirements, the federation needs to be informed

of all interesting data created inside the AOP-model, and the A O P model needs to create

local copies of all interesting data20 created in remote federates.

To demonstrate this, the log files for the AOP-model and the companion federate are

inspected. W h e n data is created inside the AOP-model, the constructor is captured and an

object registration is sent out to the federation. The listing below comes from the AOP-

model's Simspect log file:

DEBUG [main] simspect: {CNSTR} Instance created [testcode.racesim.Car] (hash:
16453941): HLA instance registered and cached, handle: 8

Listing 6-10: HLA Object Registration Log

Here, an instance of the Java object testcode.racesim.Car is being created and a

corresponding H L A instance is registered, the handle for which is 5. The hash value

uniquely identifies the Java instance and can be used when looking at later log entries. In

the companion federate (known as the "racewriter" federate for the race simulation), the

log shows the discovery of this instance:

INFO [main] racewriter: {DISCOVER} Instance of [ObjectRoot.Car] with handle [8]

Listing 6-11: HLA Object Discovery Log

In the reverse situation, Simspect needs to create a local proxy of any data that is created

in a remote federate. Additionally, the final results of the model execution should reflect

the presence of this remotely created data (this is shown in criteria nine). The two log

extracts below show an object (hla handle: 4) being registered by the companion federate,

and that object being discovered by Simspect. Simspect then goes on to create a proxy

instance of the class testcode.racesim.Car for that instance of the H L A object class

Ob jectRoot. Car (as identified by its hash code).

20 As defined earlier in this chapter, interesting data is data for which mapping information exists in the
Simspect configuration. As this configuration is manually created for experiment one, a user (knowledgeable
in the H L A) makes this determination.

174

INFO [main] racewriter: Registered Car [4], waiting for discover of Race

DEBUG [main] simspect: {DISCV} Discovered [ObjectRoot.Car] handle: 4, created
and cached Java instance [testcode.racesim.Car] Chash:14554415)

Listing 6-12: Remote Object Discovery Log

These log extracts show that objects created in the AOP-model are registered in the

federation, and how objects created by remote federates are discovered and cached in the

AOP-model, thus demonstrating success for criterion three and four.

Criterion Five and Six: Data Changes

As a pure model runs, changes to the data it has created need to be reflected out into a

federation. The log extract below shows Simspect capturing a change to the distance field

of the Car instance that was created by the AOP-model earlier (hash 16453941):

TRACE [main] simspect: {F-SET} Field [testcode.racesim.Car.distance] set to
[55.55555555555556] on object Chash:16453941)

Listing 6-13: Local Field Modification Log

Realising that this may be interesting information, Simspect then reflects this attribute

change out into the federation where it is noted by the companion federate:

INFO [main] racewriter: {REFLECT} Object handle [8] with [1] attributes
INFO [main] racewriter: tag: 1199961219096
INFO [main] racewriter: attribute: distance, value: 55.55555555555556

Listing 6-14: Local Field Modification Being Reflected

Once the data has been successfully introduced into the AOP-model, changes that occur

remotely must also trigger updates to the cached data. The log below shows the Simspect

federate getting updates to the distance of the Car object it discovered earlier (hash:

14554415)-

175

TRACE [main] simspect: {RFLCT} Reflection received. HLA handle: 4 attribute
count; 1 '
TRACE [main] simspect: {RFLCT} Updated Java field [distance] of Java object-
(hash:14554415): newValue = 166.66666666666666

Listing 6-15: Remote Field Modification Locally Reflected

The log extract above demonstrate success for criterion five and six by showing that

information changed locally is reflected out into a federation and that attribute changed

on remote instances is received and incorporated into the AOP-model.

Criterion Seven and Eiffht: Method Calls

As discussed in this chapter, method calls are a common form of behaviour

modularisation in object-oriented programming. W h e n providing a solution that merges

the H L A and Object Oriented philosophies, interactions are generally used as a rough

approximate for method calls. A periphery consideration here is that of data introduction.

In a pure-00 model, data is placed into the correct locations (or "introduced" into the

model) through the use of situation-specific method calls. To successfully meet criterion

seven and eight, the results collected must demonstrate the following:

• Interesting method calls inside the AOP-model are translated to Interactions and

sent to the federation where they can be acted on

• Interactions sent by remote federates that represent a method call are received by

the AOP-model and cause the appropriate method to be invoked

Data introductions fall under the second category, where a remote federate will use a

method interaction to introduce previously created object data to a model. To demonstrate

how these criteria have been met, a single scenario will be used, with extracts from the log

files of both the AOP-model and the companion federate. This scenario will show an

exchange between the two components in the sushi simulation.

Data Introduction Through Interactions

In the first case, log output from the AOP-model shows an interaction that represents a

method call being received, and that being translated into a call on the local object:

176

// AOP-model discovers remote object
DEBUG [main] simspect: {DISCV} Discovered [ObjectRoot.Customer.RandomCustomer]
handle: 4, created and cached Java instance
[testcode.sushisim.customers.RandomCustomer] (hash:11402211)

// AOP-model processed interaction representing method call
TRACE [main] simspect: {INTER} Interaction received:
type=InteractionRoot.MethodCall.Restaurant_seatVTP, parameters: 2, targetObject:
Chash:4683917)
TRACE [main] simspect: > » deserialized handle: 4 to Object: (hash:11402211)

TRACE [main] simspect: {M-INV} public void testcode.sushisim.Restaurant.seatVIP
(testcode.sushisim.Customer) on (hash:4683917)
TRACE [main] simspect: » > serialized object (hash:11402211) to HLA handle: 4

Listing 6-16: Remote Method Invocation Log

The output above shows the AOP-model discovering an instance of type RandomCustomer

and creating a local Java object for it (with the hash 11402211). At this point, the Java

object exists, the but AOP-model does not know about it. The rest of the log shows

Simspect receiving an interaction that represents the seatVIP method which introduces

the previously created object to the pure-model. The argument for that method is

deserialized and represents the previously discovered object (with the same hash). The

target for this method call is identified as the object with the hash 4683917 (the

Restaurant). Simspect then invokes the relevant method on that object, and the invocation

is captured by the Aspect (as all invocations are) as shown in the {M-INV} marked section.

This exchange shows how Simspect can successfully convert interactions generated in

remote federates into method calls and then invoke those calls locally. It also

demonstrates how data is successfully inserted into a model without necessitating an

explicit introduction. This successfully meets criterion eight.

To demonstrate how criterion seven is met, the following log file extracts show a method

call on a Java object being captured by Simspect and converted into an interaction which

is then sent to the federation.

177

TRACE [main] simspect: {M-INV} public void

testcode.sushisim.customers.RandomCustomer.newDishHasArrived
(testcode.sushisim.Dish) on (hash:11402211)
TRACE [main] simspect: > » serialized object Chash:7309193) to HLA handle- 43
TRACE [main] simspect: {METHOD}
testcode.sushisim.customers.RandomCustomer.newDishHasArrived: SKIP execution,
object not owned

Listing 6-17: Local Method Triggering Interaction Log

This listing shows the Simspect Aspect capturing an invocation of the

newDishHasArrived method on a local Java object. Realising that this method is of

interest, the parameters are serialized (with the Dish object replaced by the object handle

of the H L A instance that represents it) and an interaction is sent out into the federation. It

is also important to note that Simspect identifies that the Customer object that the method

is being called on is not locally managed. It prevents local execution of the method because

that could result in local code changing values. This means that any changes that would

have been made by the local version of that class will never execute, allowing a remote

federate to manage the data changes according to whatever algorithm it wishes to use, not

the one present in the local code.

To show that the interaction was successfully sent, the following entries are observed in

the log file for the companion federate. They show the interaction being received and the

companion federate deciding that the customer is an object it manages and that it should

consume the new dish that has arrived:

INFO [main] sushiwriter: {INTERACTION} Class:
InteractionRoot.MethodCall.RandomCustomer_newDishHasArrived with [2] parameters
INFO [main] sushiwriter: tag: 1199972107843
INFO [main] sushiwriter: param: targetObject, value: 4 {object_reference}
INFO [main] sushiwriter: param: dish, value: 43 {object_reference}
INFO [main] sushiwriter: CHOMP!! Ate dish: name=Mud Cake With Icecream,
type=null, cost=$5.95

Listing 6-18: Local Interaction Translated to Method Log

To communicate that the customer has eaten the dish, the companion federate sends a

new interaction that represents the method eat of the Dish class. Back in the AOP-model,

this interaction is received and turned into a method invocation. Unlike before, this

particular Dish instance is managed by the AOP-model, thus, the method invocation is

allowed to proceed:

178

TRACE [main] simspect: {INTER} Interaction received:
type=InteractionRoot.MethodCall.Dish.eat, parameters: 2, targetObject- Chash-
7309193)
TRACE [main] simspect: > » deserialized handle: 4 to Object: (hash:11402211)
TRACE [main] simspect: {M-INV} public void testcode.sushisim.Dish.eat
(testcode.sushisim.Customer) on (hash:7309193)
TRACE [main] simspect: > » serialized object Chash:11402211) to HLA handle: 4
TRACE [main] simspect: {METHOD} testcode.sushisim.dishes.MudCakeWithlcecream.eat

Listing 6-19: Interaction Translated to Local Method Log

These results validate that calls within the AOP-model are successfully captured,

transformed into interactions and sent out to the federation. They also demonstrate how

method invocations on objects that were not created locally are handled (avoiding any

HLA ownership problems) and show that criterion seven and eight have been successfully

met. However, perhaps most importantly, the series of events presented above provides a

clear indication that the approaches embodied in Simspect that allow a pure model and

existing federate to act co-operatively together are valid.

Criterion Nine; Results of AOP-model do not match pure-OO model

The final requirement for experiment one, the successful completion of criterion nine

requires that all the other criteria also be met successfully. Due to the presence of a remote

entity, co-operatively modelling a situation with the AOP-model, the results of executing

the model in this scenario should differ from those obtained when executing the pure-00

model by itself. The presence of a remote car in the race car simulation should affect the

results of the race. Similarly, the existence of an additional customer in the sushi

simulation should cause the distribution of dishes to various customers to change as the

remote customer consumes dishes that would otherwise be available when running the

model by itself.

To validate the successful completion of this criterion, each of the pure-00 models are run

by themselves, with their results noted. It is only after this that the models are run through

the Aspect weaver to generate the AOP-model used in the distributed tests.

The Race Simulation

The following output was captured from the two versions of the race simulation. The first

extract was taken from the pure model, while the second from the post-weaving,

distributed version of the model:

179

Pure (non-AOP) Model:

Starting race...Race Over
[1]: Fastest Car 0:10:00
[2]: Medium Pace Car 0:15:01
[3]: Slowest Car 0:30:00

Distributed, AOP-Model:

Starting race...Race Over
[1]: RemoteCar 0:05:02
[2]: Fastest Car 0:10:00
[3]: Medium Pace Car 0:15:01
[4]: Slowest Car 0:30:00

The differences are clear. When the pure-00 version of the model is run, only three cars

(those managed by the model) are entered in the race. When the AOP-model is run in a

distributed simulation with the companion federate, the results for the remote car

(programmed to be much faster) are included.

The Sushi Simulation

When considering the sushi simulation, the situation is much the same:

Pure (non-AOP) Model:

sushi: INFO Restaurant Simulation Over, No more food left!
sushi: INFO Closing time: 30.0
sushi: INFO Table Listing:
sushi: INFO ->Table 1: customer=Customer0ne(5), availableDish=null
sushi: INFO ->Table 2: customer=CustomerTwo(6), availableDish=null
sushi: INFO ->Table 3: customer=CustomerThree(2), availableDish=null
sushi: INFO ->Table 4: customer=null, availableDish=null

Distributed, AOP-Model:

sushi: INFO Restaurant Simulation Over, No more food left!
sushi: INFO Closing time: 26.0
sushi: INFO Table Listing:
sushi: INFO ->Table 4: customer=RemoteCustomerC7), availableDish=nuLl
sushi: INFO ->Table 1: customer=CustomerOne(0), availableDish=null
sushi' INFO ->Table 2: customer=CustomerTwo(6), availableDish=null
sushi: INFO ->Table 3: customer=CustomerThree(0), availableDish=null

When the pure-00 model is run, there are only three customers in the restaurant, and

each consumes some dishes. However, when the distributed version of the model is run,

the presence of the remotely managed customer (who clearly is hungry) alters the results,

consuming a large number of dishes that are then not available to the other customers.

180

From these results it is clear that criterion nine has been met, resulting in the successful

completion of this experiment.

6.5 Summary

Throughout the course of this chapter, the design, methodology and behaviour of the

Simspect runtime have been presented. Embodied in this discussion has been answers to a

number of significant research questions and a description of how pure, object-oriented

model code can work co-operatively within a shared, distributed simulation. To conclude,

the results for experiment one were presented and discussed.

The solutions presented in this chapter effectively remove the need for HLA knowledge

during the model creation process. However, experiment one relied on the hand creation

of configuration and mapping data, a process that demands knowledge of the HLA. The

next chapter discusses solutions for automating this process, in turn allowing pure models

to be automatically transformed into H L A federates.

181

Chapter 7

Automating Model and Mappings Extraction

Aspect-Oriented Programming provides a methodology that isolates the development of

crosscutting, system level concerns, thus allowing them to be implemented separately,

keeping core business logic free from such considerations. As discussed in previous

chapters, the motivations for implementing HLA-behaviour via such an approach is both

beneficial and attractive. Chapter 5 highlighted a number of serious shortcomings that

need to be addressed when pursuing this goal. Chapter 6 demonstrated how A O P could be

applied to the H L A to enable a true separation of concerns approach to model

development.

However, the advances discussed in chapter 6 still necessitate HLA knowledge to

manually identify the parts of an OO-model that may be interesting in a H L A environment

and to identify where and how H L A considerations should overlap with the model itself. In

the proposed environment, this manifests itself in the production of configuration data for

a generic H L A Aspect. Such a requirement does not fully meet the goals of this research.

Each pure-00 model contains pockets of information that are of wider interest in the

context of a distributed simulation, and accordingly, must be shared with other members

of a federation. This is data that is typically codified in the F O M of an H L A simulation. In

addition to this "interesting" data, there may be other parts of the model that exist purely

to serve implementation specific means, and by itself, has no broader interest. Among

other examples, this data might find form as intermediately variables used to cache values

during the processing of a specific algorithm.

To remove the manual process that was employed in the previous chapter for defining

both a federation object model and the other various configuration elements necessary to

allow the generic H L A aspect to function correctly, a method for automatically

introspecting a pure model is required.

The notion of automatically introspecting a simulation model in an attempt to extract

further information about its underlying data model and the services it can provide is not

new. In [129], Yilmaz describes the importance of simulation model introspection in the

context of easing the burden of reusing simulation models in situations they were not

originally intended for. Yilmaz highlights automatic model introspection as a means for

extracting information about the capabilities and requirements of a pure simulation

182

model. This information can then be used to decide if a particular model is fit for use in an

entirely different scenario. However, the approach enumerated by Yilmaz also demands

that model developers manually add this information to their models during

implementation. This requirement represents a mixing of concerns (model development

and external requirements/capabilities description) and involves a manual process, thus

rendering it mostly unsuitable within the goals of this research.

To address the problem of how model metadata and various runtime artefacts such as

configuration information can be created automatically, this chapter employs the basic

premiss of model introspection, but goes one step further than Yilmaz, seeking to

automate the entire process. Following a discussion on how this can be achieved, this

chapter concludes with presentation of the results from experiment 2, validating the

proposed automation process.

7.1 Model Introspection

The purpose of the model introspection process is to generate two forms of information

necessary for the proper operation of the generic H L A Aspect presented in the previous

chapter. Figure 7-1 shows the process used to generate this data.

183

OO-Model
Library

_^ Aspect
Weaver

Simspect Compiler

•

AspecU
Message
Holder

SOMputer

^mmm

Aspected-
Model
Library

Simspect
Config

(FED... ^

Object
Model
FED

'-zmmmmmmmmm'

Figure 7-1: Model Introduction Process

To handle the process of converting a pure-00 model into an Aspected-Model (one that

has been woven with the generic H L A Aspect from chapter 6), the Simspect Compiler was

created. The compiler takes a pure-00 model library (in the reference implementation,

this is a Java jar file), weaves the Generic Aspect into the contained code and then outputs

an updated version of that library.

Figure 7-1 introduces a new component, named the "Somputer." The object model and

configuration data generation is the responsibility of this component. It is instructed to

introspect a group of O O classes and to generate the necessary object model and mapping

configuration data based on those types.

184

To make the compilation process more efficient, the compiler will watch over the Aspect

weaving process and keep track of which classes it makes modifications to when weaving

in the Generic Aspect. Classes that are not touched by the weaver have no way of becoming

known to the Simspect runtime, and as such, do not need to be considered when

generating mapping and object model data. Rather than having the Somputer process all

classes inside the library, only those that have been affected by the weaving process are

"somputed" (tested for inclusion in configuration data generation). The Aspect J Message

Holder shown in the figure 7-1 is the reference implementation component that watches

the weaving process and then passes the information it has gathered to the Somputer.

When using A O P frameworks that do not provide these types of facilities, the Somputer

could be tasked with processing all classes in the library. While not as efficient, this

process would still generate functionally complete data.

Multiple HLA Models

Throughout this document I have referred to the need for Simspect to generate an H L A

object model from a pure-00 model. As the compiler will generate a different model for

each library it processes, it is more correct to think of these as Simulation Object Models

(SOM) rather than Federation Object Models (FOM). However, this does raise a potential

problem. The output for a single processing of a library is an H L A model document

specific to that library. W h e n creating an entire federation from pure-00 models, a

number of potentially different H L A model documents will be generated. However, when

a federation is created, only a single F O M file can be used, and its contents must be the

union of all the S O M s for the participating federates. Unfortunately, this process of taking

a group of S O M s and combining them to produce a F O M requires unacceptable levels of

H L A knowledge.

This particular problem is more one of implementation, rather than an issue with the

underlying theory. One potential solution that could be employed in this scenario would

be to extend any Simspect compiler implementation to accept multiple libraries at once

(one for each simulation intended for use within a federation). The Somputer would then

have the opportunity to generate a H L A model document based on all the pure-00 code

used in a federation, not just the subset used by a particular library. In the most recent

version of the IEEE 1516 H L A standard (1516-2008), a new feature known as "modular

FOMs" has been introduced [71]. This allows each federate to specify its own object model

fragment when it joins a federation, at which time the fragment will be used to extend the

federation-wide object model. A n approach like this could also be leveraged to solve this

particular problem.

185

7.1.1 The Somputer

The role of the Somputer is to introspect the various classes that were modified as part of

the A O P weaving process, and to produce the appropriate mappings and object model files

based on the parts of those classes that may hold some interest in an H L A context. The

specifics of how the Somputer decides what is and is not of interest are covered later in

this chapter.

There are four main components that are used within the Somputer to achieved its goals:

• Object Somputer: Processes a group of OO classes to assess if there are any

interesting attributes that should be mapped onto H L A attributes

• Interaction Somputer: Processes a group of O O classes to assess if there are

any interesting methods that should be mapped onto H L A interactions

• Object Model Container Types: In-memory representation of the H L A object

model (and associated mapping data). This is built up by the Somputer during

processing

• Renderers: Once the Somputer has finished, Tenderers convert the in-memory

Object Model into a persistent form such as configuration file or a H L A fed file

Figure 7-2 shows the internal structure of the Somputer, and the way data flows through

its sub-components.

186

SOMputer

execution
flows to

Interaction
Somputer

execution
flows to

incoming set of classes
that were altered during
the weaving process

includes
mapping data

creates model and" * *.
populates it with mappings Object

Model

Renderers

- •..

-*\

reads to generate
required files

<?xmL...> tv
Simspect
Config

(FED...

Object
Model
FED

^

Figure 7-2: The Somputer

Each set of classes given to the Somputer is passed through the Object Somputer and then

the Interaction Somputer. These two sub-components will assess the level of interest in

187

the fields and methods of the classes, populating an in-memory Object Model hierarchy.

Once this is complete, a group of renderers is given the task of converting that hierarchy

into the relevant persistent forms. In the case of the reference implementation used during

experimentation, this includes the production of an X M L configuration file (containing

mapping data) and a H L A object model fed file that can be used to create a federation.

If the reference framework were to be implemented with a different set of technologies,

additional renderers could be created to fulfil any further requirements (perhaps the

generation of middleware code for an environment with less reflective capabilities than

Java).

7.1.2 Storing Mapping Data

The Object Model container types created as part of the somputation process and used by

the renderers are designed to capture two types of information:

1. Information necessary to build a complete HLA obj ect model

2. Information about how the parts of that object model are related to the pure-00

model

As processing unfolds, the Somputer attempts to build a HLA object model that mirrors as

much as possible the hierarchy present in the pure-00 model. Figure 7-3 shows how the

container types link up generated H L A object model data with the pure model types.

Figure 7-3 contains two sets of class hierarchies. On the left, the structure of the pure-00

model shows a total of four classes, each with varying numbers of attributes. On the right

is the H L A model being built by the Somputer. Mappings data types work by linking

together the relevant H L A type from the H L A object-model, and the Java type that

represents it in the pure model. Once the Somputer has decided that a particular class or

attribute should be included in the H L A model, it will create a mapping to maintain this

association. W h e n finished, this information is written to a configuration file by a

Tenderer. From here, the Simspect Runtime can reconstitute the data during a distributed

simulation.

It is also important to note that not all classes or attributes that exist in the pure model

have a representation in the H L A model. The Somputer will only add an H L A class or

attribute to the model when it has decided that the entity will be of interest in a H L A

setting. In Figure 7-3, only some of the attributes from the OO-model are present in the

H L A model, and one class is missing entirely.

188

01

c
a
to

2
u
<u
J?
O
• •

m
i
h.
<y
>-
3

01

189

The reference implementation uses Java reflection types in the mapping data to identify

parts of the pure-00 model that relate to the H L A types. In environments where reflective

capabilities are not directly available, it would be the responsibility of the developer to

create some kind of analogue that could be used to uniquely represent parts of the OO-

model hierarchy.

The general theory for method mappings is similar to that of object mappings. However,

unlike object mappings, the inheritance hierarchy implemented in the H L A model is not

designed to mirror the hierarchy in the pure-00 model. Much like object classes, H L A

interaction classes have an inheritance hierarchy, with parameters of a particular class

being inherited by all its children. This is quite different from the structure of methods

that exist in O O . Also unlike O O , H L A interactions have no association with a particular

object class. Interactions are designed to function more like transient messages.

To provide the kind of semantic connection necessary to have interactions represent

method calls, a special interaction class is defined. This class has a single parameter that

identifies the target object of the method call represented by the interaction (discussed

previously in chapter 6). W h e n generating an H L A object model and method mappings,

the Somputer will create individual interaction classes that extend from the predefined

type, and which provide additional parameters according to the parameters defined in the

O O model.

190

Figure 7-4: Method Mappings

In Figure 7-4 there are two methods that the Somputer has deemed of interest (the

process used to make this decision is discussed later in this chapter). For each of these

types, an interaction class with the appropriate additional parameters has been created

and method and parameter mappings have been generated to provide the necessary

linking information. For more information on how method calls work, see section 6.3.3.

7.1.3 Storing Type Information

To allow the Simspect runtime to properly serialise and deserialize information between

its local representation (in this case, Java) and its H L A representation, type information

must be recorded in configuration data. Type conversion information is maintained in

each attribute and parameter mapping. In the reference implementation, the type

191

information is represented as a simple enumeration. The table below outlines each of the

values and h o w they correspond to the Java type in the reference implementation.

Enumeration Value

BOOLEAN

CHAR

BYTE

SHORT

INTEGER

LONG

FLOAT

DOUBLE

STRING

REFERENCE

REFERENCE_ARRAY

Table

Java Type

boolean

char

byte

short

int

long

float

double

java.lang.String

Any non-String object

Arrays, Lists, Sets

HLA Type

boolean

char

byte

short

int

long

float

double

chart]

int (object handle)

int[] (object handles)

7-1: Simspect Enumeration Mappings

W h e n performing conversion at runtime, Simspect uses a set of encoding helpers provided

with the RTI implementation. In this way, any type (such as an integer or String) is

converted into the opaque byte array format necessary for use with the HLA. Object

references are passed via the H L A as the handles of the objects that are being referenced.

Where the Java type is any sort of collection (array, list, etc.), an array of integers

representing the handles of the referenced objects is used. As discussed in the previous

chapter, Simspect forgoes any of the advantages that the IEEE 1516 specification provides

with regard to specifying the structure of complex data types. While these additions are

valuable, they do partially defeat the purpose of the H L A as individual parts of those types

cannot be independently published or subscribed to.

Having shown how mapping information is structured, it is now time to discuss the

decision processes used by the Somputer when constructing an H L A object model (and

associated mappings) from a pure-OO model.

7.2 Introspecting Objects

W h e n a class is passed into the Somputer, each directly declared (non-inherited) field is

inspected to see if it contains any attributes of interest.

It is important to note that the somputation process is not quite as simple as passing a

series of classes through the object and interaction somputers and then rendering the

192

generated data at the end. The Somputer has a tendency to jump around from class to

class based on the data it finds and the requirements those findings create.

For example, to keep the object hierarchy consistent, if a particular class is adjudged to

contain an interesting attribute, all the parent classes of that class are forcefully somputed

and added to the generated object model. In some cases, the Somputer will have

previously processed these classes and decided that they have no interesting attributes

(and thus skipped them). However, the requirement to maintain the object hierarchy

overrides this, forcing the class to be processed and added to the model. This particular

process is especially important where abstract parent classes are used to provide a

c o m m o n base to children. Direct instances of these classes can never actually exist, leading

one to reason that they do not need to be present in the H L A model. However, including

them means that other federates can subscribe to the type and thus hear about an entire

subset of classes without having to subscribe to each individual one.

Consider the Sushi simulation: external federates might be interested in hearing about the

presence of any dessert dishes that enter the simulation. Although the Dessert class

contains no interesting attributes of its own, including it allows federates to get hear about

all the concrete dessert dishes without needing to know each and every concrete type that

exists.

It is these types of requirements that mean the Somputer jumps from class to class when

processing and classes that have previously been defined as not interesting may actually

end up in the generated model. This also means that the algorithm used to process a class

is quite complex.

7.2.1 What Makes an Attribute Interesting?

As stated throughout this chapter, the only attributes included in a generated model are

those deemed "interesting" from the perspective of the HLA. To provide some background

to the problem, this section will discuss the basic concepts of what defines an attribute as

interesting in an H L A context before delving into the specifics of the algorithm used to

automatically determine this status (the Object Somputation algorithm).

When creating a pure model, the process of designing and building an object-oriented

class has to take into consideration many factors. Although the realisation of a particular

class will contain attributes that are specific to the entity being modelled, in many

situations there will also be a number of other data values included purely to support the

implementation model chosen, to make some processing simpler or more efficient, or to

193

make the application easier to maintain. Put another way, each O O class may contain a

number of attributes that do not relate to the entity being modelled.

In the previous chapter, a manual process was used to subjectively identify these types of

attributes and separate them from those that form part of the core entity being modelled.

Core attributes had mappings configuration data and object model entries created for

them by hand, whereas non-core attributes were ignored. The purpose of the Somputer is

to automate this identification process. Thus, some definition of how a core or

"interesting" attribute is recognised is needed. To this end, the Somputer assesses each

attribute for worthiness according to the following process:

Field Not
Included 9

m.

9

Is the Field
Static?

No

V
Is the Field
Public?

Field
Included

Yes

No

V
Do Accessor
Methods Exist?

Figure 7-5: Field Assessment

194

As shown in figure 7-5, if the field is static (a class-level attribute) it is immediately ruled

out as uninteresting. In the HLA, all data is directly attached to a single instance of an

object class, no notion of a static variable exists. Although it is entirely possible that this

may be model data worthy of inclusion within the F O M , there is no clear mechanism

through which it can be represented in the HLA. For this reason it is ruled out as useable

data.

Following this, the access level declared for an attribute is taken into consideration. If the

field is marked as public, it is immediately accepted. As other model elements have access

to the public fields of another class, such an attribute could be validly assumed to have

some interest throughout the model. If this were not the case, and the attribute were for

internal processing purposes, it would most likely have been marked as private.

It is widely recognised as good OO practice for instance variables to be assigned private

access, with accessor and mutator (get and set) methods provided as the means through

which to gain and alter their values. Accordingly, if an attribute is marked as private or

protected, further processing must be done to assess if the field is interesting or not. The

approach taken by Simspect is to search through all the declared public methods of a

class looking for accessors.

The reference implementation makes use of the Java programming language, and in Java,

the c o m m o n idiom is for accessors to take on the form getXxxO and mutators to take the

form setXxxO, eg. The field Car would correspond to getCarO and setCar(Car-). If a

field does not have a corresponding accessor method, it is deemed uninteresting and

skipped. Without an accessor there is no way other model elements could extract its value,

and thus, one can infer that it is not meant to be part of the public object model.

Edge Cases. Algorithm Improvement and Scone

The presence of a mutator method is not considered when accessing an attribute.

Although such a method would allow other model elements to change the value of the

attribute, this type of cross entity interaction is foreign to the HLA. The strict ownership

rules present in the H L A specification mean that it would be rare for one federate to

directly alter the value of an attribute of an object instance created by a different federate.

Although the specification allows for the transfer of attribute ownership (and with it, the

privilege to update the value of an attribute created elsewhere), these facilities are

colloquially accepted to be among the least frequently used parts of the H L A specification.

For reasons of scope, ownership considerations have been omitted from this work.

195

However, the crossover between the HLAs ownership rules and Object Orientation would

be an interesting area for further research.

Also not considered by this algorithm are synthesised variables. That is, values that are

externally presented as a single field (through the presence of an accessor and mutator)

but are implemented internally using more than one variable (or perhaps even none at

all). It would be a reasonable approach to make the assumption based on the public

interface of a class that the presence of a public accessor signals some useful piece of data

is being provided (and should form part of the corresponding H L A model). However,

determining when that value changes, and accordingly, when the H L A federation should

be notified of such a change, presents significant problems.

Some way to identify which attributes provided the backing data for synthesised variables

would first be required. Along with this, some understanding of how to capture changes to

these variables is also needed. If the variables reside in different object instances, the

relationship between these objects must also be considered. Further, some consideration

of how best to handle public attributes whose synthesis depends purely or partly on non-

attribute backing (perhaps the result of some algorithm) is also needed, along with some

understanding of how to programatically assess when changes occur in such a situation.

Given these problems and that synthesised variables are a relative edge case, their

consideration is deemed beyond the scope of this work.

As with any automated process, the approaches in this chapter could result in the

misidentification of interesting or non-interesting fields. Without explicit knowledge of

the model designer's intent, it is difficult to make correct decisions in all situations. The

primary goal of this work is not to develop a foolproof algorithm for automatically

identifying fields that should form part of a H L A F O M , but rather to demonstrate that an

automated approach is possible and to show how the process of linking O O and H L A

models can be achieved after those decisions have been made. Any algorithm that is

developed could be continually refined over time. Experimentation discussed later in this

chapter has shown the approach above to be effective in test cases that are designed

specifically to cover a number of c o m m o n and potentially tricky O O scenarios. Deeper

investigation and expansion of these approaches is a fertile place for further research to

begin, and any enhanced algorithm could be easily integrated into the broader framework

introduced by Simspect.

196

7.2.2 The Object Somputation Algorithm Explained

Having discussed h o w an individual field is assessed to decide if it should be included in

an H L A object model, some attention must be given to the process involved in deciding

whether an entire class is interesting or not. Classes deemed as interesting need to be

included in generated H L A object models, while those that are not are left out.

There are several factors that define whether or not a class is interesting. The primary

measure of interest is the presence of attributes that are themselves considered

interesting. However, a class that contains no interesting attributes of its own might still

be required in the generated object model. To keep the structure of the H L A model as

close to that of the O O model from which it was derived, classes that would individually be

deemed uninteresting may still need to be present. Maintaining the inheritance hierarchy

present of the O O model is one possible reason for this. As general O O theory would

support, H L A federates subscribing to an object class within a F O M may receive object

discovery notifications for instances that were registered at a more specific type. Although

such federates cannot access the full state of the object (as they as subscribed only to a

parent class) they still receive notification. For example, a federate wanting to know about

the existence of all Vehicles in a simulation might wish to subscribe to a Vehicle class. If

the Vehicle class has no interesting attributes it would normally be left out of a model.

However, it m a y have subclasses that are interesting. Given this, it is perfectly reasonable

to expect that a given federate may wish to subscribe to the Vehicle class (despite it being

uninteresting when assessed individually) and therefore, it is important to carry the same

hierarchies over from an O O model into a generated H L A model.

The entire process required to assess a particular class is quite extensive. The primary

decision tree is provided in Figure 7-6, however, this figure references subsequent

diagrams where the process branches off.

197

Begin Processing
(forced = false)

A Attach Class to
Model

.action < s e e F i* 7- 9>

Yes

Yes

Yes

9
Has class been

processed
before?

I No
A
action
Smmmm

Put class in local
"completed" store

$ "

/

A
Generate In-

Memory Object
action* (see Fig 7-7)

<7

A
Store Generated
Object Class

action Local|Y
mmniPiPP! mmm

9
Does class have
any "interesting"

fields?

No

Yes

Skip to
Next Class

A

< J - ^

£ No

9 Is this a forced
somputation?

*

No

9
Is class needed
for Inheritance?
(see Fig7-8)

No

Figure 7-6: Object Somputation

198

Valid Types

The first step is to assess if the class represents a valid type. This check is designed to stop

undesired or "unmappable" types from entering the generated model. The exact list of

types that fall into this category will be dependent on the implementation platform in use.

In the reference implementation (which makes use of Java) there are a number of types

that are excluded from being valid.

Interfaces are excluded because they do not represent a concrete type, and therefore

instances of it cannot be directly created or enter into the simulation. Java Enumerations

are also excluded as they do not form part of the object class hierarchy. It makes little

sense to subscribe to a particular enumeration. The more common use would be for

attributes to take the value of an enumeration, rather than having federates subscribe to

an enumeration type21. This is the same reason primitive types (or their Java class

analogues) are also excluded.

Finally, certain classes are also selectively ignored as dictated by the platform. For

example, in the reference implementation, any classes that make up part of the Java

Development Kit itself are ignored. The goal of Somputation is to introspect and generate

a model from user developed code, not that of the JDK. Further, any class with a main

method is also excluded as this signals that the class most likely only exists for the purpose

of starting the application, not for use as part of the model. The particular types that fall

into this category could easily be contracted or expanded according to the requirements of

the situation or platform. The salient detail is to recognise that it may be necessary to

perform this type of examination.

In-Memorv Objects

Assuming the type is valid, a check is made to see if the class has previously been

processed. This is necessary to avoid problems with infinite looping in situations where

there is a circular dependency between two types. If the class is marked as having already

been processed, it is skipped. Once it has been determined that this is the first time a class

is being assessed, information about the class is placed in the "completed" collection. This

collection was used in the previous check and placing an entry in here now (even though

the class has not been completed) avoids the infinite loop problem. If the class has been

21 The IEEE 1516 standard provides specific support for enumeration's as data types. There is an obvious
overlap that could exist here. As mentioned earlier, this thesis only concerns itself with the H L A 1.3 standard.
Further work could explore how to realise such an environment with the IEEE 1516 standard.

199

processed, execution skips to the part of the algorithm where suitability for the final object

model is assessed.

The final product of initial processing is an in-memory representation of the generated

object model that can then be rendered to a file. All valid classes that are parsed produce

in-memory representations, regardless of whether they are considered interesting or not.

However, only those classes deemed necessary are patched into the final object model

(this is discussed shortly).

To create the in-memory representation, the class is introspected, searching for any

interesting features. In the reference implementation Java reflection is used, in an

environment with less introspective capabilities, the raw source code for a class could be

parsed to obtain the necessary data. In-memory representations are generated for each

valid class. The information extracted is then used to determine if the class is interesting

or not.

As shown in Figure 7-7, the first step is to create an ObjectClass object for the class. This

is the container that stores Simspect reflective information. It has a collection of

interesting attributes and a link (initially empty) to its parent class and any child classes.

The somputation algorithm will iterate through each attribute declared by the class and

will judge whether or not each is interesting using the approach presented earlier in this

chapter. Inherited attributes are ignored. They are process when assessing the class in

which they are declared.

For each interesting attribute an AttributeClass is created to store field metadata.

Included in this data is the type of the field. For each type there is a mapping that defines

the relationship between the O O type and the H L A representation (see Table 7-1). If the

type of a field is a REFERENCE, the class referred to must also be assessed so as that logical

connection can be maintained in the H L A representation, ensuring that the type is present

in the generated F O M . As such classes are needed by this interesting attribute, that class

must appear in the final object model, so the forced flag (discussed below) is set to true

and the type is assessed. The same is true for REFERENCE_ARRAY types, however in this

case it is the base type of the collection - the type of objects stored in that collection - that

is assessed. In this situation, the reference implementation has a particular shortcoming.

Due to the constraints of Java reflection, the base type of a collection can only be

determined for arrays. For collection types such as Sets and Lists, it is not possible to

determine this information. In this particular scenario, a source-level parser could

potentially be used to overcome this limitation.

200

A
action

Create
ObjectClass

with empty class
mapping

<h

mt*immm>i***

V

\

A Find al!

interesting fields
action <S€ e F«9 7"5> HRPWMCTmWIU nmuiiip.|jviw»'

9
Are there more

interesting
attributes?

wm=zsm*mmt

<] — '

Return
ObjectClass

MPpnpmRr
A
s
action

Create
AtfcributeClass
metadata for field

v

A
action

Determine Type
of Field, record in

mapping

«pi

V

L_H2 i 9
Is Type

REFERENCE or
REFERENCE ARRAY?

Y€S

V
Yes ? Has Field Type been Somputed?

N o

action
Smmrnm

Sompute
Attribute Type
(forced=true)

/

Figure 7-7: ObjectClass Generation

201

Determining Interest in a Class

Having generated an in-memory representation, the Somputer now has access to all the

Simspect-relevant meta-information about a particular type. This data can now be used to

decide if the type should be included in the final H L A model or not. There are many ways a

class can be adjudged as relevant, and the first step is to look at its contained fields.

During the previous step, AttributeClass instances will only have been created for field

deemed interesting (according to the method presented in section 7.2.1). If a class contains

at least one interesting attribute, it is attached to the generated object model (this process

is discussed below).

Should a class not contain any interesting attributes, two further checks must be made. As

highlighted earlier, even if a class is not mdividually interesting, it might still need to be

present in the H L A object model. W h e n processing of a class begins, a flag is provided that

signals whether the class should be forcefully attached to the final object model or not.

This is used in situations where the algorithm deems a class as necessary despite the lack

of interesting attributes, such as when it is specified as the type of an attribute in another

class. If the provided flag is switched on, the object is attached to the model without

question. Assuming that this is not the case, the final check establishes whether the class is

needed to maintain the appropriate inheritance hierarchy.

Abstract Inheritance and Uninteresting Classes

The final check involves traversing the inheritance hierarchy of the particular class. The

process only occurs when the class itself either has no interesting attributes of its own or is

not subject to a forced somputation. In this situation, all the parent classes of the given

class are inspected to see if any are both abstract and contain interesting attributes.

If a class has no interesting attributes of its own, it generally has no place in the HLA

model. Indeed, if this check is even run it indicates that up until this point the Somputer

has not been able to find a compelling reason to include it. However, if a non-interesting

class has a parent that is abstract, and that class contains interesting attributes, it is

necessary to include the entire hierarchy in the final model. The reason for this is that an

abstract parent with interesting attributes indicates that the interesting part of the child

class is the specialisation it provides. Consider the Sushi simulation used in

experimentation. Interesting information is held in the Dish class, which is abstract.

Although the child classes that represent the actual dishes have no interesting attributes of

their own, the fact that each dish is represented by individual classes indicates that the

type of class is itself interesting information. Indeed, it is the way I teU that two given

202

dishes are in fact different types of food. The class specialisation itself is an interesting

piece of information making each type worthy of inclusion within the F O M . Any time an

abstract class with interesting attributes exists, this type of situation can arise.

NO

Class {X} Not Class 1X1 Needed
Needed in Model in Model

A A A

No Yes Yes

9 Does Parent

pass Abstract
• inheritance check? wmmm. m^^m^mm^K'

i> A
action

Get Parent class
of given class {XI

I
mmmmmm J

9 Is parent class

abstract?

Yes

V

9 Has it been
Somputed yet?

Yes i
Hi
No

A S o m p u t e the
Parent class

^action flowed-false)
\I.HIIPIIHIIHHII.IIIIJ

V

9 Does Parent

contain interesting
• attributes?

F
A
.action

Run Abstract
Inheritance check
on Parent of {X}

Figure 7-8: Abstract Inheritance Assessment

203

file:///i.hiipiihiihhii.iiiij

The abstract inheritance check searches for this particular situation. If it is found, the

child type is deemed to be interesting based on its specialisation, and is forced into the

final object model.

Attaching a Class to the HLA Model

Once it has been determined that a particular class is interesting (by any of the means

previously discussed), that class must be marked as part of the generated model. Figure

7-9 shows how this is achieved.

t> 9
Does Parent Class

of |X} already
exist in model?

*mm
Attach class {XI to

Object Model
No

action

Use ObjectRoot
as parent class

IPPPPW«W^
A
action

Yes

Sompute Parent
class and use it
(force=true)

mmmmm J

A Set parent of

class 1X1 to found
action parent

<J-
/

Finish

action

Add class {XI to
flat store in
Object Model

Figure 7-9: Attach Class to Object Model

204

As mentioned earlier, in-memory representations are generated for all classes that are

Somputed. Each ObjectClass has within it a slot to identify its parent. This is used to

note where in the H L A object model hierarchy a particular class fits. At the conclusion of

somputation, any classes that do not have a parent are excluded from the final model. If a

class is deemed interesting, it would have been patched into the model and its parent

would have been identified.

At the beginning of somputation, an instance that represents the Object Root of the HLA

model is manually created. This type is considered analogous to the parent of all classes in

the O O model (in the case of Java, a class explicit exists in the form of the Object type).

This manually created class is used as the parent for any classes that directly inherit from

the parent of all types.

If the parent OO class is not the object root equivalent, the next step is to see if the

Somputer has already processed the parent. If it has been, the resulting in-memory type is

set as the parent of the incoming type and processing finishes. If the type has not yet been

processed, Somputation of the parent O O class will take place. Further, this Somputation

will be forced. To maintain the proper inheritance hierarchies across the O O and H L A

object models, all parent types of any class that is deemed interesting will be included.

This forced Somputation achieves this.

Note that this is distinct from the actions that are involved in the abstract inheritance

check. That process simply checks to see whether or not a type should be included in the

final model (which m a y trigger this attachment operation). This particular activity

involves walking the inheritance tree for a type that has already been deemed interesting.

Also note that each class is only fully-processed once. The forced Somputation of a parent

class that has already been processed will only trigger its attachment to the model. As the

in-memory representation has already been generated, that particular step it skipped.

7.2.3 Completed Object Model

Following the complete Somputation process, a full hierarchy of interesting classes will

have been built up underneath the manually created Object Root. However, during this

process, another form of calculation is also occurring. Once each class has been inspected

for its level of interest with regard to the attribute data it contains, its methods are also

scrutinised to determine if they are suitable for mapping to H L A interactions.

205

7.3 Introspection Methods

The way in which the Simspect framework represents methods in the H L A was presented

in section 6.3.3. Having finished assessing a class to extract attribute information,

attention turns to each of the methods it declares. The process used to assess whether or

not a method is suitable for mapping to an H L A interaction is introduced in Figure 7-10:

206

9 Has class been
processed
before?

Begin Processing
Class

No

9 Is Type Valid?

9
Are there more

declared methods
to process?

mmmmmmmmmm.

No

Yes

9
is Method
Worthy?

(sec Fig 7-11)

£"
A
action

Create
InteractionClass

with empty
Mapping

9
Are there more
parameters to

process?

"a;
mm
I Yes

A
s;
action

Create Parameter
Mapping and
store Type

& A
Set MethodCall
as parent of

action" Interaction Class - c > A
^action

Skip to
Next Class

A

No

Skip to Next
Method

A

_.

Add Interaction
Class to Object

Model

Figure 7-10: Interaction Somputation

207

The first two steps are the same as for assessing a class for attribute data. If the class has

been processed for interactions before, it is skipped. If the class does not represent a valid

type, as judged by the same criteria used previously, it is also skipped.

Each method declared but not inherited by the class is inspected to see if it is worthy of

inclusion within the F O M . Should it be judged that the method meets all the appropriate

criteria (discussed below), an empty InteractionClass and associated MethodMapping

will be created. The mapping stores a reference to the pure model method and to the

interaction class metadata that will represent the H L A interaction. Each of the parameters

to the method is then evaluated.

Creating Parameter Mappings

For each parameter of an interesting method, a new mapping is needed. This mapping

records the parameter name2 2 and the mapping type of the parameter (see table 7-1 in

section 7.1.3 for valid types). There will inevitably be some parameters whose type is

another pure-model entity class. Accordingly, if instances of these entities are going to be

referenced by parameters, the model types need to be mapped to the H L A and represented

in the F O M . If the type of a parameter has not been Somputed for attributes, or has not yet

been included in the F O M , its presence as the type of a parameter will cause this to occur.

The parameter assessment process will invoke the object somputation algorithms for the

particular type and will set the force flag to true, thus ensuring the type is mapped into the

generated F O M .

The final step in the method assessment process is to locate the parent interaction class to

attach the newly created InteractionClass metadata object under. As proposed in

section 6.3.3, all method calls exist in a flat hierarchy under a single parent: the

InteractionRoot. MethodCall interaction. Once this is completed, computation moves

on to assess whether or not the next method is interesting.

Identifying Interesting Methods

Section 6.3.3 introduced the characteristics of methods that can be mapped to H L A

interactions. Figure 7-11 shows the process used to determine whether or not a method

falls into the "interesting" category and necessary for inclusion within the generated FOM.

22 In the reference implementation, the name is actually auto-generated based on the position of ti
argument. This is due to a limitation in Java reflection whereby attribute names are not available at runtime.

208

1> 9 Is return type
void?

Begin Processing
Method

No

Yes

V

9 Is method a set
method?

No

Method Is
Interesting

A

V

9 Is method a
static method?

^mm

No

V
Yes 9 Is method a

public method?

Yes Method Not
Interesting

A

No

Figure 7-11: Method Suitability Assessment

As HLA interactions represent transient messages, there is no concept that can easily be

mapped to a return type. Any method that does not have a void return type is immediately

discounted as uninteresting. If the method begins with "set" it is adjudged to be following

the common idiom of representing a mutator method23. In the HLA, strict ownership rules

define who is and is not allowed to alter attribute values, and as such, mutator methods

are also ruled uninteresting.

As there is no concept that can be directly mapped to class (static) data or methods in the

HLA, these methods are also ruled out. Finally, non-public methods are not considered

suitable for presence in the F O M as they designate methods whose access is restricted and

suggest strongly that the method in question is used for internal model processing rather

than providing some facility intended for use by other components.

23 The specifics of h o w mutators are represented is dependent on the implementation platform. In the

reference implementation, the s e t X X X O form is used. In other platforms, this would be replaced by the

appropriate representation.

209

7.4 Rendering Configuration Data

The result of the processes introduced in sections 7.2 and 7.3 is a complete, in-memory,

H L A object model. However, at this point there are two puzzle pieces that are needed to

execute a Simspect powered H L A simulation that have not yet been created. Firstly, the

F O M must exist in a federation description document that can be used by the RTI to

define the model for a federation. Secondly, Simspect requires a mapping configuration

data file so it knows what data to take action on and what to ignore.

The final step in the automatic generation process it the conversion of the in-memory

object model into these necessary simulation artefacts. Figure 7-2 introduced the concept

of a Renderer. It is the job of an individual Renderer to take the in-memory object model

and generate some required artefact from it. The Somputer itself contains an arbitrarily

sized collection of Renderers who are invoked before it exits. In the reference

implementation, on of these produces the object model file in O M T format, while the other

produced the Simspect X M L configuration file. The exact number and purpose of

Renderers is entirely dependent on the implementation environment in use.

7.5 Experiment Two

In section 5.2.3, the requirements for the second experiment were presented. The first

experiment focused on validating the behaviour of the Simspect framework and the

algorithms it used. However, when running the first experiment it was deemed acceptable

for the F O M and Simspect configuration file to be hand written, thus allowing an

experienced H L A developer to apply some semantic reasoning when deciding what parts

of the pure-model should or should not be included in the H L A model. The purpose of this

experiment is to validate that the automated process presented in this chapter constitutes

a valid replacement for that manual process.

To assess whether or not this has take place, experiment one must be rerun with the

exception being that no hand crafted articles can be used. Both the object model file and

the Simspect configuration file must be automatically generated. Removing manual

intervention from the process completes a workflow that allows an H L A simulation to be

generated from a pure-model without the requirement of H L A expertise. The pure-00

code must be given to Simspect and it is expected that the Somputer and runtime

environment handle all H L A needs.

210

Criteria One: Artefact Automatically Generated

This criteria is considered to be met by ensuring that no manually created deployment

artefacts were used when running the experiment. The pure-00 code was first passed to

the Simspect Compiler. It is the job of the compiler to weave the Simspect Aspect into the

0 0 code, and now, to generate the necessary artefacts. Previously, a manually created

F O M and mappings file were copied into the directory before execution. This time, the

generated files were used.

As a further form of validation, the generated files can be inspected for differences that

exist compared to the ones used in experiment one. The two generated files have been

included in the supplementary materials that accompany this work. When inspecting

them, evidence of the automation process can be seen in the areas of the files that deal

with interaction parameter names. As noted earlier in this chapter, due to a limitation in

the Java reflection framework, it is not possible to extract the names of parameters to a

method. Consider the following:

1 (class Restaurant_pri.ntMe reliable timestamp
2 (parameter param0) ;; type=Type.BOOLEAN
3)

Listing 7-1: Generated Parameter Names for Methods

In the hand created FOM, the name of this parameter is known to the developer and is

thus included in the file. However, this information is not available to the Simspect

compiler, so the parameter is given the default name of "paramO." The same situation

occurs in the Simspect configuration file:

1 <method jmethod="testcode.racesim.Race.enterCars"
2 hmethod="InteractionRoot.MethodCall.Race_enterCars">
3 <param jposition="0" hname="param0" type="REFERENCE_ARRAY"/>

4 </method>

Listing 7-2: Generated Parameter Names for Methods

Another interesting difference exists in the generated FOM and configuration file. The

compiler has identified the printMe(boolean) method of the Restaurant class as

interesting. This is an example of a false-positive. This method meets all the functional

requirements of a method as discussed in section 7.3, however, applying some semantic

understanding of the purpose of this method leads us to determine it is not necessary for

inclusion in the HLA object model (hence its absence from the model in experiment one).

This highlights the inevitable limitation of the an automated process and is an excellent

211

starting point for further work investigating how such instances could be reduced or

eliminated.

Criteria Two: Pure-model must remain HI A frep

As with experiment one, the pure-model code has not been edited in any way to allow this

experiment to run. The code for the model is included in the supplementary package that

accompanies this work to allow its inspection.

Criteria Three: Results of AOP-model do not match Pure-OO model

The final criteria is the same for experiment two as it was for experiment one. If all the

internal operations are successful, then the results of the model that is run in an HLA

federation with the companion federate should be different from those obtained when

running the pure-00 model by itself. Should the model and the companion federate be

interoperating correctly, the companion will effect the simulation and the final output

generated should reflect this. The companion federate is the same one that was used in the

previous experiment. Accordingly, the impact it has on the Race and Sushi simulations

should be the same.

The Race Simulation

The following output was captures from the race simulation when run by itself and when

run in an H L A federation with the companion federate:

Pure (non-AOP) Model:

Starting race...Race Over
[1]: Fastest Car 0:10:00
[23: Medium Pace Car 0:15:01
[3]: Slowest Car 0:30:00

Distributed, AOP-Model:

Starting race...Race Over
[1]: RemoteCar 0:05:02
[2]: Fastest Car 0:10:00
[3]: Medium Pace Car 0:15:01
[4]: Slowest Car 0:30:00

The impact of the companion federate is evident by the presence of an additional car in the

race.

The Sushi Simulation

Below are the results generated when running the Sushi simulation by itself and in an

HLA federation with the companion federate:

212

Pure (non-AOP) Model:

sushi: INFO Restaurant Simulation Over, No more food left!
sushi: INFO Closing time: 30.0
sushi: INFO Table Listing:
sushi: INFO ->Table 1: customer=Customer0ne(5), availableDish=null
sushi: INFO ->Table 2: customer=CustomerTwoC6), availableDish=null
sushi: INFO ->Table 3: customer=CustomerThreeC2), availableDish=null
sushi: INFO ->Table 4: customer=null, availableDish=null

Distributed, AOP-Model:

sushi: INFO Restaurant Simulation Over, No more food left!
sushi: INFO Closing time: 26.0
sushi: INFO Table Listing:
sushi: INFO ->Table 4: customer=RemoteCustomerC7), availableDish=null
sushi: INFO ->Table 1: customer=CustomerOne(0), availableDish=null
sushi: INFO ->Table 2: customer=CustomerTwo(6), availableDish=null
sushi: INFO ->Table 3: customer=CustomerThree(0), availableDish=null

The results once again show that the companion federate has an impact on the simulation

through the inclusion of a customer that does not exist when running the model by itself.

Further, this customer also consumes dishes, meaning the distribution across all other

customers is altered.

As the companion federates are the same as used previously, these are the same results

that were witnessed in experiment one. This demonstrates that the automatically

generated object model and Simspect mappings file are valid. The companion federate is

able to influence the final results in the same was it was when the object model and

Simspect mappings information (representing the specification of which parts of the

model are "interesting") were hand crafted. As the automated process removes the need

for any HLA-specific knowledge to be used when converting the pure-00 model into an

HLA aware version, the goal of this experiment is realised.

7.6 Summary
This chapter has presented a method for identifying data and methods within a pure-00

model that may be of interest in the context of an HLA simulation. The process used is

entirely automated, thus removing any mandate for HLA experience of specialist

knowledge, a major force driving this research. The second experiment demonstrated that

the process produced all the necessary artefacts that allowed both test simulations to

proceed as they did in the previous chapter when these items were hand crafted. The

successful completion of this experiment demonstrates that the automatic generation of

an HLA model from pure-00 code is possible using the techniques developed as part of

213

this research. As a final form of validation, the next chapter describes a final experiment

that seeks to combine an existing H L A simulation with pure-00 code.

Chapter 8

Air Transport Operations

The previous two chapters have discussed an environment and methodology for allowing

pure-00 models to operate within H L A federations through an automated process.

Experiments one and two have demonstrated the operation of these proposals and

validated that they meet their goals as introduced in Chapter 5. This chapter presents the

final experiment of this research: the integration of a pure-00 model into an existing H L A

simulation, requiring it to interact fully with the other federates and co-operatively model

its scenario.

8.1 The Air Transport Operations Simulation

The Air Transport Operations (ATO) simulation is a scenario used as a teaching aid in an

H L A course offered by the University of Ballarat (UB) [119]. It describes a simulation that

models Aircraft as they fly between various Airports. The three main federates that

participate in the simulation are:

The Aircraft; Manager (ACM) federate. The ACM is responsible for creating Aircraft

objects and updating their state as they fly around the simulated environment. It sends

and receives interactions when other federates need to control its actions. For example,

when an Aircraft wants to land at an Airport, it sends a Request Land interaction, and

when the Airport is ready for it, a Land interaction is sent back.

The Air Traffic Control (ATC) federate is responsible for all the airports and associated

Runways. It controls which planes can land at the various airports and when, potentially

telling aircraft to loiter, divert or land.

The Flight Manager (FM) federate is responsible for deciding where each plane should

fly to, h o w long it has to wait between flights and when maintenance is required. W h e n a

plane has landed, the F M issues it directions as to what to do next.

The implementation used in testing was completed by UB students and it used as part of a

suite of test simulations for the Portico open source RTI. It includes a fourth federate that

provides a GUI-based visualisation of that activities of the federation. This GUI, along with

log file data will be used to determine whether or not the pure-00 model placed in the

simulation is behaving appropriately.

215

8.2 Experiment Three

In section 5.2.3, the requirements and qualification of success for experiment three were

introduced. To assess whether or not the experiment was successful, a log of the output

generated by the pure-00 model was collected and a visual confirmation of the expected

behaviour was captured through the visualisation tool provided with the A T O federation

implementation.

The final experiment involves the existing ATC, ACM and FM federates operating in a

federation with a pure-OO model. The role of the pure model is to create and manage a

new airport. If successful, evidence that the F M federate is directing traffic to this new

Airport and that the A C M is piloting Aircraft to the proper location should be found. The

code for the pure-model is provided in the supplementary package that accompanies this

thesis.

8.2.1 Results

Criteria One: O O - m o d e l runs without error

The first success criteria requires that the pure-00 model execute with the A T O federates

without error. This is confirmed with a visual inspection of the execution process. Further,

success in the second and third criteria imply the success of this one.

Criteria Two: ATO entity information discovered and used in OO-model

During execution, information created by the existing A T O federates must be made

available to the pure-00 model. To ensure this is happening, some basic log statements

are placed within the pure model. The capture below demonstrates this working:

[tim@pc-00244:simspect-1.0]$ Java -cp out.jar testcode.ato.Freedonia
***** Register Freedonia Airport
***** Open the Airport!!!
awaitDepatureCLLA114,FREEDONIA)
clearedCLLA114) destination=FREEDONIA
PINGED Pinged aircraft [LLA114] from [FREEDONIA] Cdistance=1.9914730784Z83132)
requestLandCFREEDONIA, false, LLA114)

Listing 8-1: Freedonia OO-Model Log Output

In this fisting, the "awaitDepature" and "cleared" entries come from the Aircraft class.

The code in those methods just generates the logging statements you see. In the Simspect

configuration file, those methods are mapped to the appropriate A T O F O M interaction

216

classes. These captures show that the pure-model is receiving these interactions and that

the appropriate methods are being called.

Criteria Three: Actions in OO-model affect simulation state

The final criteria for experiment three requires that actions within the pure-model have an

affect on the broader simulation. In the previous listing, the "PINGED" entry was generated

by the main method in the Freedonia class that controls the pure-model Airport. It

continues in an loop, finding all the Aircraft that are close to it and sending them the Ping

interaction. When an Aircraft gets this interaction, if the source is the Airport it wants

to land at, it sends back a Request Land interaction. In the pure-model, that method is

mapped to the requestLand(String,boolean,String) method of the Airport class.

The implementation for that method looks like this:

public void requestLandC String airportDesignator,

boolean emergency,

String aircraftDesignator)

{
// only take action if the request was meant for us

if(airportDesignator.equals("FREEDONIA") — false)

return;

System.out.printlnC "requestLand("+airportDesignator+", "+emergency+

", "+aircraftDesignator+")");

// find the aircraft and let it know it can touch down

Aircraft aircraft = Aircraft.findAircraft(aircraftDesignator);

if(aircraft != null)

aircraft.land(aircraftDesignator);

}

Listing 8-2: Request Land OO-Model Method

As you can see, the code in this method just locates the appropriate Aircraft instance

and calls its land(String) method. For reference, the implementation of that method in

the pure-model is as follows:

217

public void land(String aircraftDesignator)

{

// Implemented by ACM federate. Calling this method triggers an interaction

// that is responded to by the legacy HLA federate

}

Listing 8-3: Land OO-Model Method

Simspect captures this method call and turns it into the appropriate interaction, which is

then sent out over the H L A and picked up by the A C M federate which begins landing at

the Airport. This successfully shows the effect of an action internal to the pure-00 model

being realised in the wider simulation. The following is a screen capture from the A T O

federation visualisation utility.

This application is just another H L A federate and it shows the Freedonia airport being

detected and displayed at the correction location, along with an Aircraft en-route to it.

This demonstrates the successful completion of all requirements for the final experiment.

218

8.2.2 Remaining Problems

Although the final experiment is largely a success, it is not an unqualified one. A number

of problems were encountered when attempting to successfully integrate a pure-00 model

and an existing H L A simulation. This section discusses these issues.

Modification to Existing Simulation

One of the main problems with integrating any existing H L A simulation with pure-00

models developed using Simspect is the federate-level agreements Simspect itself imposes.

In the A T O federation, these problems manifested themselves primarily in the space of

interaction classes.

As discussed in Chapter 6, to align interactions with method calls, Simspect expects a

specific interaction class hierarchy. In reality, the hierarchy can be done away with as all

that is really important is that interactions come with a parameter that identifies the H L A

object handle of the instance an interaction relates to; the targetObject. There are a

some problems here.

Firstly, not all interactions are in reference to a particular HLA object. In these situations,

the semantic disconnect between the purpose of H L A interactions and O O methods means

that these scenarios cannot be supported. In the case of the A T O federation however, this

is not a concern. All relevant interactions can are targeted at a specific instance.

Interactions that ping an Aircraft, tell it to land, loiter, divert or await departure to a new

destination are indeed all aimed at a particular Aircraft instance. Interactions that

request a landing or take-off are aimed at a particular Airport. So while the expectations

of Simspect may present problems in some situations, in such cases the problem is a

product of H L A / O O conceptual misalignment that restricts Simspect's operation.

However, in the ATO implementation being used, the lack of a parameter specifying target

object information was a problem. Although all interactions did have an identifying

parameter, it was typically couched in terms of Aircraft or Airport designators (a string

name). The Simspect reference implementation requires an object handle formatted as an

integer. This is largely an implementation concern. Support could be added to the

Simspect configurator to allow users to manually specify what parameter contains the

target object information and how that information can be turned into an H L A object

handle, but the path of least resistance in the experimental setting was to modify the

existing F O M and simulation to include the object handle in all relevant interactions. This

also necessitated manually tweaking the generated Simspect configuration file to map

methods to the correct H L A interaction classes. As with the other experiments, the source

219

code used in this experiment is available as part of the supplementary package that

accompanies this work.

Semantic Mismatch

I have already presented one solution in which the semantic mismatch between O O and

H L A has presented problems when integrating pure models and legacy simulations.

However, these problems spread further. During the development of the pure-model,

some "awkward" approaches were necessary to develop a functional component. For

example, consider the requestLand(String,boolean,String) method in pure model

code. It requires the manual conversion of an Aircraft designator into an Aircraft

instance. In the O O world, a reference to the Aircraft would be passed directly to the

method, but as an interaction is not meant to be a direct analogue to a method call,

niceties such as this are not considered and the code must manually find the appropriate

entity from a central store.

Another example of some awkward development comes in the form of direct data

introductions. Unlike situations where pure-00 models are interacting with one another

via the H L A (and thus can all impose the "OO way" on all simulation participants), data

that is created in remote A T O federates must be manually introduced to the pure-model.

In this experiment, the direct introductions facility described in 6.3.2. This speaks to the

research question:

"How can pure models, that know nothing of application distribution, be created to

depend on and work co-operatively with other remote models?"

To work co-operatively with the other federates, their remote data must be introduced into

the model. However, the necessity of direct introductions places requirements on the way

the pure-model must finds and stores its data. Where more sophisticated approaches

could be used in the other experiments (such as encapsulating all Cars within a Race

instance, that itself has additional information), when interfacing with a legacy H L A

model, the full benefits of O O are not available. Although annoying, this flaw is not fatal,

and workable solutions can indeed be developed, as the success of experiment three stands

in testament to.

HT A Knowledge Not Entirely Eliminated

As one can already understand from the previous subsections, when integrating a pure-

model with an existing H L A simulation, it does not appear likely that one totally eliminate

the need for H L A knowledge. Federate-level agreements that are different for each and

220

every simulation must be dealt with. This brings to mind one of the research questions this

experiment was meant to address:

"Can the definition of federate level agreements be expressed without requiring manual

intervention?"

Without any formally specified, machine interpretable standard for specifying federate

level agreements such as the problem mentioned above, the H L A lacks the vocabulary to

express federate-level agreements, and as such restricts any attempt to define a generic

solution. It is impossible to develop a solution for a situation whose requirements are

unknown. Federate level agreements can only be solved with manual, human

interpretation and intervention.

Another example that arose during experiment three was how the pure-00 model would

fit into the A T O federation with regard to execution requirements. The A T O federation

expects all federates to follow a specific sequence of synchronization points, performing

predefines actions at each one. To deal with this facility, a custom execution manager had

to be developed and used. Simspect supports the ability to dynamically specify a class that

encapsulates such requirements, but the development of such a component again requires

H L A knowledge.

8.3 Conclusion

Overall, the final experiment can be considered a success. A pure-00 model was able to

co-operatively interact with an existing H L A federation with only minimal intervention.

Although this does not meet the full goals of this research (to eliminate the requirement of

H L A knowledge entirely), it is reasonable to expect that when interfacing with a legacy

H L A simulation, that some form of H L A knowledge be available. Having addressed the

final research questions, the next chapter will conclude with a discussion of what this

research has achieved and flag some areas that have strong potential investigation.

221

Chapter 9

Conclusion

As discussed in the early chapters of this thesis, a vast range and number of tools are used

for simulation purposes. From custom-built tools specialising in helping users compose

simulations for specific scenarios, to general purpose tools such as spreadsheets. While

each type of tool used for simulation in the wider business community presents

advantages and disadvantages, a c o m m o n shortcoming among all is a lack of

interoperability. In a setting where numerous differing tools are all used for similar

purposes, the ability to leverage investments made in the development of simulation

models, independent of those tools, is severely restricted.

Distributed simulation brings with it many benefits. From providing an environment in

which interoperability can be increased to allowing larger and more complex scenarios to

be played out, there is much to gain from allowing existing tools to leverage distributed

simulation technologies. However the prohibitive costs that are associated with

distributed simulation and the limited supply of these skills puts the potential benefits of

distributed simulation technologies beyond the reach of those using commodity tools for

simulation purposes. A solution to this particular problem is considerably attractive and

has the potential to enable far richer analysis in such an environment and to increase the

overall usefulness of both these tools and simulation in general.

However, the sheer volume of different tools used within the wider business community

restricts one's ability to define a solution that can readily be slotted into them all. Each

tool has its own particular way of representing models and its own way of interfacing with

its underlying simulation library. In such a heterogeneous environment, locating or

defining a general conceptual solution that could possibly satisfy all approaches becomes

practically impossible. Chapters 2 and 3 discussed this problem, proposing that at some

level, Object-Oriented programming would form a lowest common denominator for the

largest number of environments. A solution at this level would provide something that has

the potential to be readily integrated into many simulation tools, both those existing and

yet to be developed.

Interfaces to distributed simulation technologies exist in the most common OO

programming languages, but leveraging these technologies introduces the requirement of

possessing specialised skills, which in this research comes in the form of H L A

understanding. The barrier to entry presented by the H L A is steep, and although Object

222

Oriented programming skills are mainstream and widespread, any solution that revolves

around this community gaining a full and working understanding of the H L A is

unreasonable.

This thesis proposes that the development of a solution that could allow pure-00 models

to be automatically rendered as H L A components would form a significant contribution

towards making distributed simulation more readily accessible in domains where its use

thus far has been negligible. Identifying and solving the problems from the level of O O

through the H L A advances the current state of the art and presents a solution that can be

readily integrated into existing simulation tools, opening the gate to a richer simulation

ecosystem.

Chapter 4 highlights some potential solutions that could be leveraged in pursuit of this

goal. Of these, two primary candidates stood out in the literature: The Model Driven

Architecture (M D A) and Aspect-Oriented Programming (AOP). Although initially

appealing because it proposes to allow users to express their problems in their own terms,

the M D A was discounted due to numerous practical problems preventing the full

realisation of its ambitious intent. Conversely, while not as grand in vision as the M D A ,

A O P is a solution for which many practical implementations already exists and which

supports mission critical services in a number of domains. Allowing platform specific

concerns such as the H L A to be separated and isolated from the development of other

parts of a system, A O P was demonstrated to be the most promising path.

AOP alone does not totally solve the problems this research seeks to address. While the

H L A portion of a system can be quarantined, it must still be developed. Further, someone

must identify the points within a model that are of interest in the H L A context and

describe how the OO-model maps onto the HLA-model. Each of these activities require a

high degree of competence with the H L A and associated technologies. A O P does not

eliminate the need for H L A expertise, it just contains it.

The focus of this research is on that particular gap, proposing an environment that

leverages A O P to reduce the scope of H L A concerns and then presenting methods for

automatically extracting the intent of an OO-model as it relates to the HLA. The Simspect

framework is the realisation of these goals, comprising an AOP-based environment and

methods for identifying and extracting pieces of an OO-model that might be of interest in

an H L A context.

Chapter 6 described how an AOP framework could successfully isolate HLA logic, allowing

a model to be developed and described in pure-OO. The activities of this model were then

223

intercepted at runtime and selectively passed to the H L A based on manually identified

mapping points. The first experiment validated that this framework met its goals, but still

required manual intervention which necessitated H L A knowledge. This advancement

demonstrated h o w the proposed concept was technically valid, moving the focus to

methods for introspecting O O models in an effort to automatically extract information on

interest when connecting with the H L A

The second experiment looked at methods for identifying the relevant information within

an O O model, allowing the manual processes of generating an H L A object model and

identifying and defining the various mapping points to be automated. Chapter 7 discussed

and validated these approaches, demonstrating the process of automatically developing an

H L A federation from pure-00 code, allowing the previously manual processes to be

removed. This achievement is central to the goals of this research. The value that such a

facility presents represents a significant contribution to the current state of the art and

acts as a facilitator, bringing the benefits of distributed simulation within reach of

commodity tools.

Further Work

The final experiment involved the integration of a newly developed OO-model with an

existing H L A simulation. While successful, this chapter highlighted some of the challenges

that remain when considering the underlying semantic disconnect that exists between O O

and the HLA. Throughout this thesis, a number of areas that could be considered fertile

grounds for further exploration have been identified. Primary among these is exploring

ways to specify federate-level agreements such that they can be captured in an automated

fashion or used without necessitating a deep understanding of esoteric H L A details.

Unfortunately, the HLA standard as it currently exists allows federations significant

enough flexibility in the definition of these details that it becomes extremely difficult to

develop a genetically applicable solution. Although this flexibility is a great benefit to H L A

developers, the lack of any solution to codify these agreements in explicit enough detail

(and in a machine readable manner) restricts any solution. Further investigation into ways

to solve this problem would help allow the methods presented in this thesis to become

even more effective when integrating O O and H L A models.

A second area where more research would be beneficial is in ways to extend the proposed

framework to cover the complex-type enhancements that were introduced in the IEEE

1516 version of the H L A standard. Although the use of these types does goes against some

of the philosophical benefits of selective interest in an object model, their use has become

quite prevalent. Questions about h o w best to identify types within an OO-model that

224

would be best suited to complex types rather than H L A object classes would be an

interesting study and one that would allow the integration of this work with even more

existing simulations.

Finally, the work presented in this thesis can aid in the integration of modelling and

simulation functionality into existing operational systems used within the military.

Facilitating an easier transition into the network-centric world of distributed simulation

helps to gain further benefit from these systems by allowing them to be used not only for

operational purposes, but also more directly in simulated training exercises.

Summary

Through the proposed framework and methods presented in this research, a solution that

has the potential to significantly reduce the cost and knowledge required to leverage

distributed simulation technologies in commodity tools often used for simulation in the

wider business community has been achieved. This step forward places within reach of

these tools the potential for a much richer tool set allowing more complex and deeper

analysis to be produced, which could in turn provide those who rely on such information a

greater understanding of the effects their decisions will have.

Through the proposed framework and validated in experimentation, this research presents

a solution that has the potential to significantly reduce the effort and knowledge required

when developing H L A models, making access to the HLA, and the benefits distributed

simulation provides, available to a much broader audience and able to be more readily

integrated into the tools people commonly use for simulation purposes.

225

Appendix A

The Race Car Simulation

The Race Car simulation is designed to be a structurally simple pure-00 simulation. It

contains no inheritance hierarchies and only minimal aggregation and composition. It is

the first barrier used when assessing any solution that proposes to allow the automatic

rendering of OO-models as H L A simulation components, ensuring that at least the basics

are working.

The class structure of the Race simulation is shown in Figure A-i:

C
class

Race

name: String

distance: double

elapsedTime: double

over: boolean

cars. List<Car>

results: List<Result>

startRace(doubJe)

c
class

Car

name: String
topSpeed: double

distance: double

moveCar(double)

0..'

c
class

Result

car: Car
position: int

time: double
M>mM,"r»U.II"illHMI

Figure A-l: Race Car Simulation Class Diagram

The simulation has a single Race, inside whieh any numher of Cars can be present. When

the simulation starts up, Car objeets are manually instantiated and entered into the race

(three of them in the case of the experiments used in this research). The race is then

started via a call to startRaceCdoable). This method loops over each of the Cars m the

226

race, continually calling their moveCar (double) methods. The original parameter to

startRaceO specifies the increments time should be advanced in.

To keep things predictable, thus making experimentation easier, the model used to

advance Car objects through the race is simple. As soon as the race starts, each Car is

assumed to be travelling at its maximum possible speed. Therefore, the car with the

highest top speed will always win. The Race iterates over each Car, asking it to advance

itself a little bit further in time each iteration. W h e n the distance of the Car surpasses the

distance of the race, a new Result object is created, recording the position of the Car

with regard to the field and the current elapsed time. Once all Cars have passed the finish

line, the race is over and the results are printed.

The Race Car simulation was designed to support experimentation by allowing remote

components to insert new cars into a race and to control their advancement according to

whatever model the remote entity chose.

227

Appendix B

The Sushi-Boat Simulation

The Sushi-Boat simulation is designed to be more structurally complex than the Race Car

simulation. It contains many common object-orientation constructs such as abstract

classes and inheritance trees of reasonable depth. It also contains considerable levels of

aggregation and composition, more accurately representing a real-world model.

Figure B-i shows the majority of the classes involved in the pure-00 sushi simulation. In

each simulation, there is a single Restaurant. Inside each Restaurant are a number of

Tables at which Customers can be seated The model is meant to simulate a sushi-boat or

sushi-train style restaurant, where dishes continually revolve past each table, at which

point the occupants can choose to take and consume the dish, or let it go. The run()

method of the Driver class performs the necessary logic to move Dishes from one table to

the next (which is done purely through accessor and mutator methods).

When a dish arrives at an occupied table, the resident Customer is notified through the

newDishHasArrivedCDish) method. At this point, they can choose to consume the dish

by calling its eat(Customer) method (passing themselves as the Customer), or it can

ignore the dish. W h e n a Dish is eaten, it is added to the Customers dishesPurchased set

so it can be tallied at the end. The Driver continues to move dishes around the restaurant

until they have all been consumed, at which point the simulation ends and information is

printed describing the dishes and the valuation of the dishes each customer consumed.

The Sushi-Boat simulation is designed to support experimentation by allowing remote

components to act as Customers, specifying their own algorithm for how food is chosen.

The PredictableCustomer implementation is also used for experimentation, as it

consumes dishes in a repeatable way. Placing a remote Customer into the simulation will

affect the flow of dishes to the other customers, thus altering the final distribution of

dishes.

228

f

0)

E
o
l/l
3
u 0
Si
(6
w
U "O
X-

OL

•«

£
Ul

Ci
T3
01
>
k_
w
<
10

X
£
to
Q

o> c

o
k.
V
E
o 4~>

l/l

3
u E
o
TO
c
td

3
K
w

f
l/l

Q
"O
V
>
V.

<
l/l

ra X

5
OI

c

%
V
M
0'

N

1/1
A
1
U
^

E
ta I_

OI

Q
VI

t ««

U
c
o '5

3
;• £

£
Ml
3

»H
1
CO
OI
1_

3
OI

/ ^

A
A

w
V)

<
V
V

or 10
0)
Q

C

- ^

in

*"
11

OI

u
"C
Q.
<U

a 3
1/1

^

:

0 —
-

1

A
E
(0
«i

v.

u T3

15
a*
c
ai
w
17

—0

in

a*
L.
Q.

OI
Ck
3
l/l

LOIJJ /

229

Appendix C

The Air Transport Operations Federation

The Air Transport operations is a simulation scenario used during practical exercises as

part of a commercial 2-week course offered by the University of Ballarat. The basic

premiss of the scenario is that it models the operations of a number of Aircraft as they

transit between a groups of Airports.

The listing below describes the main structure of the F O M used in the ATO federation,

starting with the object classes:

1 ;; Object Classes
2 (class ObjectRoot
3 (attribute privilegeToDelete)
4 (class Position
5 (attribute x)
6 (attribute y)
7 (attribute altitude)
8 (class Airport
9 (attribute designator)

10)
11 (class Runway
12 (attribute airportDesignator)
13)
14 (class Aircraft
15 (attribute designator)
16 (attribute model)
17 (attribute state)
18 (attribute destinationAirport)
19 (attribute currentAirport)
20 (attribute groundSpeed)

21)
22)
23)
24
Listing C-i: Air Transport Operations Object Model Classes

and the interaction classes:

230

25 ;; Interaction Classes
26 (class InteractionRoot
27 (class Aircraft
28 (parameter targetObject)
29 (parameter aircraftDesignator)
30 (class AwaitDeparture
31 (parameter destination)
32)
33 (class TakeOff)
34 (class Cleared)
35 (class Ping
36 (parameter airportDesignator)
37)
38 (class Loiter)
39 (class Divert
40 (parameter reason)
41)
42 (class Land)
43 (class Landed)
44 (class Turnaround)
45 (class Repair)
46 (class Dead)
47)
48 (class Airport
49 (parameter targetObject)
50 (parameter airportDesignator)
51 (class RequestLand
52 (parameter emergency)
53 (parameter aircraftDesignator)
54)
55)
56)

Listing C-2: Air Transport Operations Interaction Model Classes

Three main federates make up the core of the simulation.

The Air Traffic Controller manages the various Airports that inhabit the simulation.

This federate is responsible for sending ping notifications to Aircraft as they come into

range of the airport and for handling takeoff and landing requests from the Aircraft in an

orderly fashion.

The Aircraft Manager handles the take-off, in-flight and landing operations of a

number of Aircraft. This federate is primarily responsible for moving the plane from one

point to another, and controlling takeoff and landing.

231

The Flight M a n a g e r is responsible for Aircraft after they land, putting them in for

maintenance and deciding when they are ready to be put into action again and where their

next destination is.

Unlike the previous two models, the ATO is not designed with the intention of supporting

experimentation by allowing extension in some pre-considered manner. This simulation

exists as a legacy H L A model, the implementation of which was developed by the Author

and student Michael Fraser during their time at the University of Ballarat.

There are a number of ways that the ATO federation could be extended:

An OO-model could be designed to represent a particular Airport whose algorithm

for deciding who can land, and when, it different from the first-come, first-serve

style of the legacy implementation.

An OO-model could be designed to represent an Aircraft, modelling its path and

motion as it travels between airports.

An OO-model could be designed to replace the Flight Manager federate, controlling

how long an Aircraft may remain operational before maintenance is needed and the

order of Airports on its route.

For experimentation in this thesis, the first option was chosen. A pure-00 model

instantiates an Airport and has it automatically entered into the simulation. It then

performs all the operations for that Airport that the A T C federate performs for the other

airports. The Flight Manager sees it when it is registered with the simulation and is able to

direct Aircraft to it.

The figure below shows the object model that was created and fed into Simspect:

232

class

*

Position

x: double

y: double

altitude: double
< ^

class

Aircraft

LP
V. class
^ I I I M M I I

Runway

airport: String

C
Airport

j"£ designator: String

requestLand(String,boolean,String)
mmmmmmrmmmmmmm IJIIIUHH \mm*m\/

designator: String

model: String

state: int

destinationAirport: String

currentAirport: String

groundSpeed: double

awaitDeparture(String,Strlng)

takeOff(String)

cleared(String)

ping(String.String)

land(String)

landed(Strtng)

Figure C-l: Air Transport Operations Class Diagram

Running this apphcation with Simspect requires the custom tweaking of the generated

mappings configuration file. The primary reason for this is that the pure-00 model must

interact with an unchangeable legacy H L A simulation. W h e n integrating in this way, some

manual mappings work, requiring H L A knowledge, can be considered reasonable. If a user

is integrating with an H L A simulation it is fair to expect that some H L A expertise exists

and that can be put to minimal use by ensuring the mappings are correct This knowledge

however is not needed w h e n actually developing the pure model.

The pure model works by having a main simulate method call methods on the local

Aircraft instances. Simspect sees that these are not local objects and triggers the

ma p p e d interactions to be sent. The same pattern is used in reverse for incoming

interactions which in turn trigger methods on the local Airport instances. The pure-model

implements the bodies of these methods as appropriate.

233

A fourth legacy federate was also used in experimentation. This federate acts as a

visualisation of the simulation, allowing confirmation that the pure-00 model's Aircraft

was entering the simulation and that it was moving from Airport to Airport.

234

Appendix D

Generic Weaving Rules and Advice
Below is a listing of the code for the Generic Aspect. Note that some code (such as that

used for logging) has been omitted in the interest of brevity.

/*
* Copyright 2007 Distributed Simulation Lab, University of Ballarat
*

* This file is part of simspect.
* For license details, see the LICENSE file.
V
package simspect.aspects;

import java.lang.reflect.Field;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;
import org.aspectj.lang.reflect.MethodSignature;
import org.aspectj.runtime.reflect.FieldSignaturelmpl;

import simspect.runtime.ModelFacade;

public aspect SimspectExtractor

{
//
// INSTANCE VARIABLES
//

private ModelFacade facade;
private Logger logger;

//

// CONSTRUCTORS
//

public SimspectExtractorO

{}

//

// POINTCUTS
//

protected pointcut ignoreList() :
!within(hla..*) &&
!within(simspect..*) &&
!within(com.lbf..*) &&
IwithinC org..*) &&
!within(testcode.exp..*);
//!within(testcode..*);

/** pointcut to get the main method */
protected pointcut mainMethod() :

executionC public static void main(String[])) &&

ignoreListQ;

235

/** pointcut to get all consturctors */
protected pointcut constructors(Object newObject) :

initialization(public *.new(..)) &&
ignoreList() &&
target(newObject);

/** pointcut to get all field sets */
protected pointcut fieldSet(Object target, Object newValue) :

setC * * . *) & &
ignoreList() &&
args(newValue) &&
target(target);

/** pointcut to capture all methods */
protected pointcut methodCall(Object target) :

execution(public [static void *.*(..)) &&
!execution(public * *.get*Q) &&
!execution(public * *.set*(..)) &&
ignoreList() &&
target(target);

//

// ADVICE
//

////////////////////////////
// CAPTURE: main() method //
////////////////////////////
// Capture the main method so that we can instantiate the runtime
void around() : mainMethod()

{
try
{

// create the facade and runtime //
this.facade = new ModelFacadeO;
this.logger = this.facade.getLogger();

// inform the facade of simulation beginning //

this. facade. onStartupO;

// proceed and execute the model main method

proceedO;

// tell the facade that things are done for
this, facade .onShutdownO;

}
catch(Exception e)
{

e.printStackTraceO;
System.exit(1);

}

// make sure that we get out of here //

System.exit(0);

}

///////////////////////////
// CAPTURE: constructors //
///////////////////////////

236

beforeC Object newObject) : constructors(newObject)

// notify the runtime //

this.facade.onConstructor(newObject);

/////////////////////////////

// CAPTURE: field SET call //
/////////////////////////////

Object around(Object target, Object newValue) :
fieldSet(target, newValue)

{
try
{

// 1. determine which field is being set //
String name =
C(FieldSignaturelmpl)
thisJoinPoint.getSignature()).getNameO;

Field field = getField(name, target.getClass());

// 2. notify the runtime //
facade.onFieldSet(field, target, newValue);

// 3. proceed with the execution //
return proceedC target, newValue);

}
catchC NoSuchFieldException nsfe)
{

throw new RuntimeException(nsfe);
}

}

//////////////////////////
// CAPTURE: method call //
//////////////////////////
Object around(Object target) : methodCallC target)

{ "
// 1. collect the necessary information //
Method method =
((MethodSignature)
thisJoinPoint. getSignatureO). getMethodO;

ObjectG args = thisJoinPoint.getArgs();

// 2. notify the runtime //
if(facade.onMethodCall(method, target, args))

{
// proceed as normal //
return proceed(target);

}
else

// we do not own the object the method is being called

// on, skip the proceedO
return null;

}
}

//

237

//

//

INSTANCE METHODS

>

238

References

[l] Adelantado, M., Bussenot, J., Rousselot, J., Siron, P. & Betoule, M. (2004) Towards a

high Performance, high Availability Open Source RTI for Composable Simulations In

Proceedings of Fall Simulation Interoperability Workshop. Workshop paper: 04F-

SIW-014

[2] Akkai, F., Bader, A. & Elrad, T. (2001) Dynamic weaving for building reconfigurable

software systems In Proceedings of OOPSLA 2001 Workshop on Advanced Separation of

Concerns in Object-Oriented Systems

[3] Allen, R., Garlan, D. & Ivers, J. (1998) Formal Modeling and Analysis of the HLA

Component Integration Standard In Proceedings of the 6th A C M SIGSOFT international

symposium on Foundations of software engineering. P70-79

[4] Ambler, A. L., Burnett, M. M., & Zimmerman, B. A. (1992) Operational versus

definitional: A perspective on programming paradigm. IEEE Computer 25 (9), 28-43

[5] Aspect J. Project Website. Last Retrieved on January 5, 2009 from: http;//

www.eclipse.org/aspecti /

[6] Atkinson, K. (2003) Applying Enterprise Architecture to Modeling and Simulation In

Proceedings of Spring Simulation Interoperability Workshop. Workshop Paper: 03S-

SIW-082

[7] Balci, O., Bertelrud, A., Esterbrook, C. & Nance, R. (1998) Visual Simulation

Environment In Proceedings of 30th Winter Simulation Conference. 279-287.

[8] Banks, J. (1999) Introduction to Simulation In Proceedings of the 31st conference on

Winder Simulation. 7-13

[9] Banks, J., Carson, J., Nelson, B. & Nicol, D. (2000) Discrete Event System Simulation.

New Jersey: Prentice-Hall.

[10] Best, J., Canney, S. & Cramp, A. (2002) Virtual Maritime System Architecture In

Proceedings of Fall Simulation Interoperability Workshop. Paper: 02F-SIW-102

239

http://www.eclipse.org/aspecti

[n] Best, J. & Cramp, A. (2002) Execution Management in the Virtual Maratime Systems

Architecture. Technical Manual. Defence Science and Technology Organisation.

[12] Brown, P. & Gould, J. (1987) Experimental study of people creating spreadsheets.

ACM Transactions of Information Systems 5 (3), 258-272.

[13] Burke B. & Brock, A. (2003) Aspect-Oriented Programming and JBoss. Last

Retrieved on January 5, 2009 from: http://www.onjava.eom/pub/a/onjava/2003/05/28/

aop_jboss.html

[14] Buss, A. & Jackson, L. (1998) Distributed Simulation Modeling: A Comparison Of

HLA, CORBA And RMI In proceedings of Winter Simulation Conference. 819-825.

[15] Butler, R. (2000) Is This Spreadsheet a Tax Evader? In Proceedings of 33rd Hawaii

International Conference on System Sciences. Retrieved from:

http://panko.cha.hawaii.edn/ssr/HICSSqct/HICSS^^-Butler-Evader.pdf

[16I Calytrix Technologies, FOM Development. Last Retrieved on January 5, 2009 from:

http://www.calytrix.com/siteContent/SIMplicity/FOM.php

[17] Calytrix Technologies, Creating Federates. Last Retrieved on January 5, 2009 from:

htrp: //www ™1 vtrix.e.om/fiitftnnntent/STMnlicirv/federatestphP

[18] Calytrix Technologies, Mappings: Transformation and Toolkit Operations. Last

Retrieved on January 5, 2009 from: hirp;//www,calvrrixtcom/sfeContent/SIMpUcity/,

Mappings-php

[19] Calytrix Technologies, Deployment Management and Initialization Data. Last

Retrieved on January 5, 2009 from: httW/ww.c*lytrix com friteContent/SIMplicitv/

PMIP,php

[20] Cazard L (2002) HLA Federates Design and Federations Management: Towards a

High Level Object-Oriented Architecture Hiding the HLA Services In Proceedings of

Spring Simulation Interoperability Workshop. Workshop Paper: 02S-SIW-013

[21] Ceccato, M. & Tonella, P. (2004) Adding Distribution to Existing Applications by

Means of Aspect Oriented Programming In Proceedings of 4th IEEE International

Workshop on Source Code Analysis and Manipulation. 107-116.

240

http://www.onjava.eom/pub/a/onjava/2003/05/28/
http://panko.cha.hawaii.edn/ssr/HICSSqct/HICSS%5e%5e-Butler-Evader.pdf
http://www.calytrix.com/siteContent/SIMplicity/FOM.php

[22] Chwif, L., Barretto, M. & Saliby, E. (2002) Supply chain analysis: supply chain

analysis: spreadsheet or simulation? In Proceedings of 34th Winter Simulation

Conference. 59-66.

[23] Clarke, S. & Baniassad, E. (2005) Aspect-Oriented Analysis and Design: The Theme

Approach. Addison Wesley: N e w York.

[24] Constantinides, C. & Skotiniotis, T. (2002) Reasoning About a Classification of

Crosscutting Concerns in Object-Oriented Systems In Proceedings of Second Workshop

on Aspect-Oriented Software Development. 1-6.

[25] CppReflect. Project Website. Last Retrieved on January 5, 2009 from: http://

sourceforge.net/projects/cppreflect/

[26] Dahmann, J., Kuhl, F. & Weatherly, R. (1999) Creating Computer Simulation

Systems -An Introduction to the High Level Architecture. N e w Jersey: Prentice Hall.

[27] Defense Modeling and Simulation Office (2001) RTI 1.3-Next Generation

Programmer's Guide Version 5. Technical Manual.

[28] Deitel, H. J. & Deitel, P. J. (2007) Java How to Program (7th Edition), Prentice-

Hall: New Jersey

[29] Ditlea, S. (1987) Spreadsheets can be hazardous to your health. Personal Computing,

11 (1), 60-69.

[30] Ebad, T., Fihnan, R. & Bader, A. (2001) Aspect-oriented programming: Introduction.

Communications of the ACM, 44 (10), 29-32

[31] Erwig, M., Abraham, R., Cooperstein, I. & Kollmansberger, S. (2005) Automatic

generation and maintenance of correct spreadsheets In Proceedings of 27th international

conference on Software engineering. 136-145-

[32] ExtendSim. Project Website. Last Retrieved on January 5, 2009 from: httpji/

www.extendsim.com/

[33] Fihnan, R., Elrad, T., Clarke, S. & Aksit, M. (2004) Aspect-Oriented Software

Development. Addison Wesley: N e w York.

241

http://
http://sourceforge.net/projects/cppreflect/
http://www.extendsim.com/

[343 Firman, R & Friedman, D. (2000) Aspect-Oriented Programming is Quantification

and Obliviousness In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of

Concerns in Object-Oriented Systems.

[35] Forman, I. & Forman, N. (2005) Java Reflection In Action. Manning Publications:

Greenwich.

[36] Fowler, M. UML as Sketch. Last retrieved on January 5, 2009 from: http://

martinfowler.com/bliM/UnJAsSketch.htinl

[37] Fujimoto, R. (2000) Time Management in the DoD High Level Architecture. ACM

Transactions on Modeling and Computer Simulation 10 (3), 268-294

[38] Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994) Design Patterns: Elements of

Reusable Object-Oriented Software. New York: Addison Wesley

[39] Garlan, D. (1995) Architectural mismatch: Why reuse is so hard. IEEE Software 12

(6), 17-26

[40] Granowetter, L. (1999) Solving the FOM-Independence Problem In Proceedings of

Simulation Technology and Training Conference.

[41] Granowetter, L. (2003) IEEE 1516 Compliance -- Will the Real C++ API Please Stand

Up? Technical Whitepaper. Last Retrieved on January 5, 2009 from:

http://www.mak.com/pdfs/wD 1516 api.pdf

[42] Granowetter, L. (2003) RTI Interoperability Issues - API Standards, Wire

Standards, and RTI Bridges In Proceedings of Spring Simulation Interoperability

Workshop. Workshop Paper: 03S-SIW-063

[43] Granowetter, L. (2004) Design of the Dynamic-Link-Compatible C++ RTI API for

IEEE 1516 In Proceedings of Fall Simulation Interoperability Workshop. Workshop paper:

04F-SIW-086.

[44] Griss, M. (1993) Software Reuse: From library to factory. IBM Systems Journal 32

(4), 548-566

[45] Gustavson, P., Morse, K., Lutz, R, & Reichenthal, S. (2004) Applying Design Patterns

for Enabling Simulation Interoperability. Modelling and Simulation, 3 (2).

242

http://
http://martinfowler.com/bliM/UnJAsSketch.htinl
http://www.mak.com/pdfs/wD

[46] Heineman, G., Councill, W . (1998) Component-Based Software Engineering.

Massachusetts: Addison Wesley

[47] Hlupic, V., Walker, P. & Irani, Z. (1998) Predicting movements in foreign current

rates using simulation modelling. Management Decision 36 (7). 465

[48] Institute of Electrical and Electronics Engineers (2000) High Level Architecture

Interface Specification. (IEEE 1516.1-2000)

[49] Institute of Electrical and Electronics Engineers (2000) High Level Architecture

Object Model Template. (IEEE 1516.2-2000)

[50] Institute of Electrical and Electronics Engineers (2000) High Level Architecture

Rules. (IEEE 1516.3-2000)

[51] Kamin, S. (2003) Routine Run-time Code Generation. ACM SIGPLAN Notices 38

(12). 44-56

[52] Kapolka, A. (2003) The Extensible Run-Time Infrastructure (XRTI): An Emerging

Middleware Platform for Interoperable Networked Virtual Environments (Masters

Thesis, The Moves Naval Postgraduate Institution, 2003)

[53] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold, W. (2001) An

Overview of Aspect J In the Proceedings of the 15th European Conference on Object-

Oriented Programming, p.327-353

[54] Kochan, S. (2003) Programming in Objective-C. SAMS Publishing: Indianapolis.

[55] Kontio, J., Caldiera, G. & Basili, V. (1996) Defining Factors, Goals and Criteria for

Reusable Component Evaluation In Proceedings of the 1996 conference of the Centre for

Advanced Studies on Collaborative research.

[56] Ladded, R (2003) Aspect! in Action. Manning Publications: Greenwich

[57] Laddad. R (2002) I want my AOP! Last Retrieved on Januarys, 2009 from:

http: //www.iavawnrlrl.p.om /iav^wnrld /jw-m-20n? /iw-0ll8-aspect.html?page=5

243

http://www.iavawnrlrl.p.om

[58] Law, A. & Kelton, D. (2000) Simulation Modeling and Analysis, 3rd Ed., New York:

McGraw-Hill.

[59] Javier Lerch, F., Mantei, M. & Olson, J. (1989) Skilled Financial Planning: The Cost

Of Translating Ideas Into Action. In Proceedings of the SIGCHI conference on Human

factors in computing systems. 121-126

[60] Lorimer, R. (2005) A Quick Journey Through Spring AOP. Last Retrieved on

January 5,2009 from: http://www.javalobby.org/java/forums/t44746.html

[61] Lu, T., Lee, C, Hsia, W. & Lin, M. (2000) Supporting Large-Scale Distributed

Simulation Using HLA. ACM Transactions on Modeling and Computer Simulation, 10

(3). 268-294

[62] Lutz, R. (1997) A Comparison Of HLA Object Modeling Principles With Traditional

Object-Oriented Modeling Concepts In Proceedings of Fall Simulation Interoperability

Workshop. Workshop paper: 97F-SIW-025.

[63] Macannuco, D., D. Coffin, B. Dufault, & W. Civinskas (1999) Experiences with a FOM

Agile Federate In Proceedings of Spring Simulation Interoperability Workshop. Workshop

Paper: 99S-SIW-052

[64] Madina, D. & Standish, R (2001) A system for reflection in C++. Technical Paper.

Last Retrieved on March 17, 2004 from: http://parallel.hpc.unsw.edu.au/rks/docs/

classdesc/

[65] Martin, R. (2003) UML for Java Programmers. New Jersey: Prentice Hall

[66] McCarty, B. & Cassady-Dorion, L. (1998) Java Distributed Objects. SAMS

Publishing: Indianapolis.

[67] Mellon, L. & West, D. (1995) Architectural optimizations to advanced distributed

simulation In Proceedings of 27th Winter Simulation Conference. 634-641.

[68] Mellor, S., Baker, M. (2002) Executable UML: A Foundation For Model-Driven

Architecture. Addison-Wesley-.Boston

244

http://www.javalobby.org/java/forums/t44746.html
http://parallel.hpc.unsw.edu.au/rks/docs/

[69] Menzler, H., Krosta, U. & Pixius, K. (2000) HLA in a Nutshell: W-SA Proposed

Standard Interface for Simulation Applications In Proceedings of Spring Simulation

Interoperability Workshop. Workshop paper: 00S-SIW-026.

[70] Milosavljevic, B., Vidakovic, M. & Konjovic, Z. (2002) Automatic Code Generation

for Database-Oriented Web Applications In Proceedings of the second workshop on

Intermediate representation engineering for virtual machines. 59-64

[71] Moller, B., Lofstrand, B. & Karlsson, M. (2007) An Overview of the HLA Evolved

Modular FOMs In Proceedings of Spring Simulation interoperability Workshop.

Workshop paper: 07S-SIW-108.

[72] Morse, K. (2000) An Adaptive, Distributed Algorithm for Interest Management.

PhD Thesis. University of California, Irvine.

[73] Mowbray, T. & Zahavi, R. (1995) The essential CORBA: systems integration using

distributed objects. Wiley Publishing: New York.

[74] Newcomb, M. oHLA Project Page. Last Retrieved on January 5, 2009 from:

http://sourceforgp„net/proients/ori1a

[75] Object Management Group, The Model Driven Architecture Last Retrieved January 5,

2009 from: http://www.omg.org/mda/

[76] Object Management Group, (2001) UML Specification Version 1.1. Last Retrieved on

January 5,2009 from: http://www.omg.org/cgi-bin/docPad/Q7-08-11

[77] Object Management Group (2001) Model Driven Architecture, A Technical

Perspective. Technical Paper. Last Retrieved on January 5, 2009 from: www.omg.org/cgi-

bin/doc?ormsc/2O0i-Q7-0l

[78] Object Management Group (2002) Unified Modelling Language Specification

(Action Semantics). Technical Paper. Last Retrieved on January 5, 2009 from:

www.omg.org/cgi-bin/doc9ptc/02-oi-OQ

[79] Object Management Group (2005) What is UML? Last Retrieved on January 5, 2009

from: http://www.omg.org/gettingstarted/what is uml.htm

245

http://sourceforgp�net/proients/ori1a
http://www.omg.org/mda/
http://www.omg.org/cgi-bin/docPad/Q7-08-11
http://www.omg.org/cgi
http://www.omg.org/cgi-bin/doc9ptc/02-oi-OQ
http://www.omg.org/gettingstarted/what

[80] Panko, R. (1998) What We Know About Spreadsheet Errors. Journal of End User

Computing, 10 (2), 15-21.

[81] Panko, R & Halverson, R. (1996) Spreadsheets on trial: A survey of research on

System Sciences In Proceedings of 29th Hawaii International Conference on System

Sciences. 326-332

[82] Parr, S., Radeski, A. & Whitney, R (2002) The Application of Tools Support in HLA

In Proceedings of Simulation Technology and Training Conference. 51-55

[83] Parr, S. & Radeski, A. (2002) Towards a Simulation Component Model for HLA In

Proceedings of Fall Simulation Interoperability Workshop. Workshop Paper: 02F-

SIW-079

[84] Parr, S., Radeski, A. & Wharington, J. (2002) Component-Based Development

Extensions to HLA In Proceedings of Spring Simulation Interoperability Workshop.

Workshop paper: 02S-SIW-046

[85] Parr, S. & Keith-Magee, R (2003) Making the Case for MDA In Proceedings of Fall

Simulation Interoperability Workshop. Workshop paper: 03F-SIW-026

[86] Parr, S. & Keith-Magee, R. (2003) The Next Step - Applying the Model Driven

Architecture to HLA In Proceedings of Spring Simulation Interoperability Workshop.

Workshop paper: 03S-SIW-123

[87] Perrone, P., Venkata, S. & Chaganti, R (2000) Building Java Enterprise Systems

withJ2EE. Indianaplois: SAMS Publishing

[88] Pokorny, T. (2004) fedWS: Web Services Access to Active HLA Simulations In

Proceedings of Simulation Technology and Training Conference. 40-44.

[89] Pokorny, T. & Fraser, M. (2004) Extending Distributed Simulation: Web Services

Access to HLA Federations In Proceedings of European Simulation Interoperability

Worksbip. Workshop paper: 04E-SIW-034.

[90] Pokorny, T. (2005) The Model Driven Architecture: No Easy Answers In

Proceedings of Simulation Technology and Training Conference. 185-192.

246

[91] Pokorny, T. & Cramp, A. (2006) Web Services Performance Analysis for the HLA In

Proceedings of Simulation Technology and Training Conference. 207-312.

[92] Pokorny, T., Stratton, D. & Smith, P. (2006) AOP and the HLA: Simplified

Federation Development In Proceedings of Fall Simulation Interoperability Workshop.

Workshop paper: 06F-SIW-034

[93] Pokorny, T. (2006) Open Source and the HLA: I Swear it's Here Somewhere In

Proceedings of Fall Simulation Interoperability Workshop. Workshop paper: 06F-

SIW-035

[94] Power, D.J., DSS Resources History of Spreadsheets. Last Retrieved January 5, 2009

from http://www.dssresomces.com/history/sshistorv.htrnl

[953 Rajalingham, K., Chadwick, R & Knight., R (2001) Classification of Spreadsheet

Errors In Proceedings of Symp. of the European Spreadsheet Risks Interest Group

(EuSpRIG), 2001.

[96] Roiser, S. & Mato, P. (2004) The SEAL C++ Reflection System In Proceedings of

Computing in High Energy and Nuclear Physics, 222-225.

[97] Roman, E. (1999) Mastering Enterprise JavaBeans and the Java 2 Platform,

Enterprise Edition. New York: Wiley Pubhshing

[98] Ronen, B., Palley, A, & Henry, C. (1989) Spreadsheet Analysis and Design.

Communications of the ACM 32 (l), 84-93

[99] Rothermel, G., Burnett, M., Lbrin, L., Dupuis, C. & Sheretov, A. (2001) A

Methodology for Testing Spreadsheet. ACM Transactions on Software Engineering and

Methodology 10 (1), 110-147

[100] Ruh, W., Herron, T. & Klinker, P (1998) HOP complete: understanding CORBA and

middleware interoperability. Addison Wesley: Essex.

[101] Salt, J. (1993) Simulation should be easy and fun In Proceedings of the 25th

conference on Winter simulation. 1-5

247

http://www.dssresomces.com/history/sshistorv.htrnl

[102] Saleh, M. & Gomaa, H. (2005) Separation of concerns in software product line

engineering In Proceedings of Workshop on Modeling and Analysis of Concerns in

Software. 1-5.

[103] Schriber, T. (1991) An Introduction to Simulation Using GPSS/H. New York: John

Wiley.

[104] Seila, A. (2003) Spreadsheet Simulation. In proceedings of Winter Simulation

Conference. 25-30

[105] Siegel, J. (2001) Developing in OMG's Model-Driven Architecture. Last Retrieved

on January 5,2009 from: http://www.omg.org/mda/papers.htm

[106] Simulation Interoperability and Standards Organization (2004) Dynamic Link

Compatible HLA API Standard for the HLA Interface Specification Version 1.3 (Java).

(SISO-STD-004-2004)

[107] Simulation Interoperability and Standards Organization (2004) Dynamic Link

Compatible HLA API Standard for the HLA Interface Specification Version 1.3 (C++).

(SISO-STD-004.1-2004)

[108] Shanks, G. (1997) The RPR-FOM. A Reference Federation Object Model to Promote

Simulation Interoperability In Proceedings of Spring Simulation Interoperability

Workshop. Workshop paper: 97S-SIW-135.

[109] Snively, K. & Grim, P. (2006) ProtoCore: A Transport Independent Solution for

Simulation Interoperability In Proceedings of Fall Simulation Interoperability Workshop.

Workshop paper: 06F-SIW-093-

[110] Soley, R. (2001) MDA Announcement and Technical Briefing. Recording of

Presentation. Last Retrieved on March 17, 2004 from: http://www.omg.org/mda/

mda_audio/Soleyoi.mp3

[ill] Steed, M. (1992) Stella, a simulation construction kit: cognitive process and

educational implications. Journal of Computers in Science and Mathematics Teaching, 11

(1), 39-52.

[112] StraBburger, S. (2001) Distributed Simulation Based on the High Level Architecture

in Civilian Application Domains. PhD Thesis. University of Magdeburg

248

http://www.omg.org/mda/papers.htm
http://www.omg.org/mda/

[113] Stratton, D., Miller, J. & Parr, S. (2004) Developing an Open-Source RTI

Community In Proceedings of Spring Simulation Interoperability Workshop. Workshop

paper: 04S-SIW-011.

[114] Stytz, M. & Banks, S. (2001) Enhancing the Design and Documentation of High

Level Architecture Simulations Using the Unified Modeling Language In Proceedings of

Spring Simulation Interoperability Workshop. Workshop Paper: 01S-SIW-006

[115] Sun Microsystems Incorporated (1999) The Java hotspot performance engine

architecture: A white paper about Sun's second generation

performance technology. Technical report. Last Retrieved on January 5, 2009 from:

http://java.sun.com/products/hotspot/whitepaper.html

[116] Tolk, A. (2002) Avoiding another Green Elephant - A Proposal for the Next

Generation HLA based on the Model Driven Architecture In Proceedings of Fall

Simulation Interoperability Workshop. Workshop Paper 02F-SIW-004

[117] Tolk, A. (2003) More Stories on the Green Elephant - A Short Introduction to the

Model Driven Architecture and its Usefulness for M & S . Simulation Technology Magazine

6 (1) Last Retrieved on January 5, 2009 from: http://www.sisostds.org/webIetter/siso/

iss Qi/art 5Q2.htm

[118] Tudor, G & Zalcman, L. (2006) HLA Interoperability -An Update In Proceedings of

Simulation Technology and Training Conference. 345-350.

[119] University of Ballarat (2002) The Air Transport Operations Federation. HLA

Training Course Materials.

[120] Vissim. Product Website. Last Retrieved on January 2,2008 from:

http://www, vissim.com/

[121] Vollmann, D. (2005) Aspects of Reflection in C++. Technical Report. (ISO/IEC

JTC1/SC22) Last Retrieved on January 2, 2008 from: http://www.open-std.org/jtci/

sc22/wg2i/docs/papers/2005/nl75i.html

[122] Walls, C. & Breidenbach, R (2005) Spring in Action. Manning Publications:

Greenwich.

249

http://java.sun.com/products/hotspot/whitepaper.html
http://www.sisostds.org/webIetter/siso/
http://www
http://vissim.com/
http://www.open-std.org/jtci/

[123] Weatherly, R., Wilson, A. & Griffin, S. (1993) ALSP-theory, experience, and future

directions In Proceedings of 25th Winter Simulation Conference. 1068-1072.

[124] Wilbert, D. (1999) A Tool for Configuring FOM Agility In Proceedings of Fall

Simulation Interoperability Workshop. Workshop paper: 09F-SIW-116.

[125] Wiedemann, T. (2000) VisualSLX: an open user shell for high-performance

modeling and simulation In Proceedings of Proceedings of the 32nd conference on Winter

simulation. 1865-1871.

[126] Wilcox, E. M., Atwodd, J. W., Burnett, M. M., Cadiz, J. J., & Cook, C. R (1997) Does

continuous visual feedback aid debugging in direct-manipulation programming

systems? In Proceedings of the A C M Conference on Human Factors in Computing

Systems. 258-265.

[127] Aspect Oriented Programming Implementations List. Last Retrieved on January 5,

2009 from:

htip://en.wildped^a.org/wiki/Aspect-oriented_prograrnming# Implementations

[128] Wittman, R & Harrison, C. (2001) OneSAF: A Product Line Approach to Simulation

Development In Proceedings of European Simulation Interoperability Workshop.

Workshop paper: 01E-SIW-061.

[129] Yilmaz, L. (2004) On the Need for Contextualized Introspective Models to Improve

Reuse and Composability of Defence Simulations. Journal of Defense Modeling and

Simulation: Applications, Methodology and Technology, 3 (1), 135-145-

250

