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A software framework is an architecture or infrastructure intended to enable the integration and interoperation of software
components. Specialized types of software frameworks are those specifically intended to support the composition ofmodels or other
components within a simulation system. Such frameworks are intended to simplify the process of assembling a complex model or
simulation system from simpler component models as well as to promote the reuse of the component models. Several different
types of software frameworks for model composition have been designed and implemented; those types include common library,
product line architecture, interoperability protocol, object model, formal, and integrative environment. The various framework
types have different components, processes for composingmodels, and intended applications. In this survey the fundamental terms
and concepts of software frameworks for model composition are presented, the different types of such frameworks are explained
and compared, and important examples of each type are described.

1. Introduction

A software framework is an architecture or infrastruc-
ture intended to support and enable the integration and
interoperation of software components. It may consist of
concepts, technologies, tools, protocols, standards, control
mechanisms, interfaces, and processes intended to enable
the rapid, efficient, and flexible assembly of systems from
components in a practical setting. Here we focus our
attention on a subclass of software frameworks, specifically
those software frameworks where the components are either
implementations of models, for example, a model of terrain
effect on wheeled vehicle movement, or nonmodel support
components, for example, a map display for a user interface,
and the framework is intended to support the composition
of those models and support components into more complex
models and simulation systems. For brevity, such software
frameworks specifically designed to support the composition
and integration of models and simulation support compo-
nents will be referred to as simulation frameworks or when
the meaning is clear simply as a framework.

This paper’s scope is simulation frameworks for model
composition. Its purpose is to review such frameworks,

including both their theoretical characteristics and capa-
bilities and their implementation and use in practice. To
that end, this paper is both a tutorial and a literature
survey. As a tutorial, it explains basic context and defines
important terminology and provides a categorization scheme
for simulation framework types. As a literature survey, it cites
and summarizes publications in the research and professional
literature. In an important part of the paper’s approach to
the subject, several existing software frameworks that have
been developed to support model composition are described
in some detail.

This paper is structured as follows. Section 2 introduces
background material, including context and key defini-
tions. Section 3 defines categories or types of simulation
frameworks. Section 4 describes important examples of the
different simulation framework types. Section 5 provides a
summary of paper’s findings and recommendations.

2. Background

This section introduces essential background information for
understanding the software frameworks to be surveyed. It
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Figure 1: Framework, components, and library.

presents a series of important definitions of terms relating
to simulation frameworks and components and uses those
definitions to place the idea of a software framework for
model composition in the context of related ideas and
technologies.The nature of software components within such
a framework is also discussed.

2.1. Definitions and Context. To begin, several important
terms relating to simulation frameworks and components
are defined and explained. The definitions are not given in
alphabetical order, as is often conventional for lexicons, but
in an order intended to enable the reader to comprehend the
definitions as each builds and depends upon the preceding
definitions.

Software Reuse. Software reuse refers to using a previously
developed unit, package, or module of software more than
once, either for the purpose for which it was originally
developed or for a new purpose or in a new context. Software
reusemay save time, effort, or cost for development or testing.
If the software being reused is a model, reuse may add
credibility to the new application if the software underwent
verification, validation, and accreditation for its previous use
[1, 2].

Component. The concept of components is fundamental in
the context of general software reuse. Multiple definitions
of component are available from the software reuse litera-
ture; selected examples include the following. (1) A unit of
executable or source code that is available for reuse [3]. (2)
A reusable software package or module that encapsulates
a set of related functionality and communicates with other
components via an interface [4]. (3) An encapsulated unit
of software with a known set of inputs and expected output
behavior where the implementation details may be hidden
or unknown; an interchangeable element of a system that
conforms to a specification [5]. Our focus in this paper is
on software frameworks designed specifically for simula-
tion software, that is, simulation frameworks. In simulation
frameworks, a component is a software component and has
all the properties of one, but it may also have additional
simulation-specific properties. A component may be a model
capable of simulating all or part of some real-world system

of interest, such as a physics-based model of aircraft flight
dynamics, or itmay have functionality specific to a simulation
implementation, such as a future event list in a discrete event
simulation. Hereinafter, the term component will refer to
components in general, whereas model component will refer
to components that implement all or part of a model and
simulation component to components that are not amodel but
implement some simulation-specific support functionality.

Framework. A software framework is an architecture or
infrastructure intended to support and enable the integration
and interoperation of software components. The essential
idea is that components developed to be compliant and
consistent with a framework may be combined, connected,
and composed within that framework, and that such com-
positions may be assembled more readily and with more
likelihood of correct operation than would be possible
without the framework. Definitions of software frameworks
in the literature range from quite generic, for example, “a
set of interacting objects that, together, realize a set of
functions” [3] to quite specific, for example, “a subsystem
that contains abstract and concrete types and classes designed
for reuse” [6]. In most definitions the key defining concepts
are components as the units of integration, a mechanism to
support their integration and interoperation and the fact that
different components may be combined at different times.
Some definitions of framework emphasize the components,
whereas others emphasize the mechanisms to connect the
components; both are crucial in an effective framework.
Figure 1 abstractly illustrates the idea of a framework; it
shows a set of notional components, selected from a larger
set of available components stored in a component library
that are connected and interoperating via the structure and
capabilities provided by the framework.

Composability and Composition. Composability is the capa-
bility to select and assemble simulation components in
various combinations into valid simulation systems to satisfy
specific user requirements [7]. The defining characteristic
of composability is that different simulation systems can
be composed in a variety of ways, each suited to some
distinct purpose, and the different possible compositions will
be usefully valid. Early theoretical study of composability
addressed the question of when a model can be composed
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Figure 2: Survey context.

with other models, and if it is so composed, whether the
resulting composition is valid [8, 9]. Similarly, the structural
and numerical inconsistencies that may arise when compos-
ing components that implement physics-based models based
on differential equations have been examined [10]. Of more
direct relevance to simulation frameworks, efforts aimed at
the practical implementation of composability have been
identified [11] (Portions of this paper use concepts and terms
introduced in [11]).

Given this definition of composability, composition (as a
verb) is the process or capability of selecting and assembling
components for execution. Exactly how the components
are selected and assembled will depend on the framework
within which they are composed. The details of selecting
components dependmore on the framework’s library, and the
details of assembling them depend more on the framework’s
implementation mechanisms. Both will be discussed in this
survey. Composition (as a noun) refers to a set of components
that have been composed to produce an integrated or inter-
operable whole (in some situations, phrases such as “set of
components” or “composition of components” will be used
instead of simply “composition” as a noun. The terms are
meant be synonymous).

Standards. A standard is an agreed-upon convention or
requirement that defines or prescribes some aspect or aspects
of a technical system. Such standards are usually embodied as
a formal and configuration-controlled document that spec-
ifies consistent engineering or technical criteria, methods,
processes or practices. Standards may be considered de jure,
which have the formal definition just described, de facto,
which exist when a particular product, format, or represen-
tation becomes so ubiquitous and dominant that its nonuse
would cause significant problems or proprietary, which are
standards-like entities that are owned and controlled by a
commercial organization [12]. Simulation standards are those
standards that apply to simulation, whether to software,
development practices, data definitions, or any other aspect of
simulation.Of special interest in this paper are the distributed
simulation interoperability protocols, including distributed
interactive simulation (DIS) [13], high level architecture
(HLA) [14], and test and training enabling architecture

(TENA) [15]), which can be understood as both standards
and frameworks.

Resolution.When describing amodel, resolution is defined as
“the degree of detail which with the real world is simulated”
[16]. When describing a component, resolution denotes the
size of the component not in bytes or lines of code, but rather
in terms of the scope or extent of the functionality provided
by the component. A small component has a narrow and
limited functionality and is likely to be useful only when
combined with other components, for example, a random
number generator, whereas a large component may have a
broad and extensive functionality and is likely to be capable of
independent operation even without other components, for
example, semiautomated forces system [17] (Hereinafter, we
will use the terms “small” and “large” to describe components
with meaning defined here, i.e., scope of the component’s
functionality, not its size in bytes.). Successful components,
that is, those that are reused, may be of any size. The
composition of different size components defines different
levels of composability [7].

Library. In the context of frameworks, a library is a collection
of components that are available for reuse. A library is
realized as a system that accepts, stores, and provides access
to components that may be reused. Issues of configura-
tion management (controlling and tracking changes to the
components) and discovery (enabling potential users of the
components to locate and assess components for reuse) are
important in software libraries, but are outside the scope of
this survey. A library may store other artifacts in addition
to components, such as metadata, data, or documentation.
A range of closely related terms are used, for example,
catalog (which specifically stores discovery metadata), reg-
istry (which specifically stores metadata schemas), repository
(which may contain components developed independently
and with no prior intent for interoperation), and storehouse
(which is generic for storage systems) [1], but the distinctions
between these terms will not be needed in this survey.

Equippedwith these definitions, the subject of this survey
can be placed in context, as illustrated in Figure 2. In the
figure “composability” and “reuse” are desired capabilities,
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and “frameworks” and “standards” are technologies that
contribute to the achievement of those capabilities. The
mechanisms through which technologies and goals support
and enable each other are indicated by the labeled arrows; the
directionality of the arrows indicates that the “from” technol-
ogy or capabilities supports or enables the “to” technology or
capability.

2.2. Characteristics of Components. In simulation frame-
works, model components are typically larger than a single
model of a domain-specific object but are still small enough
to be confined to a single area of subject matter expertise.
Of course, not all components are model components; some
may provide supporting infrastructure to simulation systems,
such as a network interface component or an event queue
component. Determining the size or functionality of a com-
ponent is not amenable to rules applicable in all situations, but
the “satisfies user requirements” clause within the compos-
ability definition provides a guideline; a component should
have capabilities that are useful to potential users as a unit,
neither too small nor too large. The criteria for making that
determination will necessarily depend on the application.

The initial development of a composable component is
often more difficult than a noncomposable one, but subse-
quent development is made easier by the use of previously
developed components. Contributing to the additional ini-
tial effort is the need to document the assumptions and
validity limits of the models more carefully in a composable
component. Modeling practices already considered positive
in general, such as using parameters instead of constants,
documenting well, checking input for validity limits, and
striving for clarity in implementation, are beneficial in par-
ticular to the development of composable components that
embody those models. Not as obvious is that the needs of
composability support goodmodeling practices, for example,
the requirement imposed by composability to document a
model’s assumptions and limits of validity would help the
modeler to consider his/her models more carefully at the
outset.

Components can be integrated and used with other com-
ponents only through well-defined interfaces. A component
interface should define “. . . a set of properties, methods,
and events through which external entities can connect to
and communicate with the component” [18]. In some cases
components would have customizable aspects that could be
modified at run-time through the interface.

Structured descriptions or specifications of the compo-
nents (sometimes called metadata or metamodels) can be
used to guide the processes of selecting components for a
specific purpose and determining if a set of components can
be composed [5]. A component’s specification (metadata)
should include details of the component’s interface(s) and
model(s).

In practice, it is often assumed that anymodel component
that had been placed in a repository is valid, at least within
bounds stated in its component specification. A component’s
validity constraints are the limits or bounds within with the
component’s model is deemed valid and may be defined

at a low level in terms of physical parameter values, time
step sizes, and so on or at a high level in terms of valid
applications for the component. Even so, it has been shown
that the validity of individual components does not imply
that a composition of them can be assumed to be valid
[8]. Validating a composition can use traditional validation
methods, such as comparing composition output data to
baseline data [19] and can also exploit the composition’s
component structure, such as automatically comparing the
domains of validity for each component with the data they
are receiving from other components in the composition.

3. Framework Types

Several distinct types of software frameworks for model
composition have been developed. The mechanisms used
to implement a framework may vary; they include rules,
protocols, standards, programming language structures (e.g.,
class and type hierarchies), interface definitions and imple-
mentations (e.g., application programming interfaces), data
translators and converters, and data transport utilities. These
different mechanisms may be used together in a wide range
of combinations to produce a framework. Moreover, dif-
ferent framework types may also vary in the forms and
resolutions of the components the framework is designed
to connect. Some frameworks are designed for small com-
ponents, whereas others are designed for large components.
(Here “small” and “large” are used as defined earlier with
respect to resolution.) As a result of this variability in
mechanism and design intent, a number of different types
of frameworks have been developed and used within the
community of modeling and simulation practitioners. Each
offers a mechanism for linking components and transporting
data and control between them, and each is intended and
designed to support components at a certain range of levels
or resolutions but they differ in regarding how to do so.

This section defines six categories or types of software
framework for model composition and briefly identifies
examples of each type. (An earlier version of the catego-
rization scheme for framework types used here was intro-
duced in [11], where the framework types were described
as “approaches to composability engineering”.) Extended
descriptions of important or interesting example frameworks
are given later.

3.1. Common Library. A common library simulation frame-
work is based on a collection or set of software modules
or components that are composable or reusable through
conformance to a standard interface or set of interfaces that
allows the modules to interoperate with the other modules
in the library or a subset of them. Typically the components
in a common library framework are not models that can
be executed in stand-alone mode, although that is not a
firm characteristic. The framework may also include tools,
services, and standards. Common libraries are developed
using a common set of assumptions underlying the models
within them and a common protocol for data transfer
between them. The components are intentionally designed
from the outset to work together with each other in various
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combinations. The library may include components with
varying degrees of composability, that is, some of themodules
may be composable with all or most of the components in
the library, whereas other components may work with only a
small subset of the other components.

Implemented examples of common library simulation
frameworks include the Joint Modeling and Simulation Sys-
tem (JMASS) [20–23], the Common Simulation Framework
(CSF) [24], the Pervasive System for Indoor-GIS (PSI) [25],
and J-Sim [26]. It is often the case that a common library
simulation framework is intended from the outset or evolves
to become focused on a particular category of simulation
applications. JMASS is focused on modeling aircraft avionics
and electronics systems, CSF on modeling tactical missile
systems, PSI onubiquitous computing applications, and J-Sim
on computer and communications networks. CSF and CSFA
will be described in more detail later.

3.2. Product Line Architecture. A product line architecture
simulation framework is based on the carefully planned
development of multiple related simulation products that,
to the extent possible, share common software components.
The architecture is realized using two software development
processes. The first is developing a set of components that
will be integrated in various compositions into the products.
The second is integrating subsets of those components into
specific products.The product line architecture includes both
the library of components and an automated (or semiauto-
mated) process or tool for integrating them into products
[27].The range of possible products is known in advance and
documented in a detailed specification. The components are
designed from the outset to work together in those specific
products. As with a common library framework, typically
none of the components is a stand-alone simulation product.

Data and control interfaces between the components
within an anticipated product are documented in advance in
the specification for each component. The architecture may
provide a data transfer protocol used within the products.

Examples of simulation products implemented within a
product line architecture simulation framework include a
flight instrumentation trainer [27], a synthetic environment
model [28], a physics-based model of weapons effects on
buildings and structures [29], two families of live training
instrumentation systems [30, 31], and one semiautomated
Forces, a real-time constructive combat model [32]. OneSAF
will be described in more detail later.

3.3. Interoperability Protocol. An interoperability protocol
simulation framework is based on the run-time exchange
of simulation data or services, typically using a distributed
simulation interoperability protocol such as ALSP, DIS, HLA,
or TENA [33]. In this framework type, simulation systems
consist of models or support utilities, each of which is
an independently executing process or program distributed
across multiple computation platforms that exchange data
during the execution of a simulation via a network. That
data and the transport mechanisms to distribute and deliver
it are defined according to the protocol being used. In the

terminology of HLA, which is an architecture standard and
interoperability protocol for such systems, the simulations
are federates and the distributed simulation systems are
federations [14]. The federates can run independently, but
normally interact during execution by sending and receiv-
ing data via network messages. In simulation framework
terms, the federates are the components and the distributed
simulation interoperability protocol is the mechanism for
connecting them. Compliance with such a protocol does not,
however, guarantee semantic composability and achieving it
may require considerable additional effort beyond the initial
technical integration of a system; for example, see [34].

It is useful to distinguish between special-purpose feder-
ations, which are developed and used for a single or limited
number of executions (such as exercises, analyses, or experi-
ments) and persistent federations, which are used repeatedly
and possibly modified or enhanced over longer periods of
time. There are numerous examples of interoperability pro-
tocol simulation frameworks, that is, persistent federations
developed using a distributed simulation protocol. Examples
include the Joint TrainingConfederation [35, 36], theCombat
Trauma Patient Simulation (CTPS) [37–39], CombinedArms
Tactical Trainer (CATT) [40], the Close Combat Tactical
Trainer (CCTT) [40], the Modeling Architecture for Tech-
nology, Research, and Experimentation (MATREX) [41, 42],
and the Framework for Incident Management (FIM) [43].
MATREX will be described in more detail later.

3.4. Object Model. An object model simulation framework is
based on a standard for component specifications; note that
the standard is for specification, not implementation, of the
component. Components that comply with the specification
standard are intended to be composable with each other
and reusable in a variety of applications. Typically the com-
ponents are not themselves stand-alone simulation systems,
but rather are meant to be composed with each other in
the context of an overall simulation system. The defining
standard supports interaction of the models with tools and
services via the standardized interfaces and is designed to
work with interoperability protocols such as HLA.

The primary implemented example of an object model
simulation framework is the Base Object Model (BOM)
standard [44, 45]. The BOM standard will be described in
more detail later.

3.5. Formal. A formal simulation framework depends upon
a formal mathematical notation to define the components
(usually models), compositions of models, and the interfaces
between them. The component connection mechanism is
provided by an implementation environment that actually
provides the connections specified by the formal definitions.
The formal framework type is motivated by a desire to
mathematically prove that the components can be composed
and to derive their combined behavior once composed.

Examples of formal simulation frameworks include Dis-
crete Event System Specification (DEVS) [46] and Model-
Based Systems Engineering (MBSE) [47]. The DEVS for-
malism supports composability through the use “coupled”
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(i.e., composite) models that pass data using “ports” (i.e.,
interfaces). Model-Based Systems Engineering (MBSE) [47]
is another formalism with applicability to simulation. DEVS
and MBSE are syntactically quite different but semantically
nearly identical, and they have very similar mathematical
properties and limits [48, 49]. The DEVS literature is large
and many theoretical studies and example applications are
available; of particular relevance to simulation frameworks
that use components are [50, 51]. Arguably, the defining char-
acteristic of the formal approach, the use of a mathematical
formalism to specify components, can increase the difficulty
of using them for large practical applications.

3.6. Integrative Environment. An integrative environment
simulation framework is a software development and execu-
tion environment is used to connect components which may
have been written with no prior intent to interoperate. The
components may be executable models or data files, and the
model components may be written in different languages or
tools, such as Excel and C++. Specialized software wrappers
and scripts that are part of the simulation framework are
used to connect the components. The integrative environ-
ment provides communications channels between them.The
integrative environment executes the components and relays
the intercomponent communications along those channels.

Implemented examples of integrative environment sim-
ulation frameworks include VisualComposer [52] and Mod-
elCenter [53]. VisualComposer is focused on modeling elec-
trical systems, whereas ModelCenter is a general purpose
framework.ModelCenter is described in more detail later.

4. Example Frameworks

This section describes six important or interesting examples
of simulation frameworks. A framework’s historical signifi-
cance, the novelty and effectiveness of its technical features,
and its utility in illustrating the comparative strengths and
weaknesses of each of the framework types were all consid-
ered in choosing the examples. For each example framework,
the design intent, capabilities, technical features, and selected
example applications are explained.

4.1. Common Library Example: Common Simulation
Framework. The United States Army Aviation and
Missile Research, Development, and Engineering Center
(AMRDEC) commissioned the development of the Common
Simulation Framework (CSF) in 1999. The framework
was conceived as a standardized structure for dynamic
simulations [24]. Although originally designed to be domain
neutral, that is, able to technically support many domains of
dynamic simulations, it rapidly evolved into a toolkit focused
on the modeling and simulation of tactical missile systems
[24].

4.1.1. Design Intent. CSF was intended to provide a common
environment for simulation and to foster model reuse [24].
CSF was envisioned as a framework for the conduct of
dynamic simulations to support systems acquisition and

testing by providing a standard for the management and
organization of object-oriented models that could in turn be
composed into customized simulation systems. The frame-
workwas intended to provide a homogenous simulation envi-
ronment that would enhance reuse of component models,
enable rapid developments, and reduce the learning curve
of engineers transitioning between programs. As an object-
oriented simulation environment, the primary goal for CSF
was the ability to assemble custom simulation systems by
composing existing object-oriented models compliant with
its specifications.

4.1.2. Capabilities. The allowable resolution of the compo-
nent models is variable; the framework only requires that the
component interfaces be compliant with CSF’s specifications.
The level of detail of any model component’s decomposition
into subcomponents is not constrained by the standard, so
long as communications and invocation of services adhered
to the framework’s established interfaces. However, the
framework’s design encourages model-submodel structures
that follow the structure of the actual hardware components
being modeled [24]. The system provides a graphical user
interface for assembling composite models. The individual
models are treated as plug-ins into the overall simulation
system [54] (A “plug-in” is a software component that adds
a feature or capability to an existing software application,
to which it connects by a predefined interface. Plug-ins
rely on the application they connect to and cannot execute
independently.).

4.1.3. Technical Features. Figure 3(a) depicts the layered CSF
architecture. As is conventional in layered architectures,
software functions in oneCSF layer thatmay invoke functions
in the layer below it. CSF was designed to support various
underlying hardware platforms and operating systems, such
as Linux, Windows, and IRIX. It supports both discrete
event simulation and differential equations for continuous
system simulation [55]. CSF is implemented in C++ using
a client-server approach (user interface and models respec-
tively). The framework itself is supported by the operating
system, programming languages, and a set of general utilities.
Compliant models are then constructed to execute based on
the framework. In order to maximize reuse and portability,
models are coded using the standard C++ library for server-
side frameworks [55]. Once the models are compiled and the
framework are linked into a single executable. The models
exchange data during execution via method calls.

The framework layer provides several features to support
simulation, including model execution scheduling, file input
and output, numerical integration of physics models, and
simulation dynamics [24]. Both real-time and non-real-time
simulation timing is supported.

4.1.4. Example Applications. TheMissile Component Library
(MCLib) is a typical example of aCSF application.MCLibwas
developed to promote uniformity and consistency in tactical
missile simulations by providing a common library to users of
such simulations. As a collection of object classes it provides
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Figure 3: CSF layered architecture (a) and MCLib relationship to CSF and missile models (b); adapted from [56, 57].

general simulation support in two areas: a 6-degrees-of-
freedom Propulsion Aerodynamics Controls and Kinematics
module (6-PACK) and a Modular Object-Oriented Sensor
Evaluation Suite (MOSES). The 6-PACK module provides
a set of missile kinematic object classes that model the
flight and trajectory of simulated missiles. In object-oriented
fashion, these classesmay be extended by end users to provide
additional functionality or to modify the default behavior of
the underlying models. TheMOSES module is a collection of
CSF-native models that capture the behavior of sensors for
target detection, acquisition, and tracking. As with 6-PACK,
MOSES may be tailored or extended in an object-oriented
fashion. Architecturally, MCLib is a layer above the CSF
framework that provides a library of object classes that may
be invoked for creating individual missile models, without
removing the flexibility of direct access to the framework’s
features [57]. Figure 3(b) shows the relationship betweenCSF,
MCLib, and custom missile-specific models.

A second CSF application extended the framework to
support hardware-in-the-loop (HWIL) testing [54]. Real-
time support features within the framework were extended
to provide constructs necessary to support HWIL operation.
To provide a real-time monitoring capability for external
hardware, the frameworkwas enhanced by adding a real-time
monitor class. The monitor class runs as a separate thread
to avoid performance degradation in the framework. HWIL
support was demonstrated by driving amotion simulator rate
table with a simulated 6DOF missile trajectory in real-time.

4.1.5. Discussion. CSF’s object-oriented design and simple
use interface has led to wide use in modeling tactical missile
systems [54], for example, the Non-Line-of-Sight Launch
System [56].

4.2. Common Library Example: Composable Simulation
Framework Architecture. Within the Korean military the
use of simulation is increasing in parallel with advances
in its defense technologies and weapon systems. In Korea,
conventional simulation software development projects have
often started from scratch; thus, many simulation systems
have been designed with monolithic non-component-based
structures. The investments in such systems are considered
by some to be inefficient because the resulting systems

frequently have redundant or overlapping capabilities across
military simulation applications areas such as training, oper-
ations research, and combat analysis. In response, the Korean
Agency for Defense Development (ADD) initiated research
towards composable simulations which are assembled from
reusable software components. The Composable Simulation
Framework Architecture (CSFA) is a simulation framework
pilot project started in 2010 as a feasibility study. CSFA has
a hybrid architecture that could be categorized as either a
common library or an object model framework.

4.2.1. Design Intent. For component composability, semantic
consistency between composed components is a crucial
factor [7]. Therefore, an important design goal of CSFA
is to facilitate the reuse of composable components by
adopting an overarching reference model that is a structured
representation of the relevant domain knowledge and guides
the composition of components. Additionally, the reference
model supports checking the semantic consistency of com-
posed components. Components are developed according to
the domain knowledge of the reference model and stored
in a repository or common library. Users from various
domain areas can share common components which are to
be assembled into custom simulation systems for each user’s
application. CSFA has a layered architecture, which enables
users to separate domain-specific model components from
domain-generic simulation engines and supporting tools.
Domain-specific model components are layered above the
simulation engine and tool layers, so as to facilitate reusability
of domain models.

4.2.2. Capabilities. The CSFA framework has two main sec-
tions, the reference model and the software. The CSFA ref-
erence model, which documents combat domain knowledge
and defines the system’s scope, has two parts, an ontology
and a conceptual model. The reference model’s ontology
contains representations of the combat elements (i.e., entities,
units, and systems) corresponding to the likely participants
in the battlefield engagements of interest to ADD. The
ontology specifies the capabilities of the individual elements.
A portion of the ontology is stored in a database, allowing it
to be used to check the consistency of components selected
for composition with the ontology. The reference model’s
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Figure 4: CSFA architecture and context.

conceptual model specifies the possible interactions between
the combat elements defined in the ontology. Importantly, as
a matter of policy the CSFA reference model can not be easily
modified. Proposed changes to the reference model must be
reviewed and approved by an administrative organization
serving as a configuration control board.

The CSFA software likewise has two parts, a component
repository that stores components that have been developed
according to the reference model (i.e., the elements in the
ontology and the interactions in the conceptual model)
and middleware that implements the underlying simulation
engine as well as supporting tools for functions such as
scenario authoring. Figure 4 shows the four parts of CSFA
and their context. Brief explanations of each part were as
follows.

(1) Ontology. The ontology expresses military domain knowl-
edge, including battlefield elements, is organized hierarchi-
cally. It provides semantic content and is CSFA’s most dis-
tinctive aspect as compared to other conventional simulation
systems. In the ontology, combat elements are categorized
as physical or abstract; physical elements represent the
battlefield entities such as combatants, automobiles, weapons,
rocks, and buildings, whereas abstract elements represent
behavioral aspect of elements such as motions, actions, tasks,
or missions. The ontology is used to check the consistency
between assembled components.

(2) Conceptual Model. The conceptual model specifies the
behavioral aspects of the battlefield elements defined in the
ontology, especially their interactions, and so reflects the pat-
tern of interplay between battlefield entities.The specification
template used in the conceptual model is heavily influenced

by the Base Object Model (BOM) SISO standard [44], which
will be described in some detail later. Each conceptual model
specification includes both a pattern of interplay and a
behavior state machine.The pattern of interplay and the state
machine are expressed as standard UML representations, a
sequence diagram and a state machine diagram, respectively.
The conceptual model is also used to check the consistency
of selected components, and it provides specifications for
component development.

(3) Component Repository. The component repository, which
can be seen as a common library, allows simulation users to
select and compose components.The components implement
aspects of the reference model (the ontology and the concep-
tual model). Developers produce components according to
the specifications in the reference model.

(4)Middleware.Themiddleware is CSFA’s execution software;
it includes the run-time simulation engine and supporting
tools. The simulation engine parses the scenario file, loads
components and assembles a compositemodel to be executed
according to the scenario, and executes the assembledmodel.
It supports distributed simulation interoperability using the
high level architecture protocol.Themiddleware’s supporting
tools support the various phases of simulation preparation,
execution, and analysis; including scenario editing, reposi-
tory management, component composition, simulation exe-
cution control, 2- and 3-dimensional visualization, and after
action playback and review.

4.2.3. Technical Features. TheCSFA software is written in the
C++ language using the Microsoft Visual Studio integrated
development environment and is implemented as a plug-in.
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Figure 6: CSFA screen images, showing entity-level (a) and unit-level (b) combat.

This environment is consistent with ADD’s emphasis on the
use of commercial products. Figure 5 illustrates CSFA’s Com-
ponent Explorer, which is part of the component composition
supporting tool. In the left panel of the figure, the yellow
folders correspond to elements or categories of elements in
the ontology and the black icons are implemented compo-
nents. A component cannot be added to the repository unless
there is a corresponding element in the ontology. Because
of the policy of limiting ontology modifications mentioned
earlier, additions and modifications to the yellow folders
are strictly controlled, thereby preventing the development
of components that are potentially inconsistent with the
reference model.

4.2.4. Example Applications. As this is written, CSFA is
an ongoing project; thus, there are no examples of it in
practical application. However, two simulation models have
been built using CSFA as feasibility demonstrations: direct-
fire engagements under different close air support weapons
types and a large-scale attack of blue infantry battalions on
red mechanized battalions. The former models combat at the
entity level and the latter at the unit level, demonstrating
CSFA’s ability to simulate combat at multiple resolution

levels. Figure 6 shows screen images from both the entity-
level model (left) and the unit-level model (right). The
entity-level model includes algorithms which reflect entity
level engagements such as firing weapons’ kill probabilities
and targets’ damage assessment. In the unit-level model,
Lanchester attrition functions [58] model combat between
military units, considering factors that include number of
weapons, type of weapons, and unit vulnerability coefficients.

4.2.5. Discussion. The Korean military has already adopted
OneSAF (described later), but it is limited in actual use in
Korea because of indigenous Korean tactics, weapons, and
environments. CSFA is a intended as a means of overcoming
those limitations. To date, CSFA development has achieved
only preliminary component reuse goals, reusing only the
components that reflect the elements in the reference model
ontology.

Further development is planned to extend the scope of
reuse to nonmodel components that are parts of software
products. An important and advanced feature of CSFA is
the close connection between the system’s “documentation,”
that is, the reference model embodied in its ontology and
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conceptual model, and its “software,” that is, the compo-
nent repository and middleware. This connection provides
semantic context and consistency to components developed
for the framework, thereby increasing their composability.
The usefulness of conceptual models in facilitating model
interoperability and composability has been observed by
others as well [59].

4.3. Project Line Architecture Example: One Semiautomated
Force. OneSAF is a US Army constructive entity-level com-
bat model, designed to simulate brigade and below combat
and noncombat operations at the entity level [32]. Devel-
opment of OneSAF began in 1996; it has been extended
and enhanced continuously since then. As a semiautomated
force system, OneSAF generates doctrinally correct tactical
behaviors up to company-sized forces [17, 30].

4.3.1. Design Intent. OneSAF is intended to be a general-
purpose entity-level model that will reduce duplication in
the US Army’s modeling and simulation development efforts,
provide improved interoperability and reuse, andmeet future
simulation needs [60]. Expected uses of OneSAF include the
development of advanced concepts for doctrine and tactics,
training of unit commanders and staffs, development of
new weapon systems, support to test and evaluation, and
production of data as input to other simulations.

OneSAF is built on a simulation framework known as the
OneSAF Product Line Architecture Framework intended to
“organize, categorize, and define a layered software structure
in order to incrementally meet the OneSAF requirements”
[61]. The framework is designed to support various user
domains with multiple applications working from a com-
mon architecture and set of components [62]. Within the
framework, components, tools, and services can be composed
into products and system compositions specific to user
applications. OneSAF’s product line architecture framework
has been widely described [62–66].

4.3.2. Capabilities. The OneSAF Product Line Architecture
Framework, illustrated in Figure 7, is organized into layers
of products and components and employs a hierarchical
composition process. Beginning with the component layer
in the middle of the figure and moving up, components
are defined within the framework. Components may be one
of four types: model, tool, infrastructure, and repository
[62]. The framework allows independent development of
components; they must have complete service and interface
definitions and formal documentation. A single component
may be used in multiple products and system compositions;
conversely, multiple implementations of a single component
are possible for situations when a specific product requires
a particular variation of a component. One or more compo-
nents are composed into products, shown in the figure in the
product layer. Each product is a distinct unit of simulation
or simulation-support functionality. Finally, products are
composed into system configurations, shown in the figure in
the system compositions layer, which are complete executable
systems that provide configured end-user functionality for

operational use within mission areas, such as analysis or
training. Examples of typical system compositions a single
platform standalone executable to be used for force structure
analysis or a multiplatform federated executable to be used
for distributed staff training [61].

The layers below the component layer figure contain
components that provide capabilities that will be used by
most or all products or that enable the composition process.
The component support layer provides common simulation
and composition services that are used by components or
used to compose components. The repository component
layer is a set of repositories for storing compositions and sim-
ulation data.The common services layer provides shared and
non-domain-specific services, such as databasemanagement,
time synchronization, and interoperability protocol services.
Finally, the platform layer abstracts the hardware and soft-
ware environment in which the components, products, and
system compositions operate.

4.3.3. Technical Features. The components can be assembled
within the framework into twelve specific products that
collectively make up the OneSAF product line [30, 62]:

(1) System composer composes components into prod-
ucts and products into system compositions.

(2) Knowledge engineering environment stores and orga-
nizes combat domain knowledge.

(3) Event planner plans activities and tasks in preparation
for a simulation event or exercise.

(4) Model composer composes primitive models, such
as physical or behavioral models, into composite
models.

(5) Simulation generator selects terrain and scenario
information for an execution.

(6) Technical manager supports execution configuration,
performance prediction, and benchmarking.

(7) Simulation core serves as the runtime engine for a
simulation execution.

(8) Simulation controller provides mechanisms, such as
maps, overlays, and monitors for run-time control of
a simulation execution.

(9) C4I adapter connects OneSAF system compositions
and actual command, control, communications, com-
puters, and intelligence (C4I) devices.

(10) Analysis and review provides recording, playback, and
analysis of simulation execution data.

(11) Repository manager enables creation and use of local
and remote components and data.

(12) Maintenance environment provides an integrated soft-
ware development environment.

4.3.4. Example Applications. OneSAF has been used for an
extensive range of analysis, acquisition, and training appli-
cations. In addition to everyday applications, some unusual
examples include the creation of a tool providing course of
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Figure 7: The OneSAF product line architecture framework; adapted from [30].

action analysis andmission rehearsal capabilities [67], testing
algorithms for real C4I systems [68], modeling World War
II tank combat [69], creation of a “cyber range” for cyber
warfare analysis and training [70], and virtual training on
operating construction equipment [71].

4.3.5. Discussion. The product line architecture approach
uses layers of components and products to develop specific
simulation systems. Advantages of this type of simulation
framework are that only the components needed for a
specific user application are composed, reducing compu-
tational requirements; components can be replaced, easing

maintenance and upgrades; and development of new models
and tools is encouraged by the ability to reuse existing
components as context [61]. However, in the framework the
products and system compositions are normally defined in
advance, and OneSAF has no inherent mechanism to enforce
the assumptions and dependencies of a component if it is
reused in a different context [72]. Ultimately, the developer
is responsible for ensuring that a composed product is valid.

4.4. Interoperability Protocol Example: Modeling Architecture
for Technology, Research, andExperimentation. Development
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began of the US Army’s Modeling Architecture for Technol-
ogy, Research, and Experimentation (MATREX) in 2006 [41].
MATREX consists of a large set of distinct combat-related
models and simulation tools interoperable via HLA or TENA
[42] and is an example of how an interoperability protocol
may serve as a simulation framework. (The terminology
of HLA and TENA differ slightly; in this description of
MATREX HLA terms are used.)

4.4.1. Design Intent. MATREX is intended to support the
integration of live, virtual, and constructivemodels operating
at either the entity or engineering level [41]. From an HLA
perspective, MATREX is a persistent federation, that is,
an HLA federation that after initial development is reused
repeatedly, perhaps with modifications and enhancements,
over a long period of time. Like many persistent federations,
MATREX is not specific to any particular application; rather,
it is intended to be adaptable to a range of applications as is
or through extension.

4.4.2. Capabilities. The MATREX federation includes
approximately 30 different simulation applications or
federates. One important MATREX federate is OneSAF
(described earlier), which provides broad capabilities to
simulate a range of combat entity types and interactions.
Also more specialized federates that model specific types
of entities, interactions, and phenomena in more detail to
provide for higher-fidelity or higher-resolution simulation
as needed are present. Among them are the Aviation
Mobility Server, the Countermine Server, the Missile
Server, the Weather Server, the Vehicle Dynamics Mobility
Server, the Chemical Biological Simulation Suite [73], the
Comprehensive Munitions and Sensor Simulation, the
Logistics Server, and the Vehicle Level Human Performance
Model. Five MATREX federates, collectively known as the
C3 Grid, provide services related to modeling command,
control, and communications actions and effects. In addition
to federates that provide modeling capabilities, MATREX
includes a set of nonmodel tools that support testing and
debugging, execution control, and results logging and
analysis.

4.4.3. Technical Features. The MATREX architecture is
broadly organized into three layers [41]. The first layer
includes the federates themselves, which may include high-
fidelity physics-based engineering models of battlefield vehi-
cles, sensors, weapons, and so on, as well as tools to support
system integration, testing, and analysis. The second layer
is the core architecture, which includes the HLA interface,
the object model used by the MATREX federations, and a
software middleware layer, which stands between the inter-
operability protocols and the federates’ model-specific code.
The third layer is the distributed execution infrastructure,
with includes a secure network that links MATREX federates
at distributed sites. The MATREX middleware is common
across the federates; they communicate through it at run-
time. It includes an application programming interface and

code-generated software that abstracts the details of the
interoperability protocol and the object model [74].

The MATREX Federation Object Model (FOM) was
initially based on the Real-time Platform Reference FOM,
an HLA FOM that specifies as closely as possible the same
entities, attributes, interactions, and parameters defined in
theDIS protocol [75].TheMATREX FOMhas been extended
with objects and interactions of special interest to the
MATREX user community.

4.4.4. Example Applications. MATREX applications have
included integration of human behavior models into the
MATREX architecture [76], support of distributed test events
for network centric warfare systems [77], and networked
effects command and control [41].

4.4.5. Discussion. An important feature of the MATREX
framework is its middleware, which provides an interface
between the federates and the interoperability protocol being
used to connect them. The middleware is intended to reduce
or eliminate the need to modify the federates in the event
of changes to the interoperability protocol and its support
software, for example, different versions of the RTI, as well
as differences between object models. The MATREX version
of the HLA RTI has a variety of parameters that allow
users to configure HLA services, such as Data Distribution
Management, as best suits their application [78]; proper
configuration of the MATREX RTI for Data Distribution
Management requires some care [79].

4.5. Object Model Example: Base Object Models. The Base
Object Model (BOM) specification (the description of Base
Object Models given here is adapted from portions of
[45]), which was standardized by Simulation Interoperability
Standards Organization (SISO) in 2006, is intended to enable
model developers and simulation engineers to createmodular
and composable conceptual models and object models which
can be used in the design or specification of executable
simulations or simulation environments [44].

4.5.1. Design Intent. The BOM standard is meant to provide
a standardized means to represent important aspects of a
conceptual model. Conceptual models in general are not
executable; rather they are normally developed as a precursor
to the subsequent development of an executable model
[19, 80]. Conceptual models are used to document and
communicate “what is to be represented (in the executable
model), the assumptions limiting those representations, and
other capabilities needed to satisfy user’s requirements” [81].

A BOM model (The term Base Object Model and the
acronym BOM are used in the literature to refer to both the
standard and to a particular instance of a conceptualmodel or
object model developed according to the standard. To reduce
the potential for confusion, in this paper we will used the
phrase “BOM model” for the latter meaning, even though
that phrase is technically redundant in that the “M” in BOM
stands for “model”.) is intended to be a “reusable package of
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Figure 8: BOM pattern of interplay example [45].

information representing an independent pattern of simula-
tion interplay” that will improve “interoperability, reuse, and
composability, by providing “patterns” and “components” of
simulation interplay that can be used as building blocks in
the assembly of simulations and enterprises of simulations”
[44]. The BOM standard is intended to be used for purposes
such as specifying system functionality, representing scenario
sequences of events, and defining reusable class structures.
The primary utility of the standard is as a viable mechanism
for representing conceptual models in amanner independent
of a specific distributed simulation interoperability protocol
or software architecture.

4.5.2. Capabilities. An example of how a BOMmodel can be
used to document a scenario sequence of events is illustrated
in Figure 8, which is a Unified Modeling Language sequence
diagram [82]. The figure shows a simplified version of the
directed engagement portion of a combat close air support
mission. Across the top of sequence diagram several generic
conceptual entities have been identified: AirOperationsCen-
ter, AirMissionControlFunction, Interceptor, and Target. In
the BOM each of these conceptual entities is mapped to
specific object model classes within an executable model that
can support the conceptual entity, if the latter are known. For
example, conceptual entity AirOperationsCenter could be
mapped to a specific CombinedAir Operations Center object
class, AirMissionControlFunction to an E-3 Sentry Airborne
Warning and Control System aircraft object class, Interceptor
to an F-22 Raptor object class, and Target to a MiG-29
Fulcrum object class. The mapping from conceptual entities
to specific objectmodel classes can be changed, enhancing the
reusability of the BOM model in that the same BOM model
could be reused in different scenarioswithmappings from the
conceptual entities to different scenario-specific objectmodel
classes.

Figure 8 also shows the archetypical sequence of inter-
actions (the “pattern of interplay”) that occur among the
conceptual entities, for example, AssignControlOfIntercep-
tor. Within a BOM model, actions can be specified as either
a conceptual event, which defines a message or trigger
that occurs within the simulation or as another conceptual
model pattern providing a more detailed representation of
the action. Conceptual events within a BOM model can
map to specific object model class attribute updates or to
interaction classes. The mappings from conceptual entities

and conceptual events to supporting object model classes
provide a useful mechanism when choosing the underlying
simulations and systems that are needed to support an
exercise.

4.5.3. Technical Features. Two types of BOM models have
been defined [44]. Interface BOM models have messages
and triggers related to one or more classes of objects and
provide a reusable pattern of interplay. Encapsulated BOM
models include additional information such as behaviors for
modeling. Multiple BOM models may be composed to form
a complete conceptual model. Composite BOM models can
be converted to an HLA Federation Object Model to support
interoperability through the HLA interoperability protocol
[83]. However, the conceptual modeling and model mapping
features of the BOM standard are architecture-independent
characteristics not provided by an HLA Federation Object
Model.

The mappings from the BOMmodel’s conceptual entities
may be either the class definitions of other BOM models
or more specific object models, such as HLA Federation
Object Models or TENA Logical Range Object Models.
The latter specific object models include protocol-specific
implementation details that are not intended to be part of a
BOMmodel.

4.5.4. Example Applications. In theUnited States and Europe,
BOM models have been developed for several military
applications. A selected sample of those applications is as
follows.

(1) Joint Composable Object Models: BOMmodels were
used as conceptual models in a project developing
object models usable in multiple simulation architec-
tures [84].

(2) Midrange Ballistic Attack Munition: BOM models
were used as the conceptual model of the console
operator of a hybrid German-Israeli weapon system.

(3) Template Drive Code Generator: BOM models were
used as conceptual models to describe component
behavior in a Dutch simulation component frame-
work [85].

(4) Surface vessel navigation: BOM models were used
as conceptual models for a maritime surface vessel
navigation simulation in Turkey [86].
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(5) Torpedo engineering: BOM models were used as
conceptual models for reusable components imple-
menting underwater acoustic models [87].

(6) Airborne Electronic Attack: BOM models developed
fromUSDepartment of Defense Architecture Frame-
work (DoDAF) viewswere used as conceptualmodels
for the airborne electronic attack architecture for the
US Air Force [88].

(7) Human behavior modeling: BOM models have been
proposed as a standard mechanism for encoding
and documenting multiresolution human behavior
models [89].

4.5.5. Discussion. It is not clear that the BOM standard fully
qualifies as a simulation framework as defined earlier. The
BOM standard is for component specifications (component
models and object models), not components, and it does not
provide an explicit integral mechanism for linking compo-
nents developed according to the standard. Instead, the BOM
standard assumes that some other framework, usually one of
the distributed simulation interoperability protocols such as
HLA or TENA, will serve to link the components that are
developed to the BOM standard.

BOM models are intended to supplement the semantic
information present in an interoperability protocol object
model, but mappings from BOM models to ontologies
have been proposed to provide additional semantic content
beyond that in the BOMmodels themselves [90].

4.6. Integrative Environment Example: ModelCenter. Model-
Center (ModelCenter is a commercial product of Phoenix
Integration.) is a graphical toolkit and software framework
for engineering design integration and optimization. It
allows exploration of the design space to identify promising
approaches to the problem under analysis.

4.6.1. Design Intent. ModelCenter is intended to facilitate the
integration of multiple distinct models used in the process
of engineering design. It supports the creation of linked
applications by enabling the automatic runtime exchange of
data between the differentmodels.ModelCenterwas designed
to provide ease of use, in the form of integration with existing
analysis and modeling packages allowing direct reuse of
existing models, improved engineering design, via support
for early identification of design problems and analysis of the
trade space, and error reduction, by automating the process
of creating data exchange channels between models [53].

4.6.2. Capabilities. ModelCenter’s capabilities fall into three
primary areas [53, 91].

(1) Model Wrapping. To link the multiple models that make
up the composite model, automated data exchange channels
are created by “wrapping” the component models. Three
different types of wrapper support various forms of data. File
wrapping wraps existing data files through the creation of
input and output files for the various components and stages

of the model by identifying which items in a file serve as
input to each model, and what each model must output for
use by subsequent stages. Script wrapping is accomplished
via the ModelCenter application programming interfaces to
handle formats such as theMicrosoft COM protocol. Custom
wrapping is available through tailored applications written
in high-level languages such as C++ or Java. This method is
employed when third party models provide APIs that allow
access to internal functions.

(2) Visual Model/Process Integration. The graphical interface
allows the construction of designs, through the linking of
applications and models, and the execution of simulations.
Linking is accomplished via drag-and-drop interfaces and
support not only direct connections but also conditional
and looping associations between models. Execution of and
dataflow between linked components are supported directly
for models such as Excel, MATLAB, or common computer-
aided design and computer-aided engineering tools, as well
additional custom model types. Other components may
require scripting or user intervention for execution.

(3) Analysis and Optimization. Once integrated, the com-
posite model may be executed repeatedly for trade space
exploration or design optimization. ModelCenter is able to
process both discrete and continuous variables with the goal
of minimizing, maximizing, or solving for given attributes,
while satisfying specified constraints.

4.6.3. Technical Features. Model wrapping is available via
both a separate tool and a native component ofModelCenter.
The latter provides the ability to wrap ASCII files via a point-
and-click interface that identifies variables within the files.
For files that have a defined structure, such as FORTRAN
name lists and name-value pairs, matching patterns may be
created to automate thewrapping process. Additionally, it will
process files from commercial computer-aided engineering
products. Scripting capability and functions are also available.

Along with the previously mentioned drag-and-drop
capability and simulation control functions, the graphical
interface provides a robust set of logical connectors, including
if-then, switches, parallel branches, and looping, which can
be used to link component models. Characterization of the
type of data exchange across the links (values, arrays, files, or
objects) is also possible.

ModelCenter can generate and analyze response surfaces.
The data composing the surface may come from previous
simulation runs or may be approximations created within
the toolkit. The process supports curve fit types such as
the polynomial or Kringing methods. The resulting response
surface may then be incorporated into the set of linked
models. Response surfaces created by simulations may be
incorporated in lieu of the simulation.

AnotherModelCenter component performs optimization
of variables in the design. The optimizer employs genetic
algorithms and recommends algorithmic approaches and
variable selection from questions posed to engineers about
the design and its goals. Final results are provided via
optimization reports. A software development kit that allows
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Table 1: Framework types summary; adapted and updated from [11].

Framework type Components Composition mechanism

Common library Models implemented as software
modules

Component interfaces defined by components or framework;
components linked into common executable; data exchanged via
method calls

Product line architecture Software modules Component interfaces defined by framework; components linked into
common executable; data exchanged via method calls

Interoperability protocol Independent executable Components execute independently as separate processes; data
exchanged via network messages

Object model Conceptual model None; connection depends on mapping and implementing
conceptual module within another framework

Formal Formal model Interpreter for formal models

Integrative environment Model implemented as file,
spreadsheet, or software module

Components “wrapped” with special interface software; components
linked into common executable; data exchanged via method calls

users to implement their own optimization routines, which
may be retained for future use, is also available.

4.6.4. Example Applications. ModelCenter has been used for
a variety of applications. A multidisciplinary optimization of
the design of an autonomous underwater vehicle was per-
formed using multiobjective genetic optimization routines.
Electronics, hull geometry and performance, feasibility, cost,
and risk models were integrated [92]. An optimization of
a conceptual design for a helicopter for exploring Saturn’s
moon Titan considered typical aircraft design questions in an
unfamiliar environment. Genetic algorithms were applied to
assess the best solution considering the helicopter’s aerody-
namics, performance, propulsion, power, weights, and sizes
[93]. ModelCenter was used as the integrative environment
for a life-cycle cost analysis model for the National Aeronau-
tics and Space Administration’s Constellation spacecraft [94].

4.6.5. Discussion. ModelCenter is generally considered to be
versatile and easy to use. In the autonomous underwater
vehicle design application, it was seen as “essential for the
design of highly integrated systems” [92]. The Titan heli-
copter conceptual model study reported success in optimiz-
ing both discrete and continuous variables, using gradient-
based and stochastic optimizers. On the other hand, the
study encountered loss of resolution on some low influence
variables, which were not optimized as well as others [93].

5. Summary and Conclusions

A software framework is an architecture or infrastructure
intended to enable the integration and interoperation of
software components. Simulation frameworks are software
frameworks specifically intended simplify the process of
assembling a complex model or simulation system from
simpler component models as well as to promote the reuse of
the component models. At least six distinct types of software
frameworks for model composition have been developed and
examples of each exist. The different simulation framework
types have different components, processes for composing
models, and intended applications. Table 1 summarizes the

six simulation framework types. For each type the table
identifies the components that can be composed within the
framework and the mechanism used to compose them.

The primary conclusion of this review is that best type
of simulation framework to use depends on the application.
A simulation developer intending to compose conventional
software components may consider a common library or a
product line architecture. If independently executing models
are to be linked, an interoperability protocol is advised.
Improvement in semantic composability may result from the
use of an object model framework. A formal framework can
enable formal mathematical analysis of component compos-
ability. Finally, an integrative environment can quickly con-
nect a diverse set of files and models to support engineering
analysis.
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