
Graduate School of Information Technology and 

Mathematical Sciences 

University of Ballarat 

2009 

AOP and HLA: 

A New Aspect on Distributed Simulation 

Development 

Mr. Timothy J. Pokorny 

University of Ballarat 

t.pokorny(«)ballarat.edu.aii 

This thesis is submitted in total fulfilment of the requirements of the 

degree of Doctor of Philosophy 

University of Ballarat 

P O Box 663 

University Drive, Mount Helen 

Ballarat, Victoria, 3350 

Australia 

Submitted in February 2009 



ii 



Abstract 

Underpinning the development of distributed simulations in the defence community, the 

High Level Architecture (HLA) has gained acceptance due in part to its support for a broad 

level of interoperability. Encompassing a framework that loosely couples together 

simulation components developed and deployed on a diverse range of platforms, the H L A 

has the potential to enable increasing interoperation between otherwise disparate 

simulations. 

Although it has long been used for simulation efforts in the defence domain, use of the 

H L A within the wider business community has thus far been minimal. In domains where a 

wide variety of proprietary, customised simulation tools and generic desktop applications 

alike are used for simulation purposes, use of the H L A can help enable increased reuse 

and interoperability. However, while capable of supporting such a goal, the H L A requires 

expert skills and training that do not exist in these domains. 

Aspect Oriented Prograniming (AOP) methodologies partition the development of a 

software system into a number of separate "aspects". Some aspects relate to the core 

business logic of the application, while others relate to system-level facilities such as 

applications distribution (perhaps via the HLA). To form a complete application, a 

number of aspects are automatically woven together according to a set of weaving rules 

created by developers. While the final system represents a mixing of all aspects, the 

process of developing each one is conducted in isolation. This in turn allows developers to 

work without the need for an in-depth knowledge of the underlying technologies used by 

other components. 

This thesis develops a method for combining AOP and HLA, leveraging the separation-of-

concerns approach used by A O P to allow the creation of core models, free from simulation 

distribution semantics. Through the use of automated tools, these models are then woven 

with a generic-HLA aspect, producing an HLA-enabled simulation component. Using A O P 

in this manner removes the need for model developers to have an in-depth understanding 

of the HLA, helping to remove the prime factor restricting a broader uptake of distributed 

simulation technologies: development complexity. 
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Chapter 1 

Introduction 

Distributed simulation is recognised as a useful and important part of training, scientific 

modelling and acquisitions. The ability to assess the effectiveness of a new product design, 

or financial model without the expense and uncertainty of implementing it allows for the 

identification of defects or weaknesses at a stage when they are easily rectified. Involving 

numerous simulation components connected over a network, the standardised High Level 

Architecture (HLA) is widely recognised as the primary distributed simulation facilitator 

within the defence community. 

Encompassing a framework that loosely couples together simulation components 

developed and deployed on a diverse range of platforms, the H L A has the potential to 

enable increasing interoperation between otherwise disparate simulations. While the 

benefits of distributed simulation are well understood and practised in the defence 

domain, uptake of the associated technologies in the wider business community has thus 

far been minimal. 

Despite comparatively minimal application of distributed simulation beyond the field of 

defence, simulation in general remains a vital component in many enterprises. General 

productivity tools (such as spreadsheets) and customised simulation applications tend to 

be favoured over distributed technologies, primarily due to their ease of use and pervasive 

nature. While customised simulation tools focus on abstracting the problems of a 

particular domain, generalised desktop tools are broadly available, well understood and 

simple to use. In such an environment, the relative complexity of distributed simulation 

technologies appears to provide little benefit when considering the expert training and 

skills required. 

However, while the tools typically employed within the wider business community offer a 

simplified development experience for many simulation problems, significant reuse, 

interoperability, design and scalability issues exist. Designed with such issues in mind, the 

H L A has the potential to address these shortcomings and support both expanded 

interoperability and increased model complexity. 

While capable of delivering many benefits, the significant costs and complexities involved 

in the development of H L A simulations have thus far constrained its broader uptake. To 



help address this problem, the research presented here seeks to abstract the H L A from the 

model development process. 

Aspect-Oriented Programming (AOP) builds on traditional Object-Oriented (OO) software 

development approaches and defines a process for modularising and separating multiple 

concerns during software development Where traditional methods require the tangling of 

system-level details (such as the H L A ) within the business logic of a software system, A O P 

introduces a new unit of modularisation that allows their development to be quarantined. 

Isolating such concerns allows the majority of a system to be developed without the 

specialist knowledge implementation of these system details necessitates. Such an 

environment has clear potential benefits in application of the H L A within the wider 

business community. However, A O P is only a facilitator, allowing components to be 

developed separately. Considerable specialist knowledge is still required to create the H L A 

portion of a system. 

Leveraging AOP as a mechanism for separating simulation model development from the 

low-level details of the HLA, this research discusses methods that can be used to 

automatically extract H L A semantics from a pure Object-Oriented (OO) model. This 

information can then be used to manipulate a generic H L A component, removing the need 

for the development of a custom solution (and the specialised knowledge such an effort 

would entail). Taken together, such an environment would allow for the abstraction of the 

H L A from the simulation development process. 

This research discusses methods that allow generic, non-distributed models (represented 

as plain O O code) to be automatically rendered as H L A simulation components. Removing 

the requirement for expert H L A skills and training, such a facility would significantly 

simplify the development of new distributed models and help expose existing models to 

HLA-based distributed simulation and the benefits it brings. This work focuses on the 

questions that arise when attempting to achieve this goal. 

1.1 Background 

Used as a decision support mechanism for many years, simulation involves the 

investigation and assessment of the various effects and outcomes of a model given 

particular inputs and events. For example, a financial services corporation may use a stock 

market model to ascertain the likely behaviour of the market should interest rates 

increase. Alternatively, a product manager may produce a financial model in order to 

determine the effects on productivity and profitability should five new employees be hired. 
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In pursuit of developing these simulation models, two categories of tools are generally 

used; generic desktop productivity applications and specialised simulation tools. Each of 

these tools offers both a number of advantages and disadvantages. 

Spreadsheet Applications 

The most popular and prevalent tool used for simulation purposes within the wider 

business community is the spreadsheet. Spreadsheet applications provide a general-

purpose environment that caters well to a larger number of diverse simulation problems. 

Inbuilt support for c o m m o n mathematical functions is enhanced by facilities that allow 

the more complex logic associated with simulation models to be developed via traditional 

programming languages and plugged in as modules. 

Combining excellent support for the development of small numerical models with facilities 

for formatting and presenting the results enables solutions to many small simulation-like 

problems to be developed in a rapid fashion. However, perhaps the most compelling of all 

advantages this class of tool presents is their desktop commodity status. General-purpose 

tools such as spreadsheets are widely available and relatively inexpensive. Their support 

for a large breadth of purposes has seen them become the de-facto standard for simulation 

activities in the wider business community. 

However, while spreadsheet applications provide an environment well suited to the 

development of smaller solutions, as the simulation models involved begin to grow, the 

limits of these desktop tools are quickly reached. 

Spreadsheets depend heavily on the location of information. The use of data is inherently 

tied to its position in the spreadsheet, meaning the functions intended to operate on this 

data are extremely sensitive to even the slightest repositioning. A small change can trigger 

a multitude of errors in any moderately sized spreadsheet. One of the most commonly 

noted problems with spreadsheet applications is the prevalence of errors. A review of the 

literature presented later in this document highlights the high occurrence of error 

observed in spreadsheets, many citing the strict dependence on the location of 

information as a prime cause. As a consequence of this condition, the maintenance costs of 

spreadsheets increase and the reliability of the results they produce is reduced. 

Strict dependence on the location of information causes model composition and reuse to 

suffer greatly. The ability to create a new entity entirely from pre-existing components is a 

powerful concept and one that has the potential to reduce the costs involved in composing 

simulation models. The ability to then reuse these entities in other models generates 
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additional savings and increases the value of such components. However, the rigid 

structure of spreadsheets does little to support this type of composition and reuse, 

consequently resulting in increased initial development and ongoing maintenance costs. 

Additionally, the generalised interface is unable to express or capture the detailed logic 

often associated with simulation development, forcing developers to use traditional 

programming language facilities. Seeking to address some of these shortcomings, more 

specialised, simulation oriented tools have also become popular for model development. 

Specialised Simulation Tools 

While spreadsheet applications are the most pervasive tool used for simulation purposes 

within the wider business community, specialised simulation tools often provide a more 

compelling model development environment. Unlike spreadsheet applications, specialised 

tools are designed specifically to address the problems of simulation model design and 

construction. Where spreadsheets deal in generic terms, a custom tool is able to provide 

users with a comfortable setting that enhances their ability to develop such simulation 

models. Removing the major drawbacks associated with spreadsheet based simulation 

development, domain specific applications allow users to work in a setting designed 

specifically to meet their needs. 

Free from the grid-based interface of spreadsheets, specialised tools are able to support 

simplified methods of model development. Often graphical in nature, these tools allow for 

greater comprehension and understanding of a simulation model and provide additional 

support for novice users lacking an in-depth knowledge of simulation. Such facilities help 

reduce initial development time and simplify the maintenance process. As with 

spreadsheet applications, where the required complexity cannot be supported by the 

interface, these tools also allow a developer to utilise traditional programming tools and 

insert the additional modules into the model. W h e n combined, these capabilities result is 

an environment that scales well from small and simple models to larger and more complex 

ones. 

However, despite offering many improvements over spreadsheet applications, specialised 

simulation tools present a large number of serious shortcomings that hamper their 

usefulness in many situations. 

Specialised, graphical interfaces allow for greater human comprehension of a model and 

allow even novice users to create simulations. While the benefits are clear, a certain level 

of training is required to learn the customised language of the application. Further, such 

knowledge is not portable from one tool to another. Although the domain specific nature 

of many specialised tools provides an environment in which domain experts can be 
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productive and work efficiently, generic tools such as spreadsheets can be useful in much 

larger array of situations. The specialised nature of such tools restricts their usefulness to 

the situations they were designed for. 

Despite the shortcomings identified above, the biggest obstacle specialised simulation 

tools present is their proprietary nature. Although many tools support the reuse of 

simulation models or model components that were developed in the same tool, any 

attempt to leverage this investment in another environment is removed. While this 

restriction is acceptable in a number of circumstances, in situations where models from a 

variety of domains and specialities must be brought together, the lack of interoperabihty 

support in these tools obscures any development benefits they may impart. 

1.2 Motivation 

While each type of tool used for simulation in the wider business community presents 

advantages and disadvantages, a c o m m o n shortcoming among all is a lack of 

interoperability. In a setting where numerous differing tools are all used for similar 

purposes, the ability to leverage investments made in the development of simulation 

models, independent of those tools, is severely restricted. 

All simulations revolve around data. In any given model, regardless of tool or 

environment, information is created, updated and removed, according to its programmed 

behaviour. The primary goal of distributed simulation is to share the information 

produced by one simulation, with a number of other simulations. This allows individual 

simulations to take advantage of the data produced by others, without needing to 

implement the logic required to produce it. In this way, the burden of performing the 

simulation is shared. 

The standalone simulation models typical of those produced by the desktop tools common 

to the wider business community do not have this ability. Without facilities to share 

information about the creation, alteration and removal of data, standalone simulations 

cannot interoperate with one another. This in turn restricts the size and complexity of 

such simulations, in addition to their reuse value. A n excellent model for predicting stock 

market fluctuations in the face of interest rate changes is of little use when attempting to 

consider these effects in a broader context unless that model can work with other such 

excellent models that focus on alternate facets of the subject. 
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Ideally, simulation models could be built using whichever environment best suited the 

task at hand. They could then brought together and used as part of a larger model, 

regardless of tool or platform. Designed to address this issue, use of the H L A could help 

realise such a goal. Providing a low level infrastructure, use of the H L A to link together 

otherwise standalone models would provide a greater return on the investment made in 

their development. 

While capable of addressing the common interoperability problem shared by simulation 

tools within the broader business community, use of the H L A is regarded as a complex 

and costly process. Notwithstanding the potential reuse and interoperability advantages it 

could provide, minimal application of the H L A beyond the defence community has shown 

the reluctance within mainstream domains to support a technology that requires expert 

distributed simulation knowledge and programming skills. As it currently stands, the 

development costs and complexities of the HLA render it unsuitable within the wider 

business community. 

Much recent research has focused on reducing the development burden associated with 

the H L A and addressing its useability issues. In turn, this has lead to advancements that 

greatly reduce the time and effort involved in the production of HLA-based distributed 

simulations, making it more cost-effective and attractive. However, despite a bulk of 

research addressing the many problems, few researchers have investigated how the H L A 

can be removed entirely, thus making it suitable for the wider business community. 

Some success has been gained in previous work that focused on attaching the HLA to 

specific specialised simulation tools through "tool specific interfaces". In that situation, 

certain tools were modified to add H L A support and allow their models to participate in 

distributed H L A simulations. This research is conceptually an extension of that effort. The 

focus in this work is on the development of a generically applicable solution. In this case, 

the specifics of a particular specialised tool cannot be considered in an effort to find a 

solution that has the potential to be applied within any tool. The use of A O P as a facilitator 

helps achieve this goal. A O P facilities exist for many platforms and environments and its 

concepts are based on consistent underlying theory. Through the use of A O P the potential 

to employ the developed solutions in a range of specialised simulation tools is maintained. 

It is against this background that the author draws motivation for this research. 
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1.3 Scope 

The primary focus of this work is on the development of methods that would allow a 

generic simulation model to be rendered as a H L A distributed simulation component. 

However, before considering the significance of this goal, a clear definition of what 

constitutes a generic model is required. 

While the landscape of tools and applications used to develop simulation models in the 

wider business community is broad and varied, at a low level, all models will at some point 

share a common form. Be it functionality pieced together via the grid-based interface of 

spreadsheet applications, or component behaviour composed via the drag-and-drop 

interfaces of specialised tools, at some point in a model's lifetime, it will become basic 

program code. Even if the portable format in which the model is stored is never directly 

translated into code itself, the execution environment that interprets that format will have 

been developed in some standard programming language. However, to support model 

execution, these tools make use of proprietary methods and frameworks. In turn, their use 

pollutes the model representation and creates non-generic dependencies. 

For a model to be truly generic, it must contain only information about the system being 

represented and not the supporting infrastructure used to execute it. Remove the tool-

specific information and only the "pure" model remains. It is the development of this 

business logic that defines the lasting value of a simulation model. In this research, we are 

referring to a generic model as one that consists of pure object-oriented code, free from 

any notion of application distribution of distributed simulation. While object-oriented 

programming skills can be viewed as "specialist," they are pervasive within the wider 

business community (unlike distributed simulation). Given this, we arrive at the following 

definition in the context of this research: 

"A generic model can be described as a pure, object-oriented representation 

of a system that includes only the details salient to its operation and not the 

supporting execution infrastructure," 

1.4 Contribution 

Significant overlap exists between general O O programming theory and the H L A 

specification. Many of the facilities provided by the H L A are merely avenues through 

which information about the state of a simulation can be distributed to other 

simultaneously executing simulation components. As the state of some simulation object 

changes, this update can be reflected to other simulations, in turn allowing them to take 
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some course of action based on the new information. In a standalone (or non-distributed) 

model, such events would still occur. However, the absence of any distribution framework 

would mean that these events are not shared with other simulations. For all intents and 

purposes, the pure model is monolithic. 

Through the use of AOP and an investigation to the parallels between the HLA and general 

O O theory, this research develops methods that allows H L A semantic information to be 

extracted from pure models and renders them as fully distributed simulation components. 

Such advancement in the state of the art would allow generic simulation models to be 

mapped automatically into components ready for use within the HLA, without mandating 

that simulation developers obtain direct knowledge of the HLA. This simplification would 

remove the primary barrier preventing a broader uptake of distributed simulation within 

the wider business community. Larger and more complex models could be developed, 

providing more reliable and in-depth results. Where previously the return on investment 

in a model was minimised due the inability to reuse models developed across differing 

tools, the interoperability benefits of the H L A can help to enhance them. 

The complexities of distributed simulation have been well documented. All users (be they 

current or potential) stand to gain from a solution that lowers the barriers of entry and 

provides for increase focus on the core model issues rather than the development 

platform. Beyond the wider business community, areas in which the H L A is already used 

also stand to benefit. The reduction in development complexity and enhanced focus on 

model issues (rather than those of the HLA) help reduce development costs and time. 

Further, the simplified process aids in model comprehension and the identification of 

potential errors or weaknesses. Together, these benefits form a significant contribution 

and advancement in the current state of the art. 

1.5 Overview 

This thesis is arranged into 9 chapters. The first half, comprising chapters 2-5 lay out the 

motivation and background of this work. The second half describes the contribution of this 

work, presenting solutions to the identified problems and discusses experimental results. 

Chapter 2 discusses the simulation tools used within the wider business community, their 

strengths and shortfalls. Chapter 3 introduces distributed simulation, and more 

specifically, the High Level Architecture, discussing how distributed simulation can be 

used to address the problems of tools used within the wider business community. 
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Chapter 4 highlights the problems that currently deem the H L A unsuitable for meeting the 

needs of commodity tools, primary among which is development complexity. This chapter 

highlights some of the technologies and approaches that have been identified within the 

distributed simulation community as potential answers to these problems, focusing 

particularly on the Model Driven Architecture ( M D A ) and Aspect-Oriented Programming 

(AOP), the latter of which is considered the most suitable for meeting the goals of this 

research. 

Chapter 5 identifies where the gap exists in the current state of the art, and how AOP alone 

is not sufficient to solve the particular problem set motivating this work. It provides a set 

of research questions that capture the intent of this work and introduces the experimental 

framework that is used to assess the solutions raised in later chapters. 

Chapters 6-8 form the bulk of contribution made by this work. They introduce a set of 

solutions aimed at addressing the research questions raised in Chapter 5 and present the 

results of experimentation. 

Chapter 9 concludes this work, briefly identifying fertile areas for further research. 
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Chapter 2 

Simulation in the Wider Business Community 

Removing the complexities associated with distributed simulation development so that the 

wider business community can benefits from the advantages it can bring is the primary 

motivation for this research. This chapter discusses h o w simulation is used within the 

wider business community and what the associated problems are. 

2.1 What is Simulation? 

What is simulation and why is it useful? Before delving into an analysis of the tools that 

are commonly used within the wider business community for simulation purposes, some 

consideration must be given to the nature of simulation and the benefits it provides. As a 

starting point, the author Banks in [8] defines simulation as "an imitation of the operation 

of a real-world process of a system over time''. While this definition does capture the 

essence of simulation (a replication of some process over time), it is somewhat restrictive 

to confine contemplation to real-world processes and systems. 

From an economist attempting to predict the movement of foreign currency rates [47], to 

the physicist endeavouring to uncover the mysteries of dark matter, simulation can be 

found in many diverse situations. While the topic of currency rates fit clearly in Banks' 

definition, matters of a cosmological nature prove more challenging. In consideration of 

such situations, a broader definition is required. Perhaps an apt expansion of the previous 

definition would be: "An imitation of an environment or phenomenon over time, 

performed for the purpose of investigation, exploration, training or decision support". 

Whichever form is preferred, simulation is leveraged to advantage in numerous and 

diverse fields. Given this situation, one is naturally drawn to pose the question, "what 

benefit or assistance does simulation provide?" 

Why use Simulation? 

Simulation is used for many purposes. W h e n an airline pilot is trained, they are done so 

using a flight simulator. W h e n an engineer wishes to explore the effects of stress on a 

bridge design or an environmental scientist wishes to investigate the effects of global 

warming on the average temperature of the planet, simulation is used. Where the direct 

observation of a live system is impractical [101] or dangerous, simulation can be used to 
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assess or explore various outcomes, to ask various questions in a safe and cost effective 

manner. 

The benefits of using simulation have been noted in many places with the following list 

compiled from [8, 9,58,103]: 

• Time Compression and Expansion: Time can be compressed and expanded in 

order to more closely observe an event or observe occurrences that unfold over a 

large amount of time quickly. 

• Understand "Why": Close analysing a system modelled by a simulation can assist 

in understanding why a situation has occurred. 

• Explore Possibilities: Possibly the most obvious benefit, simulation allows 

difference possibilities to be explored without the need to actually implement 

them. 

• Choose Correctly (Acquisitions'): Through exploration, simulation can aid the 

process of choosing before actually committing to an option. 

• Cost Effectiveness: Simulation can help identifying possible problems before a 

system is implemented. At this point they can be rectified most cost effectively. 

• Identify Constraints: As with the previous point, constraints (of a new product 

design for example) can be identified without actually implementing the system 

being modelled. 

• Safety: Simulators can be used safely as a substitute for actual systems in situations 

where potentially dangerous actions are involved. Examples include pilots training 

on flight simulators or military use for exercises. 

• Access: Simulations support experimentation for systems that would otherwise be 

impossible to test (such as those often found in astronomy or cosmology) 

From the list above it is clear how simulation can aid in the process of investigation, 

exploration, training or decision support in many and meaning ways. Given the valuable 

contribution simulation can make in many situations, its use has become pervasive. 

Within the wider business community, a number of supporting tools and environments 

are available, targeting a wide variety of uses and domains. 

2.2 Simulation Tools in the Wider Business Community 

In pursuit of developing simulation models within mainstream domains, two categories of 

tools are generally used; generic desktop productivity applications and specialised 

simulation tools. Each of these tools offers both a number of advantages and 
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disadvantages, which are discussed in this section. Widely recognised as the most popular 

tool used for simulation purposes within the wider business community [6], spreadsheets 

are the de-facto standard among desktop productivity applications. 

2.2.1 Spreadsheets 

The notion of a spreadsheet began in the Accounting domain where they were used to 

store information regarding the transactions of a business. A spreadsheet was a large sheet 

of paper organised into columns and rows which was able to "spread, or show" large 

amounts of related information to a manager for use in the decision making process [94]. 

Continuing this analogy, a computerised spreadsheet comprises a group of pages, each of 

which has a table consisting of rows and columns of cells. Each call may contain either 

data, or a formula (the result of which is presented as the value for the cell) [104]. With a 

spreadsheet program able to perform automatic calculations based on the contents of a 

sheet, and their evolution to provide presentation capabilities (such as text formatting and 

colouring or graphing capabilities) in addition to data processing, spreadsheets have 

become the most popular desktop productivity tool for small-scale simulation activities 

[22]. 

The use of spreadsheet applications as a simulation tool presents many advantages [8, 

104I: 

' Spreadsheets environments are widely available: models developed by one person 

are able to be used easily by another 

• Spreadsheet environment are able to combine both data processing logic and 

presentation into a single package 

• A large number of built in functions to do mathematical, financial, statistical 

calculations is provided 

• The table based structure allows developers to organise computations and results 

in an intuitive manner 

' Automation of tasks can be achieved through scripting languages and modules 

developed under traditional programming models 

' Spreadsheets provide a generic environment capable of supporting any number of 

different problems 

Spreadsheet applications provide a general-purpose environment that caters well to a 

larger number of diverse simulation problems. Inbuilt support for common mathematical 

functions is enhanced by facilities that allow the more complex logic associated with 
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simulation models to be developed via traditional programming languages and plugged in 

as modules [81. 

Combining excellent support for the development of small numerical models with facilities 

for formatting and presenting the results enables solutions to many small simulation-like 

problems to be developed in a rapid fashion [104]. However, perhaps the most compelling 

of all advantages this class of tool presents is their desktop commodity status. General-

purpose tools such as spreadsheets are widely available and relatively inexpensive. Their 

support for a large breadth of purposes has seen them become the de-facto standard for 

simulation activities in the wider business community [59]. 

However, while spreadsheet applications provide an environment well suited to the 

development of smaller solutions, as the simulation models involved begin to grow, the 

limits of these desktop tools are quickly reached. 

Spreadsheet Problems 

While the use of spreadsheets as a financial modelling and simulation (M&S) environment 

does present many advantages, there are also severe drawbacks involved. Primary among 

these are the problems of structure and development, error, speed and interoperability 

and reuse. 

Structure and Development 

While intuitive to use, the structure imposed by the spreadsheet interface creates many 

problems. Users of spreadsheets enter data into cells, and define formulas for those cells. 

These formulas reference values contained in other cells for use in calculations, the results 

of which may be referenced in other formulas contained in other cells [99]. This system of 

absolute referencing results in a highly in-flexible, interdependent, static structure [59]. 

Moving even a single value or formula can trigger a cascading effect causing bugs to 

develop throughout a spreadsheet. 

The development of spreadsheet models is often achieved through an ad-hoc, 

unstructured process [98]. While for small, uncomplicated models this method may be 

adequate, as larger models are required the effort needed to develop and maintain these 

spreadsheets becomes significant and expensive. The hard coding of data that occurs from 

the location centric approach of spreadsheets can also make them difficult and costly to 

maintain [95]. 
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While spreadsheets provide an intuitive interface and are considered simple to use and 

master, the actual amount of mental work a developer must go through is considerable 

[59]. A n interface which required a developer to recall or calculate cell coordinates 

imposes a mental workload which can lead to both the occurrence of serious errors and an 

increase in development time [29]. Implementing complex algorithms using a spreadsheet 

environment becomes an unnecessarily complex activity [104], again increasing 

development and maintenance time. While a major advantage of developing in a 

spreadsheet environment is the large amount of functions available for a range of 

purposes, such environments only provide simple data structures for a developer to work 

with [104]. 

The interface presented by spreadsheets raises numerous issues relating to flexibility and 

development; however, comprehension of developed models is perhaps a larger concern. 

The familiar grid-based interface lacks the expressive power to fully capture and present 

the often-intricate entities and relationships that exist within a model. Such a situation 

hinders human comprehension of a model and restricts the environments ability to 

adequately support developments in which complex entities and relationships must exist. 

These shortcomings and restrictions complicate the development process and can lead to 

the occurrence of errors in both the structure of a model and the data it operates on. 

Error 

The high occurrence rate of errors within spreadsheets is perhaps the single largest 

problem associated with their use for simulation and decision support mechanisms. While 

notions of what constitutes an error vary, the general definition is a situation in which an 

incorrect value is observed or produced [126]. 

Many studies and field audits have highlighted the high percentage of spreadsheets in 

which errors were produced. Results of these studies quote figures which identify 

anywhere from 3 8 % to 77% of surveyed spreadsheets to contain errors of some description 

[12, 81]. However, of perhaps an even greater concern is that spreadsheets are used in 

production settings and the results they produced are confidently relied on during the 

decision making process [15, 99]. The ill-perceived air of simplicity that surrounds 

spreadsheets can lead users to trust their results, despite an alarmingly high rate of errors. 

The high occurrence of errors observed in spreadsheets can be explained by a number of 

potential problems. The informal development approach generally associated with 

spreadsheets takes the place of a structured and standardised method. This ad-hoc style 

involves much less rigor than controlled methods, leading to the introduction of logic 

errors [80]. 
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Strict dependence on the location of information within a spreadsheet can also trigger the 

occurrence of errors. Spreadsheets allow users to change the values of cells arbitrarily [31] 

introducing errors when the other cells depend on certain information being in a specific 

location. The appearance of information within a spreadsheet provides few visual clues the 

other information a given cell depends on. This can trigger cascading-style errors when a 

single value is moved. Further, additional errors can arise when a dependence is created 

on the wrong cell by mistake. 

Finally, as mentioned above, the spreadsheet interface does not posses the expressive 

power to fully capture complex entities and relationships, in turn hampering human 

comprehension. This can lead to the occurrence of errors during the development of 

models involving even a modicum of complexity. 

Interoperability and Reuse 

Given spreadsheets dependence on the location of information, model composition and 

reuse also suffer greatly. The ability to create a new entity entirely from pre-existing 

components is a powerful concept and one that has the potential to reduce the costs 

involved in composing simulation models. The ability to then reuse these entities in other 

models generates additional savings and increases the value of such components. 

Spreadsheet development is often characterised as a dependence-driven, direct-

manipulation process [4] with data often dependent on the location of other data and 

requires direct manipulation to modify. While many people may use a spreadsheet in its 

entirety, the reuse of components or sub sections of a model is extremely limited given the 

dependence on factors like the location of information. A lack of interoperability and reuse 

leads to the duplication of development efforts where they could otherwise be reused. This 

results in a higher maintenance costs (as multiple occurrences of similar components 

must n o w be maintained) and initial development costs. 

Speed 

Spreadsheet environments are often slow in their calculation compared to other more 

specialised modelling environments [104]. Each time a model is executed in a spreadsheet 

environment all the calculations involved must be translated into a form that can be 

actually executed. Functions executed in spreadsheets are often interpreted as opposed to 

pre-compiled; the amount of effort required to have those calculations converted into an 

executable form can be considerable [104]. This becomes a larger concern when you 

consider that in certain types simulations, the same model is executed repeatedly while 
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working of differing data. Each time the model is executed the conversion process must 

again take place. Again, while not an issue for smaller models, when larger and complex 

ones become involved the situation quickly becomes unattractive. 

Moving Bevond Spreadsheets 

Due primary to their pervasive nature, simplistic approach and desktop commodity status, 

spreadsheet applications have become the de-facto standard for simulation activities 

within the wider business community. While their use offers many potential advantages, 

there are numerous and significant shortcomings that can hamper development efforts 

and reduce confidence in the results generated. 

Given the problems highlighted above, the achievable size and complexity of developed 

models is significantly restricted. While there are many advantages to the use of the 

spreadsheet environment, the size and complexity restrictions mean users forego the in-

depth analysis that comes from larger and more comprehensive models. 

Moving beyond the limitations and restrictions of the spreadsheet interface, specialised 

simulation tools can offer several advantages in the pursuit of developing more complex 

simulations. 

2.2.2 Specialised Simulation Tools 

While spreadsheet applications are the most pervasive tools used for simulation purposes 

within the wider business community, their environment raises many potential issues 

when attempting to develop complex models. However, alternative options do exist in the 

form of more specialised simulation tools. 

Specialised Tool Advantages 

Unlike spreadsheets, which are general purpose in nature, specialised tools are designed 

to address the particular problems of simulation model construction and execution. As 

such, the development environments they provide are often far more adequately suited to 

this task. Often graphical in nature (such as [32, ill, 120,125]) these tools address many 

of the development shortcomings of the spreadsheet environment. Removing the major 

drawbacks associated with spreadsheet based simulation development, domain specific 

applications allow users to work in a setting designed specifically to meet their needs. 

Free from the grid-based interface of spreadsheets, specialised tools are able to support 

simplified methods of model development. The graphical nature of these tools allows 

greater comprehension and understanding of a simulation model, and provides additional 

16 



support for novice users lacking an in-depth knowledge of simulation. Such facilities help 

reduce initial development time and simplify the maintenance process. 

Where the complexity of a model is such that the visual environment alone cannot 

adequately express the desired behaviour, lower-level facilities are provided. As with 

spreadsheet applications, these tools also allow a developer to utilise programming 

language constructs to insert additional modules into the model. Often using code 

generation to create executable models in the background [125], the integration of lower 

level services is well catered for. W h e n combined, these capabilities result is an 

environment that aids simulation development from small and simple models to larger 

and more complex ones. 

Specialised Tools Disadvantages 

The development environments provided by specialised simulation tools are a significant 

improvement beyond that of the c o m m o n spreadsheet. However, despite offering many 

advantages, this category of applications introduces its own set of shortcomings, 

hampering their usefulness in many situations. 

While specialised, graphical interfaces allow for greater human comprehension of a model 

a certain level of training is required to learn the customised language of the application. 

Further, given the proprietary nature of these tools, such knowledge is not portable from 

one to another. Although such tools provide an environment in which domain experts can 

be productive and work efficiently, the specialised nature of such tools restricts their 

usefulness to the situations they were designed for. Spreadsheets however can be useful in 

much larger array of situations. 

Although they provide greater levels of support for simulation model construction and 

creation, data input has been noted as one particular area where simulation tools suffer 

[7]. Further, although anecdotal evidence suggests that the use of visual systems can help 

in the development and validation of simulation models, little published empirical 

evidence exists to substantiate these claims [7]. 

Despite the shortcomings identified above, perhaps the biggest obstacle specialised 

simulation tools present is their proprietary nature. 

The large number of commercial modelling and simulation environments competing 

within the wider business community can cause significant problems when attempting to 

integrate artefacts developed with alternate tools. Although support may be provided for 
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the reuse of simulation models or model components that were developed within the same 

tool, any attempt to leverage this investment in another environment is removed. 

When attempting to bring together models developed across a variety of domains and 

specialities, the lack of interoperability between these tools can obscure any potential 

benefits realised during their development. Ideally, the separate components of large and 

complex models could be initially developed in the tools that best suited the task at hand. 

These components could then be assembled with one another, forming a larger co

operative model. However, the lack of interoperability between the myriad of simulation 

tools available eliminates this option and reduces the reuse potential of the developed 

models. 

Looking over the shortcomings identified above, it becomes evident that the problem of 

interoperability and reuse is a significant limitation. Whether choosing the pervasive 

spreadsheet, or the advanced specialised simulation tools, integrating and reusing model 

components is considerably restricted. Directly affecting the return-on-investment (ROI) 

made in these models, the lack of reuse and interoperation serves to reduce their 

achievable size. In turn, the benefits of analysis that models of greater depth can bring are 

lost; a significant factor when considering that within the wider business community, 

simulation is used primarily as a decision-support mechanism. 

2.3 Addressing the Problems 

This chapter has looked at the types of tools used for simulation purposes within the wider 

business community, in addition to their strengths and weaknesses. The primary 

problems of interoperability and reuse have been identified as limiting the development of 

larger and more complex simulations. Addressing these issues is the primary motivation 

of this research. 

Underpinning the development of distributed simulations in the defence community, the 

High Level Architecture (HLA) has gained acceptance due in part to its support for a broad 

level of interoperability. The H L A comprises a framework that loosely couples together 

simulation components developed and deployed on a diverse range of platforms. The H L A 

has the potential to enable increasing interoperation between otherwise disparate 

simulations and tools and help address the problems identified above. The HLA, its 

advantages and disadvantages are discussed in chapter three. 
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Chapter 3 

Distributed Simulation and the High Level 

Architecture 

Where the many types of simulation tools used within the WBC tend to focus on 

monolithic, single application simulations, distributed simulation partitions the effort into 

multiple, co-operative units. Underpinning the development of distributed simulations in 

the defence community, the High Level Architecture (HLA) has gained acceptance due in 

part to its support for a broad level of interoperability. Encompassing a framework that 

loosely couples together simulation components developed and deployed on a diverse 

range of platforms, the H L A has the potential to enable increasing interoperation between 

otherwise disparate simulations and systems. 

Despite enjoying pervasive application within the defence domain, use of the HLA within 

the wider business community has to this point been minimal. In such domains, where a 

wide variety of proprietary tools are used for simulation purposes, the H L A can help 

enable increased interoperability and reuse. Offering a common, standardised, low-level 

infrastructure, the H L A would allow simulation models otherwise isolated from one 

another to be used together. 

This chapter introduces the HLA, discussing its major components and characteristics. 

Initially, a brief introduction to the alternate technologies that went before the H L A is 

presented. Following this, the H L A itself is presented. To conclude the chapter, a brief 

discussion on h o w the H L A can help address the problems of simulation within the wider 

business community is provided. 

3.1 Distributed Simulation 

Before beginning a discussion of the H L A as the potential solution to the problems 

identified in chapter 2, it must be established that the H L A is currently that best suited 

alternative. This section briefly introduces other simulation and application distribution 

frameworks and discusses their individual advantages and disadvantages. 
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3.1.1 Common Object Request Broker Architecture 

Developed and standardised by the Object Management Group (OMG), the C o m m o n 

Object Request Broker Architecture (CORBA) is an attempt to link together otherwise 

disparate applications [66]. C O R B A allows distributed, heterogeneous applications to 

communicate with one another in a location and language independent manner. From the 

perspective of the calling application, all objects Generic Aspect appear to be local. 

However, the underlying middleware supporting C O R B A abstracts the location, language 

and platform of the remote object, routing requests and responses across application 

boundaries are required. 

The public interface made available by a remote application is described via the Interface 

Definition Language (IDL). IDL provided a programming-language neutral method for 

specifying the specifics of an interface and can be used by other frameworks to generate 

the necessary stub code that will facilitate distributed communication [73]. 

In addition to IDL, CORBA also defines a generalised communications protocol that 

allows clients written in any programming language and on any platform to communicate 

with one another. The Internet Inter-ORB Protocol (HOP) standardises the format of 

communications that are to pass between distributed CORBA-enabled applications. 

While CORBA supports the distribution of application logic and is capable of enabling 

greater levels of interoperability between otherwise disconnected applications, it is a 

general solution and does not provide support for common simulation functionality. 

Advanced simulation services such as integrated time management, interest specification 

(publication and subscription), ownership management and data distribution services are 

all unavailable. However, it is important to note that some existing H L A implementations 

have used C O R B A as a communications protocol. Although H L A infrastructure tools like 

RTI-NG and GERTICO are based on CORBA, it is up to these particular implementations 

to provide the advance simulation services themselves. For this reason, C O R B A alone is 

not a suitable distributed simulation platform. 

3.1.2 Remote Method Invocation 

Remote Method Invocation (RMI) shares many similarities with CORBA. Its primary 

purpose is to allow the invocation of methods on distributed objects (ones that do not exist 

in the same memory space, or even the same computer, as the executing program). 

Developed by Sun Microsystems, R M I was initially intended to be a solution that only 
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supported the Java programming language. However, more recent versions have seen 

support added for the H O P protocol utilised by CORBA. 

As with all application distribution technologies, facilities to specify the methods and 

parameters that are callable in a distributed manner are provided (via Java interfaces) in 

addition to services for locating and connecting to the distributed providers. However, as 

with CORBA, R M I was designed to be allow the invocation of remote functionality in a 

location transparent manner. As such, it lacks specific support for simulation activities 

(such as co-ordinated time and message delivery). 

While both CORBA and RMI provide robust support for the interoperation of software 

applications in a distributed environment, they lack support for common facilities found 

in simulation-specific frameworks. DIS and ALSP (described below) are two examples of 

distributed simulation frameworks that go beyond generalised application distribution. 

3.1.3 Distributed Interactive Simulation 

The Distributed Interactive Simulation (DIS) framework is an IEEE standard (IEEE 1278) 

that began primarily as a means of connecting various large, human-in-the-loop 

simulators (eg. flight simulators). The DIS framework centres on a standard set of 

Protocol Data Unit's (PDU) that describe the format of messages that can be exchanged 

between participating components. W h e n certain state changes within a given simulator 

occur (such as the movement of an entity), these messages are broadcast to all other 

participants. The use of dead-reckoning algorithms helps to reduce the amount of network 

traffic by allowing simulators to send less frequent updates while remote clients 

interpolate information about the position of an entity based on their previously provided 

information (such as speed and heading). 

While DIS has proven successful in linking together and allowing the interoperation of 

many disparate platforms, certain problems render it unable to help address the problems 

highlighted in chapter 2. DIS lacks any notion of centralised time co-ordination or the 

ordering of events. As such, simulation repeatability is not possible. This is not a problem 

in the virtual worlds DIS was designed to support. However, this is not suitable for 

analytical-style simulations such as those used commonly in the wider business 

community for decision support. 

DIS primary is a protocol designed to standardise communications between various 

military simulators. PDU's only exist for concepts that make sense in a physical world 

(such as the movement of an entity). Attempting to link together financial simulations 
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would require the specification PDU's describing the salient state changes that might 

occur in that context. DIS is very tightly defined, and as such, it is unable to provide any 

support in a generic context. 

3.1.4 Aggregate Level Simulation Protocol 

The Aggregate Level Simulation Protocol (ALSP) is one of the closest predecessors to the 

HLA. Similar to DIS, ALSP describes a protocol for messages that are to be passed 

between the various participants of a distributed simulation [123]. Moving beyond DIS, 

ALSP provides global time synchronization [67], helping to address the causality and 

repeatability issues of DIS. Much like HLA, the shared object model of a distributed 

simulation takes on an object-oriented approach, modelling information as objects with 

attributes. 

Although filtering is provided, advanced interest management facilities are not provided 

and all information changes are still broadcast to all participants. Containing a number of 

similarities with the HLA, ALSP is perhaps best regarded as a subset. While supporting 

many of the same features, certain highlights are still missing (e.g., time management 

among different kinds of simulations and data distribution management) [112]. While well 

aligned with the problems raised in chapter 2, the level of functionality provided by ALSP 

is a subset of that provided by the HLA. Further, unlike the HLA, ALSP has no open 

international standard and has not enjoyed the same substantial ongoing research and 

development that continues to surround the HLA. 

3.1.5 Summary 

The various technologies introduced above are each aimed at joining together separate 

applications or simulation in a distributed fashion. C O R B A provides for location-

independent interoperability among heterogeneous applications, while DIS and ALSP 

have proven capable of bringing together disparate simulations. However, in recent years 

the H L A has emerged as the most prevalent distributed simulation framework. The 

following section introduces the HLA; its processes and components. 

3.2 The High Level Architecture 

The H L A was initially developed by the United States Defense Modeling and Simulation 

Office ( D M S O ) in order to address the need for interoperability between simulations (both 

new and legacy) used within the U S Department of Defense (DoD). The H L A aimed to 

extend upon the work surrounding the Distributed Interactive Simulation (DIS) and the 

22 



Aggregate Level Simulation Protocol (ALSP) [37] and provide a standard framework for 

simulations used within the DoD. 

In 1996, the HLA was mandated for use in all new works purchased by the DoD, however, 

recent times have seen this requirement loosened somewhat [118]. In the interests of 

developing a vibrant and active community, the H L A was adopted as an IEEE 

specification (IEEE 1516) in 2000 [47, 48, 49, 61], thus providing an open process for 

contributors to become involved in the standardisation effort. Despite significant work 

from a large number of people, the original IEEE 1516 standard contained numerous 

ambiguities and shortcomings. This in turn led to the development of companion 

specifications [42, 106, 107] that addressed the problems by extending the standards. 

Currently, the IEEE specification is under periodical review with enhancements and 

extensions being made. Due for ratification in late 2006, the new "HLA-Evolved" standard 

will address the problems previously identified and provide an improved, unified, open 

specification. 

3.2.1 HLA Overview 

Within the HLA, individual simulation components, known as federates, exchange data 

and work together in a federation. Communication and co-ordination between the 

separate federates is handled via a central component known as the Run-Time 

Infrastructure (RTI). Figure 3-1 provides a logical overview of this structure: 
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Figure 3-1: Federation Overview 

Conversations between a given federate and the RTI are bi-directional. Federates 

communicate with the RTI through a standardised interface known as the 
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RTIambassador. This interface comprises the set of services that provide specialised 

simulation functionality (time management, publication and subscription, data exchange 

facilities, etc.). W h e n the RTI needs to pass information to a given federate, it can do so 

via another standardised interface known as the FederateAmbassador. The 

implementation of this interface is provided by the federate, thus enabling it to take action 

on any incoming information. Figure 3-2 shows the components involved in these 

communications: 
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Figure 3-2: Federate Communication 

When a given federate wishes to provide updated information to other parties involved in 

the federation, it does to by informing the RTI ambassador of the new values. This 

information is then filtered such that only the appropriate portions are passed to a given 

federate, where they receive notification of the update through the their federate 

ambassador. 

All information exchanged between federates must conform to a common object model. 

The Federation Object Model (FOM) establishes the shared vocabulary of a federation. 

Each federate within a federation is itself considered to be a smaller simulation. As such, 

an individual document, known as the Simulation Object Model (SOM), defines the 

structure of information each federate produces and consumes. 

The following sections provide a more detailed look at both object models and the 

standard interfaces/services used within the HLA. 

3.2.2 HLA Object Models 

The primary purpose of object models within the H L A is to define and document the 

structure of information that is of interest to either a specific federate or federation. The 
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transmission of all information between federates occurs as an opaque series of bytes [42]. 

Given this, object model information is a vital component of any H L A simulation, 

providing an instruction manual that enables shared information to be reconstructed into 

some meaningful form. Depending on the model in use, additional information such as the 

intentions of a given federate to produce or consume certain information defined by the 

model is also provided [114]. The Object Model Template (OMT) defines the format these 

models must conform to [49]. 

ft.2.2.l Simulation Object Models 

In the HLA, each federate has its own object model known as its SOM. Each federate 

within a distributed simulation is itself considered an individual smaller simulation, thus, 

the S O M for each federate describes the object model it uses. Beyond describing the 

structure of information for the federate, a S O M may also describe which of the entities it 

intends to provide to other federates and which it desires to consume information about 

[491. 

While the SOM defines the object model for a particular federate, internally the federate 

does not have to work with information structured the same way. The S O M simply 

describes the public face of the federate [112]. Although the H L A specification defines that 

each federate must have a S O M [50], during execution the document is generally never 

used. Despite this, the S O M is still a vital documentation component and is often used by 

middleware or code-generation frameworks that seek to provide simplified methods for 

developing H L A federates (such approaches are discussed later in this document). 

1.2.2.2 Federation Ohiect Models 

While a S O M describes the object model for a given federate, a F O M describes the shared 

vocabulary for a federation. Broadly speaking, a F O M can be thought of as an intersection 

of the S O M s for all the participating federates. This is not strictly true as any federate can 

choose to produce or consume only portions of the information defined in a FOM1. 

Regardless, a F O M formally defines the structure of all information that is available to be 

passed between federates and communication regarding information not contained 

within it is prohibited [50]. 

Given that a FOM defines a shared lexicon, it is one of the primary vehicles enabling 

simulation interoperability within the H L A [112]. Any federate that is able to produce 

information according to a particular F O M is able to communicate with any other such 

federate via the RTI. Given this, the compatibility between a given S O M (describing the 

1 Further, a FOM may have elements that are neither produced nor consumed by any federate. 
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object model of a federate) and a given F O M is a crucial aspect when attempting to enable 

broad-level interoperability. While the O M T format provides a shared grammar for these 

documents, bridging semantic gaps is far more difficult. The H L A provides the syntax for 

interoperability [112], solving semantic differences is left up to the user. 

Object models within the HLA draw heavily from typical Object-Oriented (OO) 

approaches. While the two are not an exact match, significant areas of overlap exist. As 

with O O approach, one of the primary constructs of a H L A object model is the object class. 

3.2.2.3 Object Classes and Attributes 

As with traditional O O approaches, information within a H L A object model is organised in 

an Object Class hierarchy. Object classes describe the entities simulated by federates, and 

may contain any number of attributes (including zero). Attributes are the primary 

mechanism for specifying persistent storage information. The hierarchies described within 

the object models define the parent-child relationships that exist between classes. This is 

important as the O O concept of inheritance applies to the attributes of an object class. For 

example, consider Figure 3-3: 

mm 

/I 

Account 
-owner 
-balance 

7T 
extends 

Credit Account 
-limit 

Figure 3-3: Attribute Inheritance 

In this example, the Credit Account class would contain three attributes: the explicitly 

defined limit attribute, and the owner and balance attributes inherited from Account. 

Instances of the object classes defined in an object model are the primary modelling entity 

within the HLA. As object instances are created, the values of their various attributes can 

be set and altered. 

While traditional OO concepts apply to object class hierarchies and attribute inheritance, 

the H L A has no direct equivalent for method specification [62]. Although the H L A 
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supports the ability to pass messages between federates via Interactions (discussed next), 

these are not directly associated with either a specific class of object or an individual 

instance. 

3.2.2.4 Interaction Classes 

As mentioned above, while the H L A has no specific notion of methods in the traditional 

O O sense, it does provide facilities that allow the passing of transient messages [26]. The 

central entity involved in this process is the Interaction Class. As with object classes, a 

hierarchy of interactions if defined within the object model. Each interaction class may 

prescribe a number of parameters that contain the values of a message. As with attributes, 

the principle of inheritance applies to parameters. 

While their primary purpose is the passing of messages between federates (perhaps to 

trigger additional processing or signal an event), interaction classes share many 

differences with OO-style methods. Interactions are not associated with a given object 

class or instance. Further, the H L A provide no support for directly targeting a specific 

federate with an interaction, rather, any federate that signals an interest in an interaction 

m a y receive them. 

As any federate can show an interest in a specific class of interaction and as such, the 

direct passing of messages from one federate to another is not explicitly supported. 

However, if this behaviour is required, federates can be programmed to support it 

(perhaps through the inclusion of a parameter identifying the target federate, which in 

turn causes other federates to ignore the message). Just as the direct passing of messages 

from federate to federate is not supported directly (as is typical with OO-style methods), 

workarounds that include an identifier for the target object instance can be programmed 

into federates should the developers desire it. 

g.2.g.s Data Types 

Following the IEEE 1516 standardisation process, support was added to the. O M T format 

for defining data types [49]. W h e n information is passed between federates (via attribute 

updates or interactions for example), the values of the attributes and parameters 

concerned are formatted as an opaque series of bytes. The IEEE 1516 specification 

provides support for associating a given data type with an attribute or parameter, thus 

fully defining their structure. 

Building on primitive types, the OMT specification provides support for more complex 

arrangements in the following formats [49]: 
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• Simple Types: Generally speaking, simple types are just restrictions or 

associations with a given primitive type. That is to say, the simple type Minute, 

might define an integer that can be of the value 0 to 59. 

• Enumerated Types: Used to define a "data element that can take a finite 

discrete set of values" [49]. 

• Array Types: Used to define collections of another data type. These may be static 

in size or dynamic. 

• Fixed Record Types: Define a complex type that may consist of many other 

types. For example, the type Position may be defined as containing three 

consecutive 64-bit floating-point values defining an x, y and z value. 

• Variant Record Types: Variant records describe "discriminated unions of 

types" [49]. 

3.2.3 The HLA Interface and Processes 

W h e n exchanging information about the creation, alteration or removal of data described 

within the F O M , each federate communicates with the RTI via a standard interface. This 

interface defines how each federate can access the various simulation services provided by 

the RTI, such as time, declaration and object management. This section introduces the 

mechanisms involved in exploiting these services. 

3.2.3.1 HLA Interface Facilities 

The H L A interface exposes many facilities, each of which can be grouped as follows (the 

relevant services are discussed in more detail later in this section): 

' Federation Management: These services cover the management of a specific 

execution, enabling the creation and removal of federations, in addition to allowing 

federates to join to and resign from a federation. Additionally, synchronization 

facilities allow federates to co-ordinate their execution at certain named points, 

while save and restore functionality allows federates to return a simulation to a 

previously defined state. 

• Declaration M a n a g e m e n t : These services allow a federate to inform the RTI of 

its intentions to produce and consume the various entities defined in the FOM. 

• Object M a n a g e m e n t : The Object Management facilities allow a federate to 

register, update and remove instances of the various object classes defined within a 

F O M . These services also cover the ability to send and receive interactions. 
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• T i m e M a n a g e m e n t : The Time Management services allow a federate to control 

and advance logical time within a simulation. Support is provided for defining 

whether or not a federate will produce events which are time stamped, and 

whether a given federation intends to be constrained by the current time status of 

other federates. 

• Ownership Management: W h e n information is created by a given federate, it is 

implicitly granted ownership over it. To alter attribute values, a federate must be 

the owner of them. The Ownership Management services provide facilities to 

obtain and transfer the ownership of attributes between federates. 

• Data Distribution M a n a g e m e n t ( D D M ) : Providing a mechanism to reduce 

both the transmission and reception of irrelevant data [72,112], the data 

distribution services allow a federate to specify a region in which a subscribed 

attribute must be in order for the federate to receive notification of changes. When 

a federate updates an attribute, it can outline the given region in which that update 

is relevant. Unless the update region intersects with the subscription region for a 

different federate, it will not receive that update. D D M provides more fine-grained 

control over attribute updates (or interactions), reducing network traffic to a 

minimum. 

The HLA standards define realisations for these services in three different programming 

languages: Java, C++ and Ada [48]. While these are the only standardized mappings, 

there is nothing preventing federates written in other languages or software platforms 

from forming part of a distributed simulation. Having introduced the various sections of 

the standard H L A interface, some discussion of the relevant salient details is required. 

3.2.3.2 Publication and Subscription 

Publication and subscription are the means by which federates signal to the RTI their 

intent to produce and consume state information of particular types declared in the FOM. 

While older simulation frameworks such as DIS and ALSP used a broadcast mechanism to 

distribute state changes [123], the H L A allows a federate to show selective interest without 

needing to implement filtering itself. 
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Figure 3-4: Publish and Subscribe 

This figure shows three federates, each with differing publication and subscription 

interests. Federate A signals to the RTI that is intends to publish the position and 

fuelState attributes of the Aircraft class. Federate B informs the RTI that it only 

wishes to hear about state changes to the position attribute of the Aircraft class and 

Federate C only to the position attribute of the Helicopter class. 

Until the point at which Federate A declares that it wishes to publish the given attributes 

of the Ai r craft class, any attempt to create a new instance of this type will be forbidden 

by the RTI. Accordingly, unless Federate B signals that it is interested in the position 

attribute of the Aircraft class, it will never receive updates about changes made in other 

federates. Publication and subscription services are dynamic. Thus, during any point 

within a simulation, a given federate can decide to publish, unpublish, subscribe or 

unsubscribe various pieces of the F O M . 

These facilities allow the RTI to filter incoming information and pass only the relevant 

portion to interested federates, rather than broadcasting all messages and burdening each 

individual federate with the task of filtering it [72,67]. The effect publish and subscribe 

calls is demonstrated in the next sub-section. 

With one small exception, the semantics of publication and subscription apply to 

interactions just as they do to object classes and attributes. Where a federate can signal 
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publication or subscription interests for specific attributes of an object class, with regard 

to interactions, the action applies to the class as a whole (not individual parameters). 

a.a.S.3 Information Creation and Distribution 

Once a federate is either publishing or subscribing to various attributes or interactions, it 

will start receiving information about the relevant events that are occurring in other 

federates. The list below shows the four different types of events recognised by the HLA: 

Object Instance Registration: Creating an specific instance of an object class 

contained in the F O M 

' Attribute Value Alteration: Changing the value of a particular attribute 

contained within a particular object instance 

' Obj ect Instance Removal: Deleting a specific object instance 

• Interaction Sending: The transmission of an interaction 

Object Instance Registration 

All persistent simulation data within a federation is stored in attributes contained within 

object instances. Before a federate can register an instance of an object class, it must be 

publishing at least one attribute (either declared or inherited). Continuing the "three 

federate" example from Figure 3-4, Figure 3-5 demonstrates what happens when an object 

instance is registered. 

0 
Register Aircraft 

instance (given id: 7) 

Federate A Federate B I J Federate C 

Discover Aircraft 

instance (given id: 7) 

mmmmmm 
Figure 3-5: Object Instance Registration 

Here, Federate A informs the RTI that it is registering an instance of the Aircraft class. 

As Federate B is subscribed to at least one attribute of this class, the RTI notifies it that an 
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instance has been created via a discover call back. Given that Federate C has no interest in 

the Aircraft class, it will not receive any information about this new instance. 

Type Promotion 

Type promotion refers to the situation in which an instance can be discovered (or an 

interaction received) as a different type to that which it was sent as. For example, if Figure 

3-5 contained a fourth federate that subscribed to a Vehicle object class (where Vehicle 

is the parent of both Airplane and Helicopter), that federate would discover any 

instances of either child class that were registered. However, rather than discovering the 

instance as the type it was registered as, the fourth federate would see any instances as 

types of Vehicle. In this case, the child classes had been prompted up the hierarchy [27]. 

Further, the federate would only be able to see any attributes of the Vehicle class (and 

n o n e of the child classes). 

The same is true for interactions. If a federate is subscribed to a given interaction class, 

and an interaction of a child-class is sent, the federate will receive it as the parent class 

(with only the parameters that are relevant for that class). 

Attribute Value Alteration 

Over the course of a simulation it is expected that the various values of certain information 

will be updated. During the simulation run, a federate can alter the value of the attributes 

associated with a previously registered object instance. Figure 3-6 demonstrates this 

process: 

Federate A 

Update position 
and fuelState 
attributes for 
instance 7 

Federate B I ( Federate C 
) 

Receive update of 
position attribute 

for instance 7 

Figure 3-6: Attribute Value Update 
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Having changed the value of the position and fuelState attributes, Federate A notifies 

the RTI. As Federate B is only subscribed to the position attribute, it will receive 

information only of its alteration. Again, as Federate C is not interested in any relevant 

information, none shall be passed to it. 

Object Instance Removal 

At some point during a simulation run, previously created object instances may need to be 

removed, and thus, all federates using that information notified. The process of removing 

an object instance is much like that of creating one or updating attributes: 

Federate A 

Delete object 
instance 7 

Federate B ]• 1 Federate C 

Remove object instance 7 

mmmmmmmmmmmmmmmmmmmwmm 

Figure 3-7: Object Instance Removal 

Figure 3-7 shows Federate A informing the RTI that the previously created Aircraft 

object instance should be removed. As Federate B has previously discovered this instance, 

it is informed of the removal. Given the subscription interests of Federate C, it never 

discovered the instance, and as such, it does not receive any notification if the removal. 

Interaction Sending and Receiving 

The final mechanism for information distribution within the H L A is interaction sending. 

Designed to model transient messages, interactions (unlike object instance attributes) are 

not meant to represent persistent data. The typical notions of publication and subscription 

apply to interactions, with the exception that interest is shown on a class level (rather than 

the lower parameter level) [27]. It is also important to note that when sending an 

interaction, a federate does not need to provide values for all the parameters [112]. 

33 



Figure 3-8 shows the publication and subscription interests of three federates, in addition 

to the hierarchy of interactions in use: 

Federate A 
> 

Publish class TakeOff 

CFederate B J-

mmimwmmmwmmw Subscribe class TakeOff 

Federate C 
) ^mmmmmm 

Subscribe class StatusChanoe 

StatusChange 

v_ 

zrn TakeOff Land 

( 

\ 

Loiter 

~ \ 

s 

Interaction Hierarchy 

Figure 3-8: Interaction Publish and Subscribe 

Here, Federate A is publishing the interaction class TakeOff and Federate B is subscribed 

to it. In this case, Federate C has subscribed to the parent class, StatusChange. Figure 3-9 

demonstrates what happens when Federate A sends an interaction: 

c Federate A c Federate B Send interaction 
TakeOff 

Receive interaction 

TakeOff 

K. 
Federate C 

Receive interaction 
StatusChange 

Run-Time Infrastructure 

Figure 3-9: Send Interaction 
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Federate B is subscribed to TakeOff, thus, it receives the interaction as is. However, as 

Federate C is subscribed to StatusChange, type promotion means that it will receive the 

interaction as that type (and without any parameters that were introduced by the TakeOff 

interaction class in the F O M ) . 

3.2.3.4 Time Management in the HLA 

The concept of time is central to a vast number of distributed simulations. One of the 

primary advantages of the H L A over previous distributed simulation frameworks is the 

shared time management facility it provides [14]. Throughout a given simulation run, 

these services allow separate federates to remain synchronized to a central "logical time" 

and help guarantee the delivery of certain messages at a specific logical time. 

Logical, or Simulation time is the logical measure of time within a simulation. Logical 

time is a synthetic measure whose values are somewhat arbitrary. One unit of logical time 

might represent one second or one hour of actual time depending on the simulation. The 

time services provided by the H L A focus on time advancement and the association of 

messages with a specific logical time. 

Logical Time and Message Delivery 

Messages within the H L A are delivered to a federate in one of two mechanisms: Receive 

Order (RO) or Timestamp Order (TSO). R O messages are simply queued up and delivered 

to a federate as soon as possible, while TSO messages are only released to a federate once 

the RTI can guarantee that no messages with an earlier (lower) timestamp will be created 

[112]. The mechanisms used to determine when this point has been reached are 

introduced during the time advancement discussion below. 

In order to help the RTI manage the delivery of time stamped messages, federates can 

signal that they wish to be either time regulating or time constrained (or potentially both 

or neither). Time regulating federates are those that wish to produce messages (such as 

attribute updates) with an associated timestamp [48]. Time constrained federates are 

signalling to the RTI that they wish to receive messages in timestamp order [48]. 

Only time regulating federates can send TSO messages and only time constrained 

federates can receive them [27]. If a non-regulating federate attempts to send a TSO 

message, the timestamp will be discarded and the message delivered as R O [48]. 

Accordingly, if a non-constrained federate receives a message that was sent with a 

timestamp, it will be discarded and the message delivered as R O (to that particular 

federate) [48]. Figure 3-10 demonstrated this process: 

35 



Federate A 
mmmmm 

Federate B 

F" 

Federate C 
mmm 

Send attribute 
update with 
timestamp 

Receive attribute 
update as TSO 

Receive attribute 
update as RO 

Run-Time Infrastructure 

Figure 3-10: Time Constrained and Regulating 

It is important to note that the non-constrained federate will receive the attribute update 

as soon as possible, while the constrained federate will have to wait until the appropriate 

logical time has been reached (which may not occur for quite some time) [14]. 

To help the RTI ensure that no TSO messages are delivered in the logical "past" (with 

timestamps lower than the current logical time), regulating federates must provide a "look 

ahead" value. The look ahead is added to the current logical time to determine the lowest 

timestamp a federate may associate with a message. This value is known as the Lower 

Bound Time Stamp (LBTS) [14]. Figure 3-11 demonstrates how look ahead affects the 

ability of a federate to send a TSO message: 

Current Time = 12 

Lookahead = 3 

10 11 

LBTS =15 
Federate cannot 
produce messages 
with a timestamp of 
less than this value 

Logical Time 

15] 13] 14] 15] 16] 17] 18 

Figure 3-11: Lookahead 

The RTI will not release any TSO message to a constrained federate until it can determine 

that no more messages with a timestamp less than the proposed new logical time will be 
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generated [27]. To enable the RTI to determine this point, federates use the various time 

advancements services provided. 

TimeAdvanoRmpnt 

To enable the proper coordination across a federation, the RTI controls when time 

constrained federates are allowed to advance their logical time. A given federate must 

explicitly request an advancement in its logical time and wait for the RTI to grant its 

request before moving on [112]. Consider figure 3-12 below: 

LBTS = 16 
Requested T i m e = 13 Federate cannot 

-—^^^ produce messages 
^^\ with a timestamp of 

Current T i m e « 12 t less than this value 
Lookahead « 3 

Logical Time 
~^0| 111 12] 13] 14l 15] 16| 17| 18| 

Figure 3-12: Time Advance Request 

In this figure, the current logical time for the given federate is 12, however, it has 

requested a time advance to 13. A request to advance time is taken as an indication that 

the federate no longer wishes to produce messages at the current time. Thus, if the 

federate is regulating, its look ahead will now be calculated from the requested time 

(making the LBTS for this federate equal to 16) [27]. 

The RTI will not grant this advance until it can determine that all TSO messages with a 

timestamp of less than 13 have been delivered. To do this, it must determine the earliest 

possible timestamp a message might arrive with; it needs to know the LBTS for the 

federation. As regulating federates are the only ones capable of producing TSO messages, 

this value will be equal to the lowest LBTS of all such federates. Only when this value is 

greater than or equal to the requested time will the RTI grant the advancement2. 

The HLA provides three different methods for the advancement of logical time: 

2 While the H L A provides facilities to coordinate time advancement, an independent logical time is 
maintained for each federate. For example, it is valid for one federate to have a logical time of 12 while another 
has a logical time of 15. The RTI will only restrict the advancement of constrained federates as they are the 
only ones capable of receiving TSO messages. Advancement requests by non-constrained federates will be 
granted immediately. 
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• T i m e Stepping: Federates directly request advances of a given value. Generally 

speaking, the value is consistent (i.e., Always requests advances of 3 units) 

• Event Based: Rather than directly managing the time advancement process, 

these federates are more interested in processing the next available message 

(whatever timestamp it might have). As all TSO messages will be delivered in 

order, requesting the next event is implicitly asking the RTI for an advance to the 

timestamp of that message [48]. 

• Optimistic: Time-stepped and event-based approaches are known as 

conservative techniques [112]. This is because they guarantee that events will be 

delivered in timestamp order and that no events will occur in the past. Optimistic 

federates are able to receive all currently queued-events, even if there is the 

possibility that more messages with smaller timestamps may still be generated 

[48). Facilities are also provided to allow such federates to cancel previously sent 

messages if required. 

A major strength of the HLA is that it allows the combination of federates using different 

advancement mechanisms. From the perspective of a federate, the mechanisms used by 

other federates are hidden and irrelevant, allowing, for example, time-stepped federates to 

interoperate with event-based and optimistic ones [112]. 

3.2.3.5 Ownership Services 

Each attribute of a given object instance is explicitly owned by a single federate. Only the 

federate that owns an attribute may update it The ownership management services 

provided by the H L A allow for the transferral and acquisition of attribute ownership 

among federates. These facilities support the co-operative modelling of simulation data by 

allowing separate federates to manage various attributes of the same instance, or, indeed, 

share management of a specific attribute [27]. 

The HLA supports two types of attribute transferral: push and pull. A negotiated attribute 

ownership transferral is used when a particular federate wishes to "get rid" of (or push 

away) a given attribute [112]. A requested acquisition is used when a given federate wishes 

to gain ownership (pull) of an attribute currently managed by another federate. 

3.2.3.6 Data Distribution Management 

With the HLA, publication and subscription mechanisms are used to reduce the amount of 

unnecessary traffic flowing between the RTI and federates. Data Distribution Management 

38 



( D D M ) provides facilities that allow more fine-grained control over updates and further 

reduce superfluous communications. 

When a federate is subscribing to a set of attributes or an interaction class, it may also 

supply a specific region. Regions are multi-dimensional spaces that define constraints for 

the transmission of events. W h e n a federate updates an attribute value, it may supply an 

update region with the event that signals the space it is valid for. Only when that space 

overlaps with the subscription region for given federate that is interested in that attribute, 

will the RTI forward the update. This removes the transferral of information that the 

receiving has declared itself as having no interest in [72,27]. 

3.2.4 Summary 

This section introduced the HLA, its component, entities and processes. Discussion has 

focused on both object models and the various simulation services provided by the H L A 

that enable the interoperation of federates within a distributed simulation. With this in 

mind, the section 3.3 discusses h o w the interoperability benefits of the H L A can help 

remedy the problems of the wider business community as highlighted in chapter 2. 

3,3 HLA for the Wider Business Community 

The landscape of tools used for simulation purposes with the wider business community 

consists of numerous and varied options. From general-purpose spreadsheet applications 

to specialised simulation environments, the lack of interoperability between the produced 

models can have considerable effects on reusability and return on investment. Designed 

specifically to address the problems of connecting many varied hardware and software 

platforms together, the interoperability afforded by the H L A presents significant attractive 

options when considering it for use in such a diverse landscape. This section describes 

how the H L A can be of benefit. 

3.3.1 Size and Complexity 

Simulation tools used within the wider business community tend to be monolithic in 

nature. The use of a single tool producing a single simulation can negatively impact both 

the development complexity and achievable size of a model. Distributed simulation 

focuses on the development and co-operation of multiple, smaller and more specialised 

models. Partitioning the required work into smaller, more manageable units helps reduce 

development complexity and allow for greater reuse through the integration of pre-written 

components. 
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Such an approach also allows for the integration of additional modules at later points, 

increasing the overall size of the model and potentially enhancing the information is 

produces. As the single simulation, monolithic approach places restrictions on the 

achievable size of a model. The increased depth of analysis extending from lager, more 

compensative models is forgone in an environment like that which currently exists within 

the wider business community. Distributed simulation offers enhanced scalability, thus 

addressing these shortcomings. 

3.3.2 Interoperability and Reuse 

As mentioned above, the wide variety of tools used for simulation within the wider 

business community can negatively affect the return on investment made in developed 

models through reduced reuse and higher initial development costs when developing 

complex models. Further, the lack of reuse caused by an inability to use existing work 

developed with alternate tools also increases costs and reduces the achievable size of 

models. Ideally, a larger model could be developed from a combination of custom built 

and pre-existing components (that were themselves created with the tools that most suited 

the task at hand). These models could then be brought together and work jointly as a 

distributed simulation. The interoperability benefits of the H L A can help to realise this 

goal. 

How is Interoperability Achieved in the HLA? 

Before discussing h o w the interoperability benefits of the H L A can help the wider business 

community, it is first important to discuss how the H L A achieves interoperability across 

otherwise disparate platforms. 

Interoperability is achieved within the HLA in a number of ways. Central to all of them is 

the role of the F O M . Describing the structure of information a given federation can 

produce and consume as a whole, the F O M is the primary artefact that allows federates to 

work with one another in a defined manner. A F O M defines the shared vocabulary of a 

federation. From an interoperability perspective, this means that any simulation 

component willing to produce or consume information in the same manner can potentially 

work with other such component (even if they were not originally designed to do so). 

In an attempt to gain widespread interoperability among components designed for similar 

environments, the notion of reference FOMs has long been employed within the defence 

domain. The creation of a central, standard F O M for a specific purpose (such as the Real

time Platform Reference F O M [108]) allows components to be created with 
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interoperability in mind. While such components may not be created with the express 

intent of interoperability with another given federate, the fact that both support the 

reference F O M opens this possibility. There is nothing specific to reference F O M s that 

supports this behaviour beyond the creation of a shared syntax and the implicit agreement 

of shared semantics (often codified in supporting documentation). Federates designed to 

work with different models can still be brought together if there exists significant overlap 

between the models. 

Beyond defining what is required of simulation components if they are to work together in 

a distributed simulation, the F O M also helps overcome platform differences. Assuming 

very little about the target platform, all communication within the H L A is achieved 

through the passing of an opaque series of bytes. Where structured data may have 

different representations on different platforms, a group of bytes as used within the H L A 

will always remain the same, regardless of platform. 

This naturally raises issues when attempting to reconstitute any received information into 

a format that is both usable and has some sort of semantic meaning. Object models thus 

form a primary mechanism through which interoperability is achieved. Describing the 

structure of information that is to be exchanged within a distributed simulation, the F O M 

acts as a recipe for the reconstitution of received information into its intended format. The 

exact manner in which this process occurs is dependent on platform and simulation. With 

the introduction of the IEEE 1516 specification, the O M T format was extended to include 

all information necessary to define the structure of information [49]. Whether it be 

simple, primitive data types or large, complex structures, the F O M now contains all the 

necessary information to both render an opaque series of bytes in some semantically 

useful form, and to reduce a structure into a series of bytes ready for transmission. 

How Interoperability Helps the Wider Business Community 

As discussed above, the wide and varied landscape of tools used within the wider business 

community can have many negative effects on simulation development, costs and return-

on-investment. The interoperability benefits of the H L A can help address these problems 

by allowing models developed across different tools to work together. Development costs 

can be reduced through the ability to leverage pre-existing simulation components that 

were previously unusable. Simulations can work together to form larger and more 

complex models, in turn delivering a greater depth of information and better equipping 

those who rely on such feedback for decision support. This also enables the reuse of 

existing component, increasing the return-on-investment made in their development of 

purchase. 
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3.4 Summary 
While use of the H L A within the wider business community would provide many potential 

benefits, the application of this technology beyond the domain of defence has thus far 

been minimal [116]. Despite offering many proven interoperability benefits, the H L A still 

presents many sizeable shortcomings that must be addressed before it can be readily 

employ beyond the defence community. Although the IEEE 1516 standard is currently 

undergoing periodical revision and is addressing some of these shortcomings, many 

problems still remain. This chapter has introduced the HLA, its processes and 

components. Chapter 4 discusses the shortcomings of the H L A as it is specified, and 

outlines some of the research and development efforts made to address them. 
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Chapter 4 

The HLA: Problems and Solutions 

A proven, international open standard, the HLA has the potential to enable increased 

interoperability and reuse of simulations within the wider business community, in turn 

lowering development costs, increasing return-on-investment and allowing larger and 

more encompassing models to be developed. However, while capable of delivering 

considerable advantages, the H L A as specified presents numerous sizeable problems. This 

chapter introduces and discusses these issues, before outlining the research and 

development efforts that have attempted to address them. 

4.1 Shortcomings of the HLA 

While the H L A presents significant advantages when considering it for use within the 

wider business community, there are a number of shortcomings that currently prevent any 

wider uptake of the technology beyond the defence domain. The problems of the H L A are 

well known and have been the subject of much work within the community. 

4.1.1 Development Complexity 

Development complexity is perhaps the single largest noted deficiency of the HLA. Having 

been the focus of considerable attention and research, these issues have been widely 

identified as increasing the time and costs involved in distributed simulation 

development. 

Access to the simulation services offered by the RTI is only available through the low-level 

facilities defined in the interface specification which area complex and difficult to work 

with [20]. In use, these interfaces can be unintuitive and require expert knowledge to use 

effectively. While quite powerful and flexible, the interface specification causes many 

problems at an implementation level. 

Code-Space Inefficient 

The application code required to utilize the H L A services is extremely code-space 

inefficient, often requiring hundreds of lines in order to achieve simple outcomes. The 

process of programming a federate is a complex and laborious task [82]. Further, the 

asynchronous programming model used by the H L A requires that the client manage the 

association between event responses and their original requests. This approach results in 
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the need for an additional coding effort and in turn increases the amount of code that 

must be developed and maintained [83]. 

Unstructured Development 

The low-level nature of the facilities provided by the interface specification means there is 

no consistent, accepted model driving their use. As such, simulation developers often 

resort to the development of their own infrastructure and middleware solutions in order to 

reduce the development effort required [83]. This in turn results in a duplication of effort 

and creates an additional source of development and maintenance. Further, the process of 

testing and debugging federations is recognized as a difficult and time-consuming process 

[84]. 

Code Tangling and Tight Coupling 

Without a formal standard defining the proper separation of model code from the 

integration logic required to support the RTI ambassador interface, the two often become 

entangled and are unable to be considered separately. Such tight coupling of business 

logic (in this case, a simulation model) and underlying support code is widely recognised 

as a major factor in constraining reuse potential. 

Code required to communicate with the RTI and handle incoming information ends up 

scattered among the pure logic of the simulation, making models more difficult to 

comprehend and creating maintenance issues [92]. This entanglement harms model 

comprehension and can make it more difficult to spot errors or bugs. The tight coupling 

that exists between model logic and the underlying H L A infrastructure code also makes it 

difficult to reuse that effort in situations where the infrastructure must be changed. 

Data Interpretation 

The IEEE 1516 O M T standard defines a format that allows object models to fully specify 

their contained types. This information can be used to construct properly formatted data 

from the opaque series of bytes received from the RTI. However, the process of 

serialization and de-serialization is left entirely to a federate developer. While this is a 

simple process for primitive data, when considering larger data structures, it can become 

complex and burdensome. 

The simulation specific services provided by the HLA require expert skills and training not 

generally found in the wider business community. While general programming knowledge 

is widespread and pervasive within such domains, the knowledge required for H L A 

federation development is not. Despite being available as an internationally defined open 
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standard for numerous years, the H L A has yet to gain traction beyond the defence 

domain. Given this minimal uptake, it is clear that the skills required, and the complexity 

involved with the H L A as it currently exists, render is undesirable in such contexts. 

4.1.2 Interoperability and Reuse Shortfalls 

A major strength of the H L A is the interoperability benefits it provides. Linking 

simulations and components on diverse and disparate platforms together, the H L A 

enables the interoperation of many different simulation styles. Central to the 

interoperability benefits of the H L A is the notion of a shared object model (the F O M ) . 

However, while successful in enabling a broad level of interoperability and reuse, there are 

situations in which the H L A falls short of its goals. Most commonly, H L A interoperability 

breaks down when attempting to use a particular federate in a context it was not 

specifically designed for. 

Syntax v. Semantics 

Defining the shared vocabulary of a particular federation, any federate that conforms to a 

given F O M can work in the same distributed simulation as other such federates. However, 

the F O M only defines the syntax for interoperability, not the semantics [112]. While direct 

conformance with a F O M is the first step towards interoperabihty, there are many 

situations in which semantic differences in the behaviour of a federate lead to 

incompatibilities. Broadly speaking, these can be broken down into three distinct 

categories: 

Execution Management 

Differences relating to the way a federate may manage its execution within a federation. 

Different federations have different execution processes. Some use synchronization points 

to tell federates when to start and stop execution, others may use interactions. Certain 

federations m a y have defined points at which they publish and subscribe or pre-regjster 

all their object instances. In order to enable repeating simulation runs without exiting, the 

Virtual Maritime Systems Architecture (VMSA) simulation mandates that a federate must 

go through a simulation state save and restore process before each run [11]. If a given 

federate can not conform to the execution management procedures expected by other 

federates, the simulation may never be able to start. 

Model Differences 

Model differences relate to the way a given simulation component may produce or 

consume information, and the assumptions it makes about simulation data. Two models 

m a y produce information about the altitude of an aircraft as a 32-bit integer, but one 
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interprets it as meters while the other as feet. While the O M T supports the definition of 

such information in the F O M , it is formed as free text and cannot be processed directly by 

a computer. As such, to adapt one federate to a new F O M would require code-level 

changes. 

Problems can also arise when federates do not agree on policies relating to the items such 

as update production rates. While some federates may attempt to reduce bandwidth by 

sending infrequent updates (relying on dead-reckoning to make assumptions in the mean 

time - as was popular with DIS), other federates may depend on a continual stream of 

information. 

HLA Service Usage 

The interoperation of federates depends heavily on the H L A services they may use of and 

depend on. While two federates may be compatible at an execution and model level, if one 

depends on co-operative modelling through the transfer of attribute ownership and the 

other does not, significant problems arise. C o m m o n areas of concern relate to models that 

do or do not depend on ownership or time management. 

FOM Agilitv 

Compliance with a particular F O M is no guarantee that a given federate can interoperate 

with another compliant federate. Interoperability within the H L A is dependent on the 

F O M acting as a shared contract describing the data (and structure) federates wish to use. 

FOM Agility is concerned with the processes involved when a significant functional 

overlap exists, yet the way data is represented within the F O M is different [40]. In order to 

invoke RTI ambassador services, FOM-specific information must be known. Information 

such as object class and attribute names are often hard-coded into a federate, and as such, 

switching to a different F O M necessitates alteration of a federate at this level. In situations 

where this is not possible, the ability to reuse such a federate is lost 

The FOM-centric approach of the HLA leads to issues of cross-federation interoperability 

and significantly reduces the ability to reuse existing work in a context for which it was not 

originally intended. The use of reference F O M s is seen as one way to avoid this problem 

(by standardising on a specific model). However, this workaround does not solve the 

underlying problem. Further, it is only of benefit when all use of a given federate is 

intended to be with regard to the same model. 

Link Compatibility 
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While FOM-Agility and semantic differences are classes of interoperability problems that 

relate directly to the underlying model, the issue of link compatibility is a problem the 

infrastructure used to enable a distributed simulation. 

To allow unprecedented flexibility with regard to the way HLA types3 are represented 

within a specific RTI implementation, the IEEE 1516 interface specification mandated a 

set of abstract, vendor neutral types [48]. This allows a vendor to implement such types in 

any manner they desire, while insulating federates from the underlying semantics. 

However, sufficient means of creating and obtaining these types was not supplied, 

requiring federate developers to make direct use of vendor-specific types. This in turn 

required source code alteration and recompilation when attempting to move a federate to 

a different RTI implementation [43]. 

The lack of link compatibility further reduces the interoperability and reuse potential of 

existing federates. The dependence on a specific RTI means a federate can only be used in 

situations where the implementation it was designed for is also in use. To address this 

problem, the Simulation Interoperability and Standards Organization (SISO) developed 

the companion "Dynamic Link Compatibility" specification (otherwise known as the DLC) 

[41]. The focus of the D L C is to remove these anomalies and enable a smooth transition 

when moving from one RTI implementation to another [45]. However, while the D L C 

specification does address many of the situations in which link compatibility problems 

arise, in its current form it fails to realize this goal with regard to LogicalTime types. 

Standards Compatibility 

Having been in use for many years, the H L A has undergone several specification 

alterations and upgrades. At the time of writing, there currently exist several different 

versions4: 

• HLA 1.3 (initial DMSO version) 

• IEEE 1516 

• SISO D L C 

3 Types such as LogicalTime implementations, abstract handles that identified a specific object instance, class, 

or attribute (for example). 

4 The H L A Evolved has come about as part of the general process of refreshing IEEE standards after a certain 

period of time. At the time of writing it is about to be voted on and release is anticipated in late 2006. 
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The D L C standard was an extension of IEEE 1516 to address link compatibility issues. As 

such, the two are mostly compatible. However, the changes to the interface specification 

between H L A 1.3 and IEEE 1516 were significant. 

While the evolution of a standard is necessary to keep it current and avoid stagnation, in 

the case of the HLA, backwards compatibility has not been preserved. Incompatible 

alterations to the interface specification have been made such that alteration of a federate 

at a code level is required when attempting to work with different versions. Especially 

vexing is the choice to change the names of various types; even when there is no semantic 

difference in the way they are used. This is further exacerbated by changes made to the 

names of object, attribute and interaction classes. As these types must be referenced by 

name within a federate, such an action immediately invalidates all federates of the 

previous versions, excluding them from operating correctly. 

As the standards are no longer compatible, in order to maintain a federate capable of 

working in either situation, two separate lines of development must be created. While 

adding additional maintenance costs, these actions reduce the reuse and return-on-

investment potential of a simulation component. 

4.1.3 Barrier to Entry 

Rather than being a single problem that restricts the broader uptake of the HLA, barrier to 

entry problems are the product of many shortcomings. The current environment 

surrounding the H L A actively inhibits an expansion of the community into the 

mainstream business environment. 

Infrastructure Costs and Open Source Software 

While c o m m o n in the broader business community, the H L A has a distinct lack of Open 

Source Software (OSS) involvement. While in and of itself this is not necessarily a 

negative, the prohibitive costs of commercial infrastructure and support tools serves to 

magnify any issues it may raise. In relative terms, compared with general simulation tools, 

the H L A is a niche market. As is common in such situations, commercial infrastructure 

and tools are expensive. 

RTI software is essential for HLA and without it, the development and execution of 

simulations cannot occur. While robust and mature commercial offering are available at 

considerable cost, the lack of any basic tools that can help expand use of the H L A is 

noticeably absent. Without such options, those exploring the potential of the H L A to help 

solve their problems have no support in assessing and evaluating its advantages without 

48 



the involvement of significant financial commitment. Further, the expense involved in 

commercial offering also restricts the ability of small-to-medium enterprises to compete 

with larger competitors. 

Up until December 2002, the US Defense Modeling and Simulation Office (DMSO) made 

their RTI implementation widely available (subject only to International Traffic in Arms 

Regulations - ITAR). With this contribution, anyone interested in learning or assessing the 

H L A had at least the minimum required tools at their disposal. However, citing a growing 

commercial RTI market, D M S O removed their offering from public availability [52], 

leaving no non-commercial options available. With no freely available option, the already 

significant barrier to entry is raised yet again. 

The need for publicly available tools has not gone unnoticed and the potential of Open 

Source Software (OSS) has been identified as a potential solution [113]. While pervasive in 

the mainstream community, OSS has yet to make any significant inroads into the H L A 

community. However, recent times have seen a number of projects begin to emerge [1, 74, 

93]. Despite being early in development or relatively incomplete when compared to 

mature, commercial offerings, these endeavours hold considerable potential for 

addressing the lack of free tools. Reducing the barrier to entry, they may be able to help 

grow the community and in time feed into the market for more mature, commercial 

options. With this in mind, the general availability of basic tools is becoming a much 

smaller hurdle. 

Despite offering many advantages for the development of distributed simulations, the 

environment described above significantly restricts a broader uptake of the technology. 

These problems arise directly from the requirements of the H L A as specified and group 

together to make the prospect of H L A use both excessively complex and costly. 

As the expression of a model within the HLA is so inherently tied to the directly 

exploitation of RTI services, specialist knowledge and training is required (and the 

learning curve is steep). The complexities involved in H L A simulation development in 

addition to the considerable amount of code that must be written leads to longer initial 

development timelines and increased maintenance costs. Shortcomings in the ability to 

reuse existing work lead to an increased duplication of effort, resulting in additional cost 

and time commitments. The lack of model composability caused by these reuse problems 

reduces any capacity for the rapid development of even small models. 

Taken together, all these issues combine to vastly reduce the attractiveness of the HLA 

despite the potential benefits if can offer. The high barrier to entry is the combination of 
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all the problems discussed in this section and serves to restrict a broader uptake of the 

H L A within the wider business community. 

4.1.4 Summary 

Section 4.1 has introduced the common problems associated with H L A simulation 

development. The issues of development cost and complexity, a requirement of expert 

skills and training, and interoperability and reuse shortcomings have been highlighted as 

the major deficiencies of the H L A as specified. W h e n considered alone, these failings 

render the H L A unsuitable for use within the wider business community; considerable 

research and development effort in recent times has focused on solving the issues. Having 

identified the primary shortfalls of the HLA, this section has provided the background for 

a discussion on recent research and development efforts aimed at addressing the 

problems. 

4.2 Addressing the Problems 

The problems of the H L A are well known within the research and development 

community. While the H L A has long enjoyed pervasive use within the defence domain 

despite these issues, compelling solutions must be found before the H L A can be made fit 

for use in a mainstream simulation context. This section introduces and discusses some of 

the research and advancements aimed at addressing the shortcomings, their successes and 

failures. 

4.2.1 FOM Agile Federates 

The term F O M Agile federates refers to a concept that involves creating mappings to 

describe the transformation between the model that a particular federate requires and that 

which is being used in the wider federation [124]. 

As the process of moving a federate to a new federation can involve both semantic and 

vocabulary differences, some changes need to be applied to the federates before they can 

work in their new setting. One option is to modify the source code for the federate directly. 

This approach, while effective, requires a user to come to terms with not only the model 

that the federate uses, but also the way in which the federate was developed. The amount 

of time it can take to port a particular federate can be significant, and as such, costly. 

Further, once a federate has been ported to a new federation object model, two separate 

versions of the federate now exist. This raises maintenance concerns and again requires 

significant investments of time and money. 
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The F O M Agile approach seeks to use middleware as a kind of Rosetta Store. The 

middleware can be configured to perform transformations both in terms of simple naming 

changes, right the way up to complex data transformations [40]. By placing middleware 

between the federate and the RTI, these types of transformations can be performed, 

essentially fooling federate into believing that the federation is communicating in terms it 

natively understands. 

The problems of FOM Agility have been the focus of considerable research and 

development effort in recent times. Through the ideas and concepts presented here, many 

of the issues can be mitigated. Any solution that intends to offer simulation services to the 

wider business community must provide the ability to integrate such approaches so that a 

fuller picture of interoperability and reuse can be realised. As part of the periodic revisions 

to the IEEE 1516 standard, the notion of "Modular F O M s " is being introduced. This allows 

individual federates to describe only the parts of the F O M they have interest in. The RTI in 

turn merges all the constitute modules from all the federates into the actual federation 

model. This particular enhancement is one such effort that is being made to allow 

federates to become more agile, letting them focus purely on the parts of the model of 

interest to them. Although it helps, it does not provide a solution to problems of agility 

when modules overlap and make use of different semantics. In this situation, more 

traditional mapping and transformation techniques are still required. 

4.2.2 Code Generation 

Section 4.1 identified the problems of development cost and complexity as significant 

factors holding the further expansion of the H L A back By automating the creation of large 

portions of a simulation component, code generation can help to reduce development time 

and costs. Unlike the other technologies presented in this section, code generation is not a 

general solution that is used in isolation. Rather, such techniques normally form part of a 

larger overall strategy (as will be discussed in relevant parts of section 4.2). 

Code Generation Overview 

A code generator is a program that produces other programs [51]. The basic process of 

code generation involves the automated conversion of a high level description of a piece of 

logic or entity into the actual code required to implement it. There are many advantages to 

using this process [70]: 

' Reduction in the amount of code which must be authored by hand 
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• Improved code quality as output is automatically generated, not written by hand 

(and subject to the mistake people make) 

• Reduction in maintenance costs as local at which bugs are produced is centralised. 

If there is a bug, it is everywhere code generation was used and is thus easier to 

find. 

There are two general types of code generators, each of which is discussed below: 

Binary Runtime Code Generator 

A runtime code generator creates code dynamically during the execution of a program. 

These types of generators work at a low level and are generally not exposed to a developer 

(they are hidden in an execution environment) [51]. Such code generators create code for 

use during a particular execution, with the code produced not persisting beyond the 

runtime of the application. Runtime generators can be found in places like the Java 

Virtual Machine [115]. Here, Java byte-code is turned into machine executable code at 

runtime. 

Source Code Generators 

As opposed to runtime code generators, these types emit actual source code [51]. Used in 

many environments that provide application development support, source code 

generators create code on behalf of a user. Used to generate code for common, repetitive 

or monotonous tasks, the code created by this type of generator is intended to be 

persistent, and often times is extended or directly leveraged by a developer. Many 

applications make use of this type of generator, examples of which include Rational Rose, 

Microsoft Visual Studio and Calytrix SIMplicity (a H L A simulation development tool 

discussed in section 4.2.5). 

Successes and Failures 

In situations where significant amounts of repetitive code must be written (such as the 

HLA), code generation can help to reduce the burden on developers. As the volume of code 

produced is decreased, so to does development timelines and costs. However, in and of 

itself, code generation does not solve many problems of the wider business community. 

Generally, code generation is a low-level technology that is leveraged in the context of a 

broader solution, such as those discussed next. 
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4*2.3 Component Models 

Considered an important solution to many of the c o m m o n problems faced in software 

development, component models are credited with improving both productivity and code 

quality [55]- Through the use of component based development many organizations have 

claimed significant benefits from the increased reuse and interoperability they offer [44]. 

Component based development involves the process of separating the core business logic 

from the platform that it aims to exploit [46]. Separating the business logic from the 

underlying integration code allows for either to be changed without the need for extensive 

redevelopment, resulting in the realisation of reuse and interoperability across differing 

platforms. 

A component model is an architecture that allows application developers to define 

reusable fragments that can be combined to create a larger application [87]. These 

fragments are known as components and they form the basic building blocks through 

which applications are assembled. Behind the abstractions provided by a component 

framework is the container. The container provides the concrete environment in which 

components execute. 

Components 

A component is a self-contained, self-describing unit of functionality [84I that is deployed 

in a managed environment. Components themselves do not necessarily constitute entire 

applications; rather, they provide small pieces of logic that may be aggregated to form an 

application [97]. 

A component is composed of two parts: the logic it implements (its interface) and the 

description it provides of itself. The interface provides programmatic access to the internal 

state of the component and is provided through the use of abstractions defined by the 

framework Metadata provides information about the component, such as vendor and 

version descriptions in addition to the container services it wishes to leverage [84]. 

Rather then acting as a standalone piece of software, components are deployed into a 

container that provides an execution environment. A component contains the core or 

business logic required to complete a task. Rather then combining the code required to tie 

this logic into the execution environment a component interacts with its container through 

an abstracted interface. Separating the business logic from the underlying platform details 

allows a component to be deployed into any container that conforms to the component 

model [83]. 

53 



Component Containers 

The middleware services required by a component are collectively described as the 

component container [84]. A component container provides a concrete implementation of 

the abstract interface to which the components conform and may provide access to a 

number of services that are transparently applied to deployed components, such as [84, 

87, 97]: 

• Transactional Services 

• Naming Services 

* Security Services 

• Messaging Services 

• Persistence Services 

• Quality of Service (QoS) Services 

The abstraction of the actual container implementation from the business logic contained 

in the component allows for the drop-in replacement of either the component or the 

container (thus providing a substantial increase in the level of reuse and interoperability 

possible). 

Component Based Development 

Component based development advocates the partitioning of the application logic into 

smaller, reusable components [6] that communicate with a platform through an 

abstracted interface. A n application is logically partitioned into a number of software 

components where each of these components conforms to a common component model 

[84]. 

Given that the actual platform implementation details of the container in which 

components execute remains hidden, it becomes possible to switch implementations of 

this container without the redevelopment of the application logic (which would otherwise 

be required). This same principle applies for components. Since components are self-

contained units with shared assumptions regarding the manner in which they interact and 

connect with their executing environment, they can be swapped for other components that 

provide the same level of functionality [39]. Additionally, the specification of a standard 

interface allows components to remain portable across many physical container 

implementations. 

While increasing the reuse potential of developed components, this process also helps to 

increase developer productivity by removing tedious tasks from the process. Further, a 
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significant reduction in maintenance can be achieved through the reduction in developed 

code. With the application logic partitioned into self-contained components it is possible 

to develop and maintain each component separately. Beyond this, the use of standard 

supporting infrastructure can significantly reduce the amount of code that must be 

authored to provide communication between components [3], easing the development 

burden associated with inserting new functionality into an application. From this 

description we can see that the primary goals of component-based development are [46, 

84]: 

• to develop software from pre-existing parts 

• to reuse these parts in other applications 

• to easily maintain and customise these parts to produce new functions and features 

Successes and Failures 

The H L A was developed by the U S D o D in order to increase the reuse and interoperability 

of distributed simulations; however, although significant advances have been made, the 

full realisation of this goal has thus far remained unachieved. As discussed in the section 

4.1, issues such as F O M Agility and the tight coupling of simulation logic and 

infrastructure code all impede the ability of H L A simulations to achieve the level of reuse 

and interoperability desired [42, 63, 83]. The application of component-based 

development methods has the potential to help rectify this situation and realise the goals 

of reuse and interoperability. 

The Simulation Component Model (SCM) has been developed specifically to address the 

needs of the HLA. The S C M applies component-based development techniques to the H L A 

in an effort to realise greater reuse and interoperability of the core simulation model logic 

involved. 

The Simulation Component Model (SCM) provides support for the development of 

reusable H L A based simulation components [83]. While the H L A provides a solid base for 

composing distributed simulations in a reusable manner, realising this goal is difficult to 

achieve. The S C M applies component based development techniques to the H L A in an 

effort to realise greater reuse and interoperability of the core simulation logic involved in a 

simulation. Reproduced from [83], Figure 4-1 shows a top-level view of the S C M and the 

component/container relationship: 
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Figure 4-1: Simulation Component Mode! [CC] 

As shown above, the S C M separates model logic into reusable components and defines a 

container in which they can be deployed and access the hidden, underlying H L A services. 

Building on previous work, the integration logic required to connect the component to the 

simulation framework can be automatically code generated from metadata information. 

Component models such as the S C M offer many advantages with regard to the 

development time and costs involved with the creation of HLA-based simulations. 

Through their connection to the HLA, considerable interoperability and reuse potential is 

also possible. Through the execution container, an S C M component appears just like any 

other federate within a federation. It may interoperate with other SCM-based components 

or federates that are built directly on the H L A interface. As such, the reuse of existing 

components in new works is entirely possible. To overcome F O M agility issues, the 

container can transparently use facilities such as those described earlier. 

Despite offering many compelling advantages with regard to the development, 

interoperability and reuse of simulations, component models such as the S C M still depend 

on specialist H L A knowledge not present within the wider business community. A more 

general solution that abstracts the H L A itself is required to help realise an enhanced 

uptake of HLA-based distributed simulation. 

While this shortfall means that component models such as the SCM do not themselves 

provide an environment entirely suited to the problems of the wider business community, 

such techniques can find use within the underlying implementation of a more general 
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abstraction. Just as component models hide infrastructure services, a more generalised 

approach is needed to hide H L A knowledge (and the complexities involved) from an end 

user. 

4.2.4 Middleware 

Much like component models, Middleware solutions are designed to substantially improve 

developer productivity through the abstraction of low-level, tedious and repetitive tasks. 

While component models could be viewed as a form of middleware, generally speaking, 

component models tend to provide more advanced services transparently through the 

container. Unlike component models, the middleware approach is generally more 

lightweight and the focus (within the HLA) is still on developing federates as opposed to 

reusable components. One example of this is the pSISA (Proposed Standardized Interface 

for Simulation Applications) middleware, which places various layers between underlying 

simulation logic and raw H L A in an attempt to abstract the complexities and provide 

additional useful services [69]. Another example is ProtoCore. Created by the U S Army as 

a unifying API that simulations could be developed, the goal of ProtoCore is to again 

remove the specifics of the underlying distributed simulation technology from the 

simulation itself. This in turn would allow simulations to be quickly and easily deployed 

with newer versions of the HLA, or, in the case of ProtoCore, other simulation 

technologies such as DIS [109]. 

Successes and Failures 

Given the close alignment between component models and middleware solutions, the 

successes and failures of each are virtually identical. Frameworks such as Middlesim [93] 

allow users to achieve increased productivity through the abstraction of the H L A interface. 

While Middlesim does not incorporate such facilities itself, F O M agility issues can also be 

overcome through the application of techniques described in section 4.2.1. Given this, 

middleware based simulations can provide much the same level of interoperability and 

reuse benefits as component models. 

However, while displaying the same typical gains in development time, interoperability 

and reuse as component models, middleware solutions also present the same drawbacks. 

With regard to this work, it is the requirement of specialist H L A knowledge that reduces 

their effectiveness in the context of the wider business community. 
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4.2.5 Tools Support 

Throughout the maturation period of all successful infrastructure standards, a key 

development has been the production of tools that simplify their use [49]. The H L A 

provides a strong foundation for distributed simulation development; however, it is an 

extremely complex framework to use and would benefit considerably from tools designed 

to support the development process. The notion of an Integrated Development 

Environment (IDE) supports this idea. A n IDE is designed to automate or hide many of 

the tasks found in every development effort. Wizards and visualisations of certain 

problems present a user-friendly interface that the IDE can use to generate large amounts 

of code and configuration data on behalf of the user. 

Tools Support in the HLA 

In the context of HLA-based distributed simulation, such tools generally fall into one of 

two categories: generic or FOM-specific. FOM-specific tools tend to focus on the Real-time 

Platform Reference model. As the object model is consistent across all situations, tools 

such as OneSAF [128] tend to focus on the composition of entities and scenarios from pre-

built components rather than the creation and coding of those entities. The ability to drag 

and drop together a simulation is a clear benefit both in terms of usability and 

productivity. However, given the specialised nature of these tools, they are of little use 

beyond their context. 

On the other hand, generic applications provide an environment free from such 

constraints. The SIMplicity [86] IDE currently represents the state of the art with regard 

to such HLA-based simulation development tools. SIMplicity is a commercial product 

developed to support the H L A development process. The SIMplicity environment 

embodies many qualities that ease the burden of simulation development and reduce the 

time and effort involved, help realise increased simulation interoperability and aid in the 

process of deploying and executing a distributed simulation. 

SIMplicity relies heavily on the use of visual tools and automated code generation to help 

abstract many of the underlying problems of the HLA. Graphical interfaces are used to 

compose and visualise many H L A development artefacts or processes such as: 

• FOM Development: Object models can be composed through the use of 

standard diagramming techniques [16] 

• Federate Development: The publication and subscription interests of a set of 

federates is described via a custom diagramming process [17] 
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• F O M M a p p i n g and Agility: Mapping rules can be visually composed to help 

bridge the gap between the object model of a given federate and that of the 

federation it is to participate in [18] 

• Deployment and Execution: Graphical interfaces are used to aid the process to 

deploying a simulation component to a given computing resource and to centrally 

control its execution [19] 

Through the use of code generation, SIMplicity is able to produce a large amount of 

infrastructure code on behalf of a developer. Once the simulation model has been 

specified, the code generation process can begin [86]. In order to provide a structured 

process for the development of distributed simulations, the code generated by SIMplicity 

conforms to the S C M discussed in the previous section (the S C M was initially developed as 

part of SIMplicity). This provision supports the clean separation of simulation logic and 

infrastructure code and simplifies the process of developing a H L A based simulation. 

Following code generation, a developer is tasked with the role of authoring model code 

required to complete a federate. 

Successes and Failure 

The tools and processes put in place by the SIMplicity development environment 

considerably reduce the effort required to create a H L A simulation. Through the use of the 

S C M developers are insulated from the low-level details of the H L A and are able to rapidly 

create simulation components. However, despite the many advantages SIMplicity 

provides, knowledge of the H L A is still required when filling out the code that it generates. 

In the context of this research, the requirement of such knowledge must be further 

removed. 

4.2.6 Migration of HLA Services to Civilian Applications 

One of the problems with the H L A is that its implementation infiltrates a simulation 

modeller's entire development process. Rather than providing optional support for 

simulation distribution, use of the H L A necessitates that it be considered during every 

step of the development process. One natural way to reduce complexity would be to allow 

simulation modellers to optionally access H L A distribution services as just another 

function of their chosen modelling environment Grafting the H L A onto applications used 

within the wider business community for modelling purposes would allow access to those 

services from a setting in which modellers are already comfortable. 

The notion of coupling HLA-based distributed simulation with tools commonly found 

beyond the domain of defence is not new. In [112] StraBburger explored approaches for 

59 



applying the H L A within "civilian" simulation applications. Investigating the similarities 

and differences between the two communities, [112] established that the H L A could 

provide benefits to in the mainstream domain (citing interoperability as a primary 

concern). Accordingly, a major focus of that work was the development of exemplars that 

combined the H L A and c o m m o n simulation development applications. 

Strafiburger identified many requirements for the connection of HLA and civilian 

simulation tools. W h e n considering how H L A simulation services would be accessed from 

within such tools, the notion of implicit and explicit access was presented. 

Implicit and Explir.it Access 

W h e n attempting to allow use of the H L A through mainstream simulation tools, 

consideration of h o w a user will access H L A simulation services is paramount. To this end, 

Strafiburger identified that there are two general categories: implicit and explicit access. 

Explicit access defines all situations where a user has direct contact with the HLA, much 

as a 
"It is especially interesting to note that the implicit approach, which in the opinion of 

the author is the best approach for hiding HLA functionality from the user, has not 

been implemented by anybody else. This is very unfortunate, since this approach 

requires the least user involvement for building HLA federates. For avoiding the 

symptoms of the parallel simulation community in terms of lacking impact of the 

general simulation community, the implicit approach seems to be the best solution. It 

requires no adoption of new modeling paradigms, world views, etc." 

regular federate developer would. Simulation services are invoked manually, and as such, 

this approach requires knowledge of the H L A and h o w to use it. In many ways, explicit 

access is akin to authoring a federate manually; with the major benefit being that the 

environment used to develop a pure model is the same as the environment used to develop 

its distributed version. While the development tool m a y be different (and able to provide 

extended services), the explicit approach still necessitates manually supporting the RTI. 

Conversely, the implicit approach focuses on the abstraction of the HLA behind the tool-

specific view of a simulation world. Simulations are developed in the manner applicable to 

the tool in question. From the perspective of a user, underlying support for the H L A is 

transparent. This approach naturally does not require the intimate knowledge of the H L A 

that is necessary when manually authoring a federate, of making use of a tool that 

embodies the explicit approach. 
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While the explicit approach provides easy access to the H L A from mainstream tools, a 

requirement of H L A knowledge renders it unsuitable in the context of this work. However, 

the implicit approach described by Strafiburger raises many potential benefits with 

regard to the goals of this research. In [112], Strafiburger takes the first real steps towards 

the use of H L A within the wider business community. His dissertation investigates, 

compares and contrasts the explicit methods, highlighting the strengths and weaknesses 

of each. The primary experimentation carried out involved the grafting of the H L A onto 

existing simulation modelling tools. For each tool, a specific interface to the H L A was 

defined (each falling into either the explicit or implicit category). 

In his concluding remarks, Strafiburger notes [112]: 

Where Strafiburger demonstrated how the HLA and civilian simulation tools could be 

combined through a group of tool-specific interfaces, the goals of this research are to 

extend the implicit approach into a generalised, non tool-specific context. Building on 

[112], this research seeks a general method that allows pure models to be rendered as H L A 

simulation components. 

In order to realise these goals, facilities that can be used to separate the process of 

developing a pure model from that of enabling it as a distributed simulation component 

are necessary. While capable of reducing the complexity involved in working with the 

HLA, the technologies presented thus far in this section still require some specialist 

knowledge. As such, the use as an underlying platform to support this research is not 

possible. Facilities that allow for the complete abstraction of H L A semantics are needed. 

The next two sections introduce two technologies that have been the subject of significant 

amounts of recent research and have the potential to help realise the goals of this work 

The Model Driven Architecture (MDA) has been the focus of much research within the 

modelling and simulation community in recent times. Applying an implicit approach to 

system development, the M D A process advocates raising the level of abstraction such that 

a model is created free from any implementation information. Additionally, these models 

are specified in a visual modelling language. The richness of a visual medium theoretically 

allows for simpler comprehension of h o w a model fits together and helps to speed its 

development. Before deployment, these models are transformed into an executable 

implementation. Section 4.3 introduces and discusses the M D A . 

Aspect-Oriented Programming (AOP) is a slightly different approach to systems 

development. The primary focus of A O P is on the separation-of-concerns, whereby the 

implementation of business logic and that of implementation logic is kept separate. This is 
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very similar to the M D A approach, however, rather than relying on a largely visual 

approach, A O P operates at the programming language level. Section 4.4 introduces and 

discusses AOP. 

4.3 The Model Driven Architecture 

The focus of considerable attention and research in recent times, the M D A has been 

suggested as a potential solution to many of the problems facing simulation development. 

Developed and standardised by the O M G , the M D A is an attempt to dramatically simplify 

the development complex systems through a focus on modelling rather than code 

authoring. Utilising the Unified Modelling Language (UML), systems can be composed via 

a largely graphical process, focusing on the pure model rather than the underlying 

infrastructure platform. Through an enhanced focus on the problem, insulation from 

changes (or the complexities) of the underlying implementation platform is provided. 

Many advantages have been claimed by the MDA relating to decreased development time 

and complexity, increased reuse and interoperability. While the M D A vision represents a 

substantial advancement, its full realisation has thus far proven difficult [90]. This section 

investigates the processes involved. 

4.3.1 MDA Overview 

The Model Driven Architecture is described by the O M G as their next step in ensuring 

interoperability, portability and reusability [110]. Moving the focus of a developer or 

architect away from the technology on which a solution will eventually be implemented 

and onto the core business problem, the M D A is a new way to specify software [110]. In 

order to provide an open, vendor neutral approach, the M D A has been based on O M G 

modelling standards such as the Unified Modelling Language (UML) and the extensible 

Metadata Interchange (XMI) [75] (which describes how a U M L model can be serialized 

and accessed in a structured way). The processes that make up the M D A can be split into 

three distinct sections, broadly concerning three different representations of a system. 

These processes and representations are discussed below. 

The Platform Independent Model 

Under the M D A development process, a model of the core problem or system becomes the 

central artefact of the development effort. This model (known as a Platform 

Independent Model or PIM) is intended to define the pure problem, containing no 

reference to any platform or implementation technology. Through the removal of such 
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considerations, the M D A allows developers and architects to focus solely on the business 

processes and the behaviour of the actual underlying system, rather then having to 

simultaneously deal with complex technological considerations [85]. 

Platform 
Independent 

Model 

mmmmmmmm* 

Other Model 
Entities 

Figure 4-2: Development of a PIM 

In line with the goals of the OMG to base the MDA around open, industry standards, a 

PLM is defined using the Unified Modelling Language. The use of U M L enables the ability 

to leverage U M L profiles during the development of a PLM. A U M L profile is an extension 

of the basic U M L standard to describe various domain specific entities [j/]. For example, 

a Financial Modelling U M L profile might define a "cash flow" entity, its properties and 

behaviour. The use of U M L profiles allows PIM developers to rapidly create their model 

using predefined, standardised entities. 

The Platform Specific Model 

Once the pure problem has been modelled independent of any platform complexities or 

details, it must then be transformed into a Platform Specific Model (PSM). 

Encapsulating a shift in emphasis from the business aspects of a system to its technical 

issues [85], a P S M is in effect a "redrawing" of the PIM to include implementation details. 

Put another way, while the PIM defines the necessary functionality, the PSM specifies 

how this functionality is realised on a specific platform [117]. 

Through standardised transformation rules, a P S M is to be derived from a PIM [116]. The 

use of automated tools is intended to complete this process, removing the need to make a 

manual transformation from one model to the other. While a manual transformation 
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would necessitate an intimate knowledge of the target platform and would require a 

substantial amount of time, an automated process would remove this requirement, thus 

providing obvious productivity benefits [105]. However, while the ideal of an entirely 

automated conversion process is appealing not only in terms of productivity, but also in 

terms of cost and time-to-market factors, it is recognised that currently, even the most 

advanced M D A tools are not able to realise this goal; instead "arguably leaving the most 

complex considerations to the programmer" [85]. 

Platform 
Independent 

Model 
\mwmmmmimm* Automated 

Model 
Transformer 

Mapping 
Rules 

Sw 
Figure 4-3: PIM to PSM Conversion 

As with the PIM, a PSM is a UML model. However, unlike the PIM, the PSM is expected to 

capture implementation details in a satisfactory level of detail so as to enable an 

automated transition to the next stage. Developments such as the Action Semantics 

specification (ASL) [78] and Object Constraint Language (OCL) [68] have been created to 

allow the definition of behaviour within or between entities more concisely than is 

possible with pure graphical diagramming. 

The Implementation 

With the creation of the P S M as a rendering of a model for a target platform, the next step 

in the process is to convert the P S M into an actual implementation. Again, as the P S M is 

implemented in U M L , automated tools are able to access and manipulate it, in this case 

generating program code (perhaps in a 3rd generation language such as Java or C++) and 

other required artefacts to enable its deployment. This is the final step in enabling the 

M D A process. With the ability to generate a complete implementation, the need to author 

code by hand is replaced with an automated process. 
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Figure 4-4: PSM to Implementation Conversion 

However, as with the PLM-to-PSM transformations, even the most advanced M D A tools 

are not able to fulfil this goal entirely [86]. While much code can be generated from a 

functionally complete platform specific model, a significant amount must be manually 

added in order to produce a complete, executable, deployable component or application. 

4.3.2 Advantages and Proposed Successes of the MDA 

The M D A process defined by the O M G proposes many advantages, including a reduction 

in development cost and complexity and an increase in interoperability and reuse. 

Through a process that embodies the implicit approach also presented in Strafiburger's 

work, the M D A raises many potential benefits. 

Focus on the core problem 

Through the PLM, the M D A prescribes a process that narrows the initial focus of 

development to the pure problem, removing the distraction and complexity of the 

underlying implementation technologies. One of the main contributors to the high 

probability of failure in large projects [79] is the inability to develop an adequate solution 

for the user requirements. Through a focus on modelling only the core problem, a given 

solution is much easier to comprehend and the ability to identify deficiencies in a design is 

enhanced. 

Interoperability and Reuse 
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The enhancements to interoperability and reuse are perhaps the most promoted 

advantages of the M D A . The information presented here outlines how the O M G describes 

its function. 

Under the MDA environment, reuse exists at many levels: 

" Reuse of entities and data types from a PLM in other PIMs 

* Use of U M L profile entities and data types in many PIMs 

• Reuse of standardised mapping rules across many models 

• Reuse of a given PIM as the model for many differing PSMs and implementations 

The MDA supports the reuse of predefined model entities and types within a PIM through 

the specification of U M L profiles. Removing a duplication of effort, this reduces 

development time and effort. Further, the ability to reuse a previously created PIM as the 

base from which a number of different implementations (based on different technologies) 

can be derived is perhaps one of the biggest advantages of the M D A . 

Interoperability benefits are one of the major proposed advantages of the MDA. As 

platform details within the M D A are generally hidden from the developer, interoperability 

problems are also. Described as an "exciting side effect" of the M D A development process 

by the C E O of the Object Management Group [no], it is stated that because two 

implementations can be derived from a common PIM (which defines a single set of data 

types) and because the mappings from a PLM to a given implementation technology are 

known and standardised, then generating a bridge between two implementations is a 

straight forward process [no]. This bridge would provide communication between two 

given implementations of a PIM, thus providing interoperability between the two 

implementations of a system. 

Taking this concept and coupling it with the ability to reuse a given PIM to generate an 

implementation for whatever technology is to become popular next, it is then possible to 

realise a much more powerful vision of future-proofing. With the standardisation of 

mappings for the next technological advancement, it is possible to generate a bridge 

between a new implementation and any legacy implementation based on a technology that 

also has a set of standardised mappings (under the same bridging process proposed by the 

O M G ) . Basing the M D A around open, supported standards allows all models, data types 

and entities to be represented in a single, consistent manner. In this environment, both 

interoperability and reuse can thrive. 

Improved productivity 
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While the O M G is "not claiming to generate all your code" [no], the emphasis of 

automation in the M D A process allows for clear productivity benefits. Through the use of 

tools that leverage automated transformations and code generation, large benefits in 

developer productivity are possible. In turn, this reduces the costs associated with 

developing an application. Further, as code generation is widely recognised as a method 

for increasing the quality of application code (through the removal of human error) [84], 

maintenance costs are also reduced, thus increasing the return on investment for a given 

development. 

4.3.3 Shortcomings and Failures of the MDA 

Within the modelling and simulation community, support for the M D A has been 

significant. However, while the benefits proposed by the O M G are numerous and 

substantial, sizeable resistance and criticism has been raised within the software 

development community. While the advantages of the M D A function smoothly in theory, 

the lack of concrete details has rendered their realisation difficult. This section discusses 

some of the objections and shortcomings that have been identified. 

UML: The "Unwanted" Modelling Language 

W h e n the Unified Modelling Language first appeared in 1996 as a combination of other 

notations that existed in the software development world [76], it became the standard for 

describing systems in a notational form. U M L is taught in universities as part of every 

software engineering undergraduate degree and is known to some extent by all 

professional software developers. However, given the goals of the M D A , is U M L the 

appropriate option for the specification of models? 

Perhaps the largest question surrounding UML is the extent to which it should be used in 

the development process. As mentioned above, U M L is extremely popular and understood 

to an extent by every professional software developer, and therein lies the problem. Being 

very well suited for conveying ideas between developers, the notion of " U M L as 

Sketch" [36] has long been employed in the software world. Under this concept, U M L is 

used in a very loose style and only the core and most important or particularly difficult 

parts of a system are modelled formally [65]. In this context U M L is used more to express 

the intent behind some facet of system design rather than to rigidly specify the structure 

and behaviour (as is proposed by the M D A ) . While it can be assumed that all software 

developers know the basics of U M L and therefore can benefit from using it in a less 

formal, less rigid style such as that described above, the same can not be said for situations 

such as the M D A which demand an in-depth knowledge of the diagrams and rules of U M L . 

In practice, U M L is employed far more frequently and far more effectively when it is not 
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used in an attempt to entirely specify the make up, processes and behaviours of an entire 

system. 

The UML is not at all well suited to the task of fully specifying a system [36]. When the 

O M G first began its efforts surrounding the M D A it realised this fact and set out to remedy 

the situation by introducing new specifications designed to subsidise the shortfalls. Some 

of these extensions manifested themselves in the Action Semantics and Object Constraint 

specifications introduced earlier; others were to be part of an extension to the U M L itself, 

embodied in the U M L 2.0 specification. While the new specification includes many 

advancements designed at addressing the shortcomings of U M L , it still fails to recognise 

the fundamental problem: people are either unable or unwilling to specify their systems to 

the extent and with the type of rigor demanded by the M D A . 

When Standards Aren't Standards 

The M D A is based around open standards for many reasons, the most compelling of which 

is the prevention of vendor lock-in. If all tools support the same standards then it is 

theoretically possible to develop and use a model regardless of the tool or its vendor. 

While this is a noteworthy advantage, it is reliant on the provision of standards that are 

comprehensive and complete. Those standards on which the M D A is currently based have 

thus far fallen short, leading application vendors to fill in the gaps in non-compatible 

ways. 

For example, the XML format specification has proven sufficiently open that in practice, 

the documents emitted by one tool cannot be readily imported into another. Resulting in 

development becoming dependent on the solution of a specific vendor, the reuse value of 

models and entities is reduced. 

Beyond incompatible model representations, a much larger problem exists. As discussed 

above, in order to provide the ability to adequately model behaviour within models, the 

Action Semantic Language specification was produced [78]. Despite identifying the need 

for such a facility, the O M G neglected to describe the syntax for such a language [68]. In 

the absence of a standard A S L representation, vendors are free to create proprietary, 

competing standards, the use of which again reduces the reuse value of models and 

entities. 

Development Process Complexity 

While the concept of automation is central to the M D A development process, the 

realisation that 1 0 0 % automation is not possible (thus requiring manual intervention and 
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elaboration) serves only to introduce a new level of complexity to the development 

process. 

In order to illustrate the new source of complexity, consider what must happen when a 

model needs to be changed. If the change is to the platform independent model, once it is 

completed a new P S M must be generated, followed by new implementation code. Further, 

without complete automation, further manual work must be competed at each step. 

Problems arise when considering that the regeneration of a PSM means replacing the old 

one. Given that complete conversion is not possible, this also means that elaborations 

previously made to the P S M in earlier iterations may also be "replaced". Thus, rather then 

regenerating a new P S M and moving on to code, the old P S M must be merged with the 

new before expanding on it to cover the new additions which were made in the PIM. With 

this process complete, the exact s a m e situation occurs when converting a P S M to 

implementation code. The first rule of code generation is that under no circumstances 

should generated code ever be edited for just this reason. Where previously all changes 

would be done at the implementation level, under the M D A there are now three levels at 

which a model (and the changes to that model) must be maintained. This dramatically 

increases complexity and as work must be done at each step, fails to insulate a developer 

from implementation platform considerations. 

While the process becomes complicated in the situation described above, consider the 

impact of altering a PIM for legacy implementations. Removing an entity that is no longer 

required could m e a n the introduction of an incompatibility with all legacy 

implementations generated from the same PIM. These are just some of the 

synchronisation issues raised when considering a small change when two additional layers 

are added to the development process. While these are not problems that exist in the 

theoretical world where 100% conversion from PIM to implementation is possible, it is an 

example of how the M D A vision falls short. 

The Mvth of Interoperability 

Interoperability is perhaps the most celebrated of all the professed advantages of the 

M D A . The ability to integrate what you have already built, with what you are building with 

what you will build in the future [105, 110] is a powerful vision, yet one which seems 

somewhat logically impossible. 

The OMG states that because two implementations can be derived from a common 

platform independent model (defining a single set of data types) and because the 

mappings from a PIM to a given implementation technology are known and standardised, 
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the process of generating a bridge between two implementations is a straightforward one 

[no]. However, a simple example can demonstrate the flaw in this assumption: 

For a given PIM, having standard mappings to FORTRAN and standard mappings to 

Python-based W e b Services DOES NOT automatically provide m e the ability to build a 

bridge between these two platforms. In order for a bridge to be built, there must be some 

underlying capability within the technologies themselves to support this. While this 

example may seem extreme (and it is) it does demonstrate the point that unless there 

exists some capability in the underlying technologies, a bridging cannot occur, regardless 

of the existence of standardised mappings. 

If a bridge cannot be built, then legacy implementations cannot be leveraged and must 

either be lost or re-implemented. Whatever the situation, the M D A does nothing to enable 

this ability to integrate or interoperate with legacy implementations, despite claims to the 

contrary. 

Culture Concerns 

Numerous technical shortcomings and questions regarding its technical viability plague 

the M D A . However, beyond these practical shortcomings, there is also a culture problem 

that envelops the M D A community. 

The OMG has been a target of significant criticism for producing standards without a 

reference implementation. The various standards are designed by a committee made up of 

paying industry members, with seemingly little thought given to the practicality or 

useability of what they are producing. In any situation where standards are produced 

without reference implementations, a number of problems arise. 

Technical problems that would have otherwise been recognised and rectified form part of 

the formal specification. While they can sometimes be minor, they can also lead to 

incompatibilities even between various sections of the specification. In the case of the 

M D A , which depends on a number of different specifications, the combinations of errors 

results in standards that gain reputations are notoriously difficult to implement and use. 

Another major concern with unsubstantiated standards is that they are open to wide 

interpretation by the various implementers (tool vendors in this case). Without a common 

point of reference for resolving interpretation conflicts, different vendors can produce 

tools that are standard-compliant, yet incompatible with one another. 
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To exacerbate this problem, a number of vendors have begun to market their various 

offerings as " M D A compliant," without actually embodying a development process that 

conforms to the lofty goals of the PIM->PSM->Implementation process. At the same time, 

the O M G have failed to act on this situation, preferring to acknowledge these tools as 

proof of the MDA's viability. 

With the standards body openly recognising tools that do not meet their definition of the 

M D A as a success, it becomes clear that vendors do not have to address the difficult 

sections of the process (the sections that provide the actual innovation) and can still rely 

on the O M G for support. As a result of this mismatch between vision and "realisation," it 

has become increasingly difficult to identify an MDA-compliant tool on feature set alone 

(rather than marketing). Without any firm criteria by which compliance is measured, the 

value of being "MDA-compliant" ceases to exist. 

4.3.4 Summary 

The M D A has been identified as a potential source of many benefits for the modelling and 

simulation community [85,117]. Sadly, to this point in time, the M D A has failed to live up 

to its lofty expectations, as the combination of technologies chosen by the O M G to help 

realise the vision of the M D A is unable to meet its demands. Despite not yet achieving its 

goals, the motivations behind the M D A do raise a number of critical points, especially in 

the context of M & S . 

The MDA promotes a strict separation of the pure model or process from the underlying 

technology required to implement it. As seen with other technologies presented in this 

chapter (component models for example), such an endeavour can help increase the reuse 

of that model and its entities and reduce development complexity. While the move to 

visual-based development techniques such as U M L may not be ideal for capturing the 

behaviour of complex systems, the simplification of development it was designed to bring 

is sorely required when considering the HLA. Finally, the pursuit of automation and code 

generation techniques help to reduce development time, increase quality and insulate a 

developer from low-level details. 

The need for these attributes to be some how amalgamated into the way HLA-based 

distributed simulations are written has been identified within the community as a 

requirement of the utmost importance [117]. Although the M D A fails to remedy the 

problems, developments such as Aspect-Oriented Programming provide an alternative 

that comes from similar motivations, yet is viable now - having already gained widespread 
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use within the open source world. The next section will focus on this technology and 

discuss how its application can address the underlying concerns motivating this research. 

4.4 Aspect-Oriented Programming 

Aspect-Oriented Programming (AOP) is a technology whose motivation is very similar to 

that of the M D A : separating business logic and implementation. However, unlike the 

M D A , A O P works at a level that is familiar to any software developer, the application code. 

A O P is a methodology based around the management of concerns. A concern is a specific 

requirement or consideration that must be addressed in order to satisfy the overall goals 

of a system [24]. Software systems are the realisation of a combined set of concerns. For 

example, a banking system might involve the combination of concerns covering account 

management, interest calculations, statement generation, funds transfers, account 

information persistence, authorisation management, logging and so forth [56]. These 

concerns can be grouped into two distinct categories: 

• Core Concerns: Concerns that directly address primary domain requirements 

and are central to the behaviour of a software system 

• Crosscutting Concerns: System wide peripheral requirements that cut across 

many other concerns 

In the example above, concerns such as account management, interest calculation, funds 

transfers and so forth would be considered core concerns. These application or domain 

specific problems are central to the behaviour of the solution. O n the other hand, concerns 

such as persistence, authorization and logging are "system-level" problems that cut across 

many other concerns [24]. For example, authorization is required for account 

management tasks in addition to funds tasks (among others). 

Object-Oriented Programming (OOP) is the most common methodology employed for the 

creation of software systems today. While O O P provides an excellent environment for 

modelling and modularising core concerns, significant issues arise when attempting to 

manage crosscutting problems. W h e n implementing functionality that intersects and 

interacts with many concerns, O O P approaches typically result in tightly coupled solutions 

that are difficult to maintain and reuse. These traits are also some of the primary problems 

often associated with the H L A and cited as characteristics that restrict its broader uptake. 

AOP represents a new methodology that builds on OOP, addressing these problems by 

providing a unit of modularisation known as an Aspect [102]. Aspects are designed to 
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encapsulate and centralise the manner in which crosscutting concerns interact with a 

given application. The final system is composed by an Aspect-Weaver, which combines 

the core and crosscutting Aspects (according to a set of rules) in a process similar to code 

compilations This allows concerns to be developed independently of one another, 

removing the tight coupling otherwise required. 

This section introduces and explores AOP, outlining its motivations and development 

processes. 

4.4.1 Introduction to AOP 

Identifying and absfracting software systems into sets of concerns has long been 

recognised as one of the best methods for reducing complexity [102]. The "separation of 

concerns" approach advocates breaking a system down into modules, each of which 

provides a well defined, related set of functionality, and can be treated as a group of 

opaque entities [34]. As the inner workings of such modules are hidden from external 

view, the complexities involved in their development and behaviour does not infect other 

modules that use it. Further, modules are implemented independently, and have no 

dependence on other modules, thus making them more portable. To provide points at this 

models can be pointed, contained entities can implement common, standard interfaces, 

allowing entire systems to be constructed from loosely coupled components, rather than a 

group of elements that share common interdependencies on one another [30]. 

OOP provides powerful semantics that easily accommodate the creation and encapsulation 

of functionality as modules. Its ability to support a separation-of-concerns approach and 

simplify software development has seen it become the standard methodology used for 

constructing and implementing software systems [56]. However, while capable of 

specifying core concerns, O O P does not handle crosscutting problems well. 

By their nature, the implementation of crosscutting concerns span many separate 

modules. Although the O O methodology supports encapsulating and separating core 

problem concerns, crosscutting interests necessitates the pollution these modules with 

system details. 

5 Depending on the A O P framework used, the weaving process can be completed in one of two possible 

manners: static or dynamic. Static weaving is much like the regular code compilation process where source is 

compiled into some executable artefact. Dynamic weaving involves the alteration of modules as they execute 

and does not require an intermediate weaving step. 
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Consider as an example the system-level crosscutting concern of logging. As the various 

modules involved in an implementation complete some work, they log their activity, 

providing a persistent record that can be used to identify the actions taken or defects in 

behaviour. However, even in situations where the core logging functionality is itself 

modularised, invocations of that module must still be directly implanted in the 

implementations of other concerns. Figure 4-5 demonstrates this visually: 

API invocations 

Database Module 

Figure 4-5: Code Tangling (reproduced from [56)) 

When attempting to log its actions, each implementation module must directly invoke the 

logging component, thus creating a dependency on it. This process is known as code 

tangling as the details of multiple concerns becomes tangled within one another. Code 

tangling introduces an unnecessary dependency and results in modules that are tightly 

coupled and which cannot be considered individual, reusable entities. 

It is in crosscutting situations such as these where OOP fails to provide adequate support 

for proper modularisation. While the Accounting, ATM and Database modules 

encapsulate the logic for their respective core tasks, there is no support for quarantining 

the logging module. Some effects of this situation include [33,92]: 

• Higher Complexity: With implementation details of multiple concerns scattered 

throughout the core ones, a developer must have some knowledge of all facets 

involved. Further, the tangling of multiple concern details makes the 
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implementation more difficult to comprehend and enforces a larger mental load on 

a developer as their mind switches between contexts 

• Poorer Quality: Tangling makes it difficult to examine an implementation and 

spot problems or defects (given the constantly high level of background noise in 

the form of crosscutting concerns). This in turn leads to more bugs and errors 

• Increased Maintenance: The higher complexity and lower quality of work 

results in increased maintenance, and as such, increased costs 

• L o w e r Productivity: Because of concurrent implementation of multiple 

concerns, a developer's focus must constantly shift between primary and periphery 

considerations. Time is lost as developers are distracted from the prime objective 

• Reduced Reuse: With modules implementing multiple concerns, other systems 

that require similar functionality may be unable to reuse the implementation if 

they have an altered set of crosscutting requirements 

To address these problems, the AOP methodology defines a new unit of modularisation 

know as an Aspect. Aspects represent the implementation of a pure concern, be it business 

case driven or crosscutting. Where O O P would require the implementation of the 

crosscutting concerns to pollute that of the core ones, A O P compels developers to omit 

such details and implement all concerns in isolation [30]. It is important to note that A O P 

builds on previous technologies and as such, O O P is still used to build Aspects6. 

Once all concerns have been implemented, a set of rules defining how each Aspect maps to 

the others must be defined. These rules describe when the functionality of a certain Aspect 

should be invoked [34] in the context of the other modules. These rules they take the place 

of code that was previously scattered throughout the implementation of the various 

concerns. Thus, the code implementing each Aspect remains independent of others, with 

affiliations defined in separate mapping rules that can be thrown away or altered without 

modifying the Aspect itself. 

The mapping rules, along with each of the Aspects involved, are passed to an Aspect 

Weaver. A weaver will take the defined mapping rules and use them to bind the various 

aspects together. For example, at the points defined in the mapping rules, code will be 

inserted into the core aspects to invoke logging functionality. Through a compilation-like 

process, the weaver will bind the Aspects together and produce the final system [23]. 

6 A O P does not explicitly build on OOP. While O O P is the most commonly used approach for the 

implementation of Aspects, A O P frameworks do exist for older, functional programming languages. In the 

context of this research however, the focus will remain on O O P given the overlap that exists between it and the 

HLA. 
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A potential point of confusion often encountered with A O P is the fact that the final system 

exhibits all the problems that A O P claims to solve. From a logical point of view, the final 

implementation still looks like that presented in Figure 4-5, where the constituent 

modules exhibit explicit dependencies on a certain set of other modules. The key to 

understanding the A O P methodology is to realise that although this is true, it is only when 

the final system is being constructed that the interdependencies are manifested. A O P 

pushes the tight coupling and tangling problems away from the development context. The 

implementation of modules occurs separately, and each module remains an independent 

entity that can be reused in another application (given a different set of weaving rules). On 

the other hand, O O P requires that the artefacts produced by a developer display the 

problems identified above, and that these problems be confronted at development time. 

A final AOP system, with all its flaws, is just the result of the weaving process in much that 

same way that the low-level details of executable binary code are just the result of the code 

compilation process. A n application can be composed as a combination of any set of 

Aspects, without the need to modify their implementation directly. However, if the 

concerns were mixed at the source code level (as is necessary with OOP), a developer 

would need to make manual changes, and those changes would be forever tied to the 

module they were made in. 

The fact that AOP is able to build on OOP approaches and leverage its advantages is a 

significant aid. While many of the A O P concepts are new, the process of building software 

applications is not fundamentally altered in any incompatible fashion. W h e n comparing 

this to an approach such as the M D A , it becomes clear why A O P has already achieved 

significant success and been readily used and deployed in widely popular frameworks 

(such as the Spring Framework often used in web application development [122]). 

Concrete tools that conform exactly to the A O P methodology already exist and are useful 

in production environments. 

The AOP Methodology 

The development of systems using A O P is very similar to that of other methodologies. 

Broadly speaking, the process can be broken into three steps: 

1. Aspectual Decomposition: In this step, the application requirements are 

decomposed into the set of core and system concerns required to realise them. 

Each required module would be identified and its interfaces designed and specified 

such that development can progress to the next stage. 
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2. Concern Implementation: The typical implementation phase. Modules are 

developed in an entirely contained and independent fashion. Object-oriented 

programming languages are generally used for this task, although the use of 

alternatives is not restricted. Once the set of modules has been implemented, the 

next stage can be completed. 

3. Aspectual Recomposition: The final stage of the AOP process involves the 

weaving together of the various modules. Rules defining how each concern fits 

together are defined as Aspects. These rules are fed to the Aspect-Weaver that will 

then update the modules (creating the required links) and produce the final 

system. Depending on the A O P framework in use, this process can be static 

(compiler like) or dynamic (weaving occurs at runtime) [2]. 

Figure 4-6 below has been reproduced from [56] and provides a graphical overview of this 

process: 

Aip#ctu«l A*p»c*w#i 

Figure 4-6: AOP Development Stages (reproduced from [56 3) 

In the diagram above, the requirements of a system are represented much like a beam of 

light. During the aspectual decomposition stage, the separate concerns are identified and 

the application is broken down into modules. The final step involves the creation of 

Aspects that are passed to the weaver. The weaver then combines the individual modules 

together and produces a single final system. 

Benefits of AOP 

The process defined under the A O P methodology results in several beneficial outcomes 

when compared to the alternatives it builds on. These include: 

• Increased Separation 
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Under the A O P methodology, modules are developed in isolation from one 

another. Links between disparate modules are only created by the aspect-weaver 

when producing the final system. As such, systems are created from a set of loosely 

coupled components while the persistent development artefacts are kept separate. 

This separation-of-concerns reduces code scattering, where pieces of a concern are 

implemented in multiple modules. Scattering can be thought of as another face of 

code tangling. Where tangling refers to the way separate concerns becoming 

entwined with one another, scattering refers to the way code for a specific concern 

is spread across many places. 

• Simplification of Development 

The development of A O P applications focuses on the independent creation of 

individual concerns rather than the complex combination of multiple core and 

crosscutting considerations. Models or programs under development are easier to 

comprehend, as each concentrates on a single issue. The core problem does not 

become polluted with the lower-level system concerns required to provide 

crosscutting features such as application distribution or persistence. As modules 

are developed in isolation, problems arising from buggy or incomplete 

dependencies are also reduced. 

* Enhanced Reuse 

Modules are developed separately and only combined as a complete and final 

system according to an independent set of replaceable rules. As such, modules are 

generally independent of a given application and can be easily reused in other 

contexts. By specifying additional weaving rules and passing a different set of 

modules to the Aspect weaver, entirely new systems can be created from 

components not originally explicitly for that particular environment. Enhanced 

reuse also increases the ROI for a particular development. 

• Easier System Evolution 

A O P separates individual concerns such that they are oblivious to the components 

they are coupled with [56]. As such, extending a system to implement additional 

concerns is vastly simplified. With the creation of new mapping rules defining how 

a given concerns must interact with or crosscut existing modules, systems can be 

extended without needing to manually edit the existing implementation. 

• Reduced Development and Maintenance Costs 

Partitioned and modular systems are simpler to compose and easier to understand. 

As modules are not dependent on one another, their development can occur in 
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parallel, saving time and reducing costs. Further, the simplified process of system 

evolution mentioned above helps to reduce ongoing development and maintenance 

costs. 

4.4.2 Working with AOP 

The previous subsection introduced and investigated the A O P methodology and the 

advantages it can provide. It has been established that A O P can enable enhanced 

modularisation and isolate crosscutting concerns in a way that is not previously possible. 

This section takes a deeper look at the processes and entities used to make A O P work. 

AOP Languages 

Weaving rules define what actions to perform when certain points in the execution of a 

program are reached. While core and crosscutting modules can themselves be defined 

using existing programming techniques (OOP most notably), they do no posses the 

requisite expressive ability to describe how crosscutting behaviour should be woven into 

the implementations of core concerns. As such, a special A O P language is required. 

It is important to note that there is no canonical AOP language. The underlying theory 

behind A O P was b o m out of research conducted by Gregor Kiczales and his team at Xerox 

PARC [56]. There exist many different A O P implementations and languages, each of 

which is targeted at a particular platform or programming language7 This thesis uses one 

of the most widely used A O P implementations: Aspect! (for Java) [53]. As such, all the 

AOP examples throughout this thesis focus on the Java programming language. 

Join Points 

A join point is a location in an applications code where AOP can be used to alter 

behaviour. Join points are quite low level things. For example, a join point would exist 

anywhere a new object is created, anywhere a method is called, anywhere a variable has a 

value assigned to it, etc... 

Join points are like passive location markers within an application. When using AOP, a 

programmer will attempt to "capture" a number of join points that satisfy some general 

pattern. If you consider an entire application as a whole, the set of join points that make 

up the application really just represent all the possible places where new behaviour or data 

could be woven in. 

7 Implementations based on Java seem to be very popular, with many different frameworks existing, each 

providing different value-adding features. 
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Point Cuts 

Apointcut can be considered an opening through which new behaviour is inserted into an 

application. Pointcuts define a set of patterns that capture a particular group of join 

points. They allow a user to define a number of patters and to group them under a single 

name. For example, consider the following pointcut definitions: 

1 /** pointcut to exclude things we're not interested in */ 
2 protected pointcut ignoreListQ : 
3 !within( hla..* ) && 
4 !within( simspect..* ) && 
5 !within( com.lbf..* ) && 
6 !within( org..* ) && 
7 
8 /** pointcut to get all consturctors */ 
9 protected pointcut constructors( Object newObject ) : 
10 initialization( public *.new(..) ) && 
11 ignoreListO && 
12 targetC newObject ); 

Listing 4-1: Point Cuts 

Here, two pointcuts are defined: ignoreList and constructors. Each of these pointcuts 

describes a number of patterns that in turn describe a set of join points to capture (or not 

to capture). The ignoreList pointcut is used as a convenience to describe all the Java 

packages that contain code the user is not interested in capturing. The constructors 

pointcut specifies that public constructors for any class (and contain any number of 

arguments) should be captured, as long as the classes do not reside within any of the 

packages specified by the ignoreList pointcut. 

Advice 

In AOP, Advice is the name given to the logic that is inserted into an application through 

all the join points identified by a point cut. It is the advice that provides the new code that 

gets woven into the model. 

When defining an advice, a user must also declare how that advice is to be woven into a 

model relative to existing code. Given a pointcut that captures all calls to the 

connectToDatabaseO method, should the advice be inserted before the call, or after the 

call? The following example demonstrates a different kind of advice known as an "around" 

advice: 
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1 /** pointcut to get the main method */ 
2 protected pointcut mainMethodO : 
3 execution( public static void main(String[]) ); 
4 
5 /** advice to decide whether or not to execute main method */ 
6 void around() : mainMethod() 
7 { 
8 if( Math.randomO > 0.5 ) 
9 proceedO; 
10 else 

11 System.out.println( "Not running main method" ); 
12 } 

Listing 4-28: Advice 

Here, the around advice wraps around the execution of any method that was captured by 

the mainMethod pointcut. Unlike other kinds of advice (such as before or after advice), 

around advice can determine whether or not the method that has been captured can 

proceed. In this case, if the result of a random number generation is greater than 0.5, then 

the method call is allowed to proceed. 

Through these facilities, points in an application can be identified, and new logic or data 

can be woven in. This is what provides the A O P development model with its power. If a 

developer was attempting to weave together their business modules with a system logging 

Aspect, the code that would call into the logger (the advice) could be inserted through a 

point cut at all the join points that exist for the beginning of a new method call. This would 

allow the core logic to remain small and clean. 

4.4.3 AOP Viability 

Sharing similar motivations, the M D A and A O P have much in common. However, A O P 

currently maintains one crucial advantage: it works now. From the standpoint of 

functionality, the M D A is still a long way from being able to achieve its goals. O n the other 

hand, there already exist many mature A O P implementations. Within the Java 

community, A O P widely used either explicitly [57], or as part of a larger framework (such 

as the immensely popular Spring framework) [13, 60]. These implementations have 

already gained wide acceptance and are being used to power many mission critical 

applications. Beyond these examples, many A O P implementations exist for many different 

For those who wish to see a full example of how Advice is specified, the full code for the reference 
implementation developed in this thesis is provided in the supplementary package that accompanies this 
thesis. Alternatively, [56] provides many excellent examples. 
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programming languages, with [127] listing well over 50 such projects for more than 15 

different languages. 

4.4.4 AOP: A Potential Solution? 

Significant overlap exists between the issues that motivate A O P and those that currently 

afflict the HLA. Many of the current development shortcomings stem from the tangling of 

pure model code with a complex distribution technology. This in turn obscures the real 

value of a simulation (the model itself), while tight integration and coupling reduce any 

reuse potential and return on investment. The A O P development process has the potential 

to considerably ease these limitations and help enable a broader uptake of distributed 

simulation. 

The HLA is a system-level crosscutting concern, the focus of which is the distribution of 

simulation information between many disparate simulation models. Distribution 

technologies like these typically suffer from the tangling of concerns discussed previously, 

making them an ideal candidate for A O P [21]. However, although A O P methodology 

prescribes a separation of concerns, such an approach would still necessitate the authoring 

of a H L A Aspect and weaving rules that define where it crosscuts the core concerns. The 

development of H L A Aspects requires skills and training that do not exist within the wider 

business community. Further, depending on the needs of a simulation with regard to 

elements such as time and execution management, the requirements for such an Aspect 

could vary widely. 

To address this problem, the development of a Generic Aspect is needed. Consider Figure 

4-7: 
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Figure 4-7: A Generic Aspect (CE] 

In this figure, changes within the model trigger logic within a Generic Aspect. Through the 

process of Aspect weaving (via a general set of rules), the Generic Aspect can capture 

changes within the pure model code. As changes occur in the model, they are pulled into 

the Generic Aspect and processed by the proxy federate. All interaction with the H L A is 

isolated from the pure model code. Changes made in the simulation are pushed back out 

of the proxy, into the pure model. 

Generic proxy federates have been used to achieve similar ends in other applications. The 

goal of the fedWS2 project was to provide access to information from an active simulation 

in a manner that hides the underlying H L A details [88]. A configurable generic proxy 

federate was successfully used to allow interaction with any H L A simulation without the 

need for end users to author code [89]. The use of a proxy environment also provides an 

ideal location into which additional supporting technologies (such as those described in 

section 4.2) can be deployed. To help solve common H L A problems such as F O M Agility, 

approaches defined in existing research can be deployed within the proxy, alleviating 

those issues identified in chapter 4. 

Leveraging a generic H L A Aspect in combination with A O P methodology yields a solution 

that would allow pure model code to be developed independently from any H L A 

concerns. Figure 4-8 presents an overview of how this process would occur: 
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Figure 4-8: Simulation Component Generation Process 

First, the pure model logic is developed./ree./ro7n any HLA considerations. Following this, 

the developed modules and the Generic Aspect (containing mapping rules) are passed to 

the weaver that combines them, producing the final system. Such a solution fulfils the 

goals of an implicit H L A simulation environment. Some of the primary benefits include: 

Barrier to Entry: Remove the barrier to entry that requires expert skills and 

tiaining, thus alleviating one of the primary restrictions limiting a broader uptake 

of the HLA 

Generally Applicable: The A O P methodology is not tool-specific, and as such, 

the methods developed and discussed later in this document could be employed in 

any environment 

Leverages Existing Advancements: The use of a proxy environment provides 

the ideal point at which research discussed in section 4.2 can be applied 

Reduces Development Time and Complexity: The separation-of-concerns 

approach allows developers to focus on the core problem free from low-level 

system details 

84 



• Increased Reuse: As the model components are no longer tied directly to the 

H L A or a specific F O M , they are more readily reusable. The employment of F O M 

Agility techniques within the proxy environment also aids this cause 

• Beneficial to Existing Community: The advancements made possible in the 

described environment are beneficial not only in enabling a broader uptake of 

distributed simulation technology, but also of benefit to existing H L A users 

The application of AOP within the modelling and simulation environment has the 

potential to provide many benefits. In [112], Strafiburger identifies the implicit method as 

allowing simulation developers to continue working in a comfortable and familiar 

environment, while benefiting from the advantages use of the H L A enables. The use of 

A O P in the manner presented here can help realise a more generally applicable version of 

the implicit approach. While Strafiburger focused on the development of tool-specific 

interfaces in the pursuit of realising his goal, this research seeks a broader, more generally 

applicable solution. 

AOP techniques are not tool-specific, and as such could be applied in many environments. 

Many A O P implementations for many programming languages and platforms exist, 

meaning that likelihood that A O P could be incorporated into a given simulation tool is 

high. Through the use of AOP, the methods developed within this research can safely 

ignore the technical nuances of any given simulation tool, instead focusing on generic 

techniques that are applicable in a broad sense. In situations where simulation code is to 

be developed directly, A O P provides many immediate benefits with regard to the 

separation of core and crosscutting concerns. Where models are constructed and executed 

with specialised, proprietary tools, A O P platforms can be incorporated into those tools, 

also enabling them to realise the same benefits. 

4.5 AOP Shortcomings 

Section 4.4 introduced A O P as the most viable source of potential advantages with regard 

to the goals of this research. However, use of A O P alone cannot provide a complete or 

comprehensive solution to the problems motivating this work. Of primary concern is that 

A O P only describes a methodology for separating the development of core, business logic 

modules from that of the crosscutting system modules. There are a number of questions 

beyond the domain of A O P that must first be addressed before the goal of automatically 

rendering pure models as H L A simulation components can be reached. 
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Aspect-Oriented Programming mandates that the development of different system 

concerns be completed separately. This way, the individual modules that are created do 

not form any dependencies on system level tools (such as those used for authentication, 

persistence or application distribution). Additionally, this process simplifies system 

development, as the needs of multiple modules, spanning both core and platform logic, do 

not need to be considered. It is only at the final stage, when the system is being composed 

from the collection of modules, that the pure business logic is coupled with the required 

system-level details. 

This type of development process fits very well with the objective of simplifying HLA 

simulation development. Pure model modules can be constructed independently of the 

HLA, and be bound together at the last minute, rather than forcing H L A concerns to be 

handled throughout the entire development process. However, from the perspective of this 

research, a number of problems remain. 

The HLA Aspect 

Use of the A O P process is predicated on the development and availability of a H L A Aspect. 

Although model code can be developed independently, unless there is a H L A Aspect to 

weave into it, a HLA-compliant component will never be produced. However, 

development of such an Aspect would necessitate intimate H L A knowledge, a requirement 

that has previously been identified as insufficient in the context of this research. 

Weaving 

Although A O P facilitates a separation of concerns approach during development, the 

process of defining how modules are to be woven together still necessitates a fundamental 

understanding of both the core and crosscutting concerns. Even if a H L A Aspect existed, 

decisions regarding where H L A behaviour must be inserted into the pure model must still 

be made. Further, users must be able to identify the type of H L A logic to weave in at these 

points. Once again, this demands specialist knowledge of the H L A that is not tolerable 

within the goals of this research. 

Deployment Artefacts 

A central artefact in any H L A simulation is a shared model (known as the FOM), defining 

the vocabulary of information exchanged between the participants. This is required to 

perform actions such as publication and subscription, or to register and update attribute 

values. Without this information, an individual simulation cannot function correctly in the 

shared space, and as such, is not of any use. Although A O P provides support for 

intercepting actions within a model and injecting specific behaviour at those points, it 
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provides no facilities for generating the necessary artefacts or configuration information 

required to deploy a federate. The lack of support for these types of artefacts is to be 

expected as they often fall beyond the realm of source code (the level at which A O P 

operates). Additionally, this problem is H L A specific, and only of concern in a H L A 

environment 

Federate Level Agreements 

Each HLA-based distributed simulation involves the co-operation of many individual 

simulation components. While the interesting portion of a simulation is the data it 

produces during execution, there are many additional "housekeeping" actions that must 

be performed. 

Each federation has its own (potentially unique) series of steps it takes to ensure that 

components are able to synchronise with one another and work in step. There are 

understandings in place that define how and when data will be registered, the frequency 

with which it will be updated and so forth. There may be yet more requirements that 

define how specific additional information is formatted and passed between federates. 

Within the H L A specification, the developers of each federation are free to define the steps 

they expect federates to take, and facilities they expect federates to use, in order to co

operate correctly with the other components in a federation. These facets of simulation 

execution are known as federate level agreements (also often referred to as "federation 

level agreements") as they define various behaviours expected at a federate level9. 

However, federate level agreements are governed much like the colloquial "gentleman's 

agreement," in that they are not explicitly documented (in a configuration sense) nor 

enforced. Failure to meet one of these agreements often manifests itself in unusual ways. 

While data formatting omissions may trigger explicit errors, execution management 

mistakes are often more subtle. 

Each federate must be manually programmed to observe any federate level agreements, 

and this step must be completed for every federation in which that federate intends to be 

deployed. Given the arbitrary nature of such concerns, providing generic support for such 

requirements presents a somewhat insurmountable problem. Beyond the hand 

development of a specific agreement aware H L A Aspect, there is nothing within the A O P 

realm that can help address this issue. 

9 These are also often referred to as the Execution Management requirements for a federation. 
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Monolithic v. Distributed Environment Mismatch 

Perhaps the biggest concern involved in rendering a pure model as a H L A distributed 

simulation component is the inherent mismatch between the expectations of each 

approach. H L A support is a system level, crosscutting concern, and an ideal candidate for 

being separated from business logic. However, this separation also removes 

considerations of application distribution from the development of code modelling 

components. Practically speaking, these models become monolithic, self-reliant 

implementations. In a distributed simulation, the creation and manipulation of data is the 

shared responsibility of all participating components. In a monolithic simulation, the 

model code is given unquestioned dominion over its data. 

The tension between monolithic and distributed environments manifests itself in two 

primary ways: the problems of data introduction, and management of the strict 

ownership rules imposed by the HLA, In a monolithic simulation, the model is entirely 

responsible for the creation and storage of all data. In a distributed situation, data may be 

created externally. Given this, there are considerable questions about how data can be 

introduced into a model that is not expecting it. 

Further, the HLA specification mandates rather strict data ownership rules, prescribing 

that only a single federate may own a piece of data, and only that federate is entitled to 

modify it. In the selfish realm of a monolithic simulation, the model is able to alter any 

piece of data at any time; it has no notion of sharing or ownership. 

The HLA also introduces publish and subscribe facilities. These mechanisms are used to 

define what remote data a federate is interested in, and what data it produces for remote 

consumption. Often times this information can also be used to describe which data from a 

model is meant to be kept private, and only used within a federate, and which is meant to 

be available to other federates within a shared federation. Although object-orientation 

includes something similar in the form of its data access rules, these alone are not 

expressive enough in a distributed context. For example, consider an O O component that 

describes some information as having public access, thus allowing other components 

within the model to access it. Just because the information is meant to be available to 

other model entities, does not meant it is meant to be available in a distributed context. In 

a H L A setting, the information may still need to be marked as puMic (so that other parts of 

the federate can access it), yet it may not necessarily be intended for publication to the 

federation. Once again, this problem stems from the disconnect that exists between a 

monolithic and distributed environment. 
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Although A O P does provide a number of enticing opportunities for the simplification of 

H L A simulation development, when considering its use within a generalised, automated 

environment, there are still many questions that must be answered. As this section has 

shown, the remaining problems broadly pertain to the mismatch that exists between a 

pure-00 environment, and the distributed, shared simulation environment of the H L A 

The next section builds on the information presented here and outlines a number of 

research questions that this research addresses. 

4.6 Summary 
Much of the research presented in this chapter has focused on the simplification of H L A 

simulation development. Through the abstraction of low-level tasks, considerable 

productivity gains can be made. A n increased focus on separating the pure simulation 

model from the underlying implementation infrastructure has served to enable greater 

levels of interoperability and reuse. As too have techniques to help manage object model 

differences. 

With the work presented in [112], Strafiburger introduces the notations of explicit and 

implicit access to the H L A through simulation tools specific interfaces. While explicit 

access to the H L A is not suitable in the context of this research (as it also requires 

specialist knowledge), the implicit approach realises the desired goal. Strafiburger was 

successful in exposing civilian simulation applications to the H L A via tool-specific 

interfaces. In the case of the implicit approach, this involved the translation of simulation 

events into the relevant H L A counterparts. 

The focus of this study is to build on Strafiburger's implicit approach and investigate 

methods for implicit model development that are generic in nature. While the solutions 

presented by Strafiburger in [112] show how this approach can work for a particular tool, 

this research seeks the development of a general-purpose solution that can provide H L A 

simulation services transparently to generic simulation models, free from ties to any 

individual application. 

AOP and the MDA both describe approaches that reinforce the idea of separating core 

business logic from that of implementation concerns. Although the simplicity of the M D A 

process is desirable, particularly in regard to its considerable use of automation, the reality 

is that the technology does not yet exist to back up its claims. As such, it is not suitable for 

use within this research. Despite working on a much lower level (one for which expertise 
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already widely exists within all corners of the information technology industry), A O P is 

not only feasible, but already proven and deployed in copious amounts of production 

environments. 

Aspect-Oriented Programming outlines methods for transparently combining platform 

specific considerations with those of a core problem. Additionally, the concepts and theory 

of A O P are not tied to any specific tool, with implementations existing for many platforms 

and programming languages. As this chapter has shown, A O P can form a solid foundation 

upon which this research can build techniques for the transparent rendering of pure 

models as H L A simulation components. In such a context, A O P acts largely as a facilitator, 

providing the ability to intercept and alter a model, allowing H L A behaviour to be injected 

transparently. However, the use of A O P alone does not address a number of considerable 

theoretical issues about the form that behaviour should take, and where it needs to be 

interested. 

While sharing many similarities, Object-Oriented theory and semantics do not align 

perfectly with those of the HLA. The normal process of converting a model to be HLA-

compliant necessitates human intervention. This in turn demands specialist H L A 

knowledge that does not exist within the wider business community. As has been 

highlighted time and time again, within the context of this research such knowledge 

cannot be expected and is deemed unacceptable. Given these constraints, the involvement 

of automation in the conversion process is necessary. A number of questions still require 

answers when considering the application of A O P to the H L A as a potential solution. As 

the next chapter explains, the contribution of this research is to address these problems, 

defining the requirements and methodology involved in automatically rendering a pure 

O O model as a H L A simulation component. 
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Chapter 5 

Research Questions and Experimental 

Framework 

This chapter outlines the the major remaining questions that blind application of AOP to 

the distributed simulation domain alone cannot answer. It is the answers to these 

questions that form the contribution of this work. The final section of this chapter 

establishes the experimental framework that will be used to assess and validate the 

solutions that are posed in the coming chapters. 

5.1 Research Questions 

A O P alone is not sufficient for realising the goals of this research. While providing a strong 

supporting framework, the use of A O P as a mechanism for entirely abstracting the 

complexities of the H L A raises many sizeable questions [92]. This section introduces those 

questions that drive this research. 

Object Models 

Shared object models are a central part of the H L A While the notion of an object-

hierarchy is implicit to object-oriented programming, a H L A object model requires more 

than pure lineage and inheritance information. Without the requisite manual direction, 

some method for automatically extracting object model data must be devised. 

"How can a HLA object model be extractedfrom a pure OO simulation model?" 

Public and Private Data 

Through join points and point cuts, A O P allows for the specification and insertion of 

crosscutting behaviour. In a typical A O P situation, a developer would use semantic 

understanding of the model to identify where certain point cuts would need to be made 

and what advice would need to be inserted at those locations. However, linking a model 

and the H L A Aspect would require specialist knowledge. Without semantic 

understanding, determining data that is public and meant to be shared with a simulation 

from that which is private, and meant for internal processing, becomes difficult 

"How can the public and private data of a pure model be automatically identified?" 
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and 

"How can the publication and subscription requirements of a pure model be identified?" 

Object Data 

The concept of an "object" is a common link between O O and the HLA. Although the 

notion of an object class carries different meaning in both, the notion of an object instance 

representing a unique set of data is shared idea. However, for a distributed simulation to 

function correctly, data must be shared between the participants. H o w this behaviour can 

be transcribed into a model that has no distribution concerns presents a problem. 

"How can the creation, removal and alteration of data within an OO model be replicated 

into an active HLA federation?" 

Many of the problems this research addresses are inherently linked. This question is 

intimately connected to the problems of public/private data identification, as only changes 

to public data should be shared with a federation. Further, this question is also linked to 

the following problem relating to data introduction. 

External Data Introduction 

A O P provides excellent facilities for capturing changes made to pieces of data within a 

model. At these times, if the information is relevant to the greater simulation, it can be 

easily sent to the federation. However, problems begin to arise when pondering how data 

created and managed in remote federates can be feed into an object-oriented model that 

would not be expecting it. Although central to the HLA, O O models have no notion of 

application distribution; and as such, the introduction of foreign information is a 

significant concern. 

"How can the creation, removal and alteration of data within an active HLA federation 

be replicated within a pure OO model that is not expecting it?" 

As pure simulation models are monolithic in nature, they have complete control over their 

data and implicit permission to alter it at any time. Under the HLA, the rules of data 

ownership contradict this and will not allow for such events to occur. 

"How can the data ownership rules of the HLA be reconciled with the monolithic world-

view of pure object-oriented models?" 
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Grouping Behaviour: Methods and Interactions 

It is generally accepted within the H L A community that the relationship that exists 

between interactions and OO-style methods is parenthetical. Although similar, they were 

each designed with distinct purposes in mind. In object-oriented methodology, methods 

are directly associated with a specific object type, and are considered to describe the 

behaviour that the type may implement. Interactions on the other hand are designed more 

like messages. Although their structure is independent of any object class, they may be 

arranged within a hierarchy with regard to one another. This is a significant point of 

difference. 

Regardless of these differences, the fact remains that methods play a vital role in the 

development and execution of object-oriented application, and as such, the actions they 

perform (and the consequences of those actions) must somehow be translated to the H L A 

world. 

"How do object-oriented methods translate into HLA interactions?" 

Federate Level Agreements 

As highlighted in section 4.5, with any H L A federation there are a number of 

undocumented agreements that describe how federates should behave in certain 

situations. These federate level agreements are generally the domain of execution 

management concerns. Although they are not always consequential to the actual core 

processing of a simulation, they do express the requirements necessary to cooperate with 

other components. 

These agreements can generally be considered housekeeping requirements for executing a 

distributed simulation, and as such, are specific to the HLA. In the monolithic realm of a 

pure-00 model, there is no need for such considerations, and as such, there is no parallel 

from which an automated process can extract the necessary information. This raises a 

further concern: 

"Can the definition of federate level agreements be expressed without requiring manual 

intervention?" 

Logical Time 

Any given simulation model may represent logical time in any number of ways. Other 

models may choose to ignore the concept of time entirely. As it currently stands, many 

within the H L A community consider time services to be a periphery consideration. 
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However, when time is used, one of the primary advantages of the H L A is that it provides 

facilities for the shared management of advancement. Federates are able to keep 

synchronized with one another through adherence to a single shared value, whose 

advancement is controlled by the RTI (as discussed in section 3.2.3.4). 

Given the multitude of different ways in which logical time can be represented in a model, 

it becomes virtually impossible to automatically pick how a given model handles this facet 

However, if this information is known, is there even a way to enforce synchronization 

between a pure model and a federation? As highlighted above, pure models are monolithic 

in approach, and expect the freedom to modify any variable at any time (including that 

which may represent time). In the shared environment of a distributed simulation, these 

actions need to be controlled. 

"How can logical time be synchronized between a monolithic pure model and a shared 

distributed simulation?" 

Authoring Distributed Models 

The questions introduced above share a common thread: they stem from the inherent 

misalignments that exist between the object-oriented and H L A worlds. While each 

question is driven by a significant problem that arises when attempting to combine these 

two distinct ontology's, they all form part of a larger, deeper question. 

"How can pure models, that know nothing of application distribution, be created to 

depend on and work co-operatively with other remote models?" 

Part of the power of distributed simulation is that it allows work to be partitioned among a 

number of disparate models. However, with no notion of application distribution, each 

pure model is essentially monolithic. This raises questions about how they can be designed 

to participate in a co-operative environment, where some of the information will be 

generated and manipulated remotely. 

Other HLA Services 

The questions presented in this section outline the areas of O O / H L A crossover that this 

research considers. While the list is comprehensive, not all H L A services are addressed in-

depth, or even at all. Some services, such as time management, could easily form the basis 

of entire theses in their own right. Addressing these periphery issues in such depth is well 

beyond the scope of this work. Discussion of other H L A services, such as Data Distribution 

Management ( D D M ) and Save/Restore support have been omitted entirely. Again, as the 
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core focus is to address the initial problems involved in producing a generic, implicit 

development environment, these additional topics are of a periphery concern. Perhaps, if 

time possessed some infinite quality this would be possible. However, in this realm, the^e 

issues are out of scope and form a fertile target for further work (as discussed in the final 

chapter). 

To fulfil the goals of a generally applicable, implicit HLA simulation environment, this 

research addresses the questions presented here. In doing so, this work forms a significant 

contribution to the current state of the art; vastly reducing the complexity involved in 

authoring distributed simulations and substantially reducing the primary barriers limiting 

an uptake of the H L A within the wider business community. 

5.2 Experimental Framework 

The goal of this research is to allow pure object-oriented models to be transformed into 

H L A simulation components through a process that removes the need for specialist H L A 

knowledge. The crosscutting nature of the H L A results in the pollution of pure model code 

with complex, low-level infrastructure details. Aspect-Oriented Programming represents a 

potential solution to these problems by separating the development of model and H L A 

Aspects. However, as discussed in this chapter, despite providing separation, use of A O P 

still leaves many unresolved questions. 

To address these concerns, the following chapters propose a design for a generic HLA 

Aspect and a methodology for extracting H L A semantics from a pure-00 model. In 

combination with AOP, these two advancements can be used to automatically render pure 

model code as a H L A simulation component. This section describes the experimental 

framework used to test the validity of the solutions presented in later chapters. 

5.2.1 Overview 

The experimentation process employed by this research is broken down into three 

separate stages. Beginning with a fully manual A O P process, the experiments show how 

A O P can be used to quarantine H L A concerns from model development, and then how 

automation can be used to remove the requirement of H L A knowledge. 

The main experiments use a set of two synthetic simulations that have been created for 

this research. Introduced below, these simulations exist only as standalone object-oriented 

applications (no H L A versions have been created). They have been purposefully designed 
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to incorporate many facets of object orientation and are able to function entirely on their 

own. The final experiment ignores these test cases and instead puts the developed theories 

to test with an existing distributed simulation. This purpose of this test is to demonstrate 

to co-operation of H L A and non-HLA models in an existing setting. 

5.2.2 The Test Simulations 

This section briefly introduces each of the test simulations used in the various 

experiments. The code for all simulations is provided in the supplementary package that 

accompanies this thesis. 

The Race Car Simulation 

The "Race Car Simulation'' was designed to model a very simplistic car race. The primary 

design goals of the race simulation were: 

• Repeatability: The race should be deterministic to help ensure that any observed 

behaviour should occur consistently. 

• Structural Simplicity: The overall structure (object composition, inheritance 

hierarchies, etc..) should remain as simple as possible. This model is meant to test 

the basics. 

Each car in a race has a specific top speed, which in this case acts as its constant speed. As 

logical time advances for a race, the car is assumed to be travelling at its maximum speed. 

As such, the results of the race (and the position of a given car at a given point in time) are 

deterministic. 

The purpose of this test case is to provide a baseline of behaviour, just enough to ensure 

that the developed solutions work, without requiring additional complex behaviour. As 

such, the structure of the model is kept simple, with no inheritance hierarchy and minimal 

object composition. For a detailed explanation, see Appendix A. 

The Sushi Boat Simulation 

The "Sushi Boat Simulation" is designed to be slightly larger and more complex than its 

counterpart. This simulation is a loose adaptation of the case study used in [26]. It has 

been designed to include: 

" Repeatability: As with the first test scenario, this simulation has also been 

designed to be repeatable. 
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• Inheritance Hierarchies: The structure of the dishes forms an inheritance 

hierarchy that must be accounted for in both the generation of an H L A object 

model and the encoding and decoding of simulation information. 

• Object Composition: This scenario includes many objects that reference other 

objects. While common in object-oriented environments, this type of relationship 

is foreign to H L A models. 

• M e t h o d Dependence: It is common for O O models to depend on methods to 

carry out large amounts of functionality. This can be a problem for the HLA, given 

a misalignment between the concept of methods and interactions. This simulation 

depends on the use of methods to perform the main behaviour. 

The scenario revolves around a simulation of a Sushi restaurant. There are a number of 

Dishes on offer within the restaurant, each of which is a Starter, a Main meal or a 

Desert. The meal objects form an inheritance hierarchy. Dishes are prepared and travel 

along a small "river" past a number of tables. At any point, a table may pick up a dish and 

eat it (thus purchasing it). At the conclusion of a meal, the information about all the 

consumed dishes for a table is calculated into a Receipt and the table is cleared. 

For a complete explanation of this test model, see Appendix B. 

The Air Transport Operations Simulation 

The Air Transport Operations (ATO) simulation is a simulation that is primarily used as a 

teaching aid at the University of Ballarat [119]. The scenario consists of three main 

federates (although a fourth optional one is sometimes also used). 

The Aircraft Manager (ACM) federate is responsible for creating Aircraft objects and 

updating their state as they fly around the simulated environment. The A C M federate 

receives interactions when other federates need to control its actions. For example, when 

an aircraft is permitted to land at an Airport, a "Land" interaction is sent. 

The Air Traffic Control (ATC) federate is responsible for all the airports and associated 

Runways. It controls which planes can land at the various airports and when, potentially 

telling aircraft to loiter, divert or land. 

The Flight Manager (FM) federate is responsible for deciding where each plane should 

fly to, how long it has to wait between flights and when maintenance is required. W h e n a 

plane has landed, the F M issues it directions as to what to do next. 
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In the final experiment, a pure-00 Airport model will be created and placed into the 

existing simulation. Aircraft should then be able to fly to and from this destination as if it 

were created and managed by a normal HLA-federate. For this experiment, an 

implementation of the A T O federation developed by UoB students will be used. This 

implementation includes an additional federate that provides a visualisation of the 

federations activities. 

5.2.3 Experiments 

The experimentation for this research focuses on three separate stages. Each stage is 

necessitates the answering of a specific set of research questions, with subsequent 

experiments building on their predecessors. 

Broadly speaking, the problem of extracting HLA specific information from a pure model 

and allowing it to participate in a H L A federation involves two considerations: 

• Information introduced, updated and removed within a pure model must be 

distributed via the HLA 

• Information introduced, updated and removed by external federates must be 

made available within a pure model 

The provision of an environment and methodology that is capable of meeting these broad 

objectives is the focus of experimentation. 

Each of the experimentation descriptions below is broken down into four areas: 

• The Purpose section provides an overview of the experiment and states it goals 

• The Prerequisites section describes the work that must be completed before the 

experiment can run 

• The Procedure section defines the steps involved in executing the experiment, 

and how the results will be collected 

• The Qualification of Success section defines what must be observed for the 

experiment to be considered a success 

In the remainder of this chapter, the pure object-oriented model will be referred to as the 

pure model. The HLA-compliant version of this model will be referred to as the AOP-

model. 

98 



The captured log file information will be analysed to determine the actions that occurred 

throughout the experiment 

Qualification of Success: For this experiment to be considered a success, a number of 

criteria must be met: 
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Success Criteria Validation M e t h o d 1 

Pure-model must remain free from any 

H L A considerations 

AOP-model must execute without error in 

federation with companion federate 

Object-data created bv AOP-model must be 

sent to federation (objects) 

Object-data created by companion federate 

must be received by AOP-model (objects) 

Object-data changes inside AOP-model 

must be sent to federation (attributes) 

Object-data changes inside companion 

federate must be received by AOP-model 

(attributes) 

Relevant method calls within AOP-model 

must be sent to federation (interactions) 

Relevant interactions sent by companion 

federate must be converted in method calls 

in AOP-model (interactions) 

The results generated by the pure model in 

standalone form must not match those 

generated when run with companion 

federate. 

Visual inspection of pure-model code. 

Non-Error execution of federation deemed 

a success. 

Inspection of log file for companion 

federate to validate objects were created. 

Inspection of log file for AOP-model for 

presence of remotely created data. 

Inspection of log file for companion 

federate to validate reflections received. 

Inspection of log file for AOP-model for 

presence of remotely altered data. 

Inspection of log file for companion 

federate. Ensure interactions are received. 

Inspection of log file for AOP-model and 

inspection of pure-model results to ensure 

methods are called. 

Compare results log generated by pure-

model when executed standalone and when 

executed with the companion federate. 

Table 5-1: Experiment One Success Requirements 

An important point to note is the specification of final criteria. In its pure form, the model 

will produce a set of results (a fist of positions for the Race simulation, or a list of receipts 

for the Sushi Boat simulation). W h e n running as a H L A federate, this same model should 

be acting on additional data created by the companion federate. Accordingly, the results 

should not be the same as when the models are run by themselves. 

Experiment Two: Consuming HLA Information 
Purpose: The purpose of this experiment is to build on its predecessor and validate the 

automated production of all components requiring H L A knowledge in experiment one. 

The results yielded by this experiment should match those that were produced in the 
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previous experiment, however, unlike its predecessor; the process used to produce those 

results should be free from any H L A considerations. 

The first experiment requires a number of artefacts to be hand generated by a user before 

the AOP-based framework could be used successfully with an O O model. Before this 

experiment can be completed, approaches for automating the production of that 

information are necessary. 

Prerequisites: Before this experiment can take place, a number of research questions 

must be addressed. These questions generally relate to how the many of the manual 

processes of experiment one can be automated. As we are building on the previous 

experiment, its prerequisites are implicit in this list. 

• Automatic determination of the relevant locations within a pure model to capture 

information creation, modification and removal 

• Automatic extraction of H L A Object Model based on the structure of the pure O O 

model 

• Automatic determination of public/private data within a pure model 

• Automatic determination of public/private methods within a pure model 

• Automatic determination of publication and subscription interests for a pure 

model 

Each of these requirements is necessary to generate all the appropriate information 

needed by the AOP-based runtime when interacting with a pure-00 model and to ensure 

that information flows smoothly between the O O model and the companion federate. 

Procedure: For each of the two primary test models, the following steps will be taken: 

l) The pure model will be first run standalone. The results of the simulation will be 

recorded 

2) The pure model will be run through an automated process, producing the AOP-

model necessary for simulation 

3) The AOP-model will be run in a federation with the companion federate 

4) Log file information will be captured for both the AOP-model and companion 

federate 

The captured log file information will be analysed to determine the actions that occurred 

throughout the experiment. 
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Experiment One: Manual AOP 

Purpose: The purpose of the first experiment is to validate the use of A O P as a means of 

abstracting H L A concerns. It will ensure that the business logic of a simulation can be 

developed free from H L A considerations. At the completion of this, the model and H L A 

Aspects will be manually mapped together, mimicking how the A O P development process 

would occur if H L A expertise were available. In discussions below, the term "AOP-

model" refers to the version of the pure-00 model that has had Simspect woven into it. 

Prerequisites: Before any testing simulation can be run, there are a number of 

prerequisites that must first be addressed. These include: 

' A generic HLA Aspect must be created 

' Manual determination of appropriate Aspect-Weaving locations 

• Manual object model creation 

• Manual determination of publication and subscription interests 

' Manual determination of public and private data 

• Manual handling of any execution management or federate level agreements 

" Manual translation of data between OO-model and H L A 

Additionally, to validate that information is indeed being sent to and received from the 

HLA, a custom logging federate must be created. This federate will have two purposes. 

Firstly, it will log the information it receives (ensuring that the AOP-model is generating 

the appropriate events). Secondly, it will create and modify information, to help ensure 

that the AOP-model is receiving remote information that is being noticed by the pure-00 

code. Versions of this federate exist for both the race and sushi simulations. From this 

point on, this will be referred to as the companion federate. 

Procedure: For each of the two primary test models, the following steps will be taken: 

l) The pure model will be first run standalone. The results of the simulation will be 

recorded 

2) Each of the necessary manual processes will be completed, producing an HLA-

compliant version of the model, known as the AOP-model 

3) The AOP-model will be run in a federation with die companion federate 

4) Log file information will be captured for both the AOP-model and companion 

federate 
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Qualification of Success: For this experiment to be considered a success, a number of 

criteria must be met: 

Success Criteria Validation M e t h o d 

All necessary artefacts m u s t be 

automatically generated 

Pure-model must remain free from any 

HLA considerations 

The results generated by the pure model in 

standalone form must not match those 

generated when run with companion 

federate. 

Successful if process consumes pure-model 

and generates AOP-model that is run 

without intervention. 

Visual inspection of pure-model code. 

Compare results log generated by pure-

model when executed standalone and when 

executed with the companion federate. 

Table 5-2: Experiment T w o Success Requirements 

The first criteria is the main focus of experiment two. To be deemed successful, the 

creation and execution of the AOP-model must not necessitate the manual construction of 

any deployment artefacts. These items require H L A knowledge and this experiment is 

designed to test their automatic generation (removing this burden from the user). 

The second and third criteria both come from experiment one. The second mandates that 

the pure-model code must not contain any H L A information, as again, this would dictate 

H L A knowledge on behalf of the user. The final criteria mandates that the results of the 

standalone and H L A executions must differ, reflecting the fact that remote data plays a 

role in determining the results for the H L A version. 

It is not necessary to retest all operational criteria from the first experiment as the 

operation of the framework is not the focus this time. The previous experiment validated 

that those processes worked whereas this experiment seeks to validate that everything still 

works when an automatically generated object model and set of mappings are used. The 

successful completion of those tasks is implicit in the meeting of the third criteria. If for 

some reason any processes suddenly fail, the AOP-model and companion federate would 

cease to interoperate correctly and the final results for each simulation would reflect this 

lack of communication. Thus, the meeting of criteria three is depends on all the criteria 

from the first experiment also being successfully met. 

Meeting all the criteria for this experiment means that the same level of functionality that 

was required in experiment one has been met, except without the use of manual processes 
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that require specialist H L A knowledge. To a large extent, success here in these two 

experiments realises the goals of this research. The final experiment tests that the 

developed methods work with an existing federation. 

Experiment Three: Existing Simulation Test 

Purpose: The purpose of this final experiment is to validate the methods that have been 

developed and tested through the previous experiments in the context of an existing 

federation. Thus far, the experimental subjects have been small scenarios, custom 

designed for use in this thesis. Experiment three involves the creation of a pure OO-model 

that will interact with an existing implementation of the A T O federation. The major aim of 

this research is to allow pure-00 models to be developed and automatically rendered as 

H L A simulation components, capable of being used within live H L A distributed 

simulation. This experiment is used to further validate that the methods proposed by this 

research are valid beyond the testing environment used previously. 

Prerequisites: The primary prerequisite necessary for this experiment is the 

development of a pure-00 model that will control an Airport in the A T O federation. There 

are two final research questions this experiment will help to address. In any situation 

where a user is attempting to write an OO-model destined to operate as part of a 

distributed simulation, the tension that exists between a monolithic and distributed 

environment will be a factor. In a distributed simulation, components must be willing to 

accept that parts of the calculations are going to occur outside of its boundaries. However, 

without having specific knowledge of application distribution semantics, this presents a 

problem. 

"How can pure models, that know nothing of application distribution, be created to 

depend on and work co-operatively with other remote models?" 

The previous experiments involved a 'legacy" HLA simulation whose primary intent was 

to log the activities of the federation in order to validate behaviour. In an existing example 

such as with the A T O federation, co-operative modelling must be undertaken. 

Secondly, to be able to operate within the environment of the ATO federation, the pure-

O O model must be able to conform to all the relevant federation-level agreements that 

dictate h o w the execution of a simulation is managed and h o w data is exchanged between 

federates within a simulation. 
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"Can the definition of federate level agreements be expressed without requiring manual 

intervention?" 

This experiment seeks both to validate that the broad concepts tested previously work in a 

co-operative modelling scenario and to asses the extent to which comprehensive answers 

to these additional questions can be developed. 

Procedure: The procedure for this experiment is quite straightforward. The pure-00 

model must be executed in a federation with live A T O federates. Once again, log files will 

be collected to ensure the proper operation of the model. 

Qualification of Success: The primary signature of success for this experiment is the 

successful execution of a pure-model within the A T O federation. Previous experiments will 

have validated the behaviour of the methodology generated in this research. Although log 

files will be collected to ensure that the proper actions are taking place, success in this 

context is a rather binary proposition: the model either runs to completion, or it does not 

(generating errors and crashing). As a primary measure of this, some logging from the 

pure model will be obtained and visual confirmation of the models affects on the 

simulation will be captured through the GUI visualisation federate that exists in the A T O 

implementation being used. 

Success Criteria 

OO-model runs to completion without 

error 

Validation M e t h o d 

Manual inspection of simulation run. 

Supplemented by inspection of log files to 

validate the lack of any errors 

ATO entity information is discovered and 

used within the OO-model 

Inspection of log files to demonstrate that 

remote data has been found and is active 

within the pure model 

Alterations and actions generated by the 

OO-model affect simulation state 

Capture of visual data demonstrating that 

aircraft can interact with the pure-00 

airport 

Table 5-3: Experiment Three Success Requirements 

5.3 Summary 

This chapter has introduced the shortcomings of A O P when considering its use within the 

goals of this research. The questions that this work addresses have been raised, and the 

experimental framework used to validate the generated solutions has been introduced. 
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This has provided the foundation for the following chapters, which present a discussion of 

the techniques developed to overcome the problems established here. 



Chapter 6 

Manual AOP: Separating Model and Platform 

Aspect-Oriented Programming provides a methodology that allows developers to isolate 

crosscutting, system level concerns, thus allowing them to be implemented separately, 

keeping core business logic free from such considerations. As discussed in previous 

chapters, the motivations for implementing HLA-behaviour with such an approach is both 

beneficial and attractive. However, as highlighted in chapter 5, there are a number of 

serious shortcomings that need to be addressed. 

Under the AOP model, it would be common to reuse business logic in a different setting by 

weaving it into various sets of system-level Aspects. It would also be common for these 

Aspects to be tailored for their specific environment. With regard to the goals of this 

research however, this approach presents a significant problem. Applying this approach in 

the H L A space, one might write a H L A Aspect targeted at a particular simulation. 

Although this would be useful when attempting to expose new logic to that simulation, it 

would also be specific to that situation. If a user wanted to expose that same logic to a 

different H L A simulation, they would require a separate H L A Aspect and weaving rules. 

Quite clearly, the development of a H L A Aspect would require intimate H L A knowledge, 

and would thus be unsuitable for this research. It is for this reason that a generic H L A 

Aspect is necessary to fulfil the goals of this work, and is a prerequisite for experiment one. 

This research seeks to define a generically applicable solution to such problems, with the 

expectation that it will free mainstream developers from the considerable development 

burden imposed by the H L A specifications. The first step towards achieving this goal is to 

demonstrate that a sufficiently generic AOP-based environment can be combined with a 

pure-00 model to create a H L A simulation component (a federate). 

In a typical situation where AOP is leveraged, the process of creating the various Aspects 

and defining h o w they are woven together is a manual process. Although the overall 

objective of this research is to automate this process and thus remove the need for any 

H L A specific knowledge, the first step is to prove that general notion is viable. For this 

reason, Experiment One (as introduced in section 5.2.3) focuses on the definition of a 

generic HLA-Aspect that can be woven into pure model code via a manual process. 

Subsequent experiments (presented in chapters 7 and 8) remove the manual requirement, 

automating the steps that are deemed acceptable as part of Experiment One. 
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This chapter defines the proposed structure for the Generic Aspect, describing its inner 

workings and discussing h o w it addresses some of the research questions identified in the 

chapter 5. To conclude the chapter, the results of Experiment One are presented. 

6.1 Requirements of a Generic Aspect 

For any proposed solution to truly enable the automatic rendering of a pure-00 model as 

a H L A simulation component, a generic H L A Aspect is necessary. Before investigating the 

design for such an Aspect, it is important to consider the exact requirements. 

6.1.1 Defining "Generic"? 

A generic H L A Aspect is one that can be combined with any pure model to create a 

complete simulation component. That said, in order to function correctly with a particular 

model, the Aspect must have some knowledge of the interesting information specific to 

that model, naturally implying some sort of semantic understanding. This leads to a 

conundrum: what does the term generic actually mean in this context? 

Primarily, "generic" in this situation refers to a component that is capable of working with 

an arbitrary model without the need for modification. W h e n talking of modification, I am 

referring to changes to the Aspect at the source code level. The internals of such a 

component must also remain free of any model-specific considerations, thus allowing it to 

be portable. 

Despite this requirement, for the final simulation component to function properly in a 

H L A federation, specific information about it is still required by the federate (such as 

publication and subscription interests, or model-to-SOM mapping details). To remove the 

need for code-level alterations, this research favours a configurable approach. The 

provision of model-specific information via configuration data allows the generic H L A 

component to be used in many situations, yet still have it possess behaviour that is context 

aware and specific. Viewed holistically, configuration information is still part of the 

system, and thus can make it model specific. However, when looking at most generic 

software components in use today, configuration information is the natural way to 

quarantine and isolate situation specific concerns. RTI implementations are a perfect 

example of this. They are capable of supporting any simulation model, but this 

information must be provided to them via configuration data in the form of a F O M . 
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In AOP, it is the weaving rules that form something akin to configuration information. In 

most A O P environments, weaving rules are themselves code [5], and as such, require 

recompilation before use. Although perfectly acceptable, this process does necessitate an 

extra step to compile the code, a process that could be avoided if separate configuration 

files were used in the place of hard coded model-specific weaving rules. 

6.1.2 Research Questions Addressed 

Having established what exactly is meant by the term "Generic Aspect," there are many 

other services that such a component would also need to provide. Section 5.1 highlighted a 

number of research questions that identify the shortcomings of a typical A O P approach 

that must still be addressed. 

These questions can be broadly split into two categories: 

• The technical questions refer to how a proposed solution should behave and 

react within a distributed simulation 

• The automation questions refer to how the creation of model-specific items 

(such as object models and configuration files) can be automated - removing 

otherwise manual processes 

To fulfil its duties, the Generic Aspect solution presented in this chapter must address the 

first category of questions. With regard to the first experiment, there is no need for 

answers to the second category of questions. Manual processes are permitted at this early 

stage. 

Of the research questions presented in section 5.1, six fall into category one. 

Obiect Data 

"How can the creation, removal and alteration of data within an OO model be replicated 

into an active HLA federation?" 

Data in the form of objects and attributes sit at the core of both OO and the HLA The 

Generic Aspect must be able to inform the RTI of the creation, modification and deletion 

of appropriate data within the pure model. Further, when interesting information is 

created remotely, proxies containing updated values must be created and made available 

to the pure model. 
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What exactly defines "interesting data" is rather subjective and model specific. In the first 

experiment, this information would be provided as model specific configuration data. 

Data Introduction 

"How can the creation, removal and alteration of data within an active HLA federation 

be replicated within a pure OO model that is not expecting it?" 

As mentioned above, the Generic Aspect must make available proxy instances for remotely 

created data, and in a form that can be consumed by the pure model. H o w this 

information can be successfully made available to a pure model depends largely on how 

the model stores and accesses its own data. 

The open ended nature of object oriented programming means there is a myriad of 

options available to a developer when deciding how to structure, store and access data. In 

many situations, relevant data is stored in collections (such as lists and maps). Proxy data 

could be placed directly into these collections in order to make it accessible by the pure 

model. However, this approach is dependent on the use of single collections within the 

pure model. In other situations, newly created information might be passed to some 

model-specific method that then inserts the information in the appropriate places. An 

example of this is the enterCar(Car) method in the Car Race experimental model. 

Support for introducing data via this type of approach is also necessary. 

Data Ownership 

"How can the data ownership rules of the HLA be reconciled with the monolithic world-

view of pure object-oriented models?" 

A monolithic model may attempt to update any piece of data it encounters, even if it is 

remote data that is not controlled locally. The ownership rules of the H L A only permit this 

if the model itself either created that information, or has since obtained the specific right 

of ownership on that information. If pure models are going to co-operate with one 

another, and with other federates, some method for overcoming this problem is needed. 

Interactions and Methods 

"How do object-oriented methods translate into HLA interactions?" 

In OO, methods form an integral part of behaviour representation. While interactions and 

methods do not share a complete conceptual overlap, they are alike in many ways. To 
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facilitate the proper and consistent behaviour of a model, some synthesis between these 

two facilities must be present. 

Federate Level Agreements 

"Can the definition of federate level agreements be expressed without requiring manual 

intervention?" 

Perhaps one of the single most arduous tasks involved with any HLA simulation is the 

process of merely getting separate components in synchronisation with one another. 

Unfortunately, the open nature of federate level agreements makes a complete solution to 

this problem largely intractable. This chapter outlines the problem of federate level 

agreements, describing when and where they can or cannot be supported. 

Logical Time 

"How can logical time be synchronised between a monolithic pure model and a shared 

distributed simulation?" 

Many simulations incorporate a notion of time, even monolithic ones. The rules governing 

time in the H L A exist to ensure that information is delivered correctly and that the logical 

ordering of events is maintained. Although the H L A defines a shared notion of time 

representation, the location and structure of time within a pure model is subjective. Any 

proposed solution must be able to keep watch on the portion of a model that represents 

time, only allowing it to be altered in accordance with notifications from the RTI. 

Each of these questions must be addressed in the design and methodology employed by 

any proposed solution that seeks to provide a generically applicable H L A Aspect. Section 

6.2 of this chapter begins the account of such a solution, and describes how these 

questions can be answered. 

6.1.3 The Reference Implementation 

Before moving on to discuss the precise structure and behaviour of the Generic Aspect 

solution, it is first necessary to briefly outline the technology chosen to implement these 

ideas during experimentation (and the effects of this selection). A O P is a methodology, not 

a technology [56]. Although it is somewhat natural to think of A O P in a low-level technical 

sense, all A O P tools operate in a manner consistent with a shared methodology. The use of 

an A O P approach is not specific to a single programming language or tool. This is 

important when considering the motivations of this work. The sheer number of simulation 

environments available in the wider business community is enormous. To focus on any 
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one simulation tool would introduce a number of restrictions that are relevant only in that 

environment 

As such, in an attempt to provide a more broadly applicable solution, this research takes a 

step back, using Object-Oriented programming as its starting point. Just as there are a 

great number of tools used for simulation purposes in the wider business community, so 

too is there a great number of programming languages used for their implementation. The 

experimental items developed as part of this research make use of one such language, but 

the concepts and approaches taken are not specific to that language. 

For the purposes of testing and experimentation, the Java programming language has 

been chosen. Java has a long history with AOP, and as such, the tools available are both 

highly stable and mature. The reference implementation makes use of the open source 

Aspect! package [5] in order to gain A O P capabilities. 

The various tools used were chosen for a number of reasons, primary among which is their 

open source status. All tools (both H L A and A O P ) used in the development of 

experimentation items make use of open source libraries. Access to the source code has 

been important in this case, facilitating a deeper understanding of the tools, their 

structure and function. 

The Generic Aspect framework presented in the following sections also makes moderate 

use of the reflective capabilities of the Java programming language in order to meet its 

requirements. One potential concern here is that these services are specific to Java, and 

analogues may not be available in other languages (such as C++). In this work, Java 

reflection is used primarily as a convenience. Rather then subjecting pure-00 code to 

greater levels of static analysis, reflection is used to gather the necessary information 

about a particular set of classes. 

In cases where these facilities are not available (such as with non-reflective languages like 

C++), a custom code parser could be implemented to gain the same information that is 

extracted via reflection in the reference implementation. Although the development of 

such a parser would entail a non-trivial amount of work, the same information could still 

be obtained, and thus, allow the same methods presented here to be ultimately used. 
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6.2 Simspect: A Generic AOP Environment 

The generic H L A Aspect developed as part of this research has been dubbed 

"Simspect" (Simulation Aspect). To meet the requirements discussed in the previous 

section, Simspect incorporates both a generically applicable set of weaving rules and a 

self-contained, intelligent runtime component. Two simple facades isolate the internals of 

the runtime from the outside, model-specific world. Figure 6-1 is an illustrative overview 

of the Simspect framework. 
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As shown in the figure above, the Simspect environment consists of four major 

components, each of which is discussed in the following subsections: 

l. The Generic Aspect 

2. The Model Facade 

3. The Simspect Runtime (contains proxy and execution manager) 

4. The Simulation Facade 

6.2.1 The Generic Aspect 

In Aspect! terminology, an Aspect refers to both the weaving rules and the advice that 

should be executed at the captured join points. In a typical A O P scenario, the final step of 

the development process would be to write these weaving rules and the relevant advice 

that would make the appropriate calls into the crosscutting Aspects. For example, a 

weaving rule might capture any call to a constructor of the Car class (from the race 

simulation - see Appendix A) and cause a corresponding H L A instance to be created. 

These rules, and the advice that is executed when they occur, are designed to be the 

application specific glue that binds together the various core and crosscutting modules. It 

is generally thrown away or rewritten when attempting to apply the modules in different 

circumstances (much like configuration information). 

As mentioned earlier, when designing a generic solution, application-specific information 

must be provided at some point. Weaving rules and advice are one example of how this 

information could be specified. The approach taken by Simspect however, is a little bit 

different. Rather than tailoring weaving rules and advice to the specifics of a given O O 

model, Simspect employs weaving rules that focus on a generic class of events. For 

example, rather than just capturing the constructor calls for the Car class, it captures 

constructor calls for every class. In this way, the decision about the relevance of a model-

specific entity is delayed. Rather than defining this information statically at compile time, 

it is pushed back to be a runtime consideration. 

There are advantages and disadvantages to both approaches. When using a catchall 

solution like totally generic weaving rules, a large amount of uninteresting information 

that is captured needs to be dealt with at runtime. For example, while the Car class maybe 

of interest to wider simulation, the creation and alteration of a logger class would be 

deemed of only internal interest. As the generic weaving rules cannot themselves identify 

externally interesting information from data that is for internal model processing, some 
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filtering will need to occur further down execution path. Additionally, as such filtering 

takes some time; there are potential performance penalties to this approach. 

On the other hand, custom weaving rules would remove this problem, ensuring that only 

relevant information is ever captured. However, this too comes at a cost. To implement 

such a feature, one must know this information at compile/weaving time. Further, the 

weaving process will hard-code this information into the final product, necessitating a re-

coding and recompilation step for even a minor change. 

The primary benefit of the "catch-all" approach is that a single set of weaving rules (and 

associated advice) can be employed with any pure-00 model, regardless of its structure. 

By capturing all constructors, there is no need to have prior knowledge of what is and is 

not a relevant piece of information. The authoring of Aspect weaving rules and advice 

necessitates knowledge of both A O P and the syntax of the particular framework in use. 

Although the "separation of concerns" concept is quite simple to grasp, the low level 

details of weaving together core and crosscutting concerns in a manner suitable to a 

particular A O P framework is perhaps unnecessary for most users. Once again, the use of 

generic weaving rules means that they only need to be defined and written once, rather 

than over and over again for every different model. 

For all of these reasons, Simspect uses generic weaving rules and advice, relying on 

configuration data to provide the model-specific information necessary to filter out 

unnecessary information at runtime. 

The Generic Weaving Rules and Advice 

Having settled on the use of generic weaving rules and advice, attention must be turned to 

exactly what type of events these rules are going to capture. Rather than focusing on the 

model-related entities themselves, the Simspect Aspect seeks to capture typical classes of 

events that occur during the execution of any O O application. 

The Simspect Aspect captures the following types of events: 

l. Main Method Invocation 

2. Constructor calls 

3. Field alterations (both instance and class fields) 

4. Method Calls 

5. Object Removals 
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As one might expect, each event class represents a rather broad concept. What may be 

surprising is the size of the list, with only five types of events holding any interest. Despite 

this, the list represents the full gamut of information needed by Simspect to perform its 

duties. Despite the considerable complexity of the goals of this research, the specification 

of the weaving rules is remarkably simple, consuming fewer than 35 lines of code in the 

reference implementation10. 

The generic advice that is executed for each of the weaving rules above is equally 

straightforward. Its primary purpose is to pass information about the event on to the 

Model Facade (discussed in the next section) where it can be filtered. To illustrate this 

point, consider h o w object construction is handled. 

The specification of the weaving rule is as follows: 

1 /** pointcut to get all constructors */ 
2 protected pointcut constructors( Object newObject ) : 
3 initialization( public *.new(..) ) && 
4 ignoreList() && 
5 targetC newObject ) ; 

Listing 6-1: Constructor Point Cuts 

This statement basically says: "capture every call to a. public constructor on any (*) class, 

as long as that class is not on the ignore list". The final line is necessary to capture the 

context at the join point [23] (in this case, the object being created). 

The advice associated with this weaving rule is perhaps even simpler than the weaving rule 

itself: 

1 before( Object newObject ) : constructor^ newObject ) 

2 { 
3 // notify the runtime // 
4 this.facade.onConstructor( newObject ); 
5 logger.debug( "{NEW} " + newObject.getClassO ); 

6 } 

Listing 6-2: Constructor Advice 

This advice consists of a single line of effective code (and some logging), passing the 

information about the constructor to the model facade. H o w Simspect reacts to this 

information (if it reacts at all) is of no concern to the Aspect. Its purpose is to capture the 

A listing of the generic weaving rules and advice is provided in Appendix D 
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information and pass it onwards to the facade which can then respond appropriately. Not 

all the events captured by the Aspect involve a single action. The table below outlines what 

happens for each event 

Event Action 

Main Method 

Constructor 

Field Alteration 

Method Call 

Object Removal 

l. Instantiate Model Facade 

2. Inform facade that model is starting 

3. Proceed with main method (model executes) 

4. Inform facade that model is finished 

1. Inform the facade 

1. Inform the facade 

2. If response from facade is true, proceed with field 

alteration, if it is false, skip the alteration 

1. Inform the facade 

2. If response is from facade is true, proceed with 

method, if it is false, skip method execution 

1. Inform the facade 

Table 6-1: Model Event Actions 

As shown in this table, with the exception of object removal, the other events include 

additional steps. These additional steps may also be a point of some confusion. The main 

method event is known as an "around" advice [57] and it has the effect of wrapping the 

execution of the main method and allowing advice to be executed both before and after the 

main method call. If the advice so decides, it can even skip the call to the wrapped method 

altogether. 

The method-call and field alteration events also use "around" advice. In these cases, the 

facade is notified of the event, and a value indicating whether or not the event should 

proceed is returned. This is useful in situations where requests must be ignored because 

they relate to remote information. For example, when a method is being called on an 

object that was not created locally. In a typical H L A simulation, changes to remote data 

are subject to the processing approaches used in the models that have ownership over that 

data. By introducing new models that contain different processing rules, sets of objects 

can be updated via differing approaches. For example, a Car created in a remote federate 

could implement a different advancement algorithm to the Cars that were created in other 

federates (or indeed, those created locally). In order to allow this polymorphism, methods 
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called on remote objects are quietly discarded by the runtime when they are called. The 

return value provided by the facade indicates to the advice whether or not the underlying 

method call should proceed. If the data is local, there is no concern and the method can 

proceed as normal. This process however places the specifics of that decision beyond the 

facade, allowing the advice to have no knowledge of how the decision was reached and to 

remain quite simplistic. 

Weaving Exclusions 

It is worth highlighting that within the reference implementation there are certain 

exclusions placed on each of the weaving rules that capture these events. One might expect 

that in any non-trivial model there will be thousands of constructor calls, and many times 

more field modifications and method calls. Many of these will be to default class libraries 

and will be of no interest to the model at all. Exclusions act much like a veto, ensuring that 

advice is not woven into a model if the class in question happens to reside in a certain Java 

package. For example, no advice will even be executed for constructors, method calls or 

field alterations on classes that make up the core Java class library. Further, any code 

within Simspect itself is also excluded from these rules (as is code from the libraries used 

by the framework). The interesting parts of a model are provided in the model code itself, 

and these exclusions are a simple way of ensuring that the focus remains purely on that 

logic. 

Simple Yet Effective 

The purpose of the Generic Aspect is simple: capture the events and notify the fagade so 

that it may trigger the necessary processing required and take action. Isolating the Aspect 

and the processing logic in this way helps to keep the Generic Aspect both small and 

straightforward. 

6.2.2 The Model and Simulation Facades 

The facade is a well-known design pattern [38] implemented in an attempt to lower 

cohesion between two components by hiding potentially complex actions behind an 

opaque interface. Figure 6-1 identifies two facades within the Simspect environment: One 

for model events and the other for simulation events. Much like the Generic Aspect, the 

actions taken by the facades are exceedingly simple. They exist primarily as something 

akin to a traffic policeman. W h e n an event occurs, they pass the information on to the 

Simspect runtime, which then does all the necessary processing and informs the facades of 

the results. 
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As is discussed in the next section, the Simspect runtime does little but provide a 

superstructure into which event information can be dropped. Internally, the facades follow 

the Command design pattern [38]. This pattern describes a situation where event 

information is wrapped up inside an instance of a special class. This instance conveniently 

encapsulates all the relevant information about the event in a single entity. In Simspect, 

these instances are generically referred to as Messages. The facades are responsible for 

creating the message objects (from the information they receive) and passing them into 

the Simspect Runtime. This is not a particularly involved process, generally involving only 

one or two steps. 

To once again illustrate this simplicity, consider the actions taken by the Model Facade 

when it is informed of an object construction: 

1 public void onConstructor( Object object ) 
2 { 
3 // create and process the message // 
4 fireMessage( new MDL_OnConstructor(object) ); 
5 } 

Listing 6-3: Model Constructor Notification 

The code above is taken from the Model Facade in the reference implementation. In this 

listing, the MDL_OnConstructor class is the specific message type. It is given all the 

relevant information, and then the fireMessageO method informs the Simspect 

Runtime11. 

The Simulation Facade provides simulation relevant functions for handling any 

information received from the RTI. It behaves in exactly the same manner as the Model 

Facade, packaging all the relevant information up into message types and passing them 

into the Simspect Runtime for processing. As discussed in section 6.2.3, each runtime 

contains a proxy federate that sits inside an active federation and represents a pure model. 

While the Model Facade is invoked via A O P advice when relevant model events occur, the 

Simulation Facade is notified via the Federate Ambassador of the proxy federate. W h e n 

the RTI provides information to the proxy via an ambassador call-back, that information is 

then passed directly to the Simulation Fagade where it can be packaged and sent to the 

runtime. 

11 The fireMessageO method performs some general housekeeping. It packages the message into a special 

container type (which includes room for a response). It also serves to extract the response once the runtime is 

finished, and performs some basic error handling. 
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The facade classes are simple components. Beyond packaging request information into an 

appropriate form and passing it to the runtime, they play no further role in the processing 

of model or simulation events. The responsibility of acting on the events and performing 

the necessary actions is delegated to the Simspect Runtime itself. 

6.2.3 The Simspect Runtime 

The runtime represents the nerve centre of the Simspect framework. To this point, 

discussion has focused on how events are captured (the Generic Aspect and proxy 

federate) and delivered (through facades) to the Simspect Runtime. This subsection briefly 

introduces the components and internal structure of the runtime framework itself. 

In isolation, the Simspect Runtime is capable of very little. Rather, it provides a 

superstructure into which specialised processing units can be inserted. These units, known 

as Message Handlers, are responsible for performing the appropriate actions when the 

runtime is notified of an event via a message from the facades. The message handlers can 

be seen as the drivers of the Simspect Runtime, using other parts of the framework to 

perform any necessary actions. Figure 6-2 shows the internal structure of the Simspect 

Runtime. The role of each component is discussed below. 
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Figure 6-2: Simspect Internals 

The Message Sink 

As figure 6-2 shows, each of the facades passes message instances directly into the 

Message Sink. The role of the sink is to aggregate together a group of handlers; recording 

which messages a given handler is interested in processing. When the sink is given a 

message, it consults its internal registry and finds the handler associated with the type of 
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message that has been received. The message is then passed to the handler so that it may 

perform any necessary actions. Each handler has a dedicated task to perform and may 

make use of some other components (such as the Cache or Mappings information) to this 

end. 

The entire process is very similar to both the Observer design pattern [38] and the 

publish/subscribe facilities described in the H L A specification itself. There is no 

outstanding requirement that dictates the Simspect Runtime must take on a processing 

form such as that described, but the command/observer pattern mix does provide 

considerable advantages. 

Primary among these advantages is the ease of adaptation and extension this approach 

provides. Should the runtime at some point need to process new types of events, 

additional handlers can be readily inserted directly into the framework without 

necessitating extensive refactoring. Further, should the requirements for a handler change 

in any way, the effect of this is limited to that handler. This is of particular interest when 

considering the reuse of this design in a programming language or environment that 

differs from that of the reference implementation. 

For example, the reference implementation handlers make considerable use of reflection, 

a dynamic introspection facility provided by the Java platform [35]. In other languages 

(such as C++) this mechanism is not immediately available, necessitating an alternate 

approach to be used (as discussed in section 6.1.3). The important point is that regardless 

of how that information is accessed, the general runtime structure does not need to be 

altered in any significant way. This information can be localised to the specific handlers 

that use this information, while the Aspect, facade, proxy and so forth all remain as 

defined here. 

As mentioned above, the handlers represent the interesting portion of the reference 

implementation and define solutions to the problems referenced in the research questions. 

The methods used by these handlers to address the problems raised earlier are discussed 

in detail in section 6.3. 

The Cache and Mappings 

The Cache and Mappings components depicted in figure 6-2 are utilities used by the 

various handlers when completing their tasks. They store both useful information needed 

by the runtime to determine whether or not action should be taken, and, links to the 

relevant data on which operations should occur. 
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Mappings 

As discussed in section 6.2.1, the weaving rules and advice are entirely generic. They 

capture events that are potentially interesting, rather than restricting this to only those 

that are known to be interesting for a specific OO-model. These captured events need to 

be filtered at some point so that only those of some consequence to the remote federation 

are acted on (while the rest are ignored and deemed "internal model processing"). The 

Mappings component was defined as a container for this critical information. 

Filled from configuration data, each entry in this component describes how a particular 

object-oriented class maps to its HLA-based counterpart. From this list, the relevance of a 

particular class can be quickly determined: if it has no entry, it is of no interest. This 

enables the required filtering to occur when OO-model events are received. It is important 

to note that the same functionality is not required for received H L A data. Through the 

declaration of subscription interests, the RTI will only deliver to the proxy federate data it 

has previously signalled an interest in. In this case, the RTI performs the filtering on the 

runtime's behalf. 

Mappings data is not used purely for filtering purposes; rather, it has many other roles. As 

mapping data defines h o w OO-model constructs relate to their H L A counterparts, it is also 

useful in determining the publication and subscription interests of the proxy federate. The 

exact way this data is used for this purpose is discussed in section 6.3. 

Mappings data also contains transformation details. As the HLA represents data as an 

opaque series of bytes, some knowledge about the intended structure of those bytes is 

necessary. Mappings data provides this. The transformation of data between the model of 

a specific simulation component (SOM) and the shared model of a federation (FOM) has 

been the subject of considerable prior research (see section 4.2.1). Rather than define a 

solution to the complex issues surrounding this topic, this research defers to that work, 

whose approaches could be implemented inside the Simspect Runtime as required. That 

said, the reference implementation requires some basic transformative capabilities, and 

the mappings data provide this information. Unlike the previous work, these capabilities 

deal only with simple, primitive types (such as strings, integers and floating-point 

numbers). In situations where a more robust solution is required, the work highlighted in 

section 4.2.1 should be drawn on. 

Cache 

Unlike mappings data, the Cache is populated at runtime. It links together instance 

information that exists in the OO-model with the parallels that exist in the HLA. In figure 

124 



6-2, as with figure 6-1, the circles containing a "J" (for Java) represent local information, 

while H L A data items contain a "H". For data that was created locally (by the proxy 

federate) in response to an object constructor call, the cache maintains a link to the O O 

object instance in addition to other information the proxy federate will need (such as the 

object handle). For data that was created remotely and discovered through the RTI, this 

same information is maintained, along with the last known values that were received as 

part of an attribute reflection for the instance. The way this data is created and used is 

detailed in section 6.3. 

The Proxy Federate 

The Proxy Federate is the gateway to the H L A for a pure-00 model. Each runtime 

instances contains a single proxy federate through which engagement with the H L A is 

achieved. W h e n the handlers deem it necessary to forward information to the HLA, it is 

routed through the proxy federate. W h e n information is received from the RTI via the 

Federate Ambassador for the proxy federate, it is passed directly to the Simulation Facade, 

where event information is created and dropped into the message sink. 

The Execution Manager 

The Execution Manager is a sub-component of the proxy federate. The problems of 

federate-level agreements were highlighted at the beginning of this chapter, and the 

Execution Manager is a direct response to some of those concerns. The main difficulty of 

federate-level agreements is that there is no standard approach for defining or describing 

them. Any federate can define rules for how they behave within a federation, and any such 

combination of actions is perfectly valid. The execution manager is the facility through 

which execution management federate level agreements can be specified. 

Furthering this problem is the lack of a parallel for execution management within OO. 

Once again, the differences between a monolithic pure-00 model and a co-operative, 

distributed simulation are a chief cause of this disconnect. These agreements are an 

artefact of the H L A and remain entirely in that realm. In practice, the only way to 

overcome such issues is through the standardisation of a particular execution model. 

Regrettably, no such standard exists and this problem persists. Despite this, some 

recourse for addressing these issues is necessary. 

The Execution Manager component is the facility through which different execution 

methods can be supported. W h e n certain simulation events occur, it is notified and may 

take any appropriate execution management actions necessary. These events include: 
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• Synchronisation Points: announcement, registration, federation 

synchronisation 

• T i m e Advancement: time advance granted 

• Data Received: interaction received, object discovery/reflection/removal 

• Save and Restore: save/restore initiated, started, achieved 

These types of events cover the full spectrum of call-backs from the HLA, any of which 

could contain information pertinent to execution management procedure. The Execution 

Manager for the runtime can be easily replaced, allowing different execution models to be 

supported without affecting the entire framework. A default manager should be provided 

with any implementation of the Simspect runtime, thus only requiring a new one to be 

authored when O O models must interact with existing, non-compliant H L A simulations. 

Naturally, the development of an Execution Manager implementation would require HLA 

knowledge and skills. While this requirement is generally not tolerable within this 

research, in this particular situation it is unavoidable. That said, this would be limited to 

the execution of OO-models in specific scenarios, and would not affect model 

development. 

Much like mapping data, the specification of the relevant Execution Management 

implementation used by the runtime is defined through configuration data (discussed 

below). 

Unfortunately, there is no genuine solution to the problem of broader federate level 

agreements (such as data structures or attribute update intervals). While the H L A 1516 

standard does help with some classes of these problems, the open nature of the 

agreements means that there is no generic solution to the problem outside of mandating 

that the agreements be based on well-accepted conventions. 

6.2.4 Customising Simspect Through Configuration 

Earlier in this chapter the generic nature of the Aspect weaving rules and advice was 

discussed. In that section, it was conveyed that the approach taken by the solutions 

presented here was to push the customisation for a particular situation into configuration 

data rather than the rules that capture information themselves. This has the benefits of 

being adaptable without necessitating re-coding of the framework, and also allows 

additional information (such as H L A related data) to form part of the configuration, 

whereas A O P weaving rules and advice only relate to the pure model. 
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In the previous sub-sections the notion of the Mappings and Execution Manager were 

introduced. Each of these components depends on information provided as part of the 

configuration data. This section briefly introduces h o w this data is provided to the 

Simspect runtime, as it exists in the reference implementation used for experimentation. 

Figure 6-3 highlights the process involved in the creation of the runtime and the reading 
of configuration data. 

1. captures \ 
mainO method ) 

3. creates 
runtime 

2. creates 
facade 

Model 
Facade 

4. reads 
configuration 
and populates 
components 

Figure 6-3: Simspect Configuration 

W h e n the Generic Aspect realises that the OO-model is about to begin, it triggers the 

process that creates the entire Simspect runtime. At this point configuration data is 

obtained from an X M L document and used to populate the Mappings and create the 

appropriate Execution Manager implementation. In this way, the data interests of the 

runtime, or the concrete implementation of the Execution Manager can be manipulated 

without the need for authoring any code within Simspect. The runtime remains entirely 

generic, with the customisation data that ties it to a specific O O or H L A model being 

gathered from an external source. Within the context of the first experiment (discussed in 

section 6.4) this configuration data is generated manually. Further experiments focus on 
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automating the generation of this information following the inspection of a particular OO-

model. 

6.3 Handler Methodologies 

The previous section introduced the structural design of the Simspect runtime. This 

section talks about die various approaches and methodologies used by the handlers inside 

that framework that address the research questions highlighted at the beginning of this 

chapter. This will explain h o w those questions are addressed, leading into a discussion of 

experiment one, which validates the approaches defined here. The following subsections 

are broken down by research question, with each one discussing the various approaches 

taken for addressing it. 

Throughout this section, various parts of the reference implementation and underlying 

platform are discussed directly. This is done purely to provide some context to the 

discussion. It is important to keep in mind that the methodology employed in the 

reference implementation is the important part of the discussion, and that these ideas can 

be implemented in alternate settings, not just with the technology leveraged in the 

reference implementation created for experimentation. 

6.3.1 Composite Objects and Complex Data Types 

As first introduced in section 3.2.2, the H L A does not represent data in the same manner 

as object-orientation. Although similar notations (such as inheritance) exist in both 

domains, on the whole, there are significant differences that must be considered. Primary 

among these is the representation of complex data types. 

Unlike object orientation, HLA object models do not support the expression of explicit 

relationships that may exist between the instances of various classes [62]. For example, 

there is no standard mechanism within the H L A for defining that a relationship exists 

between an instance of a Wheel class, and an instance of a Car class. Although they are 

intimately linked conceptually, associating one instance with another requires explicit 

action on behalf of a federate developer. 

The IEEE 1516 specification provided considerably more powerful support for expressing 

the structure of complex data types [49L Complex structures could be defined, and 

attributes would be declared to contain data conforming to those types (as is typical in 

OO). Despite enabling composition, this advancement came at a cost. 
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A primary feature of the H L A is its support for defining interests in data at the attribute 

level. For example, a viewer federate may subscribe to only the distanceTravelled 

attribute of the Car class. Enabling publication and subscription to occur at higher levels 

of fidelity removes any need for the transmission of redundant data, with only that 

information that has been explicitly requested by a federate being delivered to it. However, 

if Car were to be defined as a complex data type, this ability would not exist. A particular 

attribute could be a Ca r, but as subscription works at the attribute level, there would be no 

way to subscribe to individual pieces of the car. IEEE 1516 data types exist only to provide 

some information on h o w to decode opaque values associated with attributes, and as such, 

do not allow for the individual pieces of the type to be considered. 

The situation becomes something akin to "all-or-nothing," resulting in the potential 

communication of redundant information, and the inability of federates to co-operatively 

model the constituent parts of that type. It is for this reason, that the use of such types has 

been avoided in this research. Rather than reducing the fidelity of the model itself, another 

approach for representing composition relationships is needed. 

Fortunately, this problem can be solved via simple substitution. When an attribute is to 

aggregate another object instance, the value of that attribute should be a reference to the 

instance. This is the same approach used in virtually every modern programming 

language, where pointers or memory references are used to fink together otherwise 

separate structures. While an O O approach would support this mechanism at the language 

level, it is unfortunate that within the H L A the federate developer must handle it 

manually. 

Throughout the Simspect framework, wherever an aggregation or other such reference 

(such as in a parameter to an interaction) much be used, a substitution of actual instance 

data for it the objects federation-wide unique handle is transparently made. Thus, it would 

appear to the pure model as if a reference to the instance were passed, rather than an 

object handle. 

Collection Representation 

Collections types are used extensively in typical object-oriented model development. 

Grouping together multiple instances, they provide a nice way to represent many objects 

in a single reference. Although the IEEE 1516 specification introduced support for defining 

arrays of data types, those advancements are being overlooked by this research for the 

reasons mentioned above. 
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However, once one has accepted that object references are to be represented as their H L A 

object handles, the transfer of collection information can also be easily solved. A collection 

is a sequence of objects, thus, when communicating via the HLA, the Simspect runtime 

represents collections as a series of object handles. The byte value transferred for an 

attribute that represents a collection is equal to the byte value of each handle in the 

collection, stored end-on-end. As with single object references, it would be expected that 

any Simspect runtime implementation would transparently transform each handle into a 

reference to its associated local object, and each series of handles into a collection of those 

objects. 

Subsequent sections make little, it any reference to the manner in which object references 

are handled. The methods described here are used throughout the processes discussed 

over the remainder of this chapter. Notably, the definition of this approach ends up 

constituting a federate-level agreement, and for pure models to co-operate properly with 

HLA-only simulations, those simulations would need to conform to the expectations 

outlined here. 

6.3.2 Object Data 

One of the most obvious problems facing this research is how information is extracted 

from an OO-model and pushed into an active H L A simulation. The previous sections of 

this chapter have covered h o w information is extracted from a pure model (via the Generic 

Aspect) and sent to the runtime. This section discusses what happens after that point. 

There are three major events of interest that overlap between a pure model and a 

distributed simulation: object creation, field updates and object removal. Fortunately, 

parallels for each of these events exist in both domains. 

Object Creation 

Object creation is triggered when the runtime is informed that a constructor has been 

called. The primary decision that must be made is whether or not this creation should be 

relayed to the active federation. Figure 6-4 is a flow chart describing the process involved 

in making this decision. 
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Figure 6-4: Constructor Called Flowchart 
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The first decision that must be made is whether or not the class of which an instance is 

about to be constructed holds any interest within the connected federation. Put another 

way, does the class have a parallel in the F O M ? Within the Simspect framework, the 

process of determining this is quite straightforward. If the class is of some interest, it will 

have been included in the configuration data that was read by the runtime when it started 

up. Thus, if there is nor an entry in the Mappings entity (see figure 6-2) for the class in 

question, then it is merely internal data. It is this step that performs the filtering 

necessitated by the use of an entirely Generic Aspect (discussed in section 6.2.1). If there is 

no mapping for the class, the constructor is ignored (filtered out) and processing of the 

model continues. If there is a mapping for the class, then the information about the event 

must be relayed to the federation. 

Following this, another decision must be made, although this one seems slightly 

confusing. It must be determined whether or not the instance has previously been 

registered. Initial thinking might believe one to think that each instance can only be 

constructed once, and thus, only a single constructor event will ever be invoked once for 

each instance. Generally this is true, but this is not always the case when inheritance and 

super classes are involved. I will return to this question shortly, but for now, let us just 

assume that the instance has not previously been registered and that processing can 

proceed. 

If this is so, the relevant HLA Object Class handle is extracted from the Mapping entry12 

and is used to instruct the Proxy Federate to register an instance. Once this has been 

completed, an association is made between the H L A instance information and the Java 

instance. At the same time, an additional field association (which is a sub-component of 

the general association) is made between all the fields identified in the Mapping (those of 

interest to the federation) and the fields of the model instance. These associations contain 

additional information (such as the H L A handles of the various objects, classes and 

attributes) and are used later as a means to identify which H L A instance to update when a 

field value is modified for the associated Java instance. This association is stored inside 

the Cache for later access. Once this process is completed, execution returns to the pure 

model. 

Initial Instance Variable Values 

The ordering in which events occur here is important. The A O P advice that captures 

constructor events such as this is defined as "before" advice. That is, the advice (and thus 

12 During start-up, the Mappings are resolved against the FOM to obtain the various handles as they are 

defined for that particular federation execution. 
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the handler) will execute before the body of the constructor call. It is only once the advice 

has completed that the body of the constructor is executed. This guarantees that the HLA 

instance will be registered via the Proxy before the model instance has finished being 

created. 

In most constructors, some initialisation of instance fields takes place. It would appear 

reasonable that these initial values be reflected into the federation as they are created. The 

same pointcuts that capture general field modifications will also capture them in this 

setting. As such, the HLA instance needs to exist first, for if it did not, the runtime may 

attempt to update the attribute values of a HLA instance that is yet to exist. By creating the 

HLA instance first, this situation is avoided, and the process of handling the initial setting 

of instance variables can be managed in the same way as any other field modification. 

Super Constructors and Constructor Chaining 

In any OO language, inheritance is a pivotal feature. Encapsulation is also a central tenet 

of object orientation, stating that only a specific class should modify its own data. 

Following this notion, it does not make sense for the constructor of a given class to modify 

the variables it inherits from a super class. Thus, it is common for the constructor of a 

class to first call the constructor of its parent class. The problem with this is that AOP 

recognises this as another constructor event, which is captured and sent to the facade. 

If the parent class also happens to be of interest within the HLA federation, this approach 

has the potential to register additional HLA instances for the same model object. This is 

clearly an unacceptable situation. Some mechanism is needed to identify this situation and 

only proceed with registration the first time around. 

AOP provides a mechanism for identifying whether or not a call is in the "control flow" of 

another call. This approach may have some potential to address this problem by 

redefining the pointcut such that if the constructor is in the control flow of another 

constructor, it does not get captured. However, only further inspection, this approach is 

also not suitable. Consider the following code snippet: 

1 public Restaurant( String name ) 
2 { 
3 super( name ); 
4 this.vipTable = new TableO; 
5 } 

Listing 6-4: Restaurant Constructor and Control Flow 
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If control flow were to be used to ignore any constructors within the Restaurant 

constructor, it would also omit the call to the Table constructor. If the Table class were of 

interest to the active federation, this would mean that valuable information is not made 

known. Thus, using the A O P control flow mechanism is not suitable. 

The key to solving this problem is to recognise that only a single instance is created in the 

pure model, regardless of h o w many constructors are called for it. As mentioned above, 

once a H L A instance has been created, an association is made between it and the model 

instance. This association is then stored in the Cache. W h e n the constructor handler is 

invoked, it is passed a reference for the instance that is being created. Thus, the handler 

can check the Cache to see if an association for this reference already exists. If it does, the 

handler knows the event is part of an inheritance chain and that it should be ignored. 

This approach allows constructors for other classes to still execute as part of a constructor 

(as in the snippet above) but ensures multiple H L A instances will not be registered for a 

single model instance. 

Field Modification 

Field modification events are triggered whenever some piece of code updates any instance 

variable. The decision tree controlling how field modifications are handled is considerably 

more complex than is the case for constructors, with many alternate processing routes 

needing consideration. 

Figure 6-5 outlines the decision process used when a field modification event is handled: 
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The first decision m a d e when the handler receives a field modification event is used 

primarily for efficiency. O n occasion, a field m a y be "updated" with a new value that is 

exactly the same as the old value. In these scenarios, the handler implements some basic 
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filtering, and no reflection is sent out. If the new and current values are not identical, the 

real processing begins, starting with determining whether or not the field represents 

"time" inside the pure model. The handling of logical time is discussed fully in section 

6.3.5. For now, assume that the field being set is not the same field used to represent time 

in the simulation. 

Just as with constructor events, a determination must be made about the relevance of the 

field that is being updated. Although a particular class of object m a y be of interest, it is 

probable that only a small number of attributes within that class are of relevance. The 

other variables m a y pertain to internal processing data, or information that simply has no 

importance in the broader context of the distributed simulation. The semantics of 

determining whether or not a field is of interest is non-trivial, taking into account a 

number of characteristics. Fortunately, in the case of the Simspect runtime, the Cache 

provides an excellent facility for filtering. 

In the discussion of constructor handling, it was mentioned that when an instance is 

registered with the HLA, associations are made between each field of interest (as defined 

by the mappings) within the Java object, and the cached H L A value. If the Mappings 

define that an attribute is not of interest, no such association is made. 

The Cache is asked to return the association that finks the Java attribute for the particular 

instance being updated with its H L A equivalent. There are three possible situations arising 

from this request: 

1. The Cache does not recognise the object, meaning no HLA instance has been 

registered for it (perhaps because it is not of an interesting type) 

2. The Cache finds an association for the object, but it does not contain an association 

for the attribute in question. While the object is of a type that contains some 

interesting attributes, this particular attribute is not relevant 

3. The Cache finds an association for the instance, and inside it, an association for the 

attribute 

If no association exists (as in 1 and 2), the field is not of any interest to the HLA and no 

action is taken. At this point, the modification of the field value inside the model is still 

allowed to complete, but no reflection is sent. 

When a field association has been located, the new value can be reflected into the 

federation. However, the process that covers h o w this happens depends on whether or not 

ownership of the attribute rests with the Proxy Federate. 
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As previously noted, a pure model makes no distinction between owned and unowned 

data. Being monolithic in nature, it will attempt to update any field value at any time. If 

the Proxy Federate has ownership of the relevant attribute, the new value is reflected out 

to the federation, and the field modification within the pure-model is allowed to proceed. 

However, if the data is owned by a remote federate, no update is sent (as it would result in 

an error from the RTI) and the field modification in the local model is disallowed by 

causing the around advice to skip the actual field modification. To understand the 

reasoning for this, one must investigate the potential approaches for updating unowned 

attributes. 

Updating Unowned Attribute Data 

Altering the value of an unowned attribute is a problem created by the H L A ownership 

model. It is a problem that can be solved in a couple of alternate ways. Unfortunately, 

c o m m o n approaches fall into the realm of federate-level agreements, requiring 

understanding and support from other federates to succeed. The two general 

methodologies are: "ownership acquisition" and "update requesting". 

Under acquisition, ownership over the particular attribute is passed from one federate to 

another. In this case, the Proxy would explicitly request ownership, and the current owner 

would need to be programmed to divest this permission. Once ownership has been 

transferred, the receiving federate can perform the update. The single advantage of this 

approach is that it allows the federate to perform the update itself. However, there are a 

number of problems. 

Firstly, it requires the co-operation of other federates, and the ownership faculties of the 

H L A are generally ranked among those least used and supported. Secondly, it raises 

questions about what is to be done with the attribute once the update has completed. 

Should ownership be returned to the original federate? Should the new federate maintain 

ownership? This is all federation dependent, and extremely difficult to support in any 

generic fashion. 

Another common solution to this problem is to have the federate directly request an 

update of the attribute, generally through some predefined interaction. W h e n a federate 

wishes to update an unowned attribute, it issues the interaction with all the relevant 

information and relies on the owner to oblige. This approach shares the primary drawback 

of ownership acquisition in that it depends on other federates recognising the situation 

and behaving according to some federate-level agreement. O n the surface, neither of these 

approaches appears desirable, generally for the same reasons. However, when considering 
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how object-oriented models behave, somewhat surprisingly, there are compelling parallels 

to be drawn. 

Consider the object-oriented approach for attribute value updating. Generally speaking, it 

is considered poor form for the instance variables of a particular class to be accessed and 

updated externally. If another class wishes to institute a change, the accepted convention 

is that this is done via a special method, known as a mutator [28] (or a setter). This is a 

method of a class that accepts a new value and applies it to the contained instance 

variable. This approach allows any manner of error checking or other necessary logic to be 

executed before the variable is updated. Further, in allows the representation of the value 

to be encapsulated. For example, a single external property may in fact be implemented as 

two separate variables. The mutator convention is usually supported by marking all 

instance values as private, or not accessible except from within the functions of the 

associated class. 

When considering such an approach, a type of pseudo-ownership begins to emerge. 

Although at a high level, the data is still considered part of the same model (and thus there 

is no inter-model or distributed ownership), there is an element of the update request 

methodology to this process. A request to update an instance variable is made from a 

function external to the class that contains it. The mutator method of that class can then 

decide whether or not to permit this change, and how to alter the internal representation. 

In a HLA context, the external class could represent the pure model that wants to update 

unowned data. The associated class would be the federate that owns that data. Whether or 

not the request is honoured is entirely the decision of the owning federate. Further, how 

the update affects the object's state is also controlled by the owner federate. This is the 

essence of the co-operative modelling approach that is a pivotal advantage of the HLA. 

It is through this line of inquiry that the request/update method appears to represent the 

closest semantic fit between the two distinct development models. While incompatibilities 

will exist when a federate is not programmed to reciprocate to such requests in the 

expected manner, these edge cases are unavoidable, and are equivalent to an OO-model 

including a misbehaving class. 

Having established that the request/update approach (although flawed) best suits this 

particular situation, it may seem surprising that the interaction-based solution presented 

earlier is not adopted in the decision tree of figure 6-5. Rather, all requests to update 

unowned attributes are ignored by the runtime handler, and it forbids such updates from 

proceeding in the pure model. As the field modification is an around advice, the handler 
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causes false to be returned from the facade, which the advice interprets as instruction to 

not proceed with the modification. 

While this solution could incorporate an explicit update request interaction as suggested 

earlier, there is no need. All OO-models should update information through mutators13, 

and as such, supporting those requests falls into the same category as supporting methods 

calls in general. Given this, requests to update unowned attributes are silently discarded, 

deferring handling to the mechanism that supports methods. Method handling is 

discussed in section 6.3.3. 

Object Removal 

Handling object removal is perhaps the simplest of all processes. The process consists of 

only a single decision, which determines whether or not there is information worth 

removing. Figure 6-6 shows the flowchart describing this: 

» Although models can violate this requirement quite easily in any object-oriented language, it is a 

requirement of this work that they do not. There is any number of ways an O O program could he constructed 

that would render it incompatible with any solution presented. Thus, consideration here is restricted to models 

that adhere to standard O O conventions. 
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Figure 6-6: Object Removed Flowchart 

Here, the Cache is consulted to see if the particular instance being removed has an 

associated HLA registered instance. If it does not, no action is taken. If it does, the Proxy 

Federate instructs the RTI to remove the object, and any associations are then removed 

from the Cache. 
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Despite the simplicity of this process, it is worth noting that with, regard to the reference 

implementation, its invocation can be quite unreliable. Being memory managed, Java has 

no notion of implicit removal of objects. Thus, a Java OO-model will never remove 

instances directly. However, through the finalizeO method inherited from the Object 

class, an instance can be notified when it is about to be garbage collected. By capturing 

this event in the Generic Aspect, w e can access the closest parallel to object removal. That 

said, finalizeO is only called before garbage collection, so the likelihood is that some 

time will have passed between when the object is no longer used by the model, and when it 

is actually removed. Object-Oriented languages with explicit memory management (such 

as C++) provide better facilities with regard to this event. In those situations, the 

destructor could be captured in the Generic Aspect. 

Summary 

Throughout this section, discussion has highlighted answers to the research question: 

"How can the creation, removal and alteration of data within an OO model be replicated 

into an active HLA federation?" 

The processes employed by the handlers discussed here, combined with the Generic 

Aspect, facade and runtime explanations provided earlier combine to answer this 

question. However, some of these answers make inferences about solutions to other 

questions. For example, the conversation on updating owned attribute data is predicated 

on the idea that data created by remote federates could find its way into the framework. 

The next subsection tackles this exact problem. 

6.3.2 External Data Introduction 

The problems of external data introduction are strikingly similar to those discussed in 

section 6.3.2. Rotating the perspective, these concerns address what happens with data 

created in a remote federation rather than that created in the pure model. In section 6.3.2 

it was shown that although at a high level the conceptual problem is quite simple (data 

events are observed and H L A events triggered), there are lower level roadblocks that must 

be addressed. In the case of the previous section, these related primarily to the filtering of 

events and the handling of unowned data. 

When considering external data, the high level concept is again quite simple. HLA events 

are observed (as received from the RTI) and they trigger actions in the pure model. 

However, problems begin to arise when pondering how data created and managed in 
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remote federates can be feed into an object-oriented model that might not be expecting it. 

H o w will the pure model k n o w where to find this n e w information? H o w will the pure 

model even k n o w there is information that needs to be found? This section answers those 

questions, discussing the actions taken by handlers as various H L A events occur. 

Publish and Subscribe 

The filtering of uninteresting data is a major requirement when handling model events 

obtained through a Generic Aspect. In the previous section, various tactics were used to 

ensure that only information of interest to the wider simulation was relayed to the RTI. 

W h e n contemplating the reverse situation, where information is received from the RTI, 

publish and subscribe facilities of the H L A perform this task on behalf of the federate. 

For the publication and subscription features of the HLA to function, information about 

the interests of the federate must be relayed to the RTI. This step is performed when the 

runtime first begins, before the model has been permitted to start execution. In section 

6.2.1, the model events captured by the Generic Aspect were introduced. The first among 

these was the capturing of the main method, the first method run when a Java program 

begins. Figure 6-3 presented earlier shows this process. Once the runtime creation process 

as outlined in that diagram has finished, the Model Facade is notified that it is time to 

start via the onStartupO call. Figure 6-7 is a sequence diagram that illustrates this: 
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StartupHandler Proxy Federate 
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Execution 
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notify the RTI 
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Figure 6-7: Runtime Publication and Subscription 

Once the appropriate handler has been notified, it joins the federation and issues all the 

relevant publication and subscription notices. Having completed this, the Execution 
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Manager implementation (as defined in the configuration data) is informed that it is time 

to start up, thus allowing any federate-level agreements covering the synchronization of 

events to occur. 

One problem surrounding this progression is how the runtime determines the actual 

publication and subscription interests. Once again, this has links back to the disconnect 

that exists between object-orientation and the HLA. O O has no implicit notion of 

publication or subscription. There are design patterns that exist to support such an idiom, 

however, mandating their use seems somewhat onerous. Doing so seems to achieve little 

more than pushing the development approach of the H L A into the O O realm, regardless of 

its suitability for the modelling task. The goal of this research is to keep pure models clear 

of H L A constructs, and such an approach does not fit with this desire. 

A preferable approach is to once again turn to the Mapping configuration data. This 

information describes the overlap in model entities that exist between the pure model and 

the F O M . As such, it can also serve the dual purpose of highlighting those parts of the 

F O M that are of interest to the pure model. But should this data be published or 

subscribed? 

The answer deemed most appropriate by this research is both. At one level, publication 

and subscription comes down to permission to register information and permission to 

receive information respectively. A n O O model demonstrates its desire to register 

instances of a certain type by calling their constructor. Before that, there is no way of 

knowing, especially in programming languages that have late-binding facilities such as 

Java, allowing classes to be instantiated without actually making a direct reference to the 

constructor. With regard to subscription, the same concept applies. 

With Mapping data representing all the areas of data overlap that exist between the pure 

model and the F O M , it seems prudent to issue both publication and subscription 

announcements all the H L A types referenced by a mapping. Such a methodology means 

that all situations will always be covered. If there is a link between a pure-model type and 

a H L A type, there will never be a situation where information is not relayed or received 

because the publication and subscription inferences were incorrect. In situations where 

both publication and subscription are not necessary, little is sacrificed through the 

overstating of interests. This is perhaps the simplest way to link the O O and H L A 

approaches. 

Having presented the approach to publication and subscription prescribed by the 

Simspect framework, attention can now turn to the actions that occur when various data 
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life cycle related events are received from the RTI. Much like those of section 6.3.2, these 

fall into three categories: remote object creation, remote attribute updating, and remote 

object removal. 

Remote Object Discovery 

Remote object discovery events are triggered when the RTI notifies the Proxy Federate 

that a new instance has been created. The activities required to deal with these events is 

minimal. Unlike constructor events for pure-model instances, no determination regarding 

the interest in the particular piece of information is necessary. As the data provided in the 

Mappings configuration constitutes the entire subscription set, the proxy will never 

receive events that should be silently discarded. 

Figure 6-8 below outlines the steps used to manage discovery events: 
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Figure 6-8: Instance Discovery Flowchart 

Broadly speaking, this process is the HLA analogue of that invoked to handle constructor 

events. Mapping information is obtained and used to determine the model class that 
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corresponds to object class of the H L A instance that was discovered. A n instance of the 

model class is then created and associations between it and the H L A instance are made 

and stored in the Cache for later retrieval. 

The only new concept introduced by this diagram is the notion of an introduction. To 

examine why this might be necessary, consider the central problem of the research 

question these processes address: How can remote data be introduced into a pure model 

that is not expecting it? Once the pure-model equivalent of the H L A instance has been 

created, how is this information to be made accessible to the model? 

Where and How to Introduce Remote Data 

Consideration of this problem leads to two basic courses of action, which can rather 

concisely be summed up as: doing something or doing nothing. Without access to remote 

information it becomes impossible for an OO-model to co-operatively perform a 

distributed simulation. If only local data can be located and operated on, the entire 

premise of distributed simulation is disregarded. H o w information can be introduced into 

a model depends rather heavily on the design of that model. 

One common way that many applications access sources of relevant information is 

through collections. Within some location, specific groups are defined to which entities 

can be added. At some other time, a process may iterate over the contents of these groups, 

drawing the necessary information. For example, consider the car race scenario. Given a 

semantic understanding of the situation, it is simple to identify a Race as a container of 

Cars. It is reasonable to expect that inside a Race class would be some kind of collection (a 

list or perhaps a set) in which all the Cars entered in the race are stored. W h e n a discovery 

event triggers the creation of a new Car representing some remote object, it could be made 

accessible to the model by placing it inside this collection. 

However, this approach has many significant drawbacks. Firstly, if the collection data 

were private, introductions in this manner would violate encapsulation, a central O O 

concept. Further, the Race class m a y implement some kind of mutator method that inserts 

a Car only after it has passed some checks. Directly inserting information into a collection 

circumvents this process, potentially breaching the specific rules the mutator enforces. 

Building on this problem, the Race class may maintain more than one collection of 

information about Car instances (perhaps a second collection stores just the driver 

names). While a custom mutator method could support this by inserting valid instances 

146 



into the appropriate locations, the sheer volume of alternative approaches for storing 

information makes direct introduction unattractive. Encapsulation allows these 

considerations to be hidden. Finally, identifying where information should be stored in an 

automatic fashion is extremely difficult for all of the reasons mentioned above. While this 

is not a problem in the context of the first experiment (as configuration data is manually 

produced), automation is still a major motivation of this research. 

Having identified a number of reasons why direct introduction is a brittle solution, the 

problem of alerting the model to the presence of new data remains. It feels natural or 

implicit that a solution to this problem necessitates alerting the model to the existence of 

new data so that it can directly take action. Given this, it seems somewhat contradictory to 

suggest that the best approach for introducing remote data into a pure model is to totally 

ignore it. Yet that is precisely the default action this research recommends. 

like many of the methods employed in the Simspect runtime, the root of this approach is 

an attempt to mimic the typical object-oriented approach. W h e n an instance is first 

constructed, it is not necessarily assigned to the location where it needs to be. It is only 

during later processing that the instance is introduced to the location it must reside in. 

Following the previous example, when a Car instance is first created, it generally would 

not reside in, or be reference by, the appropriate Race instance. At some point following 

its construction, it will most likely be introduced to the race via a mutator method. 

The important point to note is that these are two separate actions, and following 

instantiation, no introduction has occurred. Thus, it follows that subsequent to 

instantiating an appropriate model instance in response to a discovery event, it is not 

actually necessary to carry out an introduction. This event occurs later, via some model-

specific mechanism. As the manner in which this occurs is dependent on the expectations 

of the model itself, creating something akin to an O O version of a federate level agreement 

(e.g. Cars must be introduced to a Race via a specific mutator). 

In this light, such an approach makes obvious sense. However, it merely defers the 

problem of data introduction, rather than actually solving it. Depending on the invocation 

of certain model-specific methods necessitates a mechanism through which those methods 

can be called. Further, as it is the remote model that has caused this data to come into 

existence, the responsibility for ensuring that the appropriate sequence of actions 

executed also resides with it. 
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While it lacks the simplicity of a direct introduction, this solution does mimic the way a 

pure-00 model behaves. To find examples of this, one need look no further than the two 

test-models used for experimentation. In the car race model, the Race class provides an 

enterCarO method. In the sushi boat simulation, Customer instances are introduced to a 

Restaurant through the seatCustomerO and seatvTPO methods, while Dish objects 

are made available for consumption via the queueDishO method. 

Clearly, supporting this style of introduction is not a concern during the handling of 

remote instance discovery events. The full solution to this problem requires the co

operation of both discovery handling and some facility that allows remote method calls to 

be identified. The conclusion to this discussion is therefore postponed until section 6.3.3 

where the overlap between methods and interactions is presented. In relation to remote 

data discovery events however, the default action is no action. 

Before moving on it is worth mentioning that the reference implementation of the 

Simspect runtime does support explicit data introductions. Although they were only used 

in early experimentation (before their limitations were recognised), there are plausible 

situations where such a facility is appropriate. As stated above, deferring introductions to 

a later process does create the equivalent of a federate level agreement, and in certain 

situations, the simplicity of automatically introducing newly created data into a collection 

is both appealing and appropriate. To enable direct introductions, mapping configuration 

data is annotated with the name of the variable containing the appropriate collection into 

which new instances should be inserted is all that is required. 

Remote Attribute Reflection 

Once a local representation of remotely created and managed data has been instantiated 

(and potentially introduced), some support must exist for ensuring that the values 

contained within that object are updated. In a typical H L A scenario, attribute reflection 

services (introduced in 3.2.3.3) are used to convey changes in attribute values. The 

occurrence of these events can therefore be used by Simspect to update local values. 

Figure 6-9 outlines the decision process involved in handling such events. 
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Figure 6-9: Attributes Updated Flowchart 

The central task of Simspect for a reflection event is to locate the associated model data 

and update its attributes with the new values. Once instance information has been 

obtained from the Cache, each of the new values received as part of the attribute reflection 

is applied to the associated attribute in the local object. 
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The mapping information for a particular field describes h o w the incoming data should be 

interpreted. Data is delivered to the Proxy Federate as an opaque series of bytes. As such, 

Simspect needs some guidance to interpret the data and transform it into a form that is 

useful. For example, should the field represent another object instance, the incoming 

information would be expected to take the form of an integer (as discussed in section 

6.3.1). The serialisation information contained in the mapping would inform Simspect that 

it must first convert the byte data into an integer, and then interpret that integer as the 

handle of the object that should be applied as the new attribute value. Alternatively, the 

byte data might represent a string, or a floating-point number. Either way, the mapping 

contains the information necessary to convert incoming data into useful information. 

Although the processes introduced above is quite simple, there is one source of potential 

problems. In a typical O O setting, attribute data is often declared as being private. This 

has the effect of restricting access to such an attribute to code within the immediate class. 

As these values are held in model classes, access to attribute data may not be directly 

possible. With regard to the reference implementation, this restriction can be subverted. 

Java reflection provides facilities to enable and disable accessibility for a given attribute (a 

facility known as self modification [121]). Accordingly, before any new value is assigned to 

a private attribute, accessibility is enabled. To ensure that the original intent of the model 

developer is adhered to, accessibility for the attribute is then reverted to its original status. 

Increasingly, reflective capabilities such as those employed within the Java environment 

are becoming more common. Further, efforts to provide reflection-facilitating libraries in 

languages such as C + + are beginning to become available [25, 64,96]. 

In the absence of these facilities, there are other (more complex) approaches that could be 

used. A Simspect runtime implementation could depend on the existence of setter 

methods for particular attributes. However, there is no guarantee that these methods 

would exist, and in the event that they did not, code generation m a y be employed to 

generate them. Sadly, this solution is overly complex when compared to the ability to just 

set the value of an attribute directly. Regardless, this is a problem that further work 

investigating the application of Simspect methods in non-reflective environments would 

need to address. 

Remote Object Removal 

Within the Java language (used for the reference implementation), it is not possible to 

directly remove an object. A n instance will be automatically garbage collected when there 

are no longer any references to it. W h e n receiving a removal notification from the RTI, 
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there is little that can be done by the Simspect reference implementation to enforce that 

the associated local instance is also detached 

The main action of the Simspect handler is to delete any association information about the 

referenced object from the Cache. If no other objects are holding references to the Java 

instance, it will be garbage collected. In languages that support manual memory 

management (such as C++) local instance information could be manually deleted when a 

remove event occurred. 

Much discussion in this section has focused on the problems of data introduction. Just as 

data must be somehow introduced to a model before it can be used, when the RTI 

instructs the local federate to remove this information, the introduction must be reversed. 

In situations where a direct introduction facility was used, removal is simple. The 

collection to which information was added (as defined in the mapping data) is located and 

instructed to delete its reference to the local instance. 

For data introduced via some model-specific series of events, the solution to this problem 

is the same as for introducing the information in the first place. The task of triggering 

removal is left to the remote federate. Using the sushi model as an example, when a 

customer decides to consume a dish, it invokes the Dish.eatO method. This in turn 

removes the dish from availability, causing the currentDish attribute of the Table class 

to be updated to null. Doing so removes any reference to that particular dish instance14. A 

reference would still be held in the association data stored in the Cache, but once a remove 

event was received, this link would also be broken, leaving the object eligible for garbage 

collection. This process is entirely dependent on the expectations of the model itself, but is 

the approach most consistent with the way OO-models operate. 

Summary 

Throughout this section, discussion has highlighted answers to the research question: 

"How can the creation, removal and alteration of data within an active HLA federation 

be replicated within a pure OO model that is not expecting it?" 

14 This is not actually the case. W h e n a dish is eaten, a reference to it is stored in another location so that it can 

be recalled when the Customer attempts to pay for their meal. However, to demonstrate the point, I have 

ignored this in the example. 
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The processes employed by the handlers here complement those discussed in the previous 

section to describe h o w object and attribute information is created, updated and removed 

from a pure model. Where the previous section focused on events that were triggered by 

the pure model itself, this section has examined those that result from actions by remote 

federates. 

A central topic of discussion in this section has been the approaches used for the 

introduction of remote data. While useful in some circumstances, processes such as the 

forced introduction of information into predefined collections are brittle, relying on the 

pure model to take a particular approach for which there is no outstanding convention. On 

the other hand, relying on the model-specific procedures for data introduction provides a 

facility that mimics the true actions of a pure model. However, as demonstrated in the 

examples used throughout this subsection, such an approach depends on the presence of 

facilities that allow OO-method invocation, something that does not have a direct 

analogue within the HLA. The next section discusses this problem. 

6.3.3 Methods and Interactions 

The use of methods (or functions) with object-oriented programming (and programming 

in general) is central to partitioning work into logical, reasonably sized units. While 

attribute data represents the state of a particular instance or class, methods provide the 

behaviour; grouping together related actions into a single, callable unit. 

Despite being a fundamental building block of all OO programming languages, the HLA 

does not provide support for such a feature. Rather, it takes an alternate approach, 

providing support for something similar to functions, but lacking any sanctioned 

relationship to a particular object class. H L A interactions are much like functions in the C 

programming language. Interactions have no association with a particular object class, 

existing only in a shared, "global" space. Much like the internals of the Objective-C 

programming language [54], interactions in the H L A provide a facility akin to message 

passing. 

Departing further from traditional programming conventions, HLA interactions can be 

arranged in an inheritance hierarchy, where parameters from parent types are inherited in 

child interactions. Even more distinctive is the optional nature of parameters. In 
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traditional programming convention, all parameters of a function must be provided1* any 

parameter can be omitted when sending an interaction. 

Is Method Support Needed in Simspect? 

Given the reasons above, the ability of interactions to behave "prima facie" as an 

equivalent for object-oriented methods does not exist Nonetheless, considering the 

extremely important role methods play within O O , some parallel feature is required. 

In a broad context, one could argue that the last statement is a falsehood, and that the only 

lasting or important result of any method invocation will be the changes it makes to data 

shared among a federation. According to such an argument, there would be no need for a 

method support, as the only measurable results would be attribute reflections for any 

relevant changed values. This is certainly true to an extent, however, it does miss the 

general point of using functions in the first place. 

Functions are a grouping facility. While it would be possible to contain all the logic for a 

particular model within a single, sizeable, section of code, functions allow this task to be 

broken down. Apart from being a primitive feature to partition an action into a set of 

smaller components, methods also centralise behaviour, removing redundant code. 

Removing methods from consideration in favour of focusing solely in changes in attribute 

data would force each federate to understand h o w other federates intend to manipulate 

their attributes. A federate that controls a car race would lose its ability to request that all 

cars update their distanceTravelled at regular intervals as there would be no 

mechanism to pass this message. 

Beyond grouping considerations, methods also provide polymorphism. By grouping any 

changes behind a function, different Car implementations can respond to the same 

message in different ways, altering related attributes according to different algorithms. In 

the context of the HLA, this means that one particular federate could contain an algorithm 

for calculating the distance travelled in a period of time that is entirely different from that 

provided by another federate. Ignoring the message-passing role of functions would 

remove this ability. 

The use of method-like facilities plays such a central role in the development of 00-

models that to ignore it would necessitate mainstream developers alter their entire 

approach to structuring and developing them. There is a clear need for some harmony to 

•5 Some languages provide support for "default" parameter values. In these situations, parameters can be 

omitted, and the default value is substituted. However, the H L A does not support this feature. 
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exists between 0 0 methods and H L A interactions. Although there are significant 

differences, at a fundamental level they can be tasked to serve the same purpose. This 

leads to the research question driving the discussion in this subsection: 

"How do object-oriented methods translate to HLA interactions?" 

Mapping Methods to Interactions 

Finding c o m m o n ground between methods and H L A interactions is a considerably deeper 

task than it may first appear to be. If invocations of a particular method are to be 

communicated to remote federates via interactions, a modicum of conceptual synergy 

must exist between the behavioural model of that method and of interactions in general. 

The behaviour and usage scenarios of interactions mean that there are limits on the types 

of functions for which a reasonable translation can be made. Put another way: not all 

methods logically m a p to interactions. 

Return Types 

Object-Oriented programming language functions have a return type. For situations when 

there is to be no return type (perhaps on a request to perform some action, such as the 

moveCarO method), a function can signal the absence of any return type by declaring it to 

be void. Interactions are transient, asynchronous messages for which no ability to return a 

value exists. Even if such a provision were provided, the multiplexing nature of H L A 

message transmission (any number of federates can subscribe to an interaction) means 

that determining the single valid source of return information would present logical 

challenges. 

Given this, it is quite clear that no genuine overlap can exist between methods that require 

a return value, and any interaction-based representation of them. Although some request/ 

response mechanism could be constructed to subvert these problems, such an approach 

would be seem unnatural, and would constitute too large a misrepresentation of the 

purpose of H L A interactions. 

Static Methods 

Within object-oriented parlance, methods can have differing scopes. Instance methods are 

those that are invoked directly on a single instance of a particular class. Static methods are 

those associated with the class in general, rather than any specific instance. 
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As discussed later, relatively straightforward mechanisms can be constructed to associate 

a given interaction with a specific "target" object instance. However, as the H L A 

purposefully omits any link between data and behaviour, there is no class with which a 

"static interaction" could be associated. Any mechanism to address this shortcoming 

would once again be far too misrepresentative of the H L A model to constitute a valid link 

between it and O O . Thus, static methods can also be ruled out as potential candidates for 

communication via interactions. 

Mutator and Accessor Methods 

One final class of method to consider is accessors and mutators. As accessors (or "get" 

methods) require a return value, they can be immediately identified as unsuitable 

candidates for interaction representation. Mutator methods however fit the general profile 

of "interaction friendly" method forms in that they have no return type and they are not 

static. 

However, some consideration must be given to the purpose of mutator methods. Broadly 

speaking, they exist to provide an avenue through which external types can request 

alterations to the value of attribute data (some of which may be private). In a H L A setting, 

where the responsibility for changing attribute data is seen to be the sole responsibility of 

the owning federate, such an action generally has no place. Further, within the Simspect 

architecture, should any call to a mutator method actually affect some change, this would 

be handled via the field modification processes. Therefore, despite taking a form that can 

be represented as an interaction, the use case surrounding mutator methods means that 

there is Utile real value to representing them as interactions. 

Public and Private Methods 

Object orientation introduces the concept of visibility. Each method has an associated 

identifier that conveys from whence it m a y be called. Although they tend to differ slightly 

between OO-implementations, visibility specification takes one of three forms: public, 

private and protected. Unless a method is declared as public, it can only be invoked from 

code that exists either within the same class, or within a subclass. The public interface of a 

class does not include private methods. Rather, private methods are deemed to be internal 

processing, relevant only to the particular class. 

If it for this reason that private methods cannot be considered valid candidates for 

interaction representation. The manner in which a particular class functions internally is 

of no interest to external entities. In O O , these external entities are other classes (or 

instances of said classes). In the HLA, these external entities are other federates. The 
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intermediate behaviour of a particular federate as it executes its desired algorithm is of no 

interest to a federation. Rather, the results of that manipulation form the lasting interest. 

Thus, as private methods are internals working, the need not be represented as 

interactions. 

On the other hand, methods that have public visibility signal that they can be called from 

anywhere, and as such, linking these methods to interactions so that they can be remotely 

invoked is logical. Just as external classes can invoke public methods within an OO-model, 

external federates should be permitted to invoke public methods for object instances 

managed remotely. 

Representing Methods as Interactions 

The discussion above has outlined the general form a method must take to be considered a 

reasonable candidate for representation and transmission as an interaction. To 

summarise, within the Simspect framework, candidate methods may only have a valid 

interaction representations if they: 

• Have public visibility 

• D o not have static scope 

• Have a void return type 

Having established the requirements for a method to be represented as an interaction, 

there are still a number of questions that remain. 

Association with Object Data 

A major difference between methods and interactions is that the latter are never directly 

associated with any object data. O O instance methods however are invoked on a specific 

object instance. To accurately represent this behaviour there must be some mechanism to 

identify the particular object to which an interaction representing a method call is 

associated. That is to say, the target of the method must be identified. 

To achieve this, Simspect mandates that within an HLA object model, any interactions 

that are to represent method invocations should be declared in a specific hierarchy. The 

snippet below provides an example of this: 
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1 (class InteractionRoot reliable receive 
2 (class MethodCall reliable receive 
3 (parameter targetObject) 
4 (class Race_enterCar reliable receive 
5 (parameter car) 
6 ) 
7 ) 

Listing 6-5: Method Call Interaction Hierarchy 

This is the mandated hierarchy for those interactions that are used to represent method 

calls. Each interaction must extend the MethodCall interaction class, and as such, inherits 

the targetObject parameter. This parameter is used to associate a specific interaction 

with the object instance to which its invocation refers. The value of the parameter should 

be the H L A object handle of the desired instance. 

Given that any federate can subscribe to any interaction it desires, there will be situations 

where a method call interaction is received by a federate that does not manage the target 

object instance. In those situations, only the federate that manages the object in question 

is expected to take any action. While other federates can observe, no action should occur 

as a result of this interaction. 

In the example above, should the enterCar(Car) method be called, subscribing federates 

would receive an interaction with two parameters. The targetObject parameter would be 

the object handle of the Race instance on which the method was called, and the car 

parameter would be the object handle of the Car instance that is being entered into it16. 

This approach to making associations between data and functions is not new and has been 

used in many situations for many years. A primary example of this is the Objective-C 

programming language that uses a similar process to associate C-style functions with 

particular sets of data [54] via a process they call "message passing." 

Associating Methods and Interactions 

Under the O O methodology, a unique method is identified through its signature, and the 

class in which is resides. Interactions however reside in their own hierarchy, separate from 

any object class. To successfully m a p between a specific method and the F O M name given 

to the interaction representing it, additional information is required. Continuing the 

16 As discussed in section 6.3.1, object references are serialized into the H L A object ids for the registered 

instances representing the object. 
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example from above, there must be some way to associate the enterCar() method with 

the Race_enterCar interaction. 

This information comes in the form of mapping configuration data. Just as mapping 

information defines the interesting elements of a pure model, and how they relate to a 

specific H L A object model, the same data identifies those methods of interest within the 

model, and the interactions to which they are mapped. Figure 6-10 shows how method 

information is mapped to interaction data: 

(class InteractionRoot reliable receive 

(class MethodCall reliable receive 

N. (parameter targetObject) 
public void enterCar(Car N c a r ) ^ ( c l a s s R a c e _ e n t e r C a r r e l i a b l e r e c e i v e 

(parameter car) ;; Type.REFERENCE 

) 

) 

Figure 6-10: Mapping Methods to Interactions 

This figure is a visual representation of the data contained within the mapping. Within the 

reference implementation, the X M L mapping data states that the enterCar() method is 

associated with the Race_enterCar interaction, and that the first parameter to the Java 

method is associated with the car parameter in the interaction17. In this situation it is 

important to note that the choice of interaction name is entirely arbitrary and the idiom of 

prefixing the class name to the beginning of the interaction name is purely for illustrative 

convenience. 

Mapping information for a method/interaction association also must inform the runtime 

of the parameter type. For example, consider the following X M L information that is taken 

from configuration data used in the reference implementation: 

1 <method jmethod="testcode.racesim.Race.enterCar" 
2 hmethod="InteractionRoot.MethodCall.Race_enterCar"> 
3 <param jposition="0" hname="car" type="REFERENCE"/> 
4 </method> 

Listing 6-6: Method Mapping Definition 

17 Java reflection does not support identifying parameters by name, only by position. 
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In this snippet it is possible to see how the first Java parameter is associated with the H L A 

model parameter "car". The type information for the parameter is also specified, 

providing the runtime with the necessary information to convert the value passed to any 

Java method execution into an appropriate form (and back). See section 6.3.1 for more 

information on how values are converted. 

Method Events Within a Model 

During the execution of any pure model, a large number of method execution events will 

occur and be passed to the runtime for handling. Figure 6-11 below outlines the processing 

that occurs when an event must be handled. 
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As with object data, not all of these events will be of interest to the wider federation. The 

first step in the decision process outlined in figure 6-11 is to filter out any methods that 

should be ignored. Before moving on, a brief discussion on the three-stage process to 

method filtering is necessary. 

Filtering Potential Methods 

As with object data, not all methods will be of interest to the broader federation, and as 

such, some filtering is required. The first step to filtering out unwanted method 

invocations is to ensure only those of a valid form are captured. This occurs within the 

generic A O P Aspect. Consider the following snippet: 

1 /** pointcut to capture all valid methods */ 
2 protected pointcut methodCall( Object target ) : 
3 execution( public !static void *.*(..) ) && 
4 !execution( * *.get*() ) && 
5 !execution( * *.set*(..) ) && 
6 ignoreList() && 
7 target( target ); 

Listing 6-7: Method Capturing Point Cut 

This pointcut will only capture the execution of methods that take a valid form. line 3 

mandates that a method must be declared as public, non-static and have a void return type 

to be captured. Lines 4 and 5 rule out any methods beginning with the "get" and "set" 

idioms used to represent accessor and mutator methods18. This pointcut forms a kind of 

"first pass filtering." 

When the Generic Aspect captures a method execution, information of the event is passed 

to the Model Facade, and then on to the appropriate handler. It is at this point that the 

second level of filtering must be applied. As shown in figure 6-11, if there is no mapping 

information for the method that is about to be executed, Simspect will ignore the event, 

and no interaction will be sent. This filters out validly formed, yet uninteresting calls (as 

interesting methods will have mapping data). 

The final step in the decision process is to locate the target object on which the method has 

been called. If the method has not been called on data for which H L A information exists 

(either registered by the proxy, or created remotely), there is little point notifying the 

18 In programming languages that have slightly different conventions for representing get/set methods, these 

lines would be modified to suit that convention. 
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federation. In such cases, the method invocation is deemed internal processing, and no 

action is taken. 

Parameter Serialization 

Once the mapping data for a particular method has been located, the parameter values 

that are to be sent with the interaction should be created. Each parameter provided with 

the method execution in the pure model is converted into a form acceptable to the H L A 

using the mapping information. W h e n no more parameter information exists, an 

interaction containing all the created data is sent to the RTI. 

Method Invocation and Unowned Data 

Once an interaction has been sent, the final step required is to determine whether or not 

the method should be allowed to execute locally. As with field modification (section 6.3.2), 

method execution events are triggered via around advice, and thus, the actual execution of 

a method can be stopped from occurring at all. Whether or not this should happen 

depends on who created and owns the object instance in question. 

If the instance was created locally, the pure model is responsible for managing it. As such, 

the method must be allowed to execute. To prohibit it from executing could introduce 

errors by removing the ability of the model to manage its own data. However, if the data 

was created remotely, some other federate is responsible for managing it. In such a case, 

the method is prohibited from executing locally. 

This approach is necessary for a number of reasons. Firstly, just as a model must be 

permitted complete control over local data for consistency reasons, it must also be 

restricted from potentially altering data it is not responsible for. The actions taken by the 

local model in response to a particular method may differ from those of the federate 

responsible for the data. Allowing the method to execute could impose an invalid 

algorithm, altering field values and making them inconsistent with the rest of a federation. 

By restricting method execution on unowned data, proper polymorphism is enabled. 

For example, consider the flow of events that occur in response to the moveCar(double) 

method being invoked on a Car instance. If the Car is a locally controlled instance, it 

makes logical sense to execute the model method and to let the pure model update the 

instance according to the algorithm it implements. However, if the Car is modelled by a 

remote federate, the strategy used to determine how far it has moved may differ from that 

used by the local model. Allowing the method to execute locally would alter the values 
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according to the algorithm implemented in the local model, not the algorithm imposed by 

the federate responsible for that particular instance. 

By making a decision on whether or not the local method execution should be allowed to 

proceed, potential errors in a distributed model are avoided, and proper polymorphism is 

enabled. Further, exploiting this particular approach also helps when attempting to build a 

pure, monolithic O O model that defers certain calculations to remote participants (even 

though it has no notion of application distribution). This particular characteristic is 

discussed in chapter 9 when talking about authoring monolithic models to behave in 

distributed simulations. 

Interaction Events Received from HLA 

Having seen how model method execution events are communicated to the H L A via 

sending of interactions, it is now time to turn attention to how the Simspect runtime 

handles such interactions when the Proxy Federate receives them. 

Capturing method execution events within the pure model allows Simspect to notify other 

federates of that action. In the case of unowned data, this is vitally important, and the 

interaction performs a role similar to a very loosely coupled remote procedure call. The 

Simspect runtime must also consider the reversal of this situation, where the Proxy 

Federate receives an interaction representing a method invocation. If such an interaction 

relates to a target object that is controlled locally, the runtime must be able to somehow 

invoke the appropriate method within the pure model. 

The provision of such a facility provides a rudimentary form of remote method invocation, 

allowing O O semantics to be accurately represented within the HLA. Through this 

capability, public methods can be invoked by remote federates. If the receiving entity is an 

actual H L A federate, these interactions can be called to ensure a pure model behaves in 

the proper manner. If the remote federate is another Simspect-based model, these 

interactions are converted into method calls. H o w the local model handles such requests 

(if indeed it handles them at all) is an entirely separate matter. 

As with other Federate Ambassador call-back methods processed by Simspect, there is no 

need for the explicit filtering that takes place when model events occur. Section 6.3.2 laid 

out h o w publication and subscription is handled when the Simspect runtime starts up. 

Just as any object data for which mapping information exists is both published and 

subscribed to, any interaction information is given the same treatment. Given this, only 

the method related interactions that Simspect has been defined to have an interest in 

would ever be received. 
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With the RTI performing the bulk of the necessary filtering on behalf of the model, the 

event processor that executes when an interaction is received can ignore such tasks. Figure 

6-12 outlines the process taken by the interaction event processor: 
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Figure 6-12: Interaction Received Flowchart 

The first step is to locate the appropriate mapping information for the interaction. This 

data is guaranteed to exist, as if it did not, the interaction would never have been 
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subscribed to in the first place. Having located the mapping information, the target object 

is sought from the Cache. Due to the multiplexed nature of interaction sending in the 

HLA, it is probable that over its lifetime, a number of interactions relating to unowned 

data will be received. In these cases, the request is immediately ignored. 

If the target object represents a locally created and managed instance, the runtime is made 

responsible for invoking the associated method within the pure model. Once all the 

received parameters have been converted into an appropriate form (as discussed in 

section 6.3.1), the model method identified in the mapping data is invoked on the target 

object, and the process is complete. 

Summary 

Just enough common ground exists between method invocations and interactions to allow 

a palatable compromise to be found between the two. OO-models depend heavily on 

methods to group behaviour and act as a request and communication facility. While 

interactions fulfil a similar role within the HLA, their asynchronous nature means that 

they can rarely be considered a vehicle through which guaranteed remote procedure calls 

can be made. 

The hybrid approach proposed in this section blends the core values of both approaches. 

Method calls can be made across model boundaries, supporting polymorphism in a shared 

modelling environment. At the same time, pure H L A federates can trigger behaviour 

within an OO-model, while responding to or ignoring the method invocation semantics of 

those models when requests flow in the opposite direction. 

However, one quandary that is evident throughout this entire section is the enhanced role 

federate-level agreements play (although, in this context, it is perhaps more accurate to 

refer to them as model-level agreements). The approach presented here can give rise to 

situations where a model has expectations of a remote federate that are never fully met (or 

vice versa). 

For example, the model controlling a particular Race would expect that all federates would 

respond to invocations of moveCarO by advancing the distance travelled for a particular 

Car instance. If the instance is managed by another Simspect controlled model, there is no 

concern that the method will be invoked through the processed outlined above. However, 

it is perfectly valid behaviour for a plain federate to ignore the representative interaction 

altogether, thus causing some cars to never move (and a race to never end). Although this 
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likelihood of this particular scenario may be small, it does demonstrate that if the 

expectations of a particular model or federate are betrayed, errors can potentially arise. 

Despite this, Simspect does provide some consolation. By providing a methodology that 

allows models to be developed free from the HLA, rectifying such semantic misalignments 

can be achieved entirely via pure-00 code, thus reducing the time and effort required to 

solve such problems. 

6.3.4 Ownership Management 

The topic of ownership management cannot be considered in isolation of other concerns 

relating the operation of the Simspect runtime. It is intimately finked to problems like data 

management (6.3.2) and method/interaction crossover (6.3.3). As such, the answer to the 

research question presented at the beginning of this chapter has been split up and 

addressed during discussion in the relevant areas. 

That said, the general theme arising from these discussions is that the best approach to 

reconciling the monolithic world-view taken by a pure model with the shared approach of 

the H L A is to ignore any requests for processing data that is not managed locally. W h e n 

methods are invoked on data for which a remote federate is responsible, it does not 

proceed within the model itself. W h e n the proxy attempts to directly manipulate an 

attribute belong to an object modelled externally, that request is also stopped from 

proceeding. 

External data is the responsibility of external federates, and allowing any local 

modification that is not the result of an explicit instruction (such as an attribute reflection) 

serves only to introduce potential errors and inconsistencies in the representation of that 

data across a federation. The major benefit of this methodology is that it enables true 

shared modelling to occur, and polymorphism to be implemented across a federation. 

6.3.5 Logical Time 

The concept of logical time is used within the H L A to guarantee the ordering of events and 

provide some level of synchronization in execution among multiple federates. Time 

management and advancement is a complex topic, and one that could easily warrant 

considerable discussion in its own right. Determining the best way to generically support 

the many potential mechanisms for representing time within a pure model is a topic on 

which an entire study could focus alone. However, the primary goal of this research is to 

define a broad level of solutions in the pursuit of providing an environment in which 
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object-oriented models can function as distributed simulation components. As such, an in-

depth consideration of time management is well beyond the scope of this work. 

That said, time management is a central concept within many HLA simulations, and as 

such, this work must present at least a rudimentary solution for synchronizing a 

representation of time between a monolithic pure model and a H L A federation. 

Representing Time 

To this point in time, the H L A has refrained from demanding that time be represented in 

any particular manner. Abstract types are used to represent time, allowing custom 

representations to exist depending on the requirements of the federation. This approach, 

while valuable, has also often been recognised as a significant contributor to the lack of 

federate portability at an API level [107]. 

Although it allows absolute flexibility, leaving decisions on how to represent time within a 

simulation up to the developers introduces many problems, and as such, the Simspect 

runtime must introduce some restrictions. 

Firstly, time must be represented by a single, static variable in some class accessible within 

the model. The visibility of the variable does not matter. The demand that it must be 

static, and not an instance level variable ensures that there is only one representation of 

the value of time. If instance variables were allowed, some way to tell which instance 

contained the appropriate value would be necessary. 

Secondly, the variable must be of the primitive type double. This is not actually a 

requirement mandated by Simspect, but rather by the reference implementation. Other 

implementations could use an entirely different data type, but the important point is that 

the type is known. This allows the runtime to make determinations on how to manipulate 

the value and reconcile the model representation with that required by the H L A (by 

serialising it to and from the appropriate form). 

To enable time management, the runtime must be told which static variable represents 

time through the configuration data it is given at start-up. By default, this information is 

omitted and time management is ignored. However, if it exists, any Proxy Messages will be 

sent with an associated timestamp. Further extensions to this work could investigate ways 

for allowing finer levels of control over which data is subject to time-stamped updates and 

which is not. 
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Managing T i m e A d v a n c e m e n t 

Having established how time should be defined within a model, attention must be given to 

how the advancement of time can be constrained so as to keep it in step with the rest of 

the federation. With knowledge of the representation of time, this process is actually quite 

simple. 

Casting consideration back to figure 6-5 (in section 6.3.2), there was a provision within the 

field modification handler for dealing with any attempted alterations to the variable that 

represents time. W h e n such an event is captured within the model, the runtime takes an 

alternate path to that normally used to handle field alterations. 

The first step is to request time advancement from the RTI to the new value a model is 

attempting to assign to the static variable representing time. Following this request, the 

event handler stalls execution. It sits in a tight loop, continually ticking until the Proxy 

Federate is notified of that the advance has been granted. At this point, the model is 

allowed to continue executing, and the field modification is permitted to occur. Any time 

the model attempts to change the variable representing time, it is forced to halt until the 

RTI permits it to move forward. 

The benefits of this approach are clear. There is no need to alter the model in any way in 

an attempt to enable the distributed management of time. The model does not know that 

it is being halted in order to meet the distributed time requirements, or that it is being 

halted at all. The process transparently introduces HLA-based time advancement into 

pure-00 models. 

The solution presented here will work for any model that conforms to the desired scenario 

(where time is represented as a single, static variable). However, it does only provide a 

solution for a method of time advancement known as "time stepping." The H L A itself 

supports other forms (such as event-based and optimistic time advancement) for which 

this method provides no solution. As stated at the beginning of this section, the topic of 

time management in the H L A is a complex and sizeable topic. The simplistic approach 

presented here, although not ideal, will work in a number of common situations. Any 

consideration for a more robust approach is a topic for further work. 

6.3.6 Federate Level Agreements 

The problems of federate level agreements have been highlighted throughout this chapter, 

and in attempting to blend O O and H L A style approaches, Simspect itself introduces 

restrictions that can fall under this banner. The simple fact of the situation is that 
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providing automated support for the individual expectations of particular federates in a 

generic fashion is just not possible. The sheer number of services that can be broken as a 

result of different usage patterns puts this goal beyond reach. The situation gets worse 

when considering the potential combinations of those services that could be embodied in 

the expectations of a particular federate. 

These problems are not specific to the HLA, but rather, to software development in 

general. In any situation where a model makes use of a particular API, it is creating a 

dependence on that interface and demanding its existence in order to operate correctly. 

Earlier subsections pointed out that although many of the methods proposed in this 

chapter help bridge the usage gap that exists between monolithic O O models and H L A 

based distributed simulations, these same approaches introduce new areas for potential 

semantic misalignment. The experimental car race model expects remote federates to 

behaving in specific ways, responding correctly to interactions that ask them to advance 

instances of the Car class that they are responsible for. If a remote federate cannot fulfil 

this obligation, execution will break down and error will occur. 

Despite all this, the use of Simspect does provide some significant advantages for anyone 

wishing to address these concerns. The Simspect methodology allows pure object-oriented 

code to execute a model co-operatively with other federates. Without the need to consider 

low-level H L A details, the amount of effort required to alter a model so that it conforms to 

the expected behaviour is drastically reduced. 

Further, a solution for dealing with the execution requirements of a legacy HLA simulation 

is provided through the Execution Manager. Although the development of such a 

component would demand H L A knowledge, it is only necessary in situations where an 

existing H L A simulation must be dealt with. In those circumstances, it seems entirely 

reasonable to expect that some H L A expertise would be available. By providing a strong 

framework supporting the development of an execution manager, the burden of producing 

a component for such specialised, fringe situations is reduced further. 

Although it is beyond the reach of this research to support entirely arbitrary federate level 

agreements in a generic manner, the approaches discussed in this chapter have outlined 

how the burden of addressing such demands can be minimised. 

6.3.7 Ticking and Call-back Invocation 

One facet of the H L A that has yet to be discussed anywhere in this chapter is the notion of 

"ticking". It is the responsibility of all H L A federates to inform the RTI when they are 
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ready to receive Federate Ambassador call-back notifications. This process is commonly 

invoked via the RTIambassador classes tickO method1*. If call-backs are not periodically 

processed, the federate can become starved, and in turn, adversely affect the behaviour of 

other federates within the federation. 

This approach only becomes a problem when one considers that a pure model has no 

notion of application distribution, or that it needs to process incoming call-back messages. 

Identifying points within a model that represent natural "breaks" where notifications 

could be solicited is difficult to achieve in any generic fashion. However, the methodology 

proposed by Simspect does provide a rather simple solution to this concern. 

As discussed in the previous sections, the generic nature of the AOP Aspect means that 

many events that hold no interest for the H L A are captured. Although these events are 

quickly identified and filtered out by the appropriate event handlers, their volume is 

considerable. As such, each of these notifications represents a perfect opportunity to insert 

calls to the tick() method. 

Inside the advice provided by the Generic Aspect, calls to tick() are executed before any 

event information is passed on to the Model Facade. The sheer number of these events 

means that the probability of starving the federate of call-back notifications is highly 

unlikely. O n the one hand, the considerable quantity of events is beneficial, removing any 

concern for proxy starvation. However, in high volume situations, it can also become a 

burden, with solicitation of call-backs occurring too often. Although the reference 

implementation follows the basic recommendation presented here, a more intelligent 

approach could easily be applied (perhaps only invoking tickO once a timeout has 

occurred since the last invocation). Regardless of the precise approach taken, by utilising 

this by-product of the Generic Aspect, there is no need to delve into complex solutions 

aimed at identifying natural pauses within a model where this behaviour can be inserted. 

6.3.8 Summary 

This completes discussion of the methods proposed by the Simspect runtime framework. 

Throughout this section, the research questions identified at the beginning of this chapter 

have been addressed, discussing the problems that arise and the proposed solutions. 

Through a combination of A O P and the approaches presented here, a pure-00 model, 

x9 Although the IEEE 1516 specification altered the name of this method, the general approach remained 

same. 
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with no notion of application distribution, can co-operate with and participate in an HLA-

based distributed simulation. 

Although the contribution of this research goes well beyond this new ability (as discussed 

in subsequent chapters), the only major task that remains in relation to the runtime 

framework itself is to validate that it works. Experiment One is designed specifically to 

demonstrate this, taking two object-oriented models and placing them into a distributed 

simulation where they complete the shared modelling of their respective scenarios. 

6.4 Experiment One 

Before an O O model is ready for use with the generic H L A Aspect introduced in the 

previous section, a number of tasks must be undertaken. These include the creation of 

deployment artefacts (such as object models), and the specification of weaving rules that 

describe how the model and Aspect are combined. As referenced earlier, in a typical A O P 

environment, these are all manual tasks. The purpose of this experiment is to validate that 

generic A O P Aspect and demonstrate how model and infrastructure code can be created 

separately. Although the manual processes of creating the deployment artefacts requires 

specialist H L A knowledge, this is acceptable in this case. Later experiments will show how 

to automate these parts. 

Before the experiment can proceed, two documents need to be manually produced. Firstly, 

a file describing the object model (FOM) for the federation needs to be created. The 

contents and structure of this file are intended to be a H L A representation of the object 

model used in each of the pure-00 models. Secondly, a Simspect configuration file needs 

to be written. The most important part of this file is the mappings data that describes how 

Simspect can convert data between its O O form and the H L A form demanded by the FOM. 

6.4.1 Experimental Results 

The criteria for assessing the results of this experiment were outlined in the table in 

section 5.2.3. To help show that the solutions discussed throughout this chapter 

successfully meet these requirements, the following items must be gathered and inspected: 

• The pure model code 

• The output produced by each model in its pure form 

• The output produced by each model after it has had Simspect woven into it 

• The output of the companion federate 
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The results for each of these criteria will now be individually addressed. For reasons of 

brevity, the log files that were captured during experimentation are not provided in the 

appendices. Some of them are quite large (greater than 15,000 lines) and rather than 

include them in the text, they are provided as part of a supplementary package that 

accompanies this work. 

Criterion One: AOP-model must remain HLA free 

A visual inspection of the code for each pure-00 model can quickly confirm that they are 

free of any H L A considerations. To this end, the code for each model included in the 

supplementary package that accompanies this work. 

Criterion Two: AOP-model must execute without error 

The AOP-model is the name given to the pure-model once it has been attached to the 

Simspect environment. To ensure that Simspect does not cause any runtime errors, the 

AOP-model must be able to run to completion. This can be verified by inspecting the 

Simspect Runtime log for each AOP-model. Earlier in this chapter it was noted that the 

Simspect Aspect used an "around advice" with regard to capturing the main method. This 

type of advice allows the Aspect to wrap around the execution of a method and determine 

whether that method should execute or not. 

The code from inside the Simspect Aspect for this advice looks like this: 

1 // proceed and execute the model main method 
2 logger.debug( "{BEFORE} main" ); 
3 proceedO; 
4 logger.debug( "{AFTER} main" ); 

Listing 6-8: Main Method Advice 

This listing shows that if the model were to execute successfully, there should be no errors 

in the output, and a log entry should be made after the completion of the method. 

Inspecting the log files for each simulation, we can locate the following lines, indicating 

success: 

18201 DEBUG [main] simspect.runtime: {AFTER} main 
18202 DEBUG [main] simspect.runtime: facade. onShutdownO: stopping runtime 
18203 DEBUG [main] simspect.runtime: facade.onShutdownO: stopped runtime 

Listing 6-9: Main Method Capture Log 
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Criterion Three and Four: Object Creating 

These criteria relate to the handling of object creation in both the AOP-model and the 

federation. To successfully meet these requirements, the federation needs to be informed 

of all interesting data created inside the AOP-model, and the A O P model needs to create 

local copies of all interesting data20 created in remote federates. 

To demonstrate this, the log files for the AOP-model and the companion federate are 

inspected. W h e n data is created inside the AOP-model, the constructor is captured and an 

object registration is sent out to the federation. The listing below comes from the AOP-

model's Simspect log file: 

DEBUG [main] simspect: {CNSTR} Instance created [testcode.racesim.Car] (hash: 
16453941): HLA instance registered and cached, handle: 8 

Listing 6-10: HLA Object Registration Log 

Here, an instance of the Java object testcode.racesim.Car is being created and a 

corresponding H L A instance is registered, the handle for which is 5. The hash value 

uniquely identifies the Java instance and can be used when looking at later log entries. In 

the companion federate (known as the "racewriter" federate for the race simulation), the 

log shows the discovery of this instance: 

INFO [main] racewriter: {DISCOVER} Instance of [ObjectRoot.Car] with handle [8] 

Listing 6-11: HLA Object Discovery Log 

In the reverse situation, Simspect needs to create a local proxy of any data that is created 

in a remote federate. Additionally, the final results of the model execution should reflect 

the presence of this remotely created data (this is shown in criteria nine). The two log 

extracts below show an object (hla handle: 4) being registered by the companion federate, 

and that object being discovered by Simspect. Simspect then goes on to create a proxy 

instance of the class testcode.racesim.Car for that instance of the H L A object class 

Ob jectRoot. Car (as identified by its hash code). 

20 As defined earlier in this chapter, interesting data is data for which mapping information exists in the 
Simspect configuration. As this configuration is manually created for experiment one, a user (knowledgeable 
in the H L A ) makes this determination. 
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INFO [main] racewriter: Registered Car [4], waiting for discover of Race 

DEBUG [main] simspect: {DISCV} Discovered [ObjectRoot.Car] handle: 4, created 
and cached Java instance [testcode.racesim.Car] Chash:14554415) 

Listing 6-12: Remote Object Discovery Log 

These log extracts show that objects created in the AOP-model are registered in the 

federation, and how objects created by remote federates are discovered and cached in the 

AOP-model, thus demonstrating success for criterion three and four. 

Criterion Five and Six: Data Changes 

As a pure model runs, changes to the data it has created need to be reflected out into a 

federation. The log extract below shows Simspect capturing a change to the distance field 

of the Car instance that was created by the AOP-model earlier (hash 16453941): 

TRACE [main] simspect: {F-SET} Field [testcode.racesim.Car.distance] set to 
[55.55555555555556] on object Chash:16453941) 

Listing 6-13: Local Field Modification Log 

Realising that this may be interesting information, Simspect then reflects this attribute 

change out into the federation where it is noted by the companion federate: 

INFO [main] racewriter: {REFLECT} Object handle [8] with [1] attributes 
INFO [main] racewriter: tag: 1199961219096 
INFO [main] racewriter: attribute: distance, value: 55.55555555555556 

Listing 6-14: Local Field Modification Being Reflected 

Once the data has been successfully introduced into the AOP-model, changes that occur 

remotely must also trigger updates to the cached data. The log below shows the Simspect 

federate getting updates to the distance of the Car object it discovered earlier (hash: 

14554415)-
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TRACE [main] simspect: {RFLCT} Reflection received. HLA handle: 4 attribute 
count; 1 ' 
TRACE [main] simspect: {RFLCT} Updated Java field [distance] of Java object-
(hash:14554415): newValue = 166.66666666666666 

Listing 6-15: Remote Field Modification Locally Reflected 

The log extract above demonstrate success for criterion five and six by showing that 

information changed locally is reflected out into a federation and that attribute changed 

on remote instances is received and incorporated into the AOP-model. 

Criterion Seven and Eiffht: Method Calls 

As discussed in this chapter, method calls are a common form of behaviour 

modularisation in object-oriented programming. W h e n providing a solution that merges 

the H L A and Object Oriented philosophies, interactions are generally used as a rough 

approximate for method calls. A periphery consideration here is that of data introduction. 

In a pure-00 model, data is placed into the correct locations (or "introduced" into the 

model) through the use of situation-specific method calls. To successfully meet criterion 

seven and eight, the results collected must demonstrate the following: 

• Interesting method calls inside the AOP-model are translated to Interactions and 

sent to the federation where they can be acted on 

• Interactions sent by remote federates that represent a method call are received by 

the AOP-model and cause the appropriate method to be invoked 

Data introductions fall under the second category, where a remote federate will use a 

method interaction to introduce previously created object data to a model. To demonstrate 

how these criteria have been met, a single scenario will be used, with extracts from the log 

files of both the AOP-model and the companion federate. This scenario will show an 

exchange between the two components in the sushi simulation. 

Data Introduction Through Interactions 

In the first case, log output from the AOP-model shows an interaction that represents a 

method call being received, and that being translated into a call on the local object: 
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// AOP-model discovers remote object 
DEBUG [main] simspect: {DISCV} Discovered [ObjectRoot.Customer.RandomCustomer] 
handle: 4, created and cached Java instance 
[testcode.sushisim.customers.RandomCustomer] (hash:11402211) 

// AOP-model processed interaction representing method call 
TRACE [main] simspect: {INTER} Interaction received: 
type=InteractionRoot.MethodCall.Restaurant_seatVTP, parameters: 2, targetObject: 
Chash:4683917) 
TRACE [main] simspect: > » deserialized handle: 4 to Object: (hash:11402211) 

TRACE [main] simspect: {M-INV} public void testcode.sushisim.Restaurant.seatVIP 
(testcode.sushisim.Customer) on (hash:4683917) 
TRACE [main] simspect: » > serialized object (hash:11402211) to HLA handle: 4 

Listing 6-16: Remote Method Invocation Log 

The output above shows the AOP-model discovering an instance of type RandomCustomer 

and creating a local Java object for it (with the hash 11402211). At this point, the Java 

object exists, the but AOP-model does not know about it. The rest of the log shows 

Simspect receiving an interaction that represents the seatVIP method which introduces 

the previously created object to the pure-model. The argument for that method is 

deserialized and represents the previously discovered object (with the same hash). The 

target for this method call is identified as the object with the hash 4683917 (the 

Restaurant). Simspect then invokes the relevant method on that object, and the invocation 

is captured by the Aspect (as all invocations are) as shown in the {M-INV} marked section. 

This exchange shows how Simspect can successfully convert interactions generated in 

remote federates into method calls and then invoke those calls locally. It also 

demonstrates how data is successfully inserted into a model without necessitating an 

explicit introduction. This successfully meets criterion eight. 

To demonstrate how criterion seven is met, the following log file extracts show a method 

call on a Java object being captured by Simspect and converted into an interaction which 

is then sent to the federation. 
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TRACE [main] simspect: {M-INV} public void 

testcode.sushisim.customers.RandomCustomer.newDishHasArrived 
(testcode.sushisim.Dish) on (hash:11402211) 
TRACE [main] simspect: > » serialized object Chash:7309193) to HLA handle- 43 
TRACE [main] simspect: {METHOD} 
testcode.sushisim.customers.RandomCustomer.newDishHasArrived: SKIP execution, 
object not owned 

Listing 6-17: Local Method Triggering Interaction Log 

This listing shows the Simspect Aspect capturing an invocation of the 

newDishHasArrived method on a local Java object. Realising that this method is of 

interest, the parameters are serialized (with the Dish object replaced by the object handle 

of the H L A instance that represents it) and an interaction is sent out into the federation. It 

is also important to note that Simspect identifies that the Customer object that the method 

is being called on is not locally managed. It prevents local execution of the method because 

that could result in local code changing values. This means that any changes that would 

have been made by the local version of that class will never execute, allowing a remote 

federate to manage the data changes according to whatever algorithm it wishes to use, not 

the one present in the local code. 

To show that the interaction was successfully sent, the following entries are observed in 

the log file for the companion federate. They show the interaction being received and the 

companion federate deciding that the customer is an object it manages and that it should 

consume the new dish that has arrived: 

INFO [main] sushiwriter: {INTERACTION} Class: 
InteractionRoot.MethodCall.RandomCustomer_newDishHasArrived with [2] parameters 
INFO [main] sushiwriter: tag: 1199972107843 
INFO [main] sushiwriter: param: targetObject, value: 4 {object_reference} 
INFO [main] sushiwriter: param: dish, value: 43 {object_reference} 
INFO [main] sushiwriter: CHOMP!! Ate dish: name=Mud Cake With Icecream, 
type=null, cost=$5.95 

Listing 6-18: Local Interaction Translated to Method Log 

To communicate that the customer has eaten the dish, the companion federate sends a 

new interaction that represents the method eat of the Dish class. Back in the AOP-model, 

this interaction is received and turned into a method invocation. Unlike before, this 

particular Dish instance is managed by the AOP-model, thus, the method invocation is 

allowed to proceed: 
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TRACE [main] simspect: {INTER} Interaction received: 
type=InteractionRoot.MethodCall.Dish.eat, parameters: 2, targetObject- Chash-
7309193) 
TRACE [main] simspect: > » deserialized handle: 4 to Object: (hash:11402211) 
TRACE [main] simspect: {M-INV} public void testcode.sushisim.Dish.eat 
(testcode.sushisim.Customer) on (hash:7309193) 
TRACE [main] simspect: > » serialized object Chash:11402211) to HLA handle: 4 
TRACE [main] simspect: {METHOD} testcode.sushisim.dishes.MudCakeWithlcecream.eat 

Listing 6-19: Interaction Translated to Local Method Log 

These results validate that calls within the AOP-model are successfully captured, 

transformed into interactions and sent out to the federation. They also demonstrate how 

method invocations on objects that were not created locally are handled (avoiding any 

HLA ownership problems) and show that criterion seven and eight have been successfully 

met. However, perhaps most importantly, the series of events presented above provides a 

clear indication that the approaches embodied in Simspect that allow a pure model and 

existing federate to act co-operatively together are valid. 

Criterion Nine; Results of AOP-model do not match pure-OO model 

The final requirement for experiment one, the successful completion of criterion nine 

requires that all the other criteria also be met successfully. Due to the presence of a remote 

entity, co-operatively modelling a situation with the AOP-model, the results of executing 

the model in this scenario should differ from those obtained when executing the pure-00 

model by itself. The presence of a remote car in the race car simulation should affect the 

results of the race. Similarly, the existence of an additional customer in the sushi 

simulation should cause the distribution of dishes to various customers to change as the 

remote customer consumes dishes that would otherwise be available when running the 

model by itself. 

To validate the successful completion of this criterion, each of the pure-00 models are run 

by themselves, with their results noted. It is only after this that the models are run through 

the Aspect weaver to generate the AOP-model used in the distributed tests. 

The Race Simulation 

The following output was captured from the two versions of the race simulation. The first 

extract was taken from the pure model, while the second from the post-weaving, 

distributed version of the model: 
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Pure (non-AOP) Model: 

Starting race...Race Over 
[1]: Fastest Car 0:10:00 
[2]: Medium Pace Car 0:15:01 
[3]: Slowest Car 0:30:00 

Distributed, AOP-Model: 

Starting race...Race Over 
[1]: RemoteCar 0:05:02 
[2]: Fastest Car 0:10:00 
[3]: Medium Pace Car 0:15:01 
[4]: Slowest Car 0:30:00 

The differences are clear. When the pure-00 version of the model is run, only three cars 

(those managed by the model) are entered in the race. When the AOP-model is run in a 

distributed simulation with the companion federate, the results for the remote car 

(programmed to be much faster) are included. 

The Sushi Simulation 

When considering the sushi simulation, the situation is much the same: 

Pure (non-AOP) Model: 

sushi: INFO Restaurant Simulation Over, No more food left! 
sushi: INFO Closing time: 30.0 
sushi: INFO Table Listing: 
sushi: INFO ->Table 1: customer=Customer0ne(5), availableDish=null 
sushi: INFO ->Table 2: customer=CustomerTwo(6), availableDish=null 
sushi: INFO ->Table 3: customer=CustomerThree(2), availableDish=null 
sushi: INFO ->Table 4: customer=null, availableDish=null 

Distributed, AOP-Model: 

sushi: INFO Restaurant Simulation Over, No more food left! 
sushi: INFO Closing time: 26.0 
sushi: INFO Table Listing: 
sushi: INFO ->Table 4: customer=RemoteCustomerC7), availableDish=nuLl 
sushi: INFO ->Table 1: customer=CustomerOne(0), availableDish=null 
sushi' INFO ->Table 2: customer=CustomerTwo(6), availableDish=null 
sushi: INFO ->Table 3: customer=CustomerThree(0), availableDish=null 

When the pure-00 model is run, there are only three customers in the restaurant, and 

each consumes some dishes. However, when the distributed version of the model is run, 

the presence of the remotely managed customer (who clearly is hungry) alters the results, 

consuming a large number of dishes that are then not available to the other customers. 
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From these results it is clear that criterion nine has been met, resulting in the successful 

completion of this experiment. 

6.5 Summary 

Throughout the course of this chapter, the design, methodology and behaviour of the 

Simspect runtime have been presented. Embodied in this discussion has been answers to a 

number of significant research questions and a description of how pure, object-oriented 

model code can work co-operatively within a shared, distributed simulation. To conclude, 

the results for experiment one were presented and discussed. 

The solutions presented in this chapter effectively remove the need for HLA knowledge 

during the model creation process. However, experiment one relied on the hand creation 

of configuration and mapping data, a process that demands knowledge of the HLA. The 

next chapter discusses solutions for automating this process, in turn allowing pure models 

to be automatically transformed into H L A federates. 

181 



Chapter 7 

Automating Model and Mappings Extraction 

Aspect-Oriented Programming provides a methodology that isolates the development of 

crosscutting, system level concerns, thus allowing them to be implemented separately, 

keeping core business logic free from such considerations. As discussed in previous 

chapters, the motivations for implementing HLA-behaviour via such an approach is both 

beneficial and attractive. Chapter 5 highlighted a number of serious shortcomings that 

need to be addressed when pursuing this goal. Chapter 6 demonstrated how A O P could be 

applied to the H L A to enable a true separation of concerns approach to model 

development. 

However, the advances discussed in chapter 6 still necessitate HLA knowledge to 

manually identify the parts of an OO-model that may be interesting in a H L A environment 

and to identify where and how H L A considerations should overlap with the model itself. In 

the proposed environment, this manifests itself in the production of configuration data for 

a generic H L A Aspect. Such a requirement does not fully meet the goals of this research. 

Each pure-00 model contains pockets of information that are of wider interest in the 

context of a distributed simulation, and accordingly, must be shared with other members 

of a federation. This is data that is typically codified in the F O M of an H L A simulation. In 

addition to this "interesting" data, there may be other parts of the model that exist purely 

to serve implementation specific means, and by itself, has no broader interest. Among 

other examples, this data might find form as intermediately variables used to cache values 

during the processing of a specific algorithm. 

To remove the manual process that was employed in the previous chapter for defining 

both a federation object model and the other various configuration elements necessary to 

allow the generic H L A aspect to function correctly, a method for automatically 

introspecting a pure model is required. 

The notion of automatically introspecting a simulation model in an attempt to extract 

further information about its underlying data model and the services it can provide is not 

new. In [129], Yilmaz describes the importance of simulation model introspection in the 

context of easing the burden of reusing simulation models in situations they were not 

originally intended for. Yilmaz highlights automatic model introspection as a means for 

extracting information about the capabilities and requirements of a pure simulation 
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model. This information can then be used to decide if a particular model is fit for use in an 

entirely different scenario. However, the approach enumerated by Yilmaz also demands 

that model developers manually add this information to their models during 

implementation. This requirement represents a mixing of concerns (model development 

and external requirements/capabilities description) and involves a manual process, thus 

rendering it mostly unsuitable within the goals of this research. 

To address the problem of how model metadata and various runtime artefacts such as 

configuration information can be created automatically, this chapter employs the basic 

premiss of model introspection, but goes one step further than Yilmaz, seeking to 

automate the entire process. Following a discussion on how this can be achieved, this 

chapter concludes with presentation of the results from experiment 2, validating the 

proposed automation process. 

7.1 Model Introspection 

The purpose of the model introspection process is to generate two forms of information 

necessary for the proper operation of the generic H L A Aspect presented in the previous 

chapter. Figure 7-1 shows the process used to generate this data. 
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Figure 7-1: Model Introduction Process 

To handle the process of converting a pure-00 model into an Aspected-Model (one that 

has been woven with the generic H L A Aspect from chapter 6), the Simspect Compiler was 

created. The compiler takes a pure-00 model library (in the reference implementation, 

this is a Java jar file), weaves the Generic Aspect into the contained code and then outputs 

an updated version of that library. 

Figure 7-1 introduces a new component, named the "Somputer." The object model and 

configuration data generation is the responsibility of this component. It is instructed to 

introspect a group of O O classes and to generate the necessary object model and mapping 

configuration data based on those types. 
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To make the compilation process more efficient, the compiler will watch over the Aspect 

weaving process and keep track of which classes it makes modifications to when weaving 

in the Generic Aspect. Classes that are not touched by the weaver have no way of becoming 

known to the Simspect runtime, and as such, do not need to be considered when 

generating mapping and object model data. Rather than having the Somputer process all 

classes inside the library, only those that have been affected by the weaving process are 

"somputed" (tested for inclusion in configuration data generation). The Aspect J Message 

Holder shown in the figure 7-1 is the reference implementation component that watches 

the weaving process and then passes the information it has gathered to the Somputer. 

When using A O P frameworks that do not provide these types of facilities, the Somputer 

could be tasked with processing all classes in the library. While not as efficient, this 

process would still generate functionally complete data. 

Multiple HLA Models 

Throughout this document I have referred to the need for Simspect to generate an H L A 

object model from a pure-00 model. As the compiler will generate a different model for 

each library it processes, it is more correct to think of these as Simulation Object Models 

(SOM) rather than Federation Object Models (FOM). However, this does raise a potential 

problem. The output for a single processing of a library is an H L A model document 

specific to that library. W h e n creating an entire federation from pure-00 models, a 

number of potentially different H L A model documents will be generated. However, when 

a federation is created, only a single F O M file can be used, and its contents must be the 

union of all the S O M s for the participating federates. Unfortunately, this process of taking 

a group of S O M s and combining them to produce a F O M requires unacceptable levels of 

H L A knowledge. 

This particular problem is more one of implementation, rather than an issue with the 

underlying theory. One potential solution that could be employed in this scenario would 

be to extend any Simspect compiler implementation to accept multiple libraries at once 

(one for each simulation intended for use within a federation). The Somputer would then 

have the opportunity to generate a H L A model document based on all the pure-00 code 

used in a federation, not just the subset used by a particular library. In the most recent 

version of the IEEE 1516 H L A standard (1516-2008), a new feature known as "modular 

FOMs" has been introduced [71]. This allows each federate to specify its own object model 

fragment when it joins a federation, at which time the fragment will be used to extend the 

federation-wide object model. A n approach like this could also be leveraged to solve this 

particular problem. 
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7.1.1 The Somputer 

The role of the Somputer is to introspect the various classes that were modified as part of 

the A O P weaving process, and to produce the appropriate mappings and object model files 

based on the parts of those classes that may hold some interest in an H L A context. The 

specifics of how the Somputer decides what is and is not of interest are covered later in 

this chapter. 

There are four main components that are used within the Somputer to achieved its goals: 

• Object Somputer: Processes a group of OO classes to assess if there are any 

interesting attributes that should be mapped onto H L A attributes 

• Interaction Somputer: Processes a group of O O classes to assess if there are 

any interesting methods that should be mapped onto H L A interactions 

• Object Model Container Types: In-memory representation of the H L A object 

model (and associated mapping data). This is built up by the Somputer during 

processing 

• Renderers: Once the Somputer has finished, Tenderers convert the in-memory 

Object Model into a persistent form such as configuration file or a H L A fed file 

Figure 7-2 shows the internal structure of the Somputer, and the way data flows through 

its sub-components. 
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Figure 7-2: The Somputer 

Each set of classes given to the Somputer is passed through the Object Somputer and then 

the Interaction Somputer. These two sub-components will assess the level of interest in 
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the fields and methods of the classes, populating an in-memory Object Model hierarchy. 

Once this is complete, a group of renderers is given the task of converting that hierarchy 

into the relevant persistent forms. In the case of the reference implementation used during 

experimentation, this includes the production of an X M L configuration file (containing 

mapping data) and a H L A object model fed file that can be used to create a federation. 

If the reference framework were to be implemented with a different set of technologies, 

additional renderers could be created to fulfil any further requirements (perhaps the 

generation of middleware code for an environment with less reflective capabilities than 

Java). 

7.1.2 Storing Mapping Data 

The Object Model container types created as part of the somputation process and used by 

the renderers are designed to capture two types of information: 

1. Information necessary to build a complete HLA obj ect model 

2. Information about how the parts of that object model are related to the pure-00 

model 

As processing unfolds, the Somputer attempts to build a HLA object model that mirrors as 

much as possible the hierarchy present in the pure-00 model. Figure 7-3 shows how the 

container types link up generated H L A object model data with the pure model types. 

Figure 7-3 contains two sets of class hierarchies. On the left, the structure of the pure-00 

model shows a total of four classes, each with varying numbers of attributes. On the right 

is the H L A model being built by the Somputer. Mappings data types work by linking 

together the relevant H L A type from the H L A object-model, and the Java type that 

represents it in the pure model. Once the Somputer has decided that a particular class or 

attribute should be included in the H L A model, it will create a mapping to maintain this 

association. W h e n finished, this information is written to a configuration file by a 

Tenderer. From here, the Simspect Runtime can reconstitute the data during a distributed 

simulation. 

It is also important to note that not all classes or attributes that exist in the pure model 

have a representation in the H L A model. The Somputer will only add an H L A class or 

attribute to the model when it has decided that the entity will be of interest in a H L A 

setting. In Figure 7-3, only some of the attributes from the OO-model are present in the 

H L A model, and one class is missing entirely. 

188 



01 

c 
a 
to 

2 
u 
<u 
J? 
O 
• • 

m 
i 
h. 
<y 
>-
3 

01 

189 



The reference implementation uses Java reflection types in the mapping data to identify 

parts of the pure-00 model that relate to the H L A types. In environments where reflective 

capabilities are not directly available, it would be the responsibility of the developer to 

create some kind of analogue that could be used to uniquely represent parts of the OO-

model hierarchy. 

The general theory for method mappings is similar to that of object mappings. However, 

unlike object mappings, the inheritance hierarchy implemented in the H L A model is not 

designed to mirror the hierarchy in the pure-00 model. Much like object classes, H L A 

interaction classes have an inheritance hierarchy, with parameters of a particular class 

being inherited by all its children. This is quite different from the structure of methods 

that exist in O O . Also unlike O O , H L A interactions have no association with a particular 

object class. Interactions are designed to function more like transient messages. 

To provide the kind of semantic connection necessary to have interactions represent 

method calls, a special interaction class is defined. This class has a single parameter that 

identifies the target object of the method call represented by the interaction (discussed 

previously in chapter 6). W h e n generating an H L A object model and method mappings, 

the Somputer will create individual interaction classes that extend from the predefined 

type, and which provide additional parameters according to the parameters defined in the 

O O model. 
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Figure 7-4: Method Mappings 

In Figure 7-4 there are two methods that the Somputer has deemed of interest (the 

process used to make this decision is discussed later in this chapter). For each of these 

types, an interaction class with the appropriate additional parameters has been created 

and method and parameter mappings have been generated to provide the necessary 

linking information. For more information on how method calls work, see section 6.3.3. 

7.1.3 Storing Type Information 

To allow the Simspect runtime to properly serialise and deserialize information between 

its local representation (in this case, Java) and its H L A representation, type information 

must be recorded in configuration data. Type conversion information is maintained in 

each attribute and parameter mapping. In the reference implementation, the type 
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information is represented as a simple enumeration. The table below outlines each of the 

values and h o w they correspond to the Java type in the reference implementation. 

Enumeration Value 

BOOLEAN 

CHAR 

BYTE 

SHORT 

INTEGER 

LONG 

FLOAT 

DOUBLE 

STRING 

REFERENCE 

REFERENCE_ARRAY 

Table 

Java Type 

boolean 

char 

byte 

short 

int 

long 

float 

double 

java.lang.String 

Any non-String object 

Arrays, Lists, Sets 

HLA Type 

boolean 

char 

byte 

short 

int 

long 

float 

double 

chart] 

int (object handle) 

int[] (object handles) 

7-1: Simspect Enumeration Mappings 

W h e n performing conversion at runtime, Simspect uses a set of encoding helpers provided 

with the RTI implementation. In this way, any type (such as an integer or String) is 

converted into the opaque byte array format necessary for use with the HLA. Object 

references are passed via the H L A as the handles of the objects that are being referenced. 

Where the Java type is any sort of collection (array, list, etc.), an array of integers 

representing the handles of the referenced objects is used. As discussed in the previous 

chapter, Simspect forgoes any of the advantages that the IEEE 1516 specification provides 

with regard to specifying the structure of complex data types. While these additions are 

valuable, they do partially defeat the purpose of the H L A as individual parts of those types 

cannot be independently published or subscribed to. 

Having shown how mapping information is structured, it is now time to discuss the 

decision processes used by the Somputer when constructing an H L A object model (and 

associated mappings) from a pure-OO model. 

7.2 Introspecting Objects 

W h e n a class is passed into the Somputer, each directly declared (non-inherited) field is 

inspected to see if it contains any attributes of interest. 

It is important to note that the somputation process is not quite as simple as passing a 

series of classes through the object and interaction somputers and then rendering the 
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generated data at the end. The Somputer has a tendency to jump around from class to 

class based on the data it finds and the requirements those findings create. 

For example, to keep the object hierarchy consistent, if a particular class is adjudged to 

contain an interesting attribute, all the parent classes of that class are forcefully somputed 

and added to the generated object model. In some cases, the Somputer will have 

previously processed these classes and decided that they have no interesting attributes 

(and thus skipped them). However, the requirement to maintain the object hierarchy 

overrides this, forcing the class to be processed and added to the model. This particular 

process is especially important where abstract parent classes are used to provide a 

c o m m o n base to children. Direct instances of these classes can never actually exist, leading 

one to reason that they do not need to be present in the H L A model. However, including 

them means that other federates can subscribe to the type and thus hear about an entire 

subset of classes without having to subscribe to each individual one. 

Consider the Sushi simulation: external federates might be interested in hearing about the 

presence of any dessert dishes that enter the simulation. Although the Dessert class 

contains no interesting attributes of its own, including it allows federates to get hear about 

all the concrete dessert dishes without needing to know each and every concrete type that 

exists. 

It is these types of requirements that mean the Somputer jumps from class to class when 

processing and classes that have previously been defined as not interesting may actually 

end up in the generated model. This also means that the algorithm used to process a class 

is quite complex. 

7.2.1 What Makes an Attribute Interesting? 

As stated throughout this chapter, the only attributes included in a generated model are 

those deemed "interesting" from the perspective of the HLA. To provide some background 

to the problem, this section will discuss the basic concepts of what defines an attribute as 

interesting in an H L A context before delving into the specifics of the algorithm used to 

automatically determine this status (the Object Somputation algorithm). 

When creating a pure model, the process of designing and building an object-oriented 

class has to take into consideration many factors. Although the realisation of a particular 

class will contain attributes that are specific to the entity being modelled, in many 

situations there will also be a number of other data values included purely to support the 

implementation model chosen, to make some processing simpler or more efficient, or to 
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make the application easier to maintain. Put another way, each O O class may contain a 

number of attributes that do not relate to the entity being modelled. 

In the previous chapter, a manual process was used to subjectively identify these types of 

attributes and separate them from those that form part of the core entity being modelled. 

Core attributes had mappings configuration data and object model entries created for 

them by hand, whereas non-core attributes were ignored. The purpose of the Somputer is 

to automate this identification process. Thus, some definition of how a core or 

"interesting" attribute is recognised is needed. To this end, the Somputer assesses each 

attribute for worthiness according to the following process: 

Field Not 
Included 9 

m. 

9 

Is the Field 
Static? 

No 

V 
Is the Field 
Public? 

Field 
Included 

Yes 

No 

V 
Do Accessor 
Methods Exist? 

Figure 7-5: Field Assessment 
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As shown in figure 7-5, if the field is static (a class-level attribute) it is immediately ruled 

out as uninteresting. In the HLA, all data is directly attached to a single instance of an 

object class, no notion of a static variable exists. Although it is entirely possible that this 

may be model data worthy of inclusion within the F O M , there is no clear mechanism 

through which it can be represented in the HLA. For this reason it is ruled out as useable 

data. 

Following this, the access level declared for an attribute is taken into consideration. If the 

field is marked as public, it is immediately accepted. As other model elements have access 

to the public fields of another class, such an attribute could be validly assumed to have 

some interest throughout the model. If this were not the case, and the attribute were for 

internal processing purposes, it would most likely have been marked as private. 

It is widely recognised as good OO practice for instance variables to be assigned private 

access, with accessor and mutator (get and set) methods provided as the means through 

which to gain and alter their values. Accordingly, if an attribute is marked as private or 

protected, further processing must be done to assess if the field is interesting or not. The 

approach taken by Simspect is to search through all the declared public methods of a 

class looking for accessors. 

The reference implementation makes use of the Java programming language, and in Java, 

the c o m m o n idiom is for accessors to take on the form getXxxO and mutators to take the 

form setXxxO, eg. The field Car would correspond to getCarO and setCar(Car-). If a 

field does not have a corresponding accessor method, it is deemed uninteresting and 

skipped. Without an accessor there is no way other model elements could extract its value, 

and thus, one can infer that it is not meant to be part of the public object model. 

Edge Cases. Algorithm Improvement and Scone 

The presence of a mutator method is not considered when accessing an attribute. 

Although such a method would allow other model elements to change the value of the 

attribute, this type of cross entity interaction is foreign to the HLA. The strict ownership 

rules present in the H L A specification mean that it would be rare for one federate to 

directly alter the value of an attribute of an object instance created by a different federate. 

Although the specification allows for the transfer of attribute ownership (and with it, the 

privilege to update the value of an attribute created elsewhere), these facilities are 

colloquially accepted to be among the least frequently used parts of the H L A specification. 

For reasons of scope, ownership considerations have been omitted from this work. 
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However, the crossover between the HLAs ownership rules and Object Orientation would 

be an interesting area for further research. 

Also not considered by this algorithm are synthesised variables. That is, values that are 

externally presented as a single field (through the presence of an accessor and mutator) 

but are implemented internally using more than one variable (or perhaps even none at 

all). It would be a reasonable approach to make the assumption based on the public 

interface of a class that the presence of a public accessor signals some useful piece of data 

is being provided (and should form part of the corresponding H L A model). However, 

determining when that value changes, and accordingly, when the H L A federation should 

be notified of such a change, presents significant problems. 

Some way to identify which attributes provided the backing data for synthesised variables 

would first be required. Along with this, some understanding of how to capture changes to 

these variables is also needed. If the variables reside in different object instances, the 

relationship between these objects must also be considered. Further, some consideration 

of how best to handle public attributes whose synthesis depends purely or partly on non-

attribute backing (perhaps the result of some algorithm) is also needed, along with some 

understanding of how to programatically assess when changes occur in such a situation. 

Given these problems and that synthesised variables are a relative edge case, their 

consideration is deemed beyond the scope of this work. 

As with any automated process, the approaches in this chapter could result in the 

misidentification of interesting or non-interesting fields. Without explicit knowledge of 

the model designer's intent, it is difficult to make correct decisions in all situations. The 

primary goal of this work is not to develop a foolproof algorithm for automatically 

identifying fields that should form part of a H L A F O M , but rather to demonstrate that an 

automated approach is possible and to show how the process of linking O O and H L A 

models can be achieved after those decisions have been made. Any algorithm that is 

developed could be continually refined over time. Experimentation discussed later in this 

chapter has shown the approach above to be effective in test cases that are designed 

specifically to cover a number of c o m m o n and potentially tricky O O scenarios. Deeper 

investigation and expansion of these approaches is a fertile place for further research to 

begin, and any enhanced algorithm could be easily integrated into the broader framework 

introduced by Simspect. 
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7.2.2 The Object Somputation Algorithm Explained 

Having discussed h o w an individual field is assessed to decide if it should be included in 

an H L A object model, some attention must be given to the process involved in deciding 

whether an entire class is interesting or not. Classes deemed as interesting need to be 

included in generated H L A object models, while those that are not are left out. 

There are several factors that define whether or not a class is interesting. The primary 

measure of interest is the presence of attributes that are themselves considered 

interesting. However, a class that contains no interesting attributes of its own might still 

be required in the generated object model. To keep the structure of the H L A model as 

close to that of the O O model from which it was derived, classes that would individually be 

deemed uninteresting may still need to be present. Maintaining the inheritance hierarchy 

present of the O O model is one possible reason for this. As general O O theory would 

support, H L A federates subscribing to an object class within a F O M may receive object 

discovery notifications for instances that were registered at a more specific type. Although 

such federates cannot access the full state of the object (as they as subscribed only to a 

parent class) they still receive notification. For example, a federate wanting to know about 

the existence of all Vehicles in a simulation might wish to subscribe to a Vehicle class. If 

the Vehicle class has no interesting attributes it would normally be left out of a model. 

However, it m a y have subclasses that are interesting. Given this, it is perfectly reasonable 

to expect that a given federate may wish to subscribe to the Vehicle class (despite it being 

uninteresting when assessed individually) and therefore, it is important to carry the same 

hierarchies over from an O O model into a generated H L A model. 

The entire process required to assess a particular class is quite extensive. The primary 

decision tree is provided in Figure 7-6, however, this figure references subsequent 

diagrams where the process branches off. 
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Valid Types 

The first step is to assess if the class represents a valid type. This check is designed to stop 

undesired or "unmappable" types from entering the generated model. The exact list of 

types that fall into this category will be dependent on the implementation platform in use. 

In the reference implementation (which makes use of Java) there are a number of types 

that are excluded from being valid. 

Interfaces are excluded because they do not represent a concrete type, and therefore 

instances of it cannot be directly created or enter into the simulation. Java Enumerations 

are also excluded as they do not form part of the object class hierarchy. It makes little 

sense to subscribe to a particular enumeration. The more common use would be for 

attributes to take the value of an enumeration, rather than having federates subscribe to 

an enumeration type21. This is the same reason primitive types (or their Java class 

analogues) are also excluded. 

Finally, certain classes are also selectively ignored as dictated by the platform. For 

example, in the reference implementation, any classes that make up part of the Java 

Development Kit itself are ignored. The goal of Somputation is to introspect and generate 

a model from user developed code, not that of the JDK. Further, any class with a main 

method is also excluded as this signals that the class most likely only exists for the purpose 

of starting the application, not for use as part of the model. The particular types that fall 

into this category could easily be contracted or expanded according to the requirements of 

the situation or platform. The salient detail is to recognise that it may be necessary to 

perform this type of examination. 

In-Memorv Objects 

Assuming the type is valid, a check is made to see if the class has previously been 

processed. This is necessary to avoid problems with infinite looping in situations where 

there is a circular dependency between two types. If the class is marked as having already 

been processed, it is skipped. Once it has been determined that this is the first time a class 

is being assessed, information about the class is placed in the "completed" collection. This 

collection was used in the previous check and placing an entry in here now (even though 

the class has not been completed) avoids the infinite loop problem. If the class has been 

21 The IEEE 1516 standard provides specific support for enumeration's as data types. There is an obvious 
overlap that could exist here. As mentioned earlier, this thesis only concerns itself with the H L A 1.3 standard. 
Further work could explore how to realise such an environment with the IEEE 1516 standard. 
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processed, execution skips to the part of the algorithm where suitability for the final object 

model is assessed. 

The final product of initial processing is an in-memory representation of the generated 

object model that can then be rendered to a file. All valid classes that are parsed produce 

in-memory representations, regardless of whether they are considered interesting or not. 

However, only those classes deemed necessary are patched into the final object model 

(this is discussed shortly). 

To create the in-memory representation, the class is introspected, searching for any 

interesting features. In the reference implementation Java reflection is used, in an 

environment with less introspective capabilities, the raw source code for a class could be 

parsed to obtain the necessary data. In-memory representations are generated for each 

valid class. The information extracted is then used to determine if the class is interesting 

or not. 

As shown in Figure 7-7, the first step is to create an ObjectClass object for the class. This 

is the container that stores Simspect reflective information. It has a collection of 

interesting attributes and a link (initially empty) to its parent class and any child classes. 

The somputation algorithm will iterate through each attribute declared by the class and 

will judge whether or not each is interesting using the approach presented earlier in this 

chapter. Inherited attributes are ignored. They are process when assessing the class in 

which they are declared. 

For each interesting attribute an AttributeClass is created to store field metadata. 

Included in this data is the type of the field. For each type there is a mapping that defines 

the relationship between the O O type and the H L A representation (see Table 7-1). If the 

type of a field is a REFERENCE, the class referred to must also be assessed so as that logical 

connection can be maintained in the H L A representation, ensuring that the type is present 

in the generated F O M . As such classes are needed by this interesting attribute, that class 

must appear in the final object model, so the forced flag (discussed below) is set to true 

and the type is assessed. The same is true for REFERENCE_ARRAY types, however in this 

case it is the base type of the collection - the type of objects stored in that collection - that 

is assessed. In this situation, the reference implementation has a particular shortcoming. 

Due to the constraints of Java reflection, the base type of a collection can only be 

determined for arrays. For collection types such as Sets and Lists, it is not possible to 

determine this information. In this particular scenario, a source-level parser could 

potentially be used to overcome this limitation. 
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Determining Interest in a Class 

Having generated an in-memory representation, the Somputer now has access to all the 

Simspect-relevant meta-information about a particular type. This data can now be used to 

decide if the type should be included in the final H L A model or not. There are many ways a 

class can be adjudged as relevant, and the first step is to look at its contained fields. 

During the previous step, AttributeClass instances will only have been created for field 

deemed interesting (according to the method presented in section 7.2.1). If a class contains 

at least one interesting attribute, it is attached to the generated object model (this process 

is discussed below). 

Should a class not contain any interesting attributes, two further checks must be made. As 

highlighted earlier, even if a class is not mdividually interesting, it might still need to be 

present in the H L A object model. W h e n processing of a class begins, a flag is provided that 

signals whether the class should be forcefully attached to the final object model or not. 

This is used in situations where the algorithm deems a class as necessary despite the lack 

of interesting attributes, such as when it is specified as the type of an attribute in another 

class. If the provided flag is switched on, the object is attached to the model without 

question. Assuming that this is not the case, the final check establishes whether the class is 

needed to maintain the appropriate inheritance hierarchy. 

Abstract Inheritance and Uninteresting Classes 

The final check involves traversing the inheritance hierarchy of the particular class. The 

process only occurs when the class itself either has no interesting attributes of its own or is 

not subject to a forced somputation. In this situation, all the parent classes of the given 

class are inspected to see if any are both abstract and contain interesting attributes. 

If a class has no interesting attributes of its own, it generally has no place in the HLA 

model. Indeed, if this check is even run it indicates that up until this point the Somputer 

has not been able to find a compelling reason to include it. However, if a non-interesting 

class has a parent that is abstract, and that class contains interesting attributes, it is 

necessary to include the entire hierarchy in the final model. The reason for this is that an 

abstract parent with interesting attributes indicates that the interesting part of the child 

class is the specialisation it provides. Consider the Sushi simulation used in 

experimentation. Interesting information is held in the Dish class, which is abstract. 

Although the child classes that represent the actual dishes have no interesting attributes of 

their own, the fact that each dish is represented by individual classes indicates that the 

type of class is itself interesting information. Indeed, it is the way I teU that two given 
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dishes are in fact different types of food. The class specialisation itself is an interesting 

piece of information making each type worthy of inclusion within the F O M . Any time an 

abstract class with interesting attributes exists, this type of situation can arise. 
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The abstract inheritance check searches for this particular situation. If it is found, the 

child type is deemed to be interesting based on its specialisation, and is forced into the 

final object model. 

Attaching a Class to the HLA Model 

Once it has been determined that a particular class is interesting (by any of the means 

previously discussed), that class must be marked as part of the generated model. Figure 

7-9 shows how this is achieved. 
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As mentioned earlier, in-memory representations are generated for all classes that are 

Somputed. Each ObjectClass has within it a slot to identify its parent. This is used to 

note where in the H L A object model hierarchy a particular class fits. At the conclusion of 

somputation, any classes that do not have a parent are excluded from the final model. If a 

class is deemed interesting, it would have been patched into the model and its parent 

would have been identified. 

At the beginning of somputation, an instance that represents the Object Root of the HLA 

model is manually created. This type is considered analogous to the parent of all classes in 

the O O model (in the case of Java, a class explicit exists in the form of the Object type). 

This manually created class is used as the parent for any classes that directly inherit from 

the parent of all types. 

If the parent OO class is not the object root equivalent, the next step is to see if the 

Somputer has already processed the parent. If it has been, the resulting in-memory type is 

set as the parent of the incoming type and processing finishes. If the type has not yet been 

processed, Somputation of the parent O O class will take place. Further, this Somputation 

will be forced. To maintain the proper inheritance hierarchies across the O O and H L A 

object models, all parent types of any class that is deemed interesting will be included. 

This forced Somputation achieves this. 

Note that this is distinct from the actions that are involved in the abstract inheritance 

check. That process simply checks to see whether or not a type should be included in the 

final model (which m a y trigger this attachment operation). This particular activity 

involves walking the inheritance tree for a type that has already been deemed interesting. 

Also note that each class is only fully-processed once. The forced Somputation of a parent 

class that has already been processed will only trigger its attachment to the model. As the 

in-memory representation has already been generated, that particular step it skipped. 

7.2.3 Completed Object Model 

Following the complete Somputation process, a full hierarchy of interesting classes will 

have been built up underneath the manually created Object Root. However, during this 

process, another form of calculation is also occurring. Once each class has been inspected 

for its level of interest with regard to the attribute data it contains, its methods are also 

scrutinised to determine if they are suitable for mapping to H L A interactions. 
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7.3 Introspection Methods 

The way in which the Simspect framework represents methods in the H L A was presented 

in section 6.3.3. Having finished assessing a class to extract attribute information, 

attention turns to each of the methods it declares. The process used to assess whether or 

not a method is suitable for mapping to an H L A interaction is introduced in Figure 7-10: 
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The first two steps are the same as for assessing a class for attribute data. If the class has 

been processed for interactions before, it is skipped. If the class does not represent a valid 

type, as judged by the same criteria used previously, it is also skipped. 

Each method declared but not inherited by the class is inspected to see if it is worthy of 

inclusion within the F O M . Should it be judged that the method meets all the appropriate 

criteria (discussed below), an empty InteractionClass and associated MethodMapping 

will be created. The mapping stores a reference to the pure model method and to the 

interaction class metadata that will represent the H L A interaction. Each of the parameters 

to the method is then evaluated. 

Creating Parameter Mappings 

For each parameter of an interesting method, a new mapping is needed. This mapping 

records the parameter name2 2 and the mapping type of the parameter (see table 7-1 in 

section 7.1.3 for valid types). There will inevitably be some parameters whose type is 

another pure-model entity class. Accordingly, if instances of these entities are going to be 

referenced by parameters, the model types need to be mapped to the H L A and represented 

in the F O M . If the type of a parameter has not been Somputed for attributes, or has not yet 

been included in the F O M , its presence as the type of a parameter will cause this to occur. 

The parameter assessment process will invoke the object somputation algorithms for the 

particular type and will set the force flag to true, thus ensuring the type is mapped into the 

generated F O M . 

The final step in the method assessment process is to locate the parent interaction class to 

attach the newly created InteractionClass metadata object under. As proposed in 

section 6.3.3, all method calls exist in a flat hierarchy under a single parent: the 

InteractionRoot. MethodCall interaction. Once this is completed, computation moves 

on to assess whether or not the next method is interesting. 

Identifying Interesting Methods 

Section 6.3.3 introduced the characteristics of methods that can be mapped to H L A 

interactions. Figure 7-11 shows the process used to determine whether or not a method 

falls into the "interesting" category and necessary for inclusion within the generated FOM. 

22 In the reference implementation, the name is actually auto-generated based on the position of ti 
argument. This is due to a limitation in Java reflection whereby attribute names are not available at runtime. 
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As HLA interactions represent transient messages, there is no concept that can easily be 

mapped to a return type. Any method that does not have a void return type is immediately 

discounted as uninteresting. If the method begins with "set" it is adjudged to be following 

the common idiom of representing a mutator method23. In the HLA, strict ownership rules 

define who is and is not allowed to alter attribute values, and as such, mutator methods 

are also ruled uninteresting. 

As there is no concept that can be directly mapped to class (static) data or methods in the 

HLA, these methods are also ruled out. Finally, non-public methods are not considered 

suitable for presence in the F O M as they designate methods whose access is restricted and 

suggest strongly that the method in question is used for internal model processing rather 

than providing some facility intended for use by other components. 

23 The specifics of h o w mutators are represented is dependent on the implementation platform. In the 

reference implementation, the s e t X X X O form is used. In other platforms, this would be replaced by the 

appropriate representation. 
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7.4 Rendering Configuration Data 

The result of the processes introduced in sections 7.2 and 7.3 is a complete, in-memory, 

H L A object model. However, at this point there are two puzzle pieces that are needed to 

execute a Simspect powered H L A simulation that have not yet been created. Firstly, the 

F O M must exist in a federation description document that can be used by the RTI to 

define the model for a federation. Secondly, Simspect requires a mapping configuration 

data file so it knows what data to take action on and what to ignore. 

The final step in the automatic generation process it the conversion of the in-memory 

object model into these necessary simulation artefacts. Figure 7-2 introduced the concept 

of a Renderer. It is the job of an individual Renderer to take the in-memory object model 

and generate some required artefact from it. The Somputer itself contains an arbitrarily 

sized collection of Renderers who are invoked before it exits. In the reference 

implementation, on of these produces the object model file in O M T format, while the other 

produced the Simspect X M L configuration file. The exact number and purpose of 

Renderers is entirely dependent on the implementation environment in use. 

7.5 Experiment Two 

In section 5.2.3, the requirements for the second experiment were presented. The first 

experiment focused on validating the behaviour of the Simspect framework and the 

algorithms it used. However, when running the first experiment it was deemed acceptable 

for the F O M and Simspect configuration file to be hand written, thus allowing an 

experienced H L A developer to apply some semantic reasoning when deciding what parts 

of the pure-model should or should not be included in the H L A model. The purpose of this 

experiment is to validate that the automated process presented in this chapter constitutes 

a valid replacement for that manual process. 

To assess whether or not this has take place, experiment one must be rerun with the 

exception being that no hand crafted articles can be used. Both the object model file and 

the Simspect configuration file must be automatically generated. Removing manual 

intervention from the process completes a workflow that allows an H L A simulation to be 

generated from a pure-model without the requirement of H L A expertise. The pure-00 

code must be given to Simspect and it is expected that the Somputer and runtime 

environment handle all H L A needs. 
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Criteria One: Artefact Automatically Generated 

This criteria is considered to be met by ensuring that no manually created deployment 

artefacts were used when running the experiment. The pure-00 code was first passed to 

the Simspect Compiler. It is the job of the compiler to weave the Simspect Aspect into the 

0 0 code, and now, to generate the necessary artefacts. Previously, a manually created 

F O M and mappings file were copied into the directory before execution. This time, the 

generated files were used. 

As a further form of validation, the generated files can be inspected for differences that 

exist compared to the ones used in experiment one. The two generated files have been 

included in the supplementary materials that accompany this work. When inspecting 

them, evidence of the automation process can be seen in the areas of the files that deal 

with interaction parameter names. As noted earlier in this chapter, due to a limitation in 

the Java reflection framework, it is not possible to extract the names of parameters to a 

method. Consider the following: 

1 (class Restaurant_pri.ntMe reliable timestamp 
2 (parameter param0) ;; type=Type.BOOLEAN 
3 ) 

Listing 7-1: Generated Parameter Names for Methods 

In the hand created FOM, the name of this parameter is known to the developer and is 

thus included in the file. However, this information is not available to the Simspect 

compiler, so the parameter is given the default name of "paramO." The same situation 

occurs in the Simspect configuration file: 

1 <method jmethod="testcode.racesim.Race.enterCars" 
2 hmethod="InteractionRoot.MethodCall.Race_enterCars"> 
3 <param jposition="0" hname="param0" type="REFERENCE_ARRAY"/> 

4 </method> 

Listing 7-2: Generated Parameter Names for Methods 

Another interesting difference exists in the generated FOM and configuration file. The 

compiler has identified the printMe(boolean) method of the Restaurant class as 

interesting. This is an example of a false-positive. This method meets all the functional 

requirements of a method as discussed in section 7.3, however, applying some semantic 

understanding of the purpose of this method leads us to determine it is not necessary for 

inclusion in the HLA object model (hence its absence from the model in experiment one). 

This highlights the inevitable limitation of the an automated process and is an excellent 
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starting point for further work investigating how such instances could be reduced or 

eliminated. 

Criteria Two: Pure-model must remain HI A frep 

As with experiment one, the pure-model code has not been edited in any way to allow this 

experiment to run. The code for the model is included in the supplementary package that 

accompanies this work to allow its inspection. 

Criteria Three: Results of AOP-model do not match Pure-OO model 

The final criteria is the same for experiment two as it was for experiment one. If all the 

internal operations are successful, then the results of the model that is run in an HLA 

federation with the companion federate should be different from those obtained when 

running the pure-00 model by itself. Should the model and the companion federate be 

interoperating correctly, the companion will effect the simulation and the final output 

generated should reflect this. The companion federate is the same one that was used in the 

previous experiment. Accordingly, the impact it has on the Race and Sushi simulations 

should be the same. 

The Race Simulation 

The following output was captures from the race simulation when run by itself and when 

run in an H L A federation with the companion federate: 

Pure (non-AOP) Model: 

Starting race...Race Over 
[1]: Fastest Car 0:10:00 
[23: Medium Pace Car 0:15:01 
[3]: Slowest Car 0:30:00 

Distributed, AOP-Model: 

Starting race...Race Over 
[1]: RemoteCar 0:05:02 
[2]: Fastest Car 0:10:00 
[3]: Medium Pace Car 0:15:01 
[4]: Slowest Car 0:30:00 

The impact of the companion federate is evident by the presence of an additional car in the 

race. 

The Sushi Simulation 

Below are the results generated when running the Sushi simulation by itself and in an 

HLA federation with the companion federate: 
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Pure (non-AOP) Model: 

sushi: INFO Restaurant Simulation Over, No more food left! 
sushi: INFO Closing time: 30.0 
sushi: INFO Table Listing: 
sushi: INFO ->Table 1: customer=Customer0ne(5), availableDish=null 
sushi: INFO ->Table 2: customer=CustomerTwoC6), availableDish=null 
sushi: INFO ->Table 3: customer=CustomerThreeC2), availableDish=null 
sushi: INFO ->Table 4: customer=null, availableDish=null 

Distributed, AOP-Model: 

sushi: INFO Restaurant Simulation Over, No more food left! 
sushi: INFO Closing time: 26.0 
sushi: INFO Table Listing: 
sushi: INFO ->Table 4: customer=RemoteCustomerC7), availableDish=null 
sushi: INFO ->Table 1: customer=CustomerOne(0), availableDish=null 
sushi: INFO ->Table 2: customer=CustomerTwo(6), availableDish=null 
sushi: INFO ->Table 3: customer=CustomerThree(0), availableDish=null 

The results once again show that the companion federate has an impact on the simulation 

through the inclusion of a customer that does not exist when running the model by itself. 

Further, this customer also consumes dishes, meaning the distribution across all other 

customers is altered. 

As the companion federates are the same as used previously, these are the same results 

that were witnessed in experiment one. This demonstrates that the automatically 

generated object model and Simspect mappings file are valid. The companion federate is 

able to influence the final results in the same was it was when the object model and 

Simspect mappings information (representing the specification of which parts of the 

model are "interesting") were hand crafted. As the automated process removes the need 

for any HLA-specific knowledge to be used when converting the pure-00 model into an 

HLA aware version, the goal of this experiment is realised. 

7.6 Summary 
This chapter has presented a method for identifying data and methods within a pure-00 

model that may be of interest in the context of an HLA simulation. The process used is 

entirely automated, thus removing any mandate for HLA experience of specialist 

knowledge, a major force driving this research. The second experiment demonstrated that 

the process produced all the necessary artefacts that allowed both test simulations to 

proceed as they did in the previous chapter when these items were hand crafted. The 

successful completion of this experiment demonstrates that the automatic generation of 

an HLA model from pure-00 code is possible using the techniques developed as part of 
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this research. As a final form of validation, the next chapter describes a final experiment 

that seeks to combine an existing H L A simulation with pure-00 code. 



Chapter 8 

Air Transport Operations 

The previous two chapters have discussed an environment and methodology for allowing 

pure-00 models to operate within H L A federations through an automated process. 

Experiments one and two have demonstrated the operation of these proposals and 

validated that they meet their goals as introduced in Chapter 5. This chapter presents the 

final experiment of this research: the integration of a pure-00 model into an existing H L A 

simulation, requiring it to interact fully with the other federates and co-operatively model 

its scenario. 

8.1 The Air Transport Operations Simulation 

The Air Transport Operations (ATO) simulation is a scenario used as a teaching aid in an 

H L A course offered by the University of Ballarat (UB) [119]. It describes a simulation that 

models Aircraft as they fly between various Airports. The three main federates that 

participate in the simulation are: 

The Aircraft; Manager (ACM) federate. The ACM is responsible for creating Aircraft 

objects and updating their state as they fly around the simulated environment. It sends 

and receives interactions when other federates need to control its actions. For example, 

when an Aircraft wants to land at an Airport, it sends a Request Land interaction, and 

when the Airport is ready for it, a Land interaction is sent back. 

The Air Traffic Control (ATC) federate is responsible for all the airports and associated 

Runways. It controls which planes can land at the various airports and when, potentially 

telling aircraft to loiter, divert or land. 

The Flight Manager (FM) federate is responsible for deciding where each plane should 

fly to, h o w long it has to wait between flights and when maintenance is required. W h e n a 

plane has landed, the F M issues it directions as to what to do next. 

The implementation used in testing was completed by UB students and it used as part of a 

suite of test simulations for the Portico open source RTI. It includes a fourth federate that 

provides a GUI-based visualisation of that activities of the federation. This GUI, along with 

log file data will be used to determine whether or not the pure-00 model placed in the 

simulation is behaving appropriately. 
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8.2 Experiment Three 

In section 5.2.3, the requirements and qualification of success for experiment three were 

introduced. To assess whether or not the experiment was successful, a log of the output 

generated by the pure-00 model was collected and a visual confirmation of the expected 

behaviour was captured through the visualisation tool provided with the A T O federation 

implementation. 

The final experiment involves the existing ATC, ACM and FM federates operating in a 

federation with a pure-OO model. The role of the pure model is to create and manage a 

new airport. If successful, evidence that the F M federate is directing traffic to this new 

Airport and that the A C M is piloting Aircraft to the proper location should be found. The 

code for the pure-model is provided in the supplementary package that accompanies this 

thesis. 

8.2.1 Results 

Criteria One: O O - m o d e l runs without error 

The first success criteria requires that the pure-00 model execute with the A T O federates 

without error. This is confirmed with a visual inspection of the execution process. Further, 

success in the second and third criteria imply the success of this one. 

Criteria Two: ATO entity information discovered and used in OO-model 

During execution, information created by the existing A T O federates must be made 

available to the pure-00 model. To ensure this is happening, some basic log statements 

are placed within the pure model. The capture below demonstrates this working: 

[tim@pc-00244:simspect-1.0]$ Java -cp out.jar testcode.ato.Freedonia 
***** Register Freedonia Airport 
***** Open the Airport!!! 
awaitDepatureCLLA114,FREEDONIA) 
clearedCLLA114) destination=FREEDONIA 
PINGED Pinged aircraft [LLA114] from [FREEDONIA] Cdistance=1.9914730784Z83132) 
requestLandCFREEDONIA, false, LLA114) 

Listing 8-1: Freedonia OO-Model Log Output 

In this fisting, the "awaitDepature" and "cleared" entries come from the Aircraft class. 

The code in those methods just generates the logging statements you see. In the Simspect 

configuration file, those methods are mapped to the appropriate A T O F O M interaction 
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classes. These captures show that the pure-model is receiving these interactions and that 

the appropriate methods are being called. 

Criteria Three: Actions in OO-model affect simulation state 

The final criteria for experiment three requires that actions within the pure-model have an 

affect on the broader simulation. In the previous listing, the "PINGED" entry was generated 

by the main method in the Freedonia class that controls the pure-model Airport. It 

continues in an loop, finding all the Aircraft that are close to it and sending them the Ping 

interaction. When an Aircraft gets this interaction, if the source is the Airport it wants 

to land at, it sends back a Request Land interaction. In the pure-model, that method is 

mapped to the requestLand(String,boolean,String) method of the Airport class. 

The implementation for that method looks like this: 

public void requestLandC String airportDesignator, 

boolean emergency, 

String aircraftDesignator ) 

{ 
// only take action if the request was meant for us 

if( airportDesignator.equals("FREEDONIA") — false ) 

return; 

System.out.printlnC "requestLand("+airportDesignator+", "+emergency+ 

", "+aircraftDesignator+")" ); 

// find the aircraft and let it know it can touch down 

Aircraft aircraft = Aircraft.findAircraft( aircraftDesignator ); 

if( aircraft != null ) 

aircraft.land( aircraftDesignator ); 

} 

Listing 8-2: Request Land OO-Model Method 

As you can see, the code in this method just locates the appropriate Aircraft instance 

and calls its land(String) method. For reference, the implementation of that method in 

the pure-model is as follows: 
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public void land( String aircraftDesignator ) 

{ 

// Implemented by ACM federate. Calling this method triggers an interaction 

// that is responded to by the legacy HLA federate 

} 

Listing 8-3: Land OO-Model Method 

Simspect captures this method call and turns it into the appropriate interaction, which is 

then sent out over the H L A and picked up by the A C M federate which begins landing at 

the Airport. This successfully shows the effect of an action internal to the pure-00 model 

being realised in the wider simulation. The following is a screen capture from the A T O 

federation visualisation utility. 

This application is just another H L A federate and it shows the Freedonia airport being 

detected and displayed at the correction location, along with an Aircraft en-route to it. 

This demonstrates the successful completion of all requirements for the final experiment. 
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8.2.2 Remaining Problems 

Although the final experiment is largely a success, it is not an unqualified one. A number 

of problems were encountered when attempting to successfully integrate a pure-00 model 

and an existing H L A simulation. This section discusses these issues. 

Modification to Existing Simulation 

One of the main problems with integrating any existing H L A simulation with pure-00 

models developed using Simspect is the federate-level agreements Simspect itself imposes. 

In the A T O federation, these problems manifested themselves primarily in the space of 

interaction classes. 

As discussed in Chapter 6, to align interactions with method calls, Simspect expects a 

specific interaction class hierarchy. In reality, the hierarchy can be done away with as all 

that is really important is that interactions come with a parameter that identifies the H L A 

object handle of the instance an interaction relates to; the targetObject. There are a 

some problems here. 

Firstly, not all interactions are in reference to a particular HLA object. In these situations, 

the semantic disconnect between the purpose of H L A interactions and O O methods means 

that these scenarios cannot be supported. In the case of the A T O federation however, this 

is not a concern. All relevant interactions can are targeted at a specific instance. 

Interactions that ping an Aircraft, tell it to land, loiter, divert or await departure to a new 

destination are indeed all aimed at a particular Aircraft instance. Interactions that 

request a landing or take-off are aimed at a particular Airport. So while the expectations 

of Simspect may present problems in some situations, in such cases the problem is a 

product of H L A / O O conceptual misalignment that restricts Simspect's operation. 

However, in the ATO implementation being used, the lack of a parameter specifying target 

object information was a problem. Although all interactions did have an identifying 

parameter, it was typically couched in terms of Aircraft or Airport designators (a string 

name). The Simspect reference implementation requires an object handle formatted as an 

integer. This is largely an implementation concern. Support could be added to the 

Simspect configurator to allow users to manually specify what parameter contains the 

target object information and how that information can be turned into an H L A object 

handle, but the path of least resistance in the experimental setting was to modify the 

existing F O M and simulation to include the object handle in all relevant interactions. This 

also necessitated manually tweaking the generated Simspect configuration file to map 

methods to the correct H L A interaction classes. As with the other experiments, the source 
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code used in this experiment is available as part of the supplementary package that 

accompanies this work. 

Semantic Mismatch 

I have already presented one solution in which the semantic mismatch between O O and 

H L A has presented problems when integrating pure models and legacy simulations. 

However, these problems spread further. During the development of the pure-model, 

some "awkward" approaches were necessary to develop a functional component. For 

example, consider the requestLand(String,boolean,String) method in pure model 

code. It requires the manual conversion of an Aircraft designator into an Aircraft 

instance. In the O O world, a reference to the Aircraft would be passed directly to the 

method, but as an interaction is not meant to be a direct analogue to a method call, 

niceties such as this are not considered and the code must manually find the appropriate 

entity from a central store. 

Another example of some awkward development comes in the form of direct data 

introductions. Unlike situations where pure-00 models are interacting with one another 

via the H L A (and thus can all impose the "OO way" on all simulation participants), data 

that is created in remote A T O federates must be manually introduced to the pure-model. 

In this experiment, the direct introductions facility described in 6.3.2. This speaks to the 

research question: 

"How can pure models, that know nothing of application distribution, be created to 

depend on and work co-operatively with other remote models?" 

To work co-operatively with the other federates, their remote data must be introduced into 

the model. However, the necessity of direct introductions places requirements on the way 

the pure-model must finds and stores its data. Where more sophisticated approaches 

could be used in the other experiments (such as encapsulating all Cars within a Race 

instance, that itself has additional information), when interfacing with a legacy H L A 

model, the full benefits of O O are not available. Although annoying, this flaw is not fatal, 

and workable solutions can indeed be developed, as the success of experiment three stands 

in testament to. 

HT A Knowledge Not Entirely Eliminated 

As one can already understand from the previous subsections, when integrating a pure-

model with an existing H L A simulation, it does not appear likely that one totally eliminate 

the need for H L A knowledge. Federate-level agreements that are different for each and 
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every simulation must be dealt with. This brings to mind one of the research questions this 

experiment was meant to address: 

"Can the definition of federate level agreements be expressed without requiring manual 

intervention?" 

Without any formally specified, machine interpretable standard for specifying federate 

level agreements such as the problem mentioned above, the H L A lacks the vocabulary to 

express federate-level agreements, and as such restricts any attempt to define a generic 

solution. It is impossible to develop a solution for a situation whose requirements are 

unknown. Federate level agreements can only be solved with manual, human 

interpretation and intervention. 

Another example that arose during experiment three was how the pure-00 model would 

fit into the A T O federation with regard to execution requirements. The A T O federation 

expects all federates to follow a specific sequence of synchronization points, performing 

predefines actions at each one. To deal with this facility, a custom execution manager had 

to be developed and used. Simspect supports the ability to dynamically specify a class that 

encapsulates such requirements, but the development of such a component again requires 

H L A knowledge. 

8.3 Conclusion 

Overall, the final experiment can be considered a success. A pure-00 model was able to 

co-operatively interact with an existing H L A federation with only minimal intervention. 

Although this does not meet the full goals of this research (to eliminate the requirement of 

H L A knowledge entirely), it is reasonable to expect that when interfacing with a legacy 

H L A simulation, that some form of H L A knowledge be available. Having addressed the 

final research questions, the next chapter will conclude with a discussion of what this 

research has achieved and flag some areas that have strong potential investigation. 
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Chapter 9 

Conclusion 

As discussed in the early chapters of this thesis, a vast range and number of tools are used 

for simulation purposes. From custom-built tools specialising in helping users compose 

simulations for specific scenarios, to general purpose tools such as spreadsheets. While 

each type of tool used for simulation in the wider business community presents 

advantages and disadvantages, a c o m m o n shortcoming among all is a lack of 

interoperability. In a setting where numerous differing tools are all used for similar 

purposes, the ability to leverage investments made in the development of simulation 

models, independent of those tools, is severely restricted. 

Distributed simulation brings with it many benefits. From providing an environment in 

which interoperability can be increased to allowing larger and more complex scenarios to 

be played out, there is much to gain from allowing existing tools to leverage distributed 

simulation technologies. However the prohibitive costs that are associated with 

distributed simulation and the limited supply of these skills puts the potential benefits of 

distributed simulation technologies beyond the reach of those using commodity tools for 

simulation purposes. A solution to this particular problem is considerably attractive and 

has the potential to enable far richer analysis in such an environment and to increase the 

overall usefulness of both these tools and simulation in general. 

However, the sheer volume of different tools used within the wider business community 

restricts one's ability to define a solution that can readily be slotted into them all. Each 

tool has its own particular way of representing models and its own way of interfacing with 

its underlying simulation library. In such a heterogeneous environment, locating or 

defining a general conceptual solution that could possibly satisfy all approaches becomes 

practically impossible. Chapters 2 and 3 discussed this problem, proposing that at some 

level, Object-Oriented programming would form a lowest common denominator for the 

largest number of environments. A solution at this level would provide something that has 

the potential to be readily integrated into many simulation tools, both those existing and 

yet to be developed. 

Interfaces to distributed simulation technologies exist in the most common OO 

programming languages, but leveraging these technologies introduces the requirement of 

possessing specialised skills, which in this research comes in the form of H L A 

understanding. The barrier to entry presented by the H L A is steep, and although Object 
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Oriented programming skills are mainstream and widespread, any solution that revolves 

around this community gaining a full and working understanding of the H L A is 

unreasonable. 

This thesis proposes that the development of a solution that could allow pure-00 models 

to be automatically rendered as H L A components would form a significant contribution 

towards making distributed simulation more readily accessible in domains where its use 

thus far has been negligible. Identifying and solving the problems from the level of O O 

through the H L A advances the current state of the art and presents a solution that can be 

readily integrated into existing simulation tools, opening the gate to a richer simulation 

ecosystem. 

Chapter 4 highlights some potential solutions that could be leveraged in pursuit of this 

goal. Of these, two primary candidates stood out in the literature: The Model Driven 

Architecture ( M D A ) and Aspect-Oriented Programming (AOP). Although initially 

appealing because it proposes to allow users to express their problems in their own terms, 

the M D A was discounted due to numerous practical problems preventing the full 

realisation of its ambitious intent. Conversely, while not as grand in vision as the M D A , 

A O P is a solution for which many practical implementations already exists and which 

supports mission critical services in a number of domains. Allowing platform specific 

concerns such as the H L A to be separated and isolated from the development of other 

parts of a system, A O P was demonstrated to be the most promising path. 

AOP alone does not totally solve the problems this research seeks to address. While the 

H L A portion of a system can be quarantined, it must still be developed. Further, someone 

must identify the points within a model that are of interest in the H L A context and 

describe how the OO-model maps onto the HLA-model. Each of these activities require a 

high degree of competence with the H L A and associated technologies. A O P does not 

eliminate the need for H L A expertise, it just contains it. 

The focus of this research is on that particular gap, proposing an environment that 

leverages A O P to reduce the scope of H L A concerns and then presenting methods for 

automatically extracting the intent of an OO-model as it relates to the HLA. The Simspect 

framework is the realisation of these goals, comprising an AOP-based environment and 

methods for identifying and extracting pieces of an OO-model that might be of interest in 

an H L A context. 

Chapter 6 described how an AOP framework could successfully isolate HLA logic, allowing 

a model to be developed and described in pure-OO. The activities of this model were then 
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intercepted at runtime and selectively passed to the H L A based on manually identified 

mapping points. The first experiment validated that this framework met its goals, but still 

required manual intervention which necessitated H L A knowledge. This advancement 

demonstrated h o w the proposed concept was technically valid, moving the focus to 

methods for introspecting O O models in an effort to automatically extract information on 

interest when connecting with the H L A 

The second experiment looked at methods for identifying the relevant information within 

an O O model, allowing the manual processes of generating an H L A object model and 

identifying and defining the various mapping points to be automated. Chapter 7 discussed 

and validated these approaches, demonstrating the process of automatically developing an 

H L A federation from pure-00 code, allowing the previously manual processes to be 

removed. This achievement is central to the goals of this research. The value that such a 

facility presents represents a significant contribution to the current state of the art and 

acts as a facilitator, bringing the benefits of distributed simulation within reach of 

commodity tools. 

Further Work 

The final experiment involved the integration of a newly developed OO-model with an 

existing H L A simulation. While successful, this chapter highlighted some of the challenges 

that remain when considering the underlying semantic disconnect that exists between O O 

and the HLA. Throughout this thesis, a number of areas that could be considered fertile 

grounds for further exploration have been identified. Primary among these is exploring 

ways to specify federate-level agreements such that they can be captured in an automated 

fashion or used without necessitating a deep understanding of esoteric H L A details. 

Unfortunately, the HLA standard as it currently exists allows federations significant 

enough flexibility in the definition of these details that it becomes extremely difficult to 

develop a genetically applicable solution. Although this flexibility is a great benefit to H L A 

developers, the lack of any solution to codify these agreements in explicit enough detail 

(and in a machine readable manner) restricts any solution. Further investigation into ways 

to solve this problem would help allow the methods presented in this thesis to become 

even more effective when integrating O O and H L A models. 

A second area where more research would be beneficial is in ways to extend the proposed 

framework to cover the complex-type enhancements that were introduced in the IEEE 

1516 version of the H L A standard. Although the use of these types does goes against some 

of the philosophical benefits of selective interest in an object model, their use has become 

quite prevalent. Questions about h o w best to identify types within an OO-model that 
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would be best suited to complex types rather than H L A object classes would be an 

interesting study and one that would allow the integration of this work with even more 

existing simulations. 

Finally, the work presented in this thesis can aid in the integration of modelling and 

simulation functionality into existing operational systems used within the military. 

Facilitating an easier transition into the network-centric world of distributed simulation 

helps to gain further benefit from these systems by allowing them to be used not only for 

operational purposes, but also more directly in simulated training exercises. 

Summary 

Through the proposed framework and methods presented in this research, a solution that 

has the potential to significantly reduce the cost and knowledge required to leverage 

distributed simulation technologies in commodity tools often used for simulation in the 

wider business community has been achieved. This step forward places within reach of 

these tools the potential for a much richer tool set allowing more complex and deeper 

analysis to be produced, which could in turn provide those who rely on such information a 

greater understanding of the effects their decisions will have. 

Through the proposed framework and validated in experimentation, this research presents 

a solution that has the potential to significantly reduce the effort and knowledge required 

when developing H L A models, making access to the HLA, and the benefits distributed 

simulation provides, available to a much broader audience and able to be more readily 

integrated into the tools people commonly use for simulation purposes. 
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Appendix A 

The Race Car Simulation 

The Race Car simulation is designed to be a structurally simple pure-00 simulation. It 

contains no inheritance hierarchies and only minimal aggregation and composition. It is 

the first barrier used when assessing any solution that proposes to allow the automatic 

rendering of OO-models as H L A simulation components, ensuring that at least the basics 

are working. 

The class structure of the Race simulation is shown in Figure A-i: 

C 
class 

Race 

name: String 

distance: double 

elapsedTime: double 

over: boolean 

cars. List<Car> 

results: List<Result> 

startRace(doubJe) 

c 
class 

Car 

name: String 
topSpeed: double 

distance: double 

moveCar(double) 

0..' 

c 
class 

Result 

car: Car 
position: int 

time: double 
M>mM,"r»U.II"illHMI 

Figure A-l: Race Car Simulation Class Diagram 

The simulation has a single Race, inside whieh any numher of Cars can be present. When 

the simulation starts up, Car objeets are manually instantiated and entered into the race 

(three of them in the case of the experiments used in this research). The race is then 

started via a call to startRaceCdoable). This method loops over each of the Cars m the 
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race, continually calling their moveCar (double) methods. The original parameter to 

startRaceO specifies the increments time should be advanced in. 

To keep things predictable, thus making experimentation easier, the model used to 

advance Car objects through the race is simple. As soon as the race starts, each Car is 

assumed to be travelling at its maximum possible speed. Therefore, the car with the 

highest top speed will always win. The Race iterates over each Car, asking it to advance 

itself a little bit further in time each iteration. W h e n the distance of the Car surpasses the 

distance of the race, a new Result object is created, recording the position of the Car 

with regard to the field and the current elapsed time. Once all Cars have passed the finish 

line, the race is over and the results are printed. 

The Race Car simulation was designed to support experimentation by allowing remote 

components to insert new cars into a race and to control their advancement according to 

whatever model the remote entity chose. 
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Appendix B 

The Sushi-Boat Simulation 

The Sushi-Boat simulation is designed to be more structurally complex than the Race Car 

simulation. It contains many common object-orientation constructs such as abstract 

classes and inheritance trees of reasonable depth. It also contains considerable levels of 

aggregation and composition, more accurately representing a real-world model. 

Figure B-i shows the majority of the classes involved in the pure-00 sushi simulation. In 

each simulation, there is a single Restaurant. Inside each Restaurant are a number of 

Tables at which Customers can be seated The model is meant to simulate a sushi-boat or 

sushi-train style restaurant, where dishes continually revolve past each table, at which 

point the occupants can choose to take and consume the dish, or let it go. The run() 

method of the Driver class performs the necessary logic to move Dishes from one table to 

the next (which is done purely through accessor and mutator methods). 

When a dish arrives at an occupied table, the resident Customer is notified through the 

newDishHasArrivedCDish) method. At this point, they can choose to consume the dish 

by calling its eat(Customer) method (passing themselves as the Customer), or it can 

ignore the dish. W h e n a Dish is eaten, it is added to the Customers dishesPurchased set 

so it can be tallied at the end. The Driver continues to move dishes around the restaurant 

until they have all been consumed, at which point the simulation ends and information is 

printed describing the dishes and the valuation of the dishes each customer consumed. 

The Sushi-Boat simulation is designed to support experimentation by allowing remote 

components to act as Customers, specifying their own algorithm for how food is chosen. 

The PredictableCustomer implementation is also used for experimentation, as it 

consumes dishes in a repeatable way. Placing a remote Customer into the simulation will 

affect the flow of dishes to the other customers, thus altering the final distribution of 

dishes. 
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Appendix C 

The Air Transport Operations Federation 

The Air Transport operations is a simulation scenario used during practical exercises as 

part of a commercial 2-week course offered by the University of Ballarat. The basic 

premiss of the scenario is that it models the operations of a number of Aircraft as they 

transit between a groups of Airports. 

The listing below describes the main structure of the F O M used in the ATO federation, 

starting with the object classes: 

1 ;; Object Classes 
2 (class ObjectRoot 
3 (attribute privilegeToDelete) 
4 (class Position 
5 (attribute x) 
6 (attribute y) 
7 (attribute altitude) 
8 (class Airport 
9 (attribute designator) 

10 ) 
11 (class Runway 
12 (attribute airportDesignator) 
13 ) 
14 (class Aircraft 
15 (attribute designator) 
16 (attribute model) 
17 (attribute state) 
18 (attribute destinationAirport) 
19 (attribute currentAirport) 
20 (attribute groundSpeed) 

21 ) 
22 ) 
23 ) 
24 
Listing C-i: Air Transport Operations Object Model Classes 

and the interaction classes: 
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25 ;; Interaction Classes 
26 (class InteractionRoot 
27 (class Aircraft 
28 (parameter targetObject) 
29 (parameter aircraftDesignator) 
30 (class AwaitDeparture 
31 (parameter destination) 
32 ) 
33 (class TakeOff) 
34 (class Cleared) 
35 (class Ping 
36 (parameter airportDesignator) 
37 ) 
38 (class Loiter) 
39 (class Divert 
40 (parameter reason) 
41 ) 
42 (class Land) 
43 (class Landed) 
44 (class Turnaround) 
45 (class Repair) 
46 (class Dead) 
47 ) 
48 (class Airport 
49 (parameter targetObject) 
50 (parameter airportDesignator) 
51 (class RequestLand 
52 (parameter emergency) 
53 (parameter aircraftDesignator) 
54 ) 
55 ) 
56 ) 

Listing C-2: Air Transport Operations Interaction Model Classes 

Three main federates make up the core of the simulation. 

The Air Traffic Controller manages the various Airports that inhabit the simulation. 

This federate is responsible for sending ping notifications to Aircraft as they come into 

range of the airport and for handling takeoff and landing requests from the Aircraft in an 

orderly fashion. 

The Aircraft Manager handles the take-off, in-flight and landing operations of a 

number of Aircraft. This federate is primarily responsible for moving the plane from one 

point to another, and controlling takeoff and landing. 
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The Flight M a n a g e r is responsible for Aircraft after they land, putting them in for 

maintenance and deciding when they are ready to be put into action again and where their 

next destination is. 

Unlike the previous two models, the ATO is not designed with the intention of supporting 

experimentation by allowing extension in some pre-considered manner. This simulation 

exists as a legacy H L A model, the implementation of which was developed by the Author 

and student Michael Fraser during their time at the University of Ballarat. 

There are a number of ways that the ATO federation could be extended: 

An OO-model could be designed to represent a particular Airport whose algorithm 

for deciding who can land, and when, it different from the first-come, first-serve 

style of the legacy implementation. 

An OO-model could be designed to represent an Aircraft, modelling its path and 

motion as it travels between airports. 

An OO-model could be designed to replace the Flight Manager federate, controlling 

how long an Aircraft may remain operational before maintenance is needed and the 

order of Airports on its route. 

For experimentation in this thesis, the first option was chosen. A pure-00 model 

instantiates an Airport and has it automatically entered into the simulation. It then 

performs all the operations for that Airport that the A T C federate performs for the other 

airports. The Flight Manager sees it when it is registered with the simulation and is able to 

direct Aircraft to it. 

The figure below shows the object model that was created and fed into Simspect: 
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model: String 

state: int 

destinationAirport: String 

currentAirport: String 

groundSpeed: double 

awaitDeparture(String,Strlng) 

takeOff(String) 

cleared(String) 

ping(String.String) 

land(String) 

landed(Strtng) 

Figure C-l: Air Transport Operations Class Diagram 

Running this apphcation with Simspect requires the custom tweaking of the generated 

mappings configuration file. The primary reason for this is that the pure-00 model must 

interact with an unchangeable legacy H L A simulation. W h e n integrating in this way, some 

manual mappings work, requiring H L A knowledge, can be considered reasonable. If a user 

is integrating with an H L A simulation it is fair to expect that some H L A expertise exists 

and that can be put to minimal use by ensuring the mappings are correct This knowledge 

however is not needed w h e n actually developing the pure model. 

The pure model works by having a main simulate method call methods on the local 

Aircraft instances. Simspect sees that these are not local objects and triggers the 

ma p p e d interactions to be sent. The same pattern is used in reverse for incoming 

interactions which in turn trigger methods on the local Airport instances. The pure-model 

implements the bodies of these methods as appropriate. 
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A fourth legacy federate was also used in experimentation. This federate acts as a 

visualisation of the simulation, allowing confirmation that the pure-00 model's Aircraft 

was entering the simulation and that it was moving from Airport to Airport. 
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Appendix D 

Generic Weaving Rules and Advice 
Below is a listing of the code for the Generic Aspect. Note that some code (such as that 

used for logging) has been omitted in the interest of brevity. 

/* 
* Copyright 2007 Distributed Simulation Lab, University of Ballarat 
* 

* This file is part of simspect. 
* For license details, see the LICENSE file. 
V 
package simspect.aspects; 

import java.lang.reflect.Field; 
import java.lang.reflect.Method; 

import org.apache.log4j.Logger; 
import org.aspectj.lang.reflect.MethodSignature; 
import org.aspectj.runtime.reflect.FieldSignaturelmpl; 

import simspect.runtime.ModelFacade; 

public aspect SimspectExtractor 

{ 
// 
// INSTANCE VARIABLES 
// 

private ModelFacade facade; 
private Logger logger; 

// 

// CONSTRUCTORS 
// 

public SimspectExtractorO 

{} 

// 

// POINTCUTS 
// 

protected pointcut ignoreList() : 
!within( hla..* ) && 
!within( simspect..* ) && 
!within( com.lbf..* ) && 
IwithinC org..* ) && 
!within( testcode.exp..* ); 
//!within( testcode..* ); 

/** pointcut to get the main method */ 
protected pointcut mainMethod() : 

executionC public static void main(String[]) ) && 

ignoreListQ; 
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/** pointcut to get all consturctors */ 
protected pointcut constructors( Object newObject ) : 

initialization( public *.new(..) ) && 
ignoreList() && 
target( newObject ); 

/** pointcut to get all field sets */ 
protected pointcut fieldSet( Object target, Object newValue ) : 

setC * * . * ) & & 
ignoreList() && 
args(newValue) && 
target(target); 

/** pointcut to capture all methods */ 
protected pointcut methodCall( Object target ) : 

execution( public [static void *.*(..) ) && 
!execution( public * *.get*Q ) && 
!execution( public * *.set*(..) ) && 
ignoreList() && 
target( target ); 

// 

// ADVICE 
// 

//////////////////////////// 
// CAPTURE: main() method // 
//////////////////////////// 
// Capture the main method so that we can instantiate the runtime 
void around() : mainMethod() 

{ 
try 
{ 

// create the facade and runtime // 
this.facade = new ModelFacadeO; 
this.logger = this.facade.getLogger(); 

// inform the facade of simulation beginning // 

this. facade. onStartupO; 

// proceed and execute the model main method 

proceedO; 

// tell the facade that things are done for 
this, facade .onShutdownO; 

} 
catch( Exception e ) 
{ 

e.printStackTraceO; 
System.exit( 1 ); 

} 

// make sure that we get out of here // 

System.exit( 0 ); 

} 

/////////////////////////// 
// CAPTURE: constructors // 
/////////////////////////// 
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beforeC Object newObject ) : constructors( newObject ) 

// notify the runtime // 

this.facade.onConstructor( newObject ); 

///////////////////////////// 

// CAPTURE: field SET call // 
///////////////////////////// 

Object around( Object target, Object newValue ) : 
fieldSet( target, newValue ) 

{ 
try 
{ 

// 1. determine which field is being set // 
String name = 
C(FieldSignaturelmpl) 
thisJoinPoint.getSignature()).getNameO; 

Field field = getField( name, target.getClass() ); 

// 2. notify the runtime // 
facade.onFieldSet( field, target, newValue ); 

// 3. proceed with the execution // 
return proceedC target, newValue ); 

} 
catchC NoSuchFieldException nsfe ) 
{ 

throw new RuntimeException( nsfe ); 
} 

} 

////////////////////////// 
// CAPTURE: method call // 
////////////////////////// 
Object around( Object target ) : methodCallC target ) 

{ " 
// 1. collect the necessary information // 
Method method = 
((MethodSignature) 
thisJoinPoint. getSignatureO). getMethodO; 

ObjectG args = thisJoinPoint.getArgs(); 

// 2. notify the runtime // 
if( facade.onMethodCall(method, target, args) ) 

{ 
// proceed as normal // 
return proceed( target ); 

} 
else 

// we do not own the object the method is being called 

// on, skip the proceedO 
return null; 

} 
} 

// 
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// 

// 

INSTANCE METHODS 

> 
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