
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2007

Modeling, Design And Evaluation Of Networking Systems And Modeling, Design And Evaluation Of Networking Systems And

Protocols Through Simulation Protocols Through Simulation

Daniel Jonathan Lacks
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Lacks, Daniel Jonathan, "Modeling, Design And Evaluation Of Networking Systems And Protocols Through
Simulation" (2007). Electronic Theses and Dissertations, 2004-2019. 3235.
https://stars.library.ucf.edu/etd/3235

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F3235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3235?utm_source=stars.library.ucf.edu%2Fetd%2F3235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MODELING, DESIGN AND EVALUATION OF NETWORKING SYSTEMS AND

PROTOCOLS THROUGH SIMULATION

by

DANIEL J. LACKS
M.S. University of Central Florida, 2002
B.S. University of Central Florida, 2001

A dissertation submitted in partial fulfillment of the requirements
 for the degree of Doctor of Philosophy

 in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, FL

Fall Term
2007

Major Professor: Taskin Kocak

 ii

© 2007 Daniel J. Lacks

 iii

ABSTRACT

Computer modeling and simulation is a practical way to design and test a system

without actually having to build it. Simulation has many benefits which apply to many

different domains: it reduces costs creating different prototypes for mechanical engineers,

increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the

time to model physical reactions, and trains soldiers to prepare for battle.

The motivation behind this work is to build a common software framework that

can be used to create new networking simulators on top of an HLA-based federation for

distributed simulation. The goals are to model and simulate networking architectures and

protocols by developing a common underlying simulation infrastructure and to reduce the

time a developer has to learn the semantics of message passing and time management to

free more time for experimentation and data collection and reporting.

This is accomplished by evolving the simulation engine through three different

applications that model three different types of network protocols. Computer networking

is a good candidate for simulation because of the Internet’s rapid growth that has

spawned off the need for new protocols and algorithms and the desire for a common

infrastructure to model these protocols and algorithms. One simulation, the

3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube

network interconnect. Performance results show that k-array n-cube topologies can

sustain higher traffic load than the currently used interconnects. The second simulator,

Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol

that uses a data distribution methodology based on the GPS-QHRA routing protocol.

 iv

CLL algorithm can realize a maximum of 45% power savings and maximum 25%

reduced queuing delay compared to GPS-QHRA. The third simulator simulates a grid

resource discovery protocol for helping Virtual Organizations to find resource on a grid

network to compute or store data on. Results show that worst-case 99.43% of the

discovery messages are able to find a resource provider to use for computation. The

simulation engine was then built to perform basic HLA operations. Results show

successful HLA functions including creating, joining, and resigning from a federation,

time management, and event publication and subscription.

 v

ACKNOWLEDGEMENTS

The author wishes to acknowledge Dr. Taskin Kocak for his guidance and advice as well

as commitment when opportunities took him overseas.

The author wishes to acknowledge his wife Aimee for her love, support, and caring

during his pursuit of higher education.

The author wishes to acknowledge his parents and family for their support and

motivation for seeking higher learning.

The author wishes to acknowledge Dr. Jacob Engel for motivation for seeking his

doctoral degree as well as the work done together on the K-Array N-Cube Simulator.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... xiii

LIST OF TABLES.. xx

Chapter One: Introduction .. 1

Introduction to K-Array N-Cube Networks.. 1

Introduction to Clusterhead Routing... 3

Introduction to Grid Computing ... 4

Introduction to HLA, DIS, and the Simulation Engine .. 4

Main Contributions ... 6

Chapter Two: Background.. 8

K-Array N-Cube Interconnect Background.. 8

K-Array N-Cube Networks... 8

Communications ... 9

Simulating K-Array N-Cube Interconnects .. 12

Cluster Leader Logic Background.. 14

Cluster Leader Election... 14

Load Balancing Techniques.. 15

Related Work on Clustering.. 16

GPS-QHRA... 18

Grid Computing Background.. 19

State-of-the-art Grid Computing... 19

Virtual Organizations.. 21

Scheduling... 22

 vii

Resource Brokers .. 22

Grid Toolkits and Middleware.. 23

PlanetLab .. 23

UNICORE... 24

Legion ... 24

Condor-G .. 24

Grid Computing Constraints and Issues ... 25

Grid Deployment Environments ... 26

Science Portals .. 26

Distributed Computing.. 27

Large-Scale Data Analysis.. 29

Computer In-The-Loop Instrumentation... 30

Collaborative Work... 30

Simulation Protocol Background.. 31

Aggregate Level Simulation Protocol (ALSP) ... 31

Distributed Interactive Simulation (DIS).. 34

Application Protocols.. 35

Real-Time Communications ... 37

Time Management .. 38

Exercise Management and Feedback.. 39

High Level Architecture (HLA).. 39

Federation Rules ... 40

Run-Time Infrastructure (RTI) ... 41

 viii

The RTI Software ... 41

Improvements from DIS and ALSP.. 43

The Lifecycle of a Federation... 44

Object Declaration and Management ... 44

Time Management .. 47

Sync Points and Federation Commands ... 50

Object Model Template (OMT) and the Federation Object Model (FOM).......... 52

Distributed Interactive Simulation (DIS) Revisited.. 53

Chapter Three: Methodology.. 54

Computer Networking .. 54

K-Array N-Cube Interconnect Design.. 54

The Simulation Architecture... 55

The Simulation Modeling Approach .. 58

Software Algorithms... 62

Cluster Leader Logic Algorithm Design .. 65

Assumptions.. 65

CLL Algorithm High Level Design.. 67

Algorithm Detailed Design ... 69

Messages ... 69

Variables ... 70

Data Flow Tables .. 74

Load Balancing and Algorithm Execution ... 77

Cell Fanning.. 80

 ix

Grid Resource Discovery Protocol Design... 82

Protocol Design... 83

Lifecycle ... 84

Event Header... 85

Routing Techniques .. 86

Events.. 88

SIGNUP Event.. 91

ACCEPT Event... 92

ADVERTISE Event.. 92

TASK Event.. 93

TASK COMPLETE Event.. 94

TASK UNSATISFIED Event... 95

CONFIRM DELIVERY Event... 96

CONFIRM TRANSACTION Event... 97

GOODBYE Event... 98

UNSUBSCRIBE Event... 99

Resource Providers’ Responsibilities ... 100

Router Responsibilities and Usage of Data Tables... 101

SIGNUP Table Usage... 101

RESOURCE Table Usage .. 103

BLACKLIST Table Usage ... 104

VO Host Responsibilities.. 105

Scoring .. 105

 x

Grid Topology Scenarios .. 107

Science Portals .. 109

Distributed Computing.. 110

Large-Scale Data Analysis.. 111

Computer in-the-loop Instrumentation ... 112

Collaborative Work... 113

Grid Security ... 114

HLA Simulation Protocol and the Simulation Engine.. 116

Simulation Core .. 117

EventManager Class ... 118

Event Class.. 118

NetworkTree Class.. 119

NetworkNodeBaseClass Class.. 119

StateMachine Class... 119

TimeManager Class .. 120

Simulation Engine Common Library.. 120

Simulation Architecture .. 120

Chapter Four: Findings ... 124

K-Array N-Cube Evaluation and Results ... 124

Simulation Implementation and Techniques... 124

The Singleton Class .. 124

Pure Virtual Functions .. 125

System Design with the Standard Template Library (STL) Functions............... 126

 xi

Simulation Data and Observations.. 127

Latency and throughput analysis .. 127

Worm Allocation and Distribution ... 129

Routing Accuracy ... 130

Interconnect and Bandwidth Utilization ... 132

Failure Rate... 133

Routing Accuracy vs. Hot-Spot Nodes... 134

K-Array N-Cube Interconnect Performance Comparison with Common

Interconnects ... 135

Cluster Leader Logic Evaluation and Results... 136

The CLL Simulator ... 136

Scenario Design .. 138

Results... 140

The Grid Protocol Simulator Evaluation and Results... 147

Software Design and Implementation... 151

C++/CLR .. 152

Garbage Collection ... 152

C++/CLR Pointers .. 154

C++/CLR Keywords... 155

Visual Studio Forms and Controls.. 155

Visual Studio Tools for Office.. 156

Software Design.. 158

Scenario Design .. 160

 xii

Simulated Virtual Organization Scoring... 162

Results... 165

Science Portal.. 166

Distributed Computing.. 175

Computer-in-the-Loop Instrumentation.. 184

Large-Scale Data Analysis.. 192

Collaborative Work... 201

Deployment Environment Summary .. 210

HLA/RTI Evaluation .. 214

RTI and Experimentation Hardware Information... 215

Results... 216

Basic Federation and Federate Operation ... 216

Event Management ... 216

Synchronization Points ... 218

Time Management .. 219

Chapter Five: Conclusions.. 221

K-Array N-Cube Design Conclusion.. 221

CLL Algorithm Conclusion .. 222

Grid Resource Protocol Conclusion ... 223

Simulation Engine Conclusion ... 224

Future Directions for this Work.. 225

List of References ... 227

 xiii

LIST OF FIGURES

Figure 1 (a) 4 Array 3 Cube Interconnect (b) 8 Array 2 Cube Interconnect 2

Figure 2 Legacy Simulators Connected to New Simulators via a Bridge 5

Figure 3 3D Mesh Interconnect Architecture ... 10

Figure 4 Four Sub-Channels Containing Four Worms Simultaneously 10

Figure 5 GPS-QHRA Terrain Projected onto 2D Hexagon Cells..................................... 19

Figure 6 FightAIDS@Home Execution Window... 28

Figure 7 Federate Outbound RTIambassador and Inbound FederateAmbassador

Architecture... 42

Figure 8 A Typical Federate Lifecycle ... 46

Figure 9 RTI Methods to Send and Receive an Interaction.. 46

Figure 10 Object Creation and Deletion Sequence Diagram.. 46

Figure 11 Updating an Object’s Attributes... 47

Figure 12 Announcing and Achieving a Synchronization Point 51

Figure 13 The K-Array N-Cube Simulator Architecture.. 57

Figure 14 Major Class Relationships with Each Other and the User 59

Figure 15 UML Class Diagram of the Interconnect ... 60

Figure 16 Process for Running the Simulator... 61

Figure 17 Dynamic Model of the Routing Algorithm Used ... 63

Figure 18 Data Flow Diagram of the Steps the Used to Start the Simulation. 64

Figure 19 Danger Zone Width and Clusterhead Transmission Range 66

Figure 20 The Cluster Leader Election Algorithm Initialization Sequence 67

 xiv

Figure 21 The Cluster Leader High Level Design State Diagram.................................... 68

Figure 22 The Subordinate Node High Level Design State Diagram 68

Figure 23 Two Simultaneous Message Transmissions; Nodes are Numbered Circles. ... 76

Figure 24 The CLL initialize() Function Sets the Initial GT and PT Timers 78

Figure 25 The CLL updateTables() Function ... 78

Figure 26 The CLL process() Function is Called when Timeouts Occur......................... 79

Figure 27 Cell Fanning Example – Before (Left) and After (Right) 82

Figure 28 The Lifecycle of a Grid Resource Provider has Five Phases: 1) Subscription, 2)

Advertisement, 3) Transaction, 4) Sign-off, and 5) Retirement 84

Figure 29 Events Exchanged over the Network ... 90

Figure 30 SIGNUP Event Standard Routing Example ... 92

Figure 31 ACCEPT Event Reverse Path Routing Example ... 92

Figure 32 ADVERTISE Event Forward Path Routing Example...................................... 93

Figure 33 TASK Event Discovery Routing Example... 94

Figure 34 TASK COMPLETE Event Standard Routing Example................................... 95

Figure 35 TASK UNSATISFIED Event Reverse Path Routing Example 96

Figure 36 CONFIRM DELIVERY Event Reverse Path Routing Example 97

Figure 37 CONFIRM TRANSACTION Event Forward Path Routing Example............. 98

Figure 38 GOODBYE Event Forward Path Routing Example .. 99

Figure 39 UNSUBSCRIBE Event Forward Path Routing Example 100

Figure 40 Router Search Algorithm for Finding a Score in the RESOURCE TABLE.. 107

Figure 41 Scenario Editor Network Topology Example .. 109

Figure 42 Minimum Network Layout... 109

 xv

Figure 43 Sending TASK Events in the Science Portal Scenario................................... 110

Figure 44 Sending TASK Events in the Distributed Computing Scenario..................... 111

Figure 45 Sending TASK Events in the Large-Scale Data Analysis Scenario............... 112

Figure 46 Sending TASK Events in the Computer in-the-Loop Scenario...................... 113

Figure 47 Sending TASK Events in the Collaborative Work Scenario.......................... 114

Figure 48 The Simulation Core is placed Between the Simulation Software Application

and the RTI ... 117

Figure 49 The Simulation Engine Supports a Mode Where RTI Services are not used. 117

Figure 50 Simulation without the RTI .. 121

Figure 51 Simulation with the RTI ... 122

Figure 52 Two Singleton Class Examples: WormManager and Interconnect................ 125

Figure 53 Layout of the Interconnect.. 127

Figure 54 STL Map Declarations for the Faces, Nodes, Ports, and Virtual Channels ... 127

Figure 55 Simulation Graphical Modes with the Pacing and Runtime Data Windows.. 128

Figure 56 Latency (Left) and Throughput (Right) Comparisons Between 3D Mesh, 8-

Array 2-Cube and 4-Array 3-Cube ... 129

Figure 57 Worm Allocation and Distribution with (Right) and without (Left) Virtual

Channels.. 130

Figure 58 3D Mesh Worm Deviation from its Shortest Path.. 131

Figure 59 Bandwidth (Left) and Interconnect (Right) Utilization.................................. 132

Figure 60 Worm Failure Rate Comparisons with and without Virtual Channels (Left) and

with Different Virtual Channel Sizes (Right) ... 133

Figure 61 Hot Spots Versus Routing Accuracy.. 134

 xvi

Figure 62 Comparison of Different Interconnects .. 135

Figure 63 The Slash Scenario before Any Node Movement .. 139

Figure 64 The Slash Scenario Results with No Node Movement – Clusterhead Overloads

(Left) and Clusterhead Counts (Right).. 143

Figure 65 The Slash-Movement Scenario Results.. 144

Figure 66 Power Consumption Comparisons Between GPS-QHRA and CLL.............. 146

Figure 67 Queuing Delay Comparisons Between GPS-QHRA and CLL 146

Figure 68 The Grid Protocol Simulator Control Center ... 148

Figure 69 Grid Deployment Selection Form .. 149

Figure 70 The Network Generator Form .. 149

Figure 71 The Generate VO Hosts Form.. 149

Figure 72 The Event Generator Form... 150

Figure 73 The Scenario Editor.. 150

Figure 74 The Grid Protocol Simulator .. 151

Figure 75 Basic Steps to Create an Excel Workbook and Worksheet Using VSTO...... 157

Figure 76 Basic Worksheet Operations Using VSTO .. 157

Figure 77 Creating a Chart in Excel Using VSTO ... 157

Figure 78 Network Tree Generation Algorithm ... 162

Figure 79 Science Portal Scenario Event Distribution ... 167

Figure 80 Science Portal Scenario Average Number of Hops.. 167

Figure 81 Science Portal Scenario Number of Hops for 25 Event Scenario 168

Figure 82 Science Portal Scenario Number of Hops for 250 Event Scenario 168

Figure 83 Science Portal Scenario Number of Hops for 2500 Event Scenario 169

 xvii

Figure 84 Science Portal Scenario Number of Hops for 10000 Event Scenario 169

Figure 85 Science Portal Scenario Number of Hops for 25000 Event Scenario 170

Figure 86 Science Portal Scenario Successful TASK Events... 170

Figure 87 Science Portal Scenario Score Deviation for the 25,000 Event Scenario 171

Figure 88 Science Portal Scenario Peak Signup Table Usage.. 172

Figure 89 Science Portal Scenario Peak Resource Table Usage 173

Figure 90 Science Portal Scenario Peak Blacklist Table Usage 174

Figure 91 Distributed Computing Scenario Event Distribution 175

Figure 92 Distributed Computing Scenario Average Number of Hops.......................... 176

Figure 93 Distributed Computing 25 Event Scenario Number of Hops......................... 176

Figure 94 Distributed Computing 250 Event Scenario Number of Hops....................... 177

Figure 95 Distributed Computing 2500 Event Scenario Number of Hops..................... 177

Figure 96 Distributed Computing 10000 Event Scenario Number of Hops................... 178

Figure 97 Distributed Computing 25000 Event Scenario Number of Hops................... 178

Figure 98 Distributed Computing Scenario Successful TASK Events........................... 179

Figure 99 Distributed Computing 25,000 Event Scenario Score Deviation................... 180

Figure 100 Distributed Computing Scenario Peak Signup Table Usage........................ 181

Figure 101 Distributed Computing Scenario Peak Resource Table Usage 182

Figure 102 Distributed Computing Scenario Peak Blacklist Table Usage 183

Figure 103 Computer-in-the-Loop Scenario Event Distribution 184

Figure 104 Computer-in-the-Loop Scenario Average Number of Hops 185

Figure 105 Computer-in-the-Loop 25 Event Scenario Number of Hops 185

Figure 106 Computer-in-the-Loop 250 Event Scenario Number of Hops 186

 xviii

Figure 107 Computer-in-the-Loop 2500 Event Scenario Number of Hops 186

Figure 108 Computer-in-the-Loop 10000 Event Scenario Number of Hops 187

Figure 109 Computer-in-the-Loop 25000 Event Scenario Number of Hops 187

Figure 110 Computer-in-the-Loop Scenario Successful TASK Events 188

Figure 111 Computer-in-the-Loop Scenario Score Deviation for the 25,000 Event

Scenario... 189

Figure 112 Computer-in-the-Loop Scenario Peak Signup Table Usage 189

Figure 113 Computer-in-the-Loop Scenario Peak Resource Table Usage..................... 190

Figure 114 Computer-in-the-Loop Scenario Peak Blacklist Table Usage...................... 191

Figure 115 Large-Scale Scenario Event Distribution ... 193

Figure 116 Large-Scale Scenario Average Number of Hops ... 193

Figure 117 Large-Scale Scenario Number of Hops for 25 Event Scenario.................... 194

Figure 118 Large-Scale Scenario Number of Hops for 250 Event Scenario.................. 194

Figure 119 Large-Scale Scenario Number of Hops for 2500 Event Scenario................ 195

Figure 120 Large-Scale Scenario Number of Hops for 10000 Event Scenario.............. 195

Figure 121 Large-Scale Scenario Number of Hops for 25000 Event Scenario.............. 196

Figure 122 Large-Scale Scenario Successful TASK Events .. 196

Figure 123 Large-Scale Scenario Score Deviation for the 25,000 Event Scenario 197

Figure 124 Large-Scale Scenario Peak Signup Table Usage.. 198

Figure 125 Large-Scale Scenario Peak Resource Table Usage 199

Figure 126 Large-Scale Scenario Peak Blacklist Table Usage....................................... 200

Figure 127 Collaborative Work Scenario Event Distribution... 201

Figure 128 Collaborative Work Scenario Average Number of Hops............................. 202

 xix

Figure 129 Collaborative Work Scenario Number of Hops for 25 Event Scenario 202

Figure 130 Collaborative Work Scenario Number of Hops for 250 Event Scenario 203

Figure 131 Collaborative Work Scenario Number of Hops for 2500 Event Scenario ... 203

Figure 132 Collaborative Work Scenario Number of Hops for 10000 Event Scenario . 204

Figure 133 Collaborative Work Scenario Number of Hops for 25000 Event Scenario . 204

Figure 134 Collaborative Work Scenario Successful TASK Events.............................. 205

Figure 135 Collaborative Work Score Deviation for the 25,000 Event Scenario 206

Figure 136 Collaborative Work Scenario Peak Signup Table Usage 207

Figure 137 Collaborative Work Scenario Peak Resource Table Usage 208

Figure 138 Collaborative Work Scenario Peak Blacklist Table Usage 209

Figure 139 Memory Used Normalized ... 210

Figure 140 Number of Computers .. 211

Figure 141 Average Number of Hops... 212

Figure 142 Table Memory Consumption Normalized.. 212

Figure 143 Average Successful TASK Event Transmissions... 213

Figure 144 25000 Event Score Deviations Summary... 214

Figure 145 RTIExec Output Window... 217

Figure 146 Two Federates Running a Scenario with the RTI .. 220

 xx

LIST OF TABLES

Table 1 ALSP Architectural Features ... 32

Table 2 An example PDU: Minefield Response NACK PDU 36

Table 3 HLA Federation and Federate Rules ... 42

Table 4 RTI Federate Four Time Management Options... 47

Table 5 Messages Used in the CLL Algorithm .. 70

Table 6 CLL Constants ... 71

Table 7 CLL Simulation Variables ... 72

Table 8 CLL Ground Truth and Perceived Truth Table Format..................................... 74

Table 9 Clusterhead 7’s Ground Truth Table Entry ... 76

Table 10 Clusterhead 5’s Perceived Truth Table Entry.. 76

Table 11 Clusterhead 9’s Ground Truth Table Entry ... 77

Table 12 Event Header Data Variables... 85

Table 13 Routing Techniques ... 86

Table 14 Events Used by the Grid Resource Discovery Protocol 89

Table 15 SIGNUP TABLE ENTRY Data Structure... 101

Table 16 SIGNUP TABLE HELPER Data Structure... 101

Table 17 SIGNUP TABLE Data Structure... 102

Table 18 RESOURCE TABLE ENTRY Data Structure .. 103

Table 19 RESOURCE TABLE HELPER Data Structure .. 103

Table 20 RESOURCE TABLE Data Structure .. 103

Table 21 VO Host Hash Key Data Structure .. 103

 xxi

Table 22 BLACKLIST TABLE Data Structure ... 104

Table 23 Score Data Structure .. 105

Table 24 Example Scoring Table.. 106

Table 25 Deployment Environment Don’t Cares .. 107

Table 26 Simulation Variables Monitored.. 142

Table 27 Scenario Network Topologies .. 162

Table 28 Possible Scoring Combinations Based on CPU Type 163

Table 29 Simulation PC_486 Scoring Table .. 164

Table 30 Simulation PC_586 Scoring Table .. 164

Table 31 Simulation APPLE_G4 Scoring Table .. 164

Table 32 Simulation SUN_SPARC Scoring Table... 165

 1

CHAPTER ONE: INTRODUCTION

This work evolves a custom-built simulation engine through three different

simulations; some of this work has already been used to publish conference papers and a

journal paper. One simulation, the 3DInterconnect simulator, simulates data transmitting

through a hardware k-array n-cube network interconnect (defined on Page 1). The

second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc

wireless routing protocol that uses a data distribution methodology based on the GPS-

QHRA routing protocol (defined on Page 3). The third simulator simulates a grid

resource discovery protocol (defined on Page 4). The first two simulators have been

loosely built with common software but with no compatibility to HLA or DIS or any

other standard simulation architecture, however throughout each evolution of the

simulation engine, the functionalities are improved and the third simulation has basic

HLA operations (defined on Page 4).

Introduction to K-Array N-Cube Networks

There are many candidates in the area of interconnects that can be used to provide

a communication link between processors and memories. An interconnect is a

conductive connection between two or more circuits on an integrated circuit or between

components on a printed circuit board. Networks such as k-array n-cubes include

hypercubes, mesh and torus networks. But the uniqueness of the interconnect

architecture we seek is contained by the physical constraints characterizing the line card

board. Area and I/O pins are limited on the line card. Hence, the number of alternative

designs that can physically and functionally fit, given those constraints, is limited. Each

 2

embedded chip has fixed and limited number of I/O pins. Therefore, a low-dimensional,

packet-switched network may be a good solution.

Figure 1 (a) 4 Array 3 Cube Interconnect (b) 8 Array 2 Cube Interconnect

Increasing line rates and deep packet processing operations place heavy strain on

the memory bandwidth requirements between the line card network processing elements

(PE) and memory modules (M) [25]. In order to support new services, line cards are

required to perform multiple functions simultaneously. Moreover, as the network

expands, lookup table entries and parameters consume more memory space to store data.

As a result, the memory bandwidth requirements, which are greatly limited by the

interconnection mechanism used to communicate between PEs and memories, are raised.

Although new router architectures and packet processing techniques improve the

performance, they still cannot keep up with network capacity growth rates in order to

avoid a major traffic bottleneck.

In the heart of every line card there is a network processor unit (NPU) that

performs multiple processes in order to analyze the flow of incoming packets. The nature

of packet processing requires frequent read/write operations to memories distributed

around the NPU. The simulator described in this work replicates the physical and

 3

functional environments by imitating different configurations in which the PEs and

memories are physically located on the line card. The simulator generates random

messages with explicitly random parameters such as source/destination addresses, size of

messages, and arrival/departure times from PEs to memory modules and vice versa.

Introduction to Clusterhead Routing

Ad hoc networks, usually characterized as self-creating, self-organizing, and self-

administering, consist of wireless devices that communicate with each other directly or

indirectly through multiple hops. Such multi-hop networks, also called peer-to-peer

networks, play a critical role in places where there are no preexisting infrastructure or not

economical to build; such operational aspect is ideal for disorganized or hostile mobile

computing environments, law enforcement, and rescue operations.

As various kinds of applications are supported over these networks, there is a

need to address the quality of service (QoS) issues. QoS mainly pertains to delay and

bandwidth guarantees. In order to improve QoS attributes, one can consider issues related

to routing, medium access issues, mobility management, power management, and

security [87]. As far as routing is concerned, there are many types of ad hoc routing

protocols that have been proposed over the years [48].

A comprehensive survey of routing protocols for ad hoc networks can be found in

[88]. Routing protocols have their advantages and disadvantages depending on the

network characteristics and the objective of the network. These routing algorithms are

distributed in nature; however, a clusterhead-based architecture helps in using some of

the well-known centralized concepts that have demonstrated better performance. A

clusterhead is one of the mobile nodes that assumes the responsibility of forming a cluster

 4

(each consisting of a number of ordinary nodes) and managing the radio resources in that

cluster. The fulcrum of cluster based routing protocols is the clusterleader (synonymous

with clusterhead). The dynamic and distributed nature of cluster leader election is critical

to support the networking hierarchy created by the clusterheads.

Introduction to Grid Computing

Computational grids have been emerging as a new paradigm for solving large

complex problems over the recent years [59]. Instead of having one large computer

working on a problem using all the data at the same time, grid computers "eat-the-

elephant" one bite at a time. The problem space and data set is divided into smaller

pieces which are processed in parallel over the grid network and reassembled upon

completion.

There are countless examples of how grid technology can be used for research,

monitoring, reporting, data storage, modeling and simulation, or other tasks for land, sea,

air, and space operations. Examples include weather and oceanographic analysis and/or

reporting, networks of real-time sensors, route planning, mission planning, Live Virtual

Constructive (LVC) training and simulation, cryptology, and distributed automatic test

equipment to name a few.

Introduction to HLA, DIS, and the Simulation Engine

Complex modern software simulation systems, such as constructive simulators

used by the military [3][4][5][6][7], share common functionality governed by their

infrastructure architecture and protocols. This commonality allows them to pass

messages back and forth in formats that the different simulators can interpret and

 5

(depending on the infrastructure used) can synchronize time with each other. Most of

those simulators are designed to work with a variety of different infrastructures to

accommodate different customers whom have funded functionality over time.

For some older or legacy systems [3][7], the infrastructure was built to

accommodate a particular customer. As time marches on and new architectures become

available or new requirements are imposed, it becomes too costly to change out the

underlying infrastructure. So, what is typically done is for the simulation to add a bridge

or translator component that allows the old infrastructure to work with the new Figure 2.

The bridge acts as a translator between the old and new infrastructure and protocols.

Figure 2 Legacy Simulators Connected to New Simulators via a Bridge

In order to find candidate simulation infrastructure architectures and designs to

base a common software infrastructure on, a review of already existing simulation

infrastructure was conducted.

Two common simulation architectures, HLA (High Level Architecture) and DIS

(Distributed Interactive Simulation), address many of the issues with simulation;

however, they do not address all of the issues. DIS has simpler concepts than HLA,

however messages are transmitted unreliably resulting in dropped packets and time is

managed in real time which means that it may be difficult for a simulator to keep up or it

may be difficult or impossible to roll back time to a saved state. HLA is fairly

Legacy
Simulator

Bridge or
Translator

Old Protocols

New Simulator

New ProtocolsOld
Infrastructure

New
Infrastructure

Old
Inf.

New
Inf.

 6

sophisticated and has very advanced data and time management policies; but only one

data model (or FOM (Federation Object Model)) can be used per simulation (or

federation) and the process of bridging federations can be difficult when two or more

FOMs should be shared among federations. FOMs are discussed on page 52.

The motivation behind this work is to build a common software framework that

can be used to create new networking simulators for HLA-based federations. The goal is

to reduce the time a developer has to learn the semantics of message passing and time

management. This is accomplished by evolving the simulation engine through three

different applications. The simulation engine developed is a discrete-event event-driven

simulation engine [74] meaning that state changes occur at time intervals that can occur

at any time. Also, the simulation engine is non-visual (no GUI), though it provides GUI

helper functionality, and uses statistical generation.

Computer networking is a good candidate for simulation because of the Internet’s

rapid growth that has spawned off the need for new protocols and algorithms and the

desire for a common simulator to model these protocols and algorithms [73]. The

common simulator in [73], VINT, was built on top of ns-2 and nam [23] in a similar

fashion how this work is built on HLA. Unlike ns-2 however, this simulation engine will

be built to work in a distributed environment.

Main Contributions

There are four main contributions for this work:

• Show results that the k-array n-cube topologies can sustain higher traffic load than the

currently used interconnects using wormhole routing.

 7

• Show that the CLL algorithm can realize power savings and reduced queuing delay

when compared to GPS-QHRA using cell fans.

• Show results that the grid resource discovery protocol discovery messages are able to

find resource providers to use for computation by scoring resource providers.

• Show that the simulation engine evolved through the three simulators above has

matured to the point of being HLA compatible.

 8

CHAPTER TWO: BACKGROUND

K-Array N-Cube Interconnect Background

K-Array N-Cube Networks

A k-array n-cube network consists of N = kn nodes, where n represents the

dimension of the network and k represents the number of nodes in each dimension.

Figure 1 presents 8-ary 2-cube and 4-ary 3-cube networks (as captured from the

interconnect simulator introduced later.) Each node in k-ary n-cube interconnect is

uniquely labeled and elements of the same plane are connected together. PEs and

memories are distributed throughout the interconnect in different configurations and

allow each PE to use multiple memories as storage as well as data sharing with other

processing elements.

Each node is connected to all of its nearest neighbors via bi-directional channels.

The address/location of a node can be represented as a vector consists of two bit-vector

fields [28]. Figure 3 represents the 3D-mesh interconnect architecture, which is based on

a 2-ary 3-cube network, that is extended in the x-direction. The 3D-mesh interconnect

is a packet-based multiple path interconnect that allows network packets to be shared by

different processing elements (PE) and memory modules (M) on the network line card.

Memories are distributed around processing elements, such as traffic manager, QoS co-

processor or classification processor, to allow data sharing among modules and direct

processor memory storage. If a link goes down, not only should the fault be limited to

 9

the link, the additional links from the intermediate nodes should ensure the connectivity

continues.

Communications

Processors and memories communicate by using message-passing mechanisms. Each

message is transmitted independently. Each message is partitioned into smaller data

segments, also called flits, which contain the maximum amount of data (in bits) that can

be transmitted in one cycle from one node to another. Each cycle another flit of the same

message is transmitted. Flits of the same message follow one another in a pipeline

manner. Therefore, a message is also referred to as a worm since the movement of the

message within the interconnect resembles a worm movement. Virtual channels (VCs)

allow worms to be stored within a node if all of the output ports of that node are busy

transferring other messages. This technique prevents worm transmission failures by

holding a worm within a node until one of its ports becomes available.

 10

Figure 3 3D Mesh Interconnect Architecture

Figure 4 Four Sub-Channels Containing Four Worms Simultaneously

Channels can change their configuration by dividing their width into two or four

sub-channels Figure 4. Sub-channeling (SC) permits worms to share the same channel

simultaneously. Although per-worm the channel has smaller capacity when sub-divided,

 11

it provides worms with extra flexibility in routing through the interconnect instead of

being buffered or retransmitted.

The message passing algorithm adaptively routes worms according to three

predefined guidelines and by incorporating interconnect traffic conditions. The first

guideline ensures that a worm will always attempt to take the shortest path possible to its

destination. If the required port is taken by the shortest path rule is occupied as a result

of high traffic load, it will test the availability of other ports. The second guideline

utilizes past moves to determine the next node that a worm will take towards its

destination and avoids certain consecutive moves to inhibit deadlock/livelock situations.

The last guideline preserves the worm’s relative movement from its source node towards

its destination; it will never reverse its direction towards its source.

PEs and memories can be physically located in many different configurations

depending on the number of PEs and memories required to complete packet processing

tasks. The location and ratio between the number of PEs to memory modules will

determine the average distance that a message has to pass in order to reach destination.

Average distance has a direct effect on the interconnect performance. Intuitively, as

network dimensions increase more configurations can be formed.

One objective, which can be gained by utilizing a simulator, is to find the optimal

value of k and n to achieve best performance. The optimal configuration depends on

many design constraints as well, such as channel width/density, number of elements

connected to the network, and cost. In general, when node delays are neglected and

constant bisection width is assumed, a network with lower dimensions has lower latency

than higher dimensional networks [29].

 12

Simulating K-Array N-Cube Interconnects

There are several discrete event network simulation and modeling tools available

that contain some of the architectural features and functionalities that are incorporated in

the model. However, none of these simulation frameworks are capable of delivering the

physical and functional attributes required to emulate offchip communications on line

cards. Consider three of these simulators, NS-2, Qualnet and OPNET, and the distinction

between applications. NS-2, Qualnet and OPNET are well-known network simulators

currently used by universities and network design companies [30][31].

NS-2 is an object-oriented, discrete, event-driven network simulator developed at

UC Berkeley, written in C++ and OTcl [23]. NS-2 is primarily useful for simulating

local and wide area networks; and it supports simulation of TCP, UDP, routing, and

multicast protocols over wired and wireless networks [32][33].

The Qualnet is a real-time simulation framework, developed by Scalable Network

Technologies (SNT), to emulate the communications of multiple network models [34].

Qualnet includes a rich 3D-visualization interface to provide the user with control over

data packets, network topology and performance evaluation. It supports wireless and ad

hoc networks as well as parallel and distributed architectures [35]. In addition, it supports

multiple routing protocols such as BGP, SIP, RIP, ARP, and BRP. Some related

applications that can benefit by using this network simulator include: microwave

technologies, high frequency radio communications or satellite communications.

OPNET’s network modeling and simulation environment delivers a scalable simulation

engine that can emulate wireless, point-to-point and multi-point network links. It has the

 13

capability to support routing protocols such as voice, HTTP, TCP, IP, Ethernet, frame

relay and more (Wu et al., 2001). Some of the application best

suit for this simulator are mobile, cellular, ad hoc, wireless LAN, and satellite networks.

The OPNET simulator allows the user to custom design traffic models since it supports

finite state machines and object-oriented modeling (Chang, 1999).

These network simulators are not designed to emulate off-chip communication

environment required for our application based on the following differentiations:

• Physical attributes: none of these simulators include specific PCB physical

properties which have a great effect on the interconnect performance. Physical

properties are crucial to meet the stringent area restrictions on line cards.

• Applications: all three simulators fit better for LAN, AN, mobile and ad hoc

communications, not small scale interconnects which require different routing

algorithms and flow control mechanisms. The line card simulator must include

message flow enhancement features such as virtual channels and sub-channeling.

• Message control: our interconnect simulator provides control of how to deliver

messages, perform statistics, gather data, route the packets through the network

and run auto test cases. Furthermore, the user has more control of how to save and

re-run data using the simulator options menus, rather than learning OTcl or

Parsec.

• Participants: while our simulator models communication among PEs and

memories, the other simulators include other participants such as PCs, satellite

communication, routers or other moving objects.

 14

• Communication medium: most of communication mediums used in these

simulators have different signal propagation characteristics and performance. Our

off-chip interconnect model is a small scale network in which packets propagate

from point-to-point via PCB buses no longer than 1 inch in length.

Cluster Leader Logic Background

Cluster Leader Election

There are three cluster leader election protocols considered for background

research to include Control Cluster Head (CCH) [50], Leader Election Algorithm [51],

and Least Clusterhead Change (LCC) [52]. CCH and LCC are based on the DMAC

(distributed mobility-adaptive clustering) algorithm. DMAC causes clusterheads to

change when either of these conditions is met:

1. When two clusterheads come within range of each other.

2. When a node becomes disconnected from the cluster.

DMAC assumes that each node knows its own ID, weight, and role of all its

neighbors. In order for this to occur, clusterheads must periodically update their

knowledge to other clusterheads. LEA works in a slightly different manner. A new

clusterhead is elected when the current clusterhead leaves an area. Clusterheads are

organized into a spanning tree; elections can also occur when a clusterhead detects that

the spanning tree needs to grow. The spanning tree technique is not used for CLL;

however, CLL uses tables similar to LCC.

The background knowledge of the algorithms presents two possible areas of

improvement. The first is to reduce or eliminate periodic updates of network statuses to

 15

achieve the full picture of the network topology. The second possible improvement

would be to eliminate the need for clusterheads to know where each of the other

clusterheads is located. These improvements may be realized by using concepts from

GPS-QHRA and CLL.

Load Balancing Techniques

Load balancing is an important issue in ad-hoc networks as it translates to end-to-

end performance. Among other load balancing techniques, LBAR (Load-Balanced Ad-

Hoc Routing) [89] defined a metric called the degree of node activity which represents

the load on a node. LBAR sends all the learned routes from the source to a destination

node when sending messages. The destination node has the ability to pick the most cost

effective route to send messages back. LBAR also uses a path maintenance technique to

fix broken links and re-routes packets to other nodes when necessary.

The CLL design for the distributed clustering algorithm is motivated by DMAC

and LBAR. The intention is to reduce or eliminate periodic updates (or path maintenance

as used in DMAC or LBAR) to maintain a view of the network topology. Also, there is a

desire to eliminate the need for clusterheads to know where each of the other clusterheads

is located (as used in DMAC). When designing CLL, information is not maintained about

network connectivity which is beyond what a particular node needs to know about its

immediate surrounding. This reduces the information exchange because routing

information does not need to be passed between nodes. Also, when connectivity state is

learned by a node, a path maintenance cycle is necessary to maintain and track this

information. Depending how far the routes traverse and how fast the wireless nodes may

be moving, this overhead could provide little benefit. Aside from the speed of a node, a

 16

node may move to an area where the terrain prevents the strongest signal on the least-cost

path after the cost is evaluated. CLL tries to emulate wired networking protocols where

only the next hop information is known; however due to the more volatile nature of

wireless networks, more factors other than just maintaining routing tables are considered

and CLL is designed to compensate for these factors.

Related Work on Clustering

Several clustering algorithms and heuristics have been proposed for ad-hoc

networks [90], [91], [92], [93]. Many existing solutions take into account various

parameters of clusterhead suitability. However the most recognized ones are based on

clusterhead selection which rely on random events such as node id assignment (as in the

lowest id algorithm) and the degree of connectivity (as in the highest degree algorithm).

The lowest id [94], [95] heuristic assigns a unique id to each node and chooses the

node with the minimum id as a clusterhead. Thus, the ids of the neighbors of the

clusterhead will be higher than that of the clusterhead.

In highest degree [92], [96], each node broadcasts its id to the nodes that are

within its transmission range. A node x is considered to be a neighbor of another node y

if x lies within the transmission range of y. The node with maximum number of

neighbors (i.e., maximum degree) is chosen as a clusterhead. If there is a tie, it is broken

arbitrarily by the nodes’ ids. There are other clustering schemes that consider node and

network parameters for deciding the nodes best suited to act as clusterheads.

In the node weight heuristic [97], the nodes are assigned weights based on

clusterhead suitability; the neighbor with highest weight wins. This scheme has

 17

infrequent node updates but moderate computational overhead. Also, it is not optimized

for system throughput and power control.

Uniform leader election [98] is a scheme where a rotated binary tree is used. The

non-uniform leader election and the oblivious leader election [99] algorithms are similar

in nature; however, based only on a ternary tree and transmit slots respectively. Once

again, node suitability is not taken into consideration in neither of the three schemes. The

least cluster change (LCC) [100] scheme is based on lowest id or highest connectivity.

Re-election is only initiated when a clusterhead moves into another cluster or when a

node becomes separated from a cluster. This scheme reduces cluster re-association and

increases stability, but is potentially unfair in terms of load distribution.

The mobility-based adaptive clustering scheme is an event driven algorithm based

on hybrid routing and node mobility [93]. Two parameters control path availability and

effective capacity of path as well as cluster size. It is capable of multi-path transmission

to increase capacity; however it has high computational complexity.

In access-based clustering protocol [101] a node receiving a clusterhead

declaration from its neighbor prior to declaring itself as a clusterhead becomes a member

node. Access to control channel is based on time-division multiplexing with short

execution time and incurs low control message overhead. However, clusterhead

suitability is not considered. In linked cluster algorithm (LCA) [95], the entire band is

divided into M sub-bands (epochs) and the algorithm is performed on each sub-band. The

nodes are assumed to have precise synchronized clocks and the number of nodes are

known priori.

 18

The max-min D-clustering [102] scheme uses two consecutive broadcasts that are

sent in N timeslots to each one-hop neighbor. The scheme is fault tolerant due to

availability of multiple paths from gateway nodes; produces fewer clusterheads and is

more stable than LCA. The weighted clustering algorithm (WCA) [91] is a weight-based

distributed clustering algorithm takes into consideration the ideal degree, transmission

power, mobility, and battery power of mobile nodes. A comprehensive comparative

performance evaluation of various clustering protocols that help backbone formation in

ad-hoc networks can be found in [103].

GPS-QHRA

This work is motivated by GPS-Quorum Hybrid Routing Algorithm (GPS-

QHRA) [49]. GPS-QHRA is a routing protocol which uses the clusterhead election

process. The routing protocol divides the two-dimensional area into grids and assumes

that every mobile node is equipped with GPS capability. A clusterhead, which is also

called the Location Database Node (LDN), is identified within a grid. The LDN

maintains two routing tables – an inter-zone routing table and an intra-zone routing table.

GPS-QHRA establishes danger zones which give LDNs the ability to change

clusterheads if the LDN starts to roam out of a grid. A comparison of proactive (table-

driven), reactive (on-demand), and hybrid protocols using geographical zoning and a

combination of proactive and reactive routing techniques affirmed that by dividing the

GPS-based ad-hoc network into statically allocated hexagonally cellular shaped regions

(as opposed to rectangular regions), larger scaled topology networks could be created.

 19

Figure 5 GPS-QHRA Terrain Projected onto 2D Hexagon Cells

The partitioning of such a 2-dimension region is shown in Fig. 1 where the region

of interest is divided into fixed sized fixed-location cells. Though nodes and clusterheads

move, the cells do not move. The dark regions around the center of the hexagons are the

safe zones. The lighter colored regions near the edges of a cell are the danger zones;

when a clusterhead is in a danger zone, it may pass (described later) the clusterhead

responsibility to another node and change its status to a regular node. These hexagonal

regions are an integral part of the algorithm to sort nodes on the topography. The radius

of these hexagons is estimated based on the transmission range of the nodes.

Grid Computing Background

State-of-the-art Grid Computing

The grid computing discipline allows for the world’s largest computers to be

created [106]. Grids enable resource sharing and aggregation of millions of

computational resources over geographically distributed organizations and administrative

domains. Grid computing achieves three goals [62]:

1. Resource Aggregation – group computers that are geographically distributed

where it appears that there is a single computational system where resources are

used as needed.

 20

2. Data Sharing – allow data to be shared between grid resources in a trustworthy

and secure fashion.

3. Collaboration – allow different organizations to work together on or integrate

projects.

One example of a computational grid problem is a very large problem that can be

broken up into pieces where the answers to each piece do not depend on each other. Each

piece can be sent out over a network to many computers to be solved. As each piece is

solved, it is collected by a server and assembled into a final solution when all pieces

arrive.

Consider a hypothetical example for naval military mission planning. Suppose

several friendly warships are to engage enemy warships. Two sets of inputs are needed

to complete the plan: sensor inputs and platform data. Sensors provide data for friendly

and enemy tracking, weather conditions which are needed for weapon systems

calculations, oceanographic conditions are necessary for movement calculations, fuel

sensors aid in calculating that there is enough fuel to complete the mission and return

home, etc. Platform data represents the expected properties of friendly and enemy ships

which can include the total number of personnel, the munitions the ship can fire, the

quantities of the munitions, the material the hull is made from, etc.

The mission is planned by essentially “rolling the die” for each of these variables

with different combinations of quantities or expected behaviors. This type of problem is

ideal for a grid because it can be broken into parts where each part represents a roll of the

dice; once each set of circumstances is simulated, the results can return to a central

location to be compared and reduced to a small set of answers or a single answer. Also,

 21

because of the communication medium having little spare bandwidth that the warships

use, the ships can only afford to send a limited amount of data to start the planning.

The process by which resources are discovered to plan a mission is unique to this

proposal. Typically, resources are logged into a resource broker that is somewhat aware

of all of the participants available on the grid. As noted in [60], the resource broker

scheme can be a bottleneck because of the amount computational power and network

bandwidth needed to maintain a fresh view of the grid. Otherwise, the broker’s view of

the grid is stale which could produce extra network traffic for work orders to be

redirected to different providers. [61] suggests a new concept of placing the load of

managing the network on the network itself: inside of the network routing processor

(NPU) and memory.

Virtual Organizations

There are several example models that show different configurations where this

type of resource discovery would be useful. Before the usage models are introduced,

consider the concept of a virtual organization (VO) [62]. Virtual organizations are

logical entities, usually with a limited lifetime that are dynamically created to solve a

specific problem [106]. VO members negotiate the terms of resource sharing,

membership management, security, and access control. For instance, the VO may impose

rules for resource sharing that include the amount of time a participant can use the grid,

the sharing relationships among the participants, or the sensitivity of the data that

participants can process or access. VOs can be organized in many different fashions: for

instance a corporation, school, charity, or project can act as a VO.

 22

It is interesting to note revenue possibilities for having a grid infrastructure

because membership to an alliance can be billed by a VO Host and/or the VO Host can

collect royalties from the transactions delivered and computed on the VO’s grid. By

being a member of a VO, consumers are aware of the products, security, access,

resources available, and protocols run by the VO.

Scheduling

One of the primary grid computing applications is to provision and distribute

application codes to specific nodes [106]. One component of the grid computer

architecture that performs this functionality is the scheduler. Schedulers can allocate

resource for a task and partition the tasks to execute in parallel. A scheduler can be

placed on a single machine or distributed throughout the network. The scheduler may

schedule resources based on their platform requirements. It may reserve resources in

advance, enforce and/or validates service level agreements, enforce resource turn-around

policies, monitor job execution status, and reschedule events.

Resource Brokers

The resource broker pairs resources between the resource consumers and resource

providers. By knowing various attributes about the grid network, the resource broker can

match tasks the best fitting resources. Some factors a resource broker may consider are

availability, hardware/software capabilities, bandwidth, and costs. In order for the

resource broker to make these types of decisions, it must be aware of job allocation,

status management, and data distribution [106]. Middleware exists as part of the

 23

GLOBUS project [65], called GRAM, which allows the resource broker to perform these

services: resource allocation, process creation, monitoring, and management services.

Grid Toolkits and Middleware

PlanetLab

PlanetLab [66] provides distributed resources on top of the Internet using the

Globus Grid Infrastructure [65, 79, 80]. PlanetLab has two purposes:

• Act as a test bed:

– Gives researchers access to a large set of geographically distributed

machines.

– This is a realistic network that experiences congestion, failures, and

diverse link behaviors (as opposed to just a simulation).

– There is a potential for real client workloads.

• Act as a deployment platform providing:

– Researchers with a direct technology transfer path for popular new

services.

– Users with access to those services.

PlanetLab includes a feature called the Virtual Machine Monitor (VMM). One

must install the PlanetLab software that downloads a VMM and installs it on the resource

node. This is done to add machines to the network and to make them available (which is

technically called “slices” of available resources). The VMM specifies the interface to

which the services distributed over the testbed are written. The VMM also provides strict

security over the amount of memory, disk, bandwidth, and processing power is

 24

allowable: with the appropriate password, one can log in as “root”; but even as root some

privileges are denied.

UNICORE

UNICORE [9, 64] covers another interesting and applicable area of concern:

resource agreements. UNICORE-style resource agreement can be used to form and

maintain VO agreements. Using UNICORE as a base, an agreement is made from an

agreement template that is converted into an agreement offer that then becomes an

agreement instance. This is achieved by an automatic factory service is what provides

and allows access rights for the grid consumer. This ideology appears fine, but

UNICORE is not very clear on what services are available from the automatic factory

service.

Legion

Legion applications use objects to represent processors, data systems, and file

systems and construct a shared virtual workspace to collaborate and exchange

information [106]. Legion is middleware that resides on the operating system and

mediates resources between resource consumers and providers. This allows users to

create context spaces to use objects in distributed systems. As objects are defined, they

are managed by object metaclasses that have capabilities to create, destroy, activate, or

deactivate class instances as well as provide information to client objects.

Condor-G

 25

Condor is a workload management system optimized for high throughput

computing where tasks do not need to communicate with each other [106]. It provides

task queuing, task scheduling and prioritization, and resource monitoring and

managements functions. Condor-G is implemented to work in concert with Globus’

GRAM service for inter-domain resource management while using its own software for

intra-domain resource management.

Grid Computing Constraints and Issues

Despite the powerful benefits of grid computing as shown with SETI@Home[57]

and Einstein@Home [58], the grid has not been formally deployed because of scalability

and security concerns. The goal is to design a grid resource discovery protocol to

enhance scalability and to develop a simulation to model the grid network using these

new developments built on a common software baseline that can be used to create other

simulators.

Typically, computational grid resources are logged into a resource broker [66][67]

that is aware of the participants available on the grid. The resource broker scheme can be

a bottleneck because of the amount computational power and network bandwidth needed

to maintain a fresh view of the grid. Otherwise, if the view is not maintained, the

broker’s view of the grid becomes stale which could produce extra network traffic for

work orders to be redirected to different providers. A new concept is suggested of

placing the load of managing the network resource discovery on the network itself: inside

of the network processor (NPU) that is employed on the line cards in routers.

This imposes changes to the grid computing architecture as well as to the

networking infrastructure. The traditional role of the resource broker is greatly

 26

simplified. The grid resource discovery protocol finds resources by using a scoring

mechanism; the resource broker only needs to determine a desired score of a task. The

role of the scheduler is changed as well. The scheduler will less work to do for

monitoring resources since the network routers will be doing that work as resource

providers update them as they become available or consumed.

Grid Deployment Environments

In order to see how the resource discovery protocol fits in the real world, it helps

to understand the environments that grids are deployed in [56]. These environments

provide the scenario that the resource discovery protocol can be simulated in. The

differences between different environments lie in the application of the scenario, the type

of deployment, and the security needed. Five such environments are discussed in [68]:

science portals, distributed computing, large-scale data analysis, computer-in-the-loop

instrumentation, and collaborative work. Each of these examples is discussed in detail in

this section with a brief statement of how the resource discovery protocol can be used in

this situation.

Science Portals

Science portals on the web can allow scientists to perform tasks on a grid without

having to learn how to install or maintain the grid components necessary to run [68].

This type of deployment for portals is known as thin deployment [69] that allows

communication to occur using standard web browsers and HTML and DHTML.

[67] highlights an example science portal called the astrophysical computing. The

goal of the resource discovery protocol characterized in this work is for the workload to

 27

be possibly reduced or eliminated for two of the components identified in the

astrophysical portal design: resource monitoring and resource management. These

components can be moved from the application server to the networking hardware

infrastructure if the resource discovery protocol proves to be effective. For this scenario,

the discovery routing protocol could work as follows:

1. A scientist logs onto a science portal and identify the task to be computed.

2. The portal identifies the types of resources needed to perform the computation

and sends a request message through the networking infrastructure, which uses

the proposed resource discovery routing protocol.

3. If resources are found, each resource sends a message to the portal via reverse

path forwarding.

4. The portal negotiates the connection between the resource and the scientist’s

computer and computation thus begins.

Distributed Computing

Individual PCs can be combined via parallelization to provide substantial

computational resources. One such example of distributed computing is

FightAIDS@Home that is part of the World Community Grid [70]. Individuals wishing

to donate their idle computational clock cycles can have their PC’s run molecular

analysis to help find drugs to fight HIV and AIDS. To help FightAIDS@Home, one

downloads an agent (pictured in Figure 6) which requests for drug molecule

representations and models its effects on HIV or AIDS.

The grid resource discovery protocol could help the server which doles out drug

molecule models expedite its workload more efficiently. Rather than waiting for pings

 28

from available agents, the server could send the work order out over the network and the

routers will deliver the drug molecule model to an appropriate resource. Consider a

resource running an agent that has available idle computational power and no molecule to

model:

1. The agent sends a resource availability message out through the grid network.

2. The routers in the network record the resource availability as the message is

forwarded.

3. The server has a new drug molecule to model and sends the request through the

network.

4. The request is routed through the network and ends at an available resource.

5. The resource agent contacts the drug molecule server, downloads the molecular

model, and begins computation.

Figure 6 FightAIDS@Home Execution Window

To help FightAIDS@Home, download the agent shown in Figure 6. When your

computer becomes idle (for instance when your screen saver is on), the agent will

download a drug molecule to model fighting HIV/AIDS and begin modeling it. The

 29

proposed resource discovery protocol can help this situation by allowing the molecule

server to expedite requests without having to wait for pings from available agents.

Large-Scale Data Analysis

Computational grids provide the capability of acting as a large storage facility in

addition to providing computational powerhouses. Scientific problems exist which

require petabytes (1,000,000 gigabytes) of data to be stored and processed throughout a

grid network [71]. The grid resource discovery protocol can help with this scenario

because it uses storage as one of the determining factors for tracking grid resource

providers. The discovery protocol would as follows in this scenario:

1. A grid resource with s megabytes of storage space becomes available to the grid

network. A resource availability message is sent from the resource provider to the

central archive that indicates the CPU speed, storage space s, and various other

parameters.

2. As the message hops from router to router in the archive, the parameters

(including s) in the message are recorded in tables within the networking

hardware.

3. When the central archive is ready, it sends out a new work order through the grid

network containing a tuple of search criteria: CPU speed and storage capacity.

4. As the order hops through the networking hardware, the parameters are compared

to the values in the resource tables to ensure that the CPU speed needed is met or

exceeded and that the storage capacity needed is less than or equal to s.

6. Eventually, the work order will arrive at a grid resource provider, the data will be

downloaded, and the processing can begin.

 30

Computer In-The-Loop Instrumentation

There are scientific instruments that are used to collect streams of data which are

archived and processed later to detect things of scientific value [6]. The processing can

take a significant amount of time that may result in finding a brief period of information

that is very useful to a scientist. It would be more practical, for instance, for automated

software to detect when useful information is about to be captured, process that

information immediately and then highlight intermediate results to a scientist before the

entire data set is collected. The on-demand type of analysis can be conducted using a

grid network. The transaction would work like this:

1. The instrumentation detects that an important event is about to occur. A resource

discovery message is sent out through the grid network for available resources.

2. When the resources reply back to the instrumentation device, the device

immediately sends work orders through the grid networking infrastructure.

3. The data is sent to the grid resources for processing. When the processing is

complete, the instrumentation (or another computer) can receive the message and

notify a scientist of an important observation as it is being monitored by

instrumentation and processed in the grid.

Collaborative Work

When scientific results are collected and analyzed, scientists may want to

collaborate to discuss results and offer suggestions. This type of collaboration can be

done in real time that demands high bandwidth, fast processing power, and access to

stored results [68]. While one group of scientists review simulation results, other

 31

scientists may be examining the data or similar data from different runs more closely or

they may be running their own simulations to verify the results. The resource discovery

protocol proposed in this work suits this scenario as well since the distributed nature of

the protocol does not allow for many scientists to simultaneously accessing the same

resource broker while the resources are talking to it. The discovery protocol would as

follows in this scenario:

1. A scientist wishes to validate a fellow’s work by running a similar analysis. A

resource availability message is sent from the resource provider to the central

server that indicates the task to be run.

2. As the order hops through the networking hardware, the message is routed to an

available server.

4. Eventually, the work order will arrive at a grid resource provider, the work order

will be downloaded, and the processing can begin.

Simulation Protocol Background

Aggregate Level Simulation Protocol (ALSP)

One example of a legacy simulation protocol is Aggregate Level Simulation

Protocol (ALSP) [2] developed in 1992. ALSP is an example of a protocol allowing

Advanced Distributed Simulation (ADS): the integration of simulations to support

training in a large parallel computing environment called a confederation. This allowed

the formal introduction of four important principles that ALSP borrowed from SIMNET

[8]: dynamic configurability, geographic distribution, autonomous entities, and

communication protocols. ALSP also introduced new concepts, at the time, to include

 32

simulation time management, data management, and architecture independence. These

features are described in Table 1.

Simulators that participate in an ALSP confederation are called actors. Actor

simulation objects, or entities, go through a dynamic lifecycle from creation to removal

during a simulation exercise. Each entity has associated attributes or values belonging to

it as defined in the confederation object model. This is similar to an object in Object

Oriented Design (OOD) [9].

Table 1

ALSP Architectural Features

Architectural Feature Description
Dynamic Configurability Allows simulators to arbitrarily join or leave a

confederation.
Geographic Distribution Simulators can exist anywhere around the world, but the

terrain used is the same logical terrain.
Autonomous Entities Each simulation controls its own resources (objects or

entities.)
Communication Protocols Information is passed from simulator to simulator using the

same messaging protocol.
Time Management Constructive simulators can operate outside of the normal

wall-clock time experienced: faster or slower than wall-
clock time.

Data Management Maps the internal simulator state representation consistently
at the confederation level.

Architectural
Independence

By being architecturally independent, ALSP was designed
to be non-obtrusive and easy to adapt.

One distinguishing feature of ALSP from OOD is that different actors can own

different ALSP attributes within the same entity object. The process of owning an

attribute in ALSP is called locking. Objects are locked based on their registration or

discovery. An actor registers objects into the ACM by default in the locked state (or

optionally in the unlocked state). Another actor’s ACM discovers the object registry and

puts the information in its local database. Also, objects that are seen but not owned by

 33

other actors are known as ghosts. Interactions are the messages that are passed between

actors when there is a change to an object and the ghost must reflect that change.

The ALSP infrastructure is composed of four components:

• The ALSP Common Module (ACM)

o Performs time synchronization: synchronous (time-stepped) or

asynchronous (next-event).

o Manages objects.

o Coordinates actors joining and leaving the confederation.

o Filters out incoming messages that are not needed by the receiver.

o Allows and enforces attribute ownership transferability.

• The ALSP Broadcast Emulator (ABE) – provides message distribution

capabilities in LAN and WAN environments.

• The ALSP Control Terminal (ACT) – used to control confederation wide

messages.

• The Confederation Management Tool (CMT) – used to view various

confederation parameters or statistics.

Object management introduces the concept of filters. The ACM database is

composed of several data sets about object creations, object updates, and other object

interests. These can be used in conjunction with filters to prevent the actor from knowing

certain interactions while allowing the actor to know other interactions. Filters can be

used to discriminate objects, attribute values or ranges, and/or geographic locations of the

entities to notify the actor of only relevant data.

 34

Data is passed from actor to actor via a text-based messaging scheme. The

semantics of the protocol are confederation dependent; so if a simulator is blindly

transferred from one confederation to another, there is no guarantee that it will be able to

successfully read or write understandable messages to or from other actors.

Distributed Interactive Simulation (DIS)

Distributed Interaction Simulation (DIS) was designed to be an infrastructure to

build distributed simulations on [15]. DIS addresses application protocols, real-time

communications, and exercise management and feedback. Even though ALSP [2] and

HLA [10] were spawned from Department of Defense interests, DIS is tightly coupled to

military exercises where ALSP and HLA are looser and can be applied to other domains.

Like ALSP [8], DIS has origins from SIMNET.

DIS, functionally, is designed to achieve seven functional requirements [15]:

1. Entity Information and Interactions. An entity can be a vehicle, person,

building, munition, or cloud. All entities are enumerated based on their entity

type as defined in the DIS spec [15].

2. Warfare. Warfare involves firing and detonating munitions.

3. Logistics. Logistics messages are composed of supply (or resupply) and

repair services to include medical repair.

4. Radio Communications. Sending entities define the details of the

communications device and the data communicated; the receiving entity

determines if the data can be received.

5. Distributed Emission Generation. Representation of lasers and active

electromagnetic and acoustic emissions are essential in certain simulation

 35

exercises. Emitting entities simulate their emitter and output real-time

operational parameters. Each receiving entity is responsible for determining if

the emission is detectable. [15]

6. Management. DIS management is divided into network management and

simulation management. The network manager analyzes performance,

monitors load and network nodes and gateways, and helps with error

recovery. The simulation manager manages the simulation exercise which

includes starting, stopping, and pausing the exercise, removing models from

an exercise, and the collection and distribution of data within the exercise.

7. Environment Information. Different factors in the environment (terrain,

weather, oceans/water, ambient illumination, engineering objects like bridges

and buildings, and atmospheric conditions) make the simulation exercises

more realistic.

Application Protocols

The main application protocol mechanism, which distinguishes DIS from HLA

and ALSP, is the transfer of Protocol Data Units (PDU) [15][16]. PDUs are data

messages sent between simulation applications on a network. Messages are grouped into

specialized domains called protocol families. All PDU information is “hard-coded” into

the DIS standard that guarantees that, in theory, any DIS application can work with any

other DIS application.

Simulations are generally responsible for controlling at least one entity in the

simulation. Also as an added responsibility, when the entity modeled performs an

observable action, the simulation that controls the entity is responsible to send the

 36

appropriate PDUs on the network to the applications. The receiving simulations are

responsible for tracking and monitoring these messages. These observable actions or

states are known as ground truth data. The receiving simulation may take this ground

truth data and change it to what its model thinks it sees (known as perceived truth.) For

instance, a radar simulator may be notified of a flying aircraft before it is supposed to

display it to the operator (perhaps due to the limitation of the radar fan). So, the operator

does not perceive an aircraft until the simulator calculates that it is within range of the

radar.

Table 2

An example PDU: Minefield Response NACK PDU

Field Size in Bits Minefield Response NACK PDU
Protocol Version—8-bit enumeration
Exercise ID—8-bit unsigned integer
PDU Type—8-bit enumeration
Protocol Family—8-bit enumeration
Timestamp—32-bit unsigned integer
Length—16-bit unsigned integer

96 PDU Header

Padding—16 bits unused
Site—16-bit unsigned integer
Application—16-bit unsigned integer

48 Minefield ID

Entity—16-bit unsigned integer
Site—16-bit unsigned integer
Application—16-bit unsigned integer

48 Requesting Entity ID

Entity—16-bit unsigned integer
8 Request ID 8-bit unsigned integer
8 Number of Missing PDUs 8-bit unsigned integer
8n Missing PDU Sequence

Numbers
8-bit unsigned integer

The number of bits, type of data, and format of data is specified.

When entity location PDUs are passed around the simulation, a standard view of

the world is used which rotates just as the Earth does. A right-handed geocentric

coordinate system is used. Geocentric means the origin of the (x, y, z) axes is that the

 37

center of the Earth [17]. The positive x-axis passes through the Prime Meridian at the

Equator, the positive y-axis passes through the Equator 90 degrees east of the Prime

Meridian, and the positive z-axis passes through the North Pole. One unit of

measurement in this system is equal to 1 meter in the simulation. An entity’s location is

based on its center of its bounded volume and excludes extremities. When firing

munitions, the location of the weapon and type of munitions (at a minimum) are

communicated.

Real-Time Communications

DIS promotes ad-hoc networking by not requiring any computer to control the

simulation [15]. Thus, simulation applications can join or leave the DIS exercise at any

time (from a technical perspective). The simulations are responsible for knowing the

state of the entities in an exercise.

In an attempt to reduce the amount of data on a DIS network, an algorithm known

as dead reckoning [15] is used to limit the amount of positional (or “Here I am!”)

messages on the wire. One technique of achieving this is to send an entities orientation

and speed (or its velocity vector) with its initial location. Receiving simulations can then

estimate, or dead reckon, the course the entity would take over time. When the entity

changes speed or direction, if the entity moves past a particular threshold, or on occasion,

the controlling simulator will send out a new PDU indicating the new location, speed, and

orientation of the entity.

There are a couple of caveats worth mentioning about dead reckoning. For most

military ground objects, dead reckoning is an appropriate algorithm. However, for “fast-

 38

movers” such as airplanes, jets, and especially missiles, the dead reckoning calculation is

not as effective as when it is used for ground entities. By the time the next positional

update PDU is generated, the missile has most likely hit its target and the airplane or jet

has moved so fast that the dead reckoning algorithm may not be of much value. Also,

each simulation may use different parameters or formulas when calculating dead

reckoning. So, one simulation may show an entity in a particular location where another

simulation might show the same entity in a different location. This could produce an

issue, for example, where if a bomb goes off in the first location, one simulation may

perceive the entity as alive whereas the other simulation may perceive the entity as

destroyed.

There are other ways of optimizing communications in DIS. These can include

data compression, simulations filtering out data, putting different simulations on different

multicast subnets, and sending only changes to PDUs rather than entire PDU updates.

Time Management

DIS communications are real-time (as defined by the Universal Coordinated Time

(UTC)) and an exercise can commence during a simulation time. So, the UTC real-time

is the present time, but a simulated time could be two years ago. PDUs can be time-

stamped to indicate the time when the PDU is valid. Also, DIS has the concept of a

heartbeat when all entities are refreshed periodically. This allows DIS simulations that

leave and re-enter an exercise the opportunity to catch-up to what has been going on

since the simulator left. Also, DIS traffic is unreliable, so if a message was dropped due

to network congestion, the heartbeat allows a mechanism to resend this data.

 39

Exercise Management and Feedback

Simulation management functions can be divided into exercise management and

data management [15][18]. Both entities and exercises can be initialized, started, or

stopped by the simulation manager and entities can be paused, reconstituted, or removed.

When entities are created, an acknowledgement message is sent to affirm the creation. A

Set Data PDU can be issued to change parameters of an entity.

Entities are allowed to have three states [15]:

• Simulation state - when the entity is being simulated.

• Wait state – when an entity is removed.

• Stopped or Frozen state – when the entity is not simulating and can be started

at any time.

Feedback is provided to the simulation management through several mechanisms

to include the Event Reporting PDU. Also, data can be requested by using the Data

Query PDU. A simulator can monitor this traffic and display it to a simulation manager

as appropriate or it can record this information for retrieval or playback at a later time.

High Level Architecture (HLA)

Signed into effect October 2005, the U.S. Department of Defense created their

Modeling and Simulation Master Plan [11]. Among other things, the plan calls for all

DoD models and simulations to conform to HLA (High Level Architecture.) HLA, as

outlined by the plan, serves many purposes:

• Facilitate interoperability.

• Encourage reuse.

 40

• Make no specification about the internal structures of simulation.

• Provide the Runtime Infrastructure (RTI) Services that allow models and

simulations to participate in an HLA simulation.

• Use the Object Model Template (OMT) that describes the entities and interactions

in an HLA simulation.

Thus, HLA was officially born and work began creating federation rules, an interface

specification, and the OMT [10]. The federation rules help to define the proper

interactions between simulations and describe each simulation’s responsibilities. The

interface specification defines the RTI services and identifies callback functions each

federate must provide. The OMT provides a common way for simulations to share data

by creating the Federation Object Model (FOM), Simulation Object Model (SOM), and

Management Object Model (MOM).

Federation Rules

HLA definitely has similarities to ALSP [2]: ALSP has a confederation with

actors, a confederation object model, and objects and interactions; HLA has a federation

with federates, a federation object model, and objects and interactions. The federation

rules differ between ALSP and HLA and HLA is more specific in some instances than

ALSP with federation rules. Also, ALSP was an architecture and an implementation

where HLA is an architecture and the RTI is the implementation; the two were

completely split apart. There are ten basic rules of HLA as defined in [10] and the next

section.

 41

Run-Time Infrastructure (RTI)

The Run-Time Infrastructure (RTI) is the implementation of HLA [10]. As

outlined in the DoD M&S Master Plan [11], the RTI encourages interoperability and

distributed computing. One of the primary concepts behind the RTI is that it separates

simulation from communication: the federates simulate, the RTI encapsulates federate-to-

federate communications. Main functionalities of the RTI are discussed below:

improvements from DIS and ALSP, the lifecycle of a federation, object declaration and

management, time management, and sync points and federation commands.

The RTI Software

The RTI software is composed of the RTI Executive Process (RtiExec), the

Federation Executive Process (FedExec), and the libRTI library. The RtiExec manages

the creation of a FedExec process within a single network. The libRTI library provides

the HLA services to the federate. Any model that desires to become a federate must

include the RTI header files, call the appropriate functions to act as a federate, and link to

the libRTI library.

The RTI can execute on a single computer, on a LAN, or on a distributed complex

network. The RtiExec process is started on a computer; when the first federate creates a

federation, the RtiExec process forks off a FedExec process on its same computer. The

FedExec process manages federates entering and leaving the federation.

When a federate initializes their local instance of the RTI, the libRTI creates the

Local RTI Component (LRC). The mechanism by which the LRC knows how to

communicate to the RtiExec is through settings in the RID file which indicate the IP

 42

address of the computer hosting the RtiExec process. When a connection is successfully

established, the federate can start sending and receiving objects and interactions and

perform all other HLA functionalities.

Table 3

HLA Federation and Federate Rules

Federation Rules Federate Rules
Federations shall have an HLA Federation
Object Model (FOM), documented in
accordance with the HLA OMT.

Federates shall have an HLA Simulation
Object Model (SOM), documented in
accordance with the HLA OMT.

In a federation, all representation of objects
in the FOM shall be in the federates, not in
the RTI.

Federates shall be able to update and/or
reflect any attributes of objects in their
SOM and send and/or receive SOM object
interactions externally, as specified in their
SOM.

During a federation execution, all exchange
of FOM data among federates shall occur
via the RTI.

Federates shall be able to transfer and/or
accept ownership of an attribute
dynamically during a federation execution,
as specified in their SOM.

During a federation execution, federates
shall interact with the RTI in accordance
with the HLA Interface Specification.

Federates shall be able to vary the
conditions under which they provide
updates of attributes of objects, as specified
in their SOM.

During a federation execution, an attribute
of an instance of an object shall be owned
by only one federate at any given time.

Federates shall be able to manage local
time in a way that will allow them to
coordinate data exchange with other
members of a federation.

Figure 7 Federate Outbound RTIambassador and Inbound FederateAmbassador
Architecture

 43

The libRTI library contains the RTIambassador class which gives access to all of

the functions defined to provide HLA services. Federates receive callbacks and

information through the FederateAmbassador abstract class either synchronously or

asynchronously. Shown inFigure 7, the federate cannot access the LRC or network

directly. All calls are made into the RTIambassador by the federate.

Improvements from DIS and ALSP

There are several improvements of the RTI over DIS and ALSP:

• The simulation is separate from the communications. This means that minimal

changes are needed to a federate as the RTI changes. In DIS, the communication

mechanisms are generally wide open. This also allows for sophisticated

communications models that can be shared among different federations.

• The RTI is information independent and the RTI saves no state and message

passing is generally consistent from federation to federation. DIS heavily relies

on predefined PDUs. ALSP has data formats that differ from confederation to

confederation.

• The RTI dynamically handles FOM data as the FOM is read in during federation

creation. In DIS, the PDUs are actually part of the IEEE spec. So, changing the

default PDUs officially requires an act of IEEE.

• The RTI handles synchronous and asynchronous time models as well as

connected and connectionless modes. With the connected mode, synchronous

time management is possible as well as creating federations that manage the

joining and resigning of federates. Connectionless mode enables ad-hoc joining

 44

and resigning and asynchronous without requiring RtiExec or FedExec processes

(thus the RTI has the ability to back-support DIS in an HLA style). There is no

realistic way to run an HLA federation using a DIS backbone.

• The RTI introduced the MOM which allows federates to know the internal status

of the RTI and the federation at any time. Also, the federation can be controlled

through MOM interactions.

• RTI messages are passed as binary data where ALSP passes data as human

readable strings. This allows a greater variety of data types and increases their

accuracy.

The Lifecycle of a Federation

Each HLA federate maintains a similar lifecycle as pictured in Figure 8. The

federate attempts to create a federation and then joins it either if it was created

successfully or was already created. Then, the federate declares what objects and

interactions it is capable of publishing. Objects are created and registered, and then the

federate subscribes to the objects it wishes to know about. A discovery is received for

each object in the federation. Messages are sent and received and object updates are

received. Optionally, the federate may choose to exchange attribute ownership with other

federates. Eventually, some objects will be deleted. When the federate is ready to retire,

it resigns from the federation and tries to destroy it. If there are other federates in the

federation, the RTI will not allow the FedExec to be destroyed.

Object Declaration and Management

 45

As outlined in Figure 8, federates can publish (send) and subscribe to (receive)

object creation and updates and interactions. If a federate does not subscribe to any data,

it will not receive any data. Publication and subscription requests can be modified at any

time during the simulation. So, for instance, if a federate has a GUI window open which

pertains to monitoring vehicle locations, the federate can subscribe to the vehicle location

updates. However, if the GUI window is closed, then the federate can unsubscribe from

the vehicle updates since they are no longer visible to the user; this could improve the

performance of this particular federate and the network traffic.

Objects are the things being simulated; interactions represent the events that

happen between these objects. Objects have attributes and federates subscribe and

publish the individual attributes of each object. Interactions have parameters and either a

federate subscribes to or publishes an entire interaction; the federate cannot just subscribe

or publish a particular interaction parameter. Objects persist throughout the game (unless

removed) whereas interactions only occur once when sent. Both interactions and

attribute updates can be time stamped.

Creating and updating objects are two separate tasks when using the RTI. The procedure

of creating an object is called object registration (

Figure 10). Once the object is registered, it can be updated (Figure 11). Interactions, on

the other hand, are just sent (Figure 9). Further details regarding the function calls and

code examples are in [10].

 46

Figure 8 A Typical Federate Lifecycle

Figure 9 RTI Methods to Send and Receive an Interaction

Figure 10 Object Creation and Deletion Sequence Diagram

Create a
Federation

Join the
Federation

Publish Object Attributes
and Interactions

Create and
Register Objects

Subscribe and
Discover

Send, Update and
Reflect

Remove Objects Exchange Attribute
Ownership

Resign

Destroy
Federation

Federate
Lifecycle

Federate 1 RTI Federate 2

sendInteraction()
receiveInteraction()

Federate 1 RTI Federate 2

registerObjectInstance()
discoverObjectInstance()

turnUpdatesOnForObjectInstance()

deleteObjectInstance()
removeObjectInstance()

 47

Figure 11 Updating an Object’s Attributes

Time Management

There are several time management policies available from the RTI [10] as

described in Table 4. Time management with the RTI can work cooperatively with other

federates in a simulation or there can be no time management at all. Different federates

in the same federation can have different time management policies. By default, the RTI

does not have a time policy, but time always moves forward.

Table 4

RTI Federate Four Time Management Options

 Not Time Regulating Time Regulating

Not Time Constrained Default setting. The RTI
does not manage this
federate’s time.

This federate can control
the advancement of time for
federates that are time
constrained.

Time Constrained This federate is controlled
by federates that are time
regulating.

This federate can control
the advancement of time
and be affected by other
federates that are time
regulating.

When time management is enabled, the time advances are designed to make sure

that object updates and events are delivered in an ordered fashion. It is possible for

different federates to have a different current time. If a federate can hold the clock, then

it is a time regulating federate and the appropriate RTI call is made to set the federate as

Federate 1 RTI

updateAttributeValues()
reflectAttributeValues()

Federate 2

 48

time regulating. When time regulating federates hold or advance time, the RTI can

throttle federates to either pause or process when time constraining is enabled by a

federate. Note that the status of regulating or constraining can be changed at any time

during a federate’s lifetime.

To apply a timely delivery of an interaction or object updates, these orders must

be time-stamped to alert the RTI that these messages are time sensitive. Time

constrained federates receive their events in time-stamp order. Time-stamped messages

must be sent from a time regulating federate at a time equal time its current time plus the

lookahead value which is greater than or equal to zero (note that zero is a special case).

At the time a federate becomes time regulating, it specifies the lookahead value

for the RTI and the federate to use. TSO events do not have to be generated in order; but

they must be greater than current time plus lookahead. When the time regulating federate

posts time-stamped messages, the messages are placed in a Time-Stamped Ordered

Queue (TSO Queue). Time constrained federates receive the TSO events in order; non-

time constrained federates receive the event but not in any guaranteed order and absent of

the time-stamp information. These events are considered receive-ordered (RO) events

and are placed in a FIFO RO queue. The fact at which a message can be placed in a TSO

queue is identified in the FED file (discussed in the OMT section) when a message’s time

management policy is marked as “timestamp” (as opposed to “receive”).

The lowest time for a message that a federate can receive is the Lower Bound

Time-Stamp (LBTS). The LBTS calculations consider the earliest possible time that any

of the federates can send a message [10]. So, this value is continuously being updated as

 49

each time regulating federate progresses through time. A federate can never advance its

internal clock past the LBTS.

All federates, regardless if they are time constrained or not, ask the RTI (the LRC)

for a time grant. Unconstrained federates will immediately receive a time grant. Time

constrained federates, however, will wait for the RTI to grant them permission; when

permission is granted, the RTI will notify the federate what time to advance to (thus

preventing them from exceeding their LBTS). Interestingly, if a federate joins late into a

federation with time regulating and constrained federates, the federate will be granted a

time where it cannot send events in the past.

Time advancement requests can be one of three ways which can be changed

during any time during the execution of a federation: time-step, event-based, or

optimistic. Time-step federates process all events within the window of current time plus

the time step. When a federate calls timeAdvanceRequest() (TAR) or

timeAdvanceRequestAvailable(), the federate is then allowed to receive messages in the

RO queue and messages from the TSO queue less than or equal to the time requested

from the TSO queue. When all eligible TSO events are received, the federate receives a

timeAdvanceGrant() (TAG) callback from the LRC with the time requested from the

TAR.

Event-based simulations would call the nextEventRequest() (NER) or

nextEventRequestAvailable() function (NERA) similar to the TAR. The reason for using

event-based time requests is that the sending of events is dependent on the time of receipt

of a previous event. Likewise when using TAR, a TAG is received equal to the minimum

 50

event time in the TSO queue or the NER or NERA when all possible TSO messages with

time equal to the minimum next event time have been received.

Optimistic federates can actually process events ahead of the LBTS in the future.

Thus, the federate wants to receive all events regardless of their time-stamp. Federates

enact this by calling the flushQueueRequest() function. Similarly, once all messages

flagged for delivery are de-queued, a TAG is given of the time requested from the

flushQueueRequest() call. Optimistic messages are received out of order; so the

possibility exists for a new event occurring before an event already received could

invalidate previous messages. Thus, the invalid message has to be retracted through

retraction services provided by the RTI.

An RTI mechanism, rather than an HLA mechanism, of ticking time is required

by the RTI in order to receive events. Since the RTI is multi-threaded, the tick() method

notifies the RTI that it can do internal processing so the LRC. Failing to tick() the RTI

could cause a federation wide deadlock condition. Note that a call to tick() does not

advance the federation time, it allows the RTI to process data.

Sync Points and Federation Commands

The RTI also allows for additional functionalities such as sync points and the

federation wide saving and restoring of data [10]. Since there are varying time

advancement policies, it may be necessary to have the federates synchronize at a

particular point in time before continuing on through time. To synchronize a federation,

the caller needs to provide a string label to the registerFederationSynchronizationPoint()

function call in Figure 12.

 51

The RTI also has the ability for a federation wide save or restore capability. The

save feature is requested by a federate, all federates save their local state to local files.

Then, the LRC, RtiExec, and FedExec processes save their data as appropriate. Once all

saves are complete, then the federation continues its normal processing. Each federation

save is essentially a snapshot of the federation at a particular time.

Figure 12 Announcing and Achieving a Synchronization Point

The RTI supports two types of restore methodologies: cold and warm (or hot)

restore. For a cold restore, the federation is brought up in a minimal state, then the

federate state is restored from a previous save file. When all federates and the federation

have restored, the simulation continues on from the time it left off. A warm restore

happens when a simulation is running and a restore occurs when the simulation is not

starting from scratch. Thus, each federate must appropriately clean up all of its memory,

data, and open file handles and sockets before attempting to restore from a previous save

file. When the federates and federation have restored their states, the federation

essentially jumps to the time of the saved federation.

Federate 1 RTI Federate 2
registerFederationSynchronizationPoint()
synchronizationPointRegistrationSucceeded()
announceSynchronizationPoint() announceSynchronizationPoint()
synchronizationPointAchieved()

synchronizationPointAchieved()

federationSynchronized() federationSynchronized()

 52

Object Model Template (OMT) and the Federation Object Model (FOM)

The Object Model Template (OMT) provides the common framework for object

and interaction documentation and interoperability, and encourages reuse of objects [14].

These objects and interactions are described as managed by a federate and what is visible

outside of that federate. Data definitions fall into three areas of the OMT: the FOM, the

SOM, and the MOM.

The FOM is described in several different files at different levels of detail: the

FED file, the omd file, and the omt file. For HLA 1.3 [10] the fed file has a custom

format but in the most recent HLA version IEEE 1516 [12], the FOM is in an XML

format. The RTI uses the FED (Federation Execution Data) file which is really a subset

of the FOM, the other files are products of a tool called OMDT Pro [13]. The omd and

omt files contain additional data (such as FOM item descriptions) which some federates

may find useful. The SOM is a federate’s local copy of the FOM with additional items

(if desired) that are included within the federate only and not shared in the federation.

The MOM provides simulation management data by fields specified in the FOM.

Though the RTI is technically FOM independent, if the MOM is present in the FOM

(which it should always be), then the RTI can provide useful information such as:

• Federates in a federation.

• Current time.

• Federates status of time constraining and time regulating.

• Save and restore features.

• The pacing rate if set and other time and LBTS calculation information.

• The ability to turn advisories on or off.

 53

• The ability to resign a federate.

Distributed Interactive Simulation (DIS) Revisited

Modern adaptations of DIS actually make DIS more like HLA. One such spec,

the GRIM RPR (Guidance, Rationale, and Interoperability Modalities Real-time Platform

Reference) [1], is based on DIS where the DIS PDUs are placed into a RPR (pronounced

reaper) FOM. Using the RTI [10], which has connectionless features (unreliable

message delivery) and time unconstrained and non-regulation, DIS has an improved

networking backbone than the traditional way of sending messages in DIS by

broadcasting. Also, depending on the implementation of the RTI, the MOM can still

provide useful federation and federate data in the connectionless mode. By using the

RTI, this also means that other HLA federates or tools can participate in a DIS exercise.

 54

CHAPTER THREE: METHODOLOGY

To this point, background research has been presented in the following areas:

• Computer Networking

• K-Array N-Cube Interconnects

• Clusterhead Leader Logic Algorithm

• Grid Computing

• Simulation Protocols

Computer Networking

The proposed research covers an understanding of different computer networking

systems and protocols. All of the areas of simulation incorporate knowledge from

computer networking. For the k-array n-cube interconnects, wormhole routing is used to

route packets through the hardware interconnect. The CLL algorithm requires knowledge

of wireless ad-hoc networks and the GPS-QHRA protocol. HLA involve applications of

networking and an understanding of nuances of distributed computing such as routing

and multicasting, and load balancing. Grid computing also requires knowledge of

distributed computing, and in the case of the proposed research, the OSI network model

and routing protocols.

K-Array N-Cube Interconnect Design

The objective for the k-array n-cube networks work is to find which k-array n-

cube based interconnect architecture can be the best candidate to replace existing line

card communication mechanisms, such as shared-bus or crossbars. Both shared-bus and

 55

the crossbar cannot scale well as the number of modules (PEs or memories) connected to

it increases. In addition, the shared-bus requires a distributed arbitration mechanism, as

the number of modules connected to it grows, thus, adding latency and space to the

overall system. Pin constraints bound the bus size that can be interfaced with the NPU

[26].

Hence, only a packet-based network-on-board can provide the required

performance improvement between the NPU and off-chip memory modules. The work

entails creating a simulation model that includes statistical data such as IP length

distribution [27] and physical measures of PCB placement and spacing, as well as

network properties such as IP packet size, in order to increase the accuracy of

calculations. In addition, true IP network properties such as switching, propagation and

routing latencies are applied. The simulator must provide real time performance analysis

with detailed metrics on packets processed at each simulation cycle and overall detailed

results at the end of each simulation.

The Simulation Architecture

The simulator architecture, shown in Figure 13, depicts the interconnect

interaction with the control modules which adjust, collect and modify the interconnect

settings, data flow, and performance metrics. These attributes are built in the

functionalities of the modules. The simulator configuration manager sets the interconnect

type, its properties (wire propagation delay, switching delay or routing delay) and

enable/disable enhanced features such as channel width, VC on/off, and bi-directional

channel.

 56

The interconnect properties are set by the user interface and are recorded to allow

the configuration manager to be updated via the worm manager. The worm manager

utilizes interconnect properties and configuration parameters in order to set other

modules accordingly in the system that participate in the simulation. The traffic sampler

continuously records performance data such as throughput, latency, routing accuracy,

interconnect bandwidth utilization and interconnect resources utilization. This

information is fed back to the worm manager that adjusts worm generation rate and load

balances the traffic. The routing algorithm receives each individual worm location and

its destination node from the worm manager. Then, it determines the shortest route

possible for each worm by avoiding spots of heavy traffic.

The worm jar is a storage module that contains worms. In the simulator there are

two instances of the worm jar: one jar is for worms waiting to enter the interconnect and

the other jar contains worms that are processed. The total number of worms during

simulation are initially determined by the user. The scheduler is responsible to inject

worms into the interconnect taking into account the total network capacity and traffic

load. Since the worm manager knows the total number of worms that are modeled

throughout the simulation, it must inform the scheduler at the end of the simulation when

there are no more worms to model.

 57

Figure 13 The K-Array N-Cube Simulator Architecture

The simulator accounts for all practical parameters characterizing off-chip

interconnect architectures such as switching delays (Ts), routing delays (Tr) and

propagation delays (Tw) as well as the complete functionality of each system components

(nodes, links, PE/Memory, interfaces, virtual channels, and channel partitioning) [36].

The user has the option to change each of these parameters in case new technology

introduces higher standards. Simulation time is based on a unit cycle that equals one

clock cycle (Tw + Tr). All other delays are calculated as multiples of it; that provides the

advantage of having single uniform simulation clock.

 58

Message size in bytes and message generation-time are obtained by using pseudo-

random number generator, which is utilized to resemble the randomness of packet

transmission by both processors and memories. Each worm is linked to performance-

bookkeeping function which records its latency, throughput, simulation cycles, failures,

and route-taken from the moment the worm enters the interconnect until it completely

reaches its destination. Comprehensive performance results are provided at the end of

each simulation in a comma separated value spreadsheet.

The Simulation Modeling Approach

The high-level design of the simulator is comprised of four sets of C++ classes

(Figure 14) supporting: the interconnect topology and configuration (Interconnect), the

user interface (User Interface), the worm controller and administrator (WormManager),

and worm structure and characteristics class (Worm). The worm contains a header field

and data payload.

The Interconnect class represents the physical structure and includes all the

hardware required to implement it. The properties represent two types of parameters:

physical parameters of electrical components comprising the interconnect (such as wire

delays, switching delays, routing delays), and parameters of additional features that

enhance the interconnect performance (for example, channel partitioning, virtual

channels, interconnect configuration). The simulator models the interconnect

functionality in order to evaluate and compare different configurations and settings.

 59

Figure 14 Major Class Relationships with Each Other and the User

Interconnect layout, of VCs and SC for example, affect worm routing flexibility

and resources it can use while propagating through the interconnect. The Port class

contains VCs and SCs which are modeled as logical topologies on top of the physical

network architecture. VCs as well as SCs have a great effect on the worms transmission

success/failure rates and deadlock/livelock avoidance. Although VCs improve routing

accuracy and reduce worm transmission failure rate, they also increase the worm latency

and interconnect implementation costs. The WormManager class records worm data,

arrival and departure time stamps of worms, and controls the worm generation rate in

order to load balance the number of worms processed simultaneously within the

interconnect. The Worm class encapsulates the properties of a worm such as the header

with source/destination fields and the route that the worm takes through the interconnect.

The worm routes itself through the interconnect while continuously being monitored by

the worm manager. The adaptive routing algorithm is used by the worm to determine

Interface

 60

the best available path that it can take to reach destination. The routing algorithm is

derived and based on [37], [38], and [39]. The worm updates its shortest path coordinates

with each movement to ensure its optimal path even when it is required to take a detour

as a result of hot-spot node. Figure 15 shows a UML class diagram of the interconnect

architecture [40][41]. A single type of interconnect is a set of faces which each contain

multiple nodes. Within each node there are six ports. A node can be modeled as either a

memory or a PE; in this case the node still possess the same structure and functionality as

any node, but it reserves one port as an I/O port to the device.

Figure 15 UML Class Diagram of the Interconnect

The simulation setup shown in Figure 16 is an abstract view of the high level

system components and their interactions in order to initialize, execute, and complete the

simulation. First, the user sets the simulation properties. These properties are crucial for

worm generation, timing delays, and other simulation aspects. Then, the messages

 61

(worms) are created and are placed in a data structure (the Jar class). Since the

interconnect configurations can be changed, PE and memory locations will be changed

accordingly. Therefore, source/destination addresses must be correctly set before the

worms can be generated.

Figure 16 Process for Running the Simulator

The simulation properties are configured and the WormManager creates all of the

worms needed and puts them in a jar. Then, when the simulation begins, the worms are

picked up from the jar and are placed in the interconnect to route their way through.

When the worms are complete, the WormManager places them in the worms modeled jar

and then computes the modeling data.

When the user chooses to run the simulation, the properties and the data of the

worms in the jar are recorded in separate files. The interconnect receives worms from the

jar of generated worms according to a configurable probability called worm generation

rate (GR). In addition, the user can determine the maximum number of worms that can

occupy the interconnect at any one given time by changing the value of the

MAX_WORMS_IN_INTERCONNECT variable (MWII). If no value is set for this

 62

variable, the default value is unlimited number of worms. The worms that enter the

interconnect are modeled until they reach their destination.

All runtime worm data is collected in a separate output file that provides

individual details about each worm. After the complete simulation is modeled, several

spreadsheet files are generated recording the performance of the simulation.

Software Algorithms

Figure 17 portrays a dynamic model (action oriented) of the routing algorithm

class and its subclasses with interconnect system components and the WormManager

class. This model depicts the actions performed by the routing algorithm in order to

maneuver each worm within the interconnect with respect to its current position, its

destination and traffic conditions [42]. The routing algorithm is coupled with the worm

manager since the worm manager controls worms entering and leaving the interconnect

while the routing algorithm controls the worms within the interconnect.

First, the routing algorithm analyzes the source node type (where the worm is

generated) and the enabled interconnect features such as virtual channels, bi-directional

channels and PE–M configuration. Then, it checks the preferred (shortest path) direction

in which the worm needs to move. The routing algorithm scans each node’s port and

dictates the movement of the worm giving priority to ports that are pointing in direction

towards its destination. If none of the ports are available, the routing algorithm will

check the availability of virtual channels. If enabled, the worm will be queued into one

of the virtual channels until one of the ports clears. If virtual channels are not available

then the routing algorithm notifies the worm manager of a worm routing failure. This

 63

will result in a retransmission of the same worm but statistics are kept to identify the

failure.

Figure 17 Dynamic Model of the Routing Algorithm Used

Figure 18 depicts a data flow diagram (DFD) of the user interface module. DFD

charts assisted in determining what to automate in the simulator design and which data

must be inputted exclusively by the user [42][43]. The user has two choices: using default

settings or changing settings/properties in order to simulate the interconnect with

different configuration. Once the interconnect type and configuration are defined, the

user must complete the following steps before the simulation execution:

• Select if new worms will be generated or worms should be restored from an

existing file.

• Determine the number of worms to simulate.

• Decide if worms are generated randomly or manually.

 64

• Input the number of sampled throughput points (include the initial sampling point

and the number of simulation cycles between samples).

• Select if the newly generated worms will be saved or not.

Figure 18 Data Flow Diagram of the Steps the Used to Start the Simulation.

 65

Cluster Leader Logic Algorithm Design

This work proposes a new clustering algorithm for GPS-based mobile ad-hoc

networks that takes into consideration the direction of the overall traffic flow in the

network. The proposed cluster leader logic (CLL) algorithm is motivated by the GPS

quorum hybrid routing algorithm (QHRA) where clusterheads react to changing data

flow patterns of the network to provide better load balancing throughout the network

using a new concept called cell fanning.

There are several key concepts used in the CLL algorithm which were built from

GPS-QHRA which are summarized here:

 Dividing the area into cellular regions

 Establishing danger zones

 Maintaining inter-cell and intra-cell tables

 Assuming that nodes have GPS capabilities

Assumptions

In order for the CLL algorithm to work, some assumptions are made. As

mentioned previously, all nodes must have positioning (GPS) capabilities that provide

position information and clock synchronization. This is essential for a node to know

which hexagonal grid it is located in. Also, this allows the CLL algorithm to measure

where and how data traffic is changing. The accuracy of the positioning resolution is not

so important for the sake of describing the algorithm; though the accuracy of the

resolution affects the performance of the algorithm.

 66

An important distinction from GPS-QHRA is the assumption that the cell sizes

are at most one half of the distance of the transmission range between two adjacent nodes

minus the width of the danger zone of a cell: ½ * largest_two_adjacent_node_distance –

danger_zone_width. See Figure 19. This way, worst case, a clusterhead that is farthest

away from the neighboring clusterhead can still communicate with that clusterhead. If

cell sizes are smaller than the transmission range, then the algorithm will still work but

the performance will degrade. This extra padding will allow for either fast moving nodes

or instances when the cell zones are very small.

Figure 19 Danger Zone Width and Clusterhead Transmission Range

In Figure 19, Node 1 is the clusterhead for cell A and Node 2 is the clusterhead

for cell B. The Danger Zone (DZ) width is shown for reference. This is a worst-case

circumstance where the clusterheads are at farthest points in the danger zone - almost

touching the next cell’s safe zone. The diameter for any give cell should be at least 1/2 *

distance12 – DZ_width.

In addition to the cell size distinction, it is assumed that the messages transmit

from an omni-directional antenna. A directional antenna could possibly provide some

improvements [13]; but this work only focuses on free space omni-directional

transmissions. An important assumption is that the routing algorithms or transport

 67

mechanisms used do not directly affect cluster leader election. For instance, the routing

can be IP based, Geocasted [9], or routed from cell to cell. One assumption is that the

clusterheads talk to other nodes or clusterheads in a single thread of execution. Also, it is

assumed that subordinate nodes talk to clusterheads and clusterheads talk to other

clusterheads and subordinate nodes. The final assumption is that all nodes have been pre-

initialized to know the cell topology and their node identifiers.

CLL Algorithm High Level Design

Before the details of the algorithm are discussed, it is important to understand the

high level workings which surround the algorithm. The following figures give a context

for the algorithm and the underlying mechanisms which make the algorithm work. Some

aspects are taken for granted and are not covered (like routing needs) because this does

not affect CLL.

Figure 20 The Cluster Leader Election Algorithm Initialization Sequence

From a high level perspective, a designated master node initializes the network

and nodes, loops until the nodes are ready to shutdown, then shuts down the simulator

and logs statistics. First, in Figure 20, the initialization pseudo code is executed. If a

void initialize()
{
Nodes are turned on or enabled and clocks are synchronized
Establish static cellular grid regions with danger zones
All nodes are numbered
Initial clusterheads are elected // For example using lowest id
or highest degree of connectivity
Wait for synchronized start signal // Nodes continuously listen
when started

}

 68

node is a clusterhead, then the code performs as pictured in Figure 21. Otherwise, if the

node is a subordinate node, then the code performs as depicted in Figure 22.

Figure 21 The Cluster Leader High Level Design State Diagram

Figure 22 The Subordinate Node High Level Design State Diagram

As a clusterhead, communication with the subordinate nodes is performed and

CLL truth values are gathered (more on this later). The clusterhead checks to see if it is

entering a danger zone; if so, then it must hand-off its clusterhead responsibilities, if

necessary, and join or form a new cluster in the new cell. If the clusterhead is not in the

danger zone, it tries to determine if it is starving for data or if it must acquire a new

Communicate with
Subordinate Nodes

Communicate with
Other Clusterheads

Maintain CLL Truth
Tables

Check to see if
entering danger zone

Check for starvation
or join messages

Determine if this
clusterhead is
overwhelmed

Create New
Clusterhead

Become Subordinate
Node

Start

Perform normal node
processing

Make sure
clusterhead

communications are
in tact

Check to see if
entering danger zone

Communicate with
clusterhead

Become Clusterhead Join Different
Clusterhead

Determine if
becoming a
clusterhead

Start

 69

subordinate node. If it is starving, then it joins another clusterhead and negotiates its

subordinate nodes to that clusterhead. Otherwise, if the clusterhead is overwhelmed, the

final step is to determine if it should split its duties with a new clusterhead based on the

CLL truth values it perceives.

As a subordinate node, the node begins by performing normal tasks. Routinely,

clusterhead communications are checked. If communications are bad or if designated,

then it can join a new clusterhead or become one. Similar to the clusterhead algorithm,

the subordinate node checks to see if it is in a danger zone. If not, then it communicates

with the clusterhead. The clusterhead will let its subordinate know if it should become a

clusterhead.

Algorithm Detailed Design

Up to this point, the high level simulator design was described to show how the

algorithm can fit in the context of clusterhead networks. In order to understand the

algorithm detail design, the variables and data structures are first explained and then the

algorithm is introduced.

Messages

In order to establish, transfer, or decommission clusterheads, there are several

messages which communicate essential parameters which are outlined in Table 5. The

ClusterheadElectionAck and ClusterheadJoinAck messages contain an acknowledgement

Boolean flag where acknowledge is true and decline is false. The TruthValuesAck

message itself is an acknowledgement; so receiving this message constitutes the

acknowledgement.

 70

Table 5

Messages Used in the CLL Algorithm

Message Type Message Description
RequestClustheadChange A clusterhead sends this message when it determines that

either an additional clusterhead is needed in a cell or another
node needs to take its place in the cell. The message is sent
to a specific node that the clusterhead finds to be a suitable
clusterhead candidate.

ClusterheadElectionAck A node sends this message back to the originating clusterhead
when it accepts or rejects becoming a clusterhead leader.

JoinClusterhead A node sends this message to neighboring clusterheads when
it needs to join another clusterhead. This could be from a
circumstance when a clusterhead has no subordinate nodes.

ClusterheadJoinAck Either a clusterhead sends this message to a node indicating
that it can or cannot support this node as a subordinate node
or a node sends this to a clusterhead acknowledging that it
accepts or denies joining its cluster.

TransferTruthValues A clusterhead send this message to a node to notify it of its
truth-telling data traffic behavior.

TruthValuesAck A node sends this message acknowledging receipt of a
TransferTruthValues message.

Variables

There are several static constant variables that are configured prior to initialization

of the network for the CLL algorithm. The idea of making these variables static for

distributed computing means that each node has a copy of the same values. Also, making

a variable constant means that the value of the variable cannot change.

Most important for the CLL algorithm are the variables that represent the truth

weights. These variables are neither static nor constant. The CLL algorithm has

persistent truth weights, PTWeightDir and GTWeightDir, and temporary weights,

PTTransmissionFreqDir and GTTransmissionFreqDir.

 71

Table 6

CLL Constants

Simulation Constants Description
MaxClusterheadsPerCell Data distribution is based on a divide-and-conquer

approach. This variable controls when the CLL
algorithm can divide a cell between multiple
clusterheads and how many divisions can occur per
cell.

ClusterheadDivisionTruthThreshold Indicates the threshold of the number of effective
subordinate nodes a clusterhead can maintain.

PTTimeout Perceived table entries do not persist forever. This
variable controls the limit when a PTWeight value
becomes stale and when the weights are updated
with the latest traffic information.

GTTimeout This variable helps control when a GTWeight
value is updated with the latest traffic updates.

GTWeighingFactor Designates how important to make the weighing
calculations for determining subordinate node
transmission factors.

PTWeighingFactor Designates how important to make the weighing
calculations for determining neighboring cell
transmission factors.

StartingWeight Designates what value the weights should start at.
PurgeWeightsWhenCHSplit Has a true or false value. When clusterheads (CH)

split, this determines if truth weights should be
transferred to the new clusterhead or if the weights
should be purged instead of being transferred.

Ground truth represents accurate knowledge that a clusterhead has about traffic

density in its current cell and the transmissions that start from or end at its cell; perceived

truth represents the clusterhead's best guess at what the traffic looks like in cells

surrounding it based on transmissions that are hopped through its cell. Knowledge of

traffic density is used to weigh whether or not a clusterhead should split its load with a

new clusterhead, become a subordinate node to another clusterhead, or maintain its status

 72

as a clusterhead. The next section on data flow tables walks through a ground/perceived

truth example and explains how the values are used and differ from each other.

Table 7

CLL Simulation Variables

Simulation Variables Description
PTWeightDir A positive real number on a scale of 1 to 100. This is the

perceived truth (PT) weighing factor and it is initialized to
StartingWeight. A clusterhead has independent PTWeight
variables, one for each neighboring cell. As messages are
forwarded from one cell to another, the weight is adjusted using
an exponential mean average.

GTWeightDir A positive real number representing a ground truth (GT)
weighing factor, from 1 to 100, initialized to StartingWeight. A
clusterhead has independent GTWeight variables, one for each
neighboring cell and one for its cell. As messages are
transmitted to or received from subordinate nodes, the weight is
adjusted using an exponential mean average.

GTTransmissionFreqDir The temporary number of ground truth transmissions which
sets purged each time an EffectiveNodeCountGT calculation is
done. Each node has a transmission frequency for each
direction capable of transmitting to.

GTTransmissionFreqDir The temporary number of perceived truth transmissions which
gets purged each time an EffectiveNodeCountPT calculation is
done. Each node has a transmission frequency for each
direction capable of transmitting to.

Note that both the PTWeightDir and GTWeightDir variables are adjusted using an

exponential mean average (EMA) [53] shown in Equation 3 (ground truth exponential

mean average equation) and Equation 4 (percieved truth exponential mean average

equation). Note that Equation 1 has the alpha value used in the GT EMA equation and

Equation 2 has the alpha value used in the PT EMA equation. The EMA was chosen

because brief spikes in network traffic influence the result as little as possible; the EMA

lags behind the actual trend and prevents over-reacting. Also, since the timeouts which

clear the tables are constantly occurring, it helps to balance the symmetry between

 73

increasing and decreasing the weight values; this also helps for the weights to converge if

traffic stabilizes.

()GTTimeoutGT +
=

1
2α (Equation 1)

()PTTimeoutPT +
=

1
2α (Equation 2)

FreqEMAEMAGT GTiGTi ∗+−= − αα 1)1(_ (Equation 3)

FreqEMAEMAPT PTiPTi ∗+−= − αα 1)1(_ (Equation 4)

Each GTWeightDir and PTWeightDir has an independent EMA allocated for it. As

mentioned earlier, there is one weight for each of the six directions and the weight of the

intra-zone messages direction is used as the seventh GTWeightDir. The frequency of

message transmissions or receptions in Equation 5 (ground truth message frequency) is

the summation of transmissions in a particular direction based on the CLL tables. For

instance, GTFreqUP = 4 if the ground truth table has four entries for data flowing up. See

Equation 5 for calculating ground truth frequencies and Equation 6 (perceived truth

message frequency) for calculating perceived truth frequencies. Please note that the

frequencies help determine how often messages travel in a particular direction (not to be

confused with transmission tuning frequencies).

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

= ∑

cell-intra
 left,-up left,-down down,
 right,-down right,-up up,

dir

TableEntryFreqGT
EntriesAllGTTable

dirdir

 (Equation 5)

⎭
⎬
⎫

⎩
⎨
⎧

=

= ∑

left-up left,-down down,
 right,-down right,-up up,

dir

TableEntryFreqPT
EntriesAllPTTable

dirdir

 (Equation 6)

 74

Values are also based on truth: ground or perceived truth. Thus, α for ground

truth will use GTTimeout and α for perceived truth will use PTTimeout. As the timeout

value increases, more stress is placed on older values compared to newer values.

Data Flow Tables

Each clusterhead maintains two data flow tables for network characteristics. Both

tables have the same column headings, but the tables themselves have two different

purposes and are populated and unpopulated using different heuristics. The table format

is specified in Table 8.

Table 8

CLL Ground Truth and Perceived Truth Table Format

Time Traffic Direction Destination Id
Time of message
forwarding or receipt

Up, Down, Up-Left, Up-Right, Down-Left,
Down-Right, and Intra-cell (GT Only)

Destination
node id

Note that the time recorded is either the time the message is forwarded or when the
destination node receives the message.

The first column of Table 8 designates the time either that a message is forwarded

or the time the message is received at the last hop. The second column is the direction

that the message is traveling. There is no need to record intra-zone transmissions or

receptions for perceived truth because perceived truth only applies to messages hopping

through a cell. The final column is the destination node id. Please note that the bit-width

and ranges of the destination node ids, time, and other variables is implementation

dependent. The simulation created used unsigned long values for destination node id and

time with a range of [0, UNSIGNED_LONG_MAX].

 75

There are two instances of table maintained for CLL by each node: a ground truth

table and a perceived truth table. Both tables count any type of message including

messages that are retransmitted due to failure. The ground truth table represents two

types of factual transmissions:

• Messages that emanated from a clusterhead's subordinate nodes or the

clusterhead.

• Messages received by a cell's clusterhead for either itself or a subordinate node.

The perceived truth table represents communications that are forwarded on behalf

of a clusterhead's cell to another cell. The purpose of recording perceived truth data

applies to data flowing to or from neighboring cells only. Thus, an individual node can

estimate traffic load in other directions, but these estimations are not factual because

there could be transmission occuring that a neighboring node may not know about.

The perceived truth tables can vary very differently from the ground truth data

flow tables. This is the key for the CLL algorithm: there is no desire to have ground truth

global knowledge of the entire network data flow. Each clusterhead only cares about the

transmission characteristics through its cell and around its cell. It is hypothesized that

having ground truth knowledge of the entire network could actually degrade data flow

performance of the CLL algorithm.

Figure 23 shows two simultaneous message transmissions starting at time 1: one

from node 1 to node 2, the other from node 3 to node 4. White circles represent

subordinate nodes and dark circles represent clusterheads. These nodes are mobile, so

the clusterheads are free to move about their cells as long as they stay within the danger

zone of their respective cell. Assuming the data flow tables are empty before

 76

transmission, the clusterheads in cells {A, D, E} modify their ground truth tables.

Clusterheads in cells {B, C} modify their perceived truth tables. Three example table

entries are shown in Table 9, Table 10, and Table 11. Since clusterhead 7 is forwarding

the message from cell A to cell D, it perceives the terminating cell to be cell C even

though the transmission is through cell C to clusterhead 8. As a reminder, the

clusterheads may be mobile and they may not be centrally located in a cell. Clusterheads

on the periphery fall into the danger zone and will become subordinate nodes if another

clusterhead is around for it to join with.

A B
C

DE

1

23

4

5
6

7

8

9

Figure 23 Two Simultaneous Message Transmissions; Nodes are Numbered Circles.

Table 9

Clusterhead 7’s Ground Truth Table Entry

Time Traffic Direction Destination Id
1 Down-Right 2

Based on the communications in Figure 23.

Table 10

Clusterhead 5’s Perceived Truth Table Entry

Time Traffic Direction Destination Id
2 Down-Right 2

Based on the communications in Figure 23.

 77

Table 11

Clusterhead 9’s Ground Truth Table Entry

Time Traffic Direction Destination Id
1 Intra-Cell 4

Based on the message flow in Figure 23.

Dark circles are clusterheads, white circles are subordinate nodes. Dark arrows

represent clusterhead-node transmissions, light arrows represent node-to-node forwarded

transmissions. One message travels from cell A to cell D, the other message starts and

ends in cell E. Clusterheads in cells {A, D, E} modify ground truth data flow tables.

Clusterheads in cells {B, C} modify perceived truth data flow tables. Since the

clusterhead is forwarding the message from cell A to cell D, it perceives the terminating

cell to be cell C even though the transmission going to node 2 through cell C.

Load Balancing and Algorithm Execution

Now consider how CLL truth data is used to achieve load balancing. The CLL

algorithm is composed of three separate functions: initialize(), updateTables(), and

process(). The initialize() function Figure 24, called in the high level design initialize

function, sets up the internal variables needed for the CLL algorithm and sets timers for

the values of GTTimeout and PTTimeout. The updateTables() function (Figure 25) will

update the GT or PT tables with a new row of information. The information includes

data gathered about whether a clusterhead has transmitted any information and whether

the transmission affects perceived or ground truth.

 78

void initialize()
{
 setInitialGTTimeout();
 setInitialPTTimeout();
}

Figure 24 The CLL initialize() Function Sets the Initial GT and PT Timers

void updateTables()
{
 if (isForwardedMessage())
 {
 updatePTTable();
 }
 else
 {
 updateGTTable();
 }
}

Figure 25 The CLL updateTables() Function

The process() function takes the updated data and adjusts the weight values for

the clusterhead depending on whether a GT or PT timeout has been received. The

process() function also purges stale PT data before weights are adjusted. Most important,

the process() function calculates effective node counts and splits a clusterhead if

necessary.

In order to determine when to create a new clusterhead, the algorithm calculates

the EffectiveNodeCount. This counts subordinate nodes that transmit and receive data

based on their weights and adds the perceived truth weights based on their weights as

well. This value is then compared to the ClusterheadDivisionActivationLevel and a

clusterhead will split its load when this value is exceeded.

 79

Figure 26 The CLL process() Function is Called when Timeouts Occur

When each weight is adjusted according to Equations 3 and 4, the data flow tables

are evaluated by summing the frequencies for each direction as shown in Equations 5 and

6. The EffectiveNodeCount is calculated in Equation 7 that is based on Equation 8

(ground truth EffectiveNodeCount) plus Equation 9 (perceived truth

EffectiveNodeCount).

EffectiveNodeCount = EffectiveNodeCountGT + EffectiveNodeCountPT (Equation 7)

∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
××

×

=

Directions All
dir

dir

GT

GT

onFreqTransmissi
ghtLearnedWei01.0

ctorWeighingFa
odeCountEffectiveN

 (Equation 8)

void process()
{
 if (isGTTimeout())
 {
 adjustGTWeights();
 }
 else
 {
 purgeOldPTEntries(current_time – pt_timer_length);
 adjustPTWeights();
 }

 if (getEffectiveNodeCount() > ClusterheadDivisionActivationLevel and
 NumClusterheadsInCell < MaxClusterheadsPerCell)
 {
 createNewClusterhead();
 }

 resetTimer()
}

 80

∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
××

×

=

Directions All
dir

dir

PT

PT

onFreqTransmissi
ghtLearnedWei01.0

ctorWeighingFa
odeCountEffectiveN

 (Equation 9)

As a reminder, the variables in these formulas are described in Table 6 and Table

7. GTWeightDir and PTWeightDir vary between 1 and 100; they are multiplied by 0.01 to

make this value a percentage. The ground truth transmission frequencies in Formula 7

represent all of the frequencies recorded for a particular cell if

PurgeWeightsWhenCHSplit is false. If PurgeWeightsWhenCHSplit is true, then each

time a clusterhead splits, the ground truth value is erased; this option prevents over-

reacting to sudden data flow changes. Also, it contains the growth of the tables to

consuming too much memory.

The perceived truth transmission frequencies account for transmission frequencies

since the last PTTimeout occurred. If no messages were hopped in this cell, then

EffectiveNodeCountPT is zero.

Cell Fanning

A new concept called cell fanning is introduced for the clusterheads. For

traditional cellular architectures, techniques like cell sectoring and cell splitting [54] can

be used to transmit signals directionally or limit signal transmission for different

frequencies. Since, for this study, no assumption is made about directional antennas or

multi-frequency transmission capabilities, cell sectoring and cell splitting techniques are

not considered. However, it would be useful to assign directions of responsibility for

clusterheads within a cell to share the workload fairly.

 81

Cell fanning allows a clusterhead to split its workload with another clusterhead in

its cell which prevents the original clusterhead from becoming overloaded and the new

clusterhead becoming starved for data transmissions. This is achieved by designating, via

round-robin mechanism, which clusterhead will forward messages to other cells within a

fan-out pattern. Collocated clusterheads within one cell can share the transmissions to

other cells by transmitting data to their designated set of adjacent cells.

Due to the cell distance constraints, all clusterheads within one cell distance

should hear a message that needs to be forwarded. Only one receiving clusterhead in a

cell will forward the message however. This receiver-side filtering is determined by the

cell fans that the sending clusterhead is assigned. In other words, the receiving

clusterhead determines if the message is for its cell and either processes it or drops it if it

is meant for another clusterhead.

Considering Figure 27. When there was one clusterhead (dark circle) in the

center cell, its cell fan set included cells in all directions. However, when the load was

high for one clusterhead, the clusterhead split its duties with another subordinate node.

The numbers in the adjacent cells represent the EffectiveNodeCount of those cells. When

the clusterhead splits its duties, it fans in a round-robin fashion based on the frequencies

of the numbers of transmissions in descending order. The result is shown where one

clusterhead will filter data transmission to the bottom left cell fan and the other

clusterhead will filter data transmission to the top right cell fan.

For example, if a clusterhead has the cell fan set (‘up’, ‘up-right’, ‘down’) and the

clusterhead receives a message which is destined upward according to the routing

algorithm used, then this clusterhead will relay the message to the clusterhead in the cell

 82

above it because ‘up’ is in the cell fan set. If, however, the same clusterhead receives a

message destined for ‘down-right’, then the clusterhead does not relay the message. Note

the term not relaying is not the same as a packet being dropped. Not relaying a message

implies another node collocated in the same cell should relay the message. Dropping a

message means that a message was not able to reach its destination.

Figure 27 Cell Fanning Example – Before (Left) and After (Right)

Even though the clusterhead in the previous example forwarded the message

‘upward’, all clusterheads in all adjacent directions may hear the message if omni-

directional antennas are used. However, only the ’upward’ adjacent clusterheads will

react to the message; the other clusterheads will filter out the message.

Grid Resource Discovery Protocol Design

The additional focus of this work is to create an ad-hoc grid resource discovery

protocol. This protocol will find computing resources on the Internet without the need

for dedicated servers to track existing clients on the Internet. In the real world, this can

be implemented inside of custom networking hardware or programmable networking

hardware by introducing a new protocol layer on the OSI network stack just above the

10
7

12

4
2

4
down down-

left

up-left

down-
right

up
up-right

BEFORE SPLIT

10
7

12

4
2

4
down down-

left

up-left

down-
right

up
up-right

AFTER SPLIT

 83

network layer [24]. The hardware would maintain resource tables that can help make

efficient use of the grid computing resources. Since it is not feasible to create and deploy

this hardware over the Internet to create of grid computing network of thousands of

computers, there is a need to build a simulator to model this environment to test the

feasibility of the algorithm and to find the best parameters for the algorithm to operate

within.

Although it is feasible that this simulation can be built using NS-2 [23], since the

K-Array N-Cube simulator has been built from the ground up and the CLL Simulator has

shared some parts of that simulator, there is motivation to create a simulation architecture

based on the previous work done. Both of the previous simulators also model network

traffic. This work can be done in a fashion where a simulation engine can be built which

other simulators can be built from in the future. Unlike NS-2, this simulation engine

could be more generic to simulate other non-networking related models.

Protocol Design

This section details the protocol design that considers the lifecycle of the resource

providers, the events exchanged over the network, the structure of the data tables used

inside the routers, and the technique used for scoring resource providers. Also, the

responsibilities are reviewed for the resource provider, the router, and the VO host to

include a description of how data tables are modified and the conditions needed to send

events.

 84

Lifecycle

There are five phases involved in the lifetime of a grid resource provider:

subscription, advertisement, transaction, sign-off, and retirement. See Figure 28 for a

lifecycle view of the different phases. Before the subscription phase, the resource

provider acquired software from the VO (introduced on page 21). During the

subscription phase, the resource provider is subscribed to the VO’s list of resource

providers. During this transaction, an account is setup that includes ways for the VO to

track the trustworthiness of the resource provider.

1 2 4

3

5

Figure 28 The Lifecycle of a Grid Resource Provider has Five Phases: 1) Subscription, 2)
Advertisement, 3) Transaction, 4) Sign-off, and 5) Retirement

The second phase, advertisement, is when the grid resources advertise their

availability to the grid. Information sent to the grid includes any statistical information

necessary for the grid to facilitate tasks. The information includes the following fields:

• VO Memberships (The VO would track the software packages)

• Number of CPUs

• Available CPU Speed

• Available Memory/Disk

• Network Connection Speed

 85

The transaction, the third phase, is when the actual task is delivered to, computed

on, and published from the resource providers. For the sign-off phase, the grid is notified

that the resource is unavailable for an unknown period of time. This differs from the

retirement phase because when the resource retires, it may never rejoin the network

again. Resources can either retire because they want or need to base on their own

assessment or they can retire because their trustworthiness rating is poor and the VO

kicks them off of the network.

Event Header

Table 12

Event Header Data Variables

Variable Name Variable Data Type Size in Bytes
path List of IP Addresses 0…n (multiple of 4 bytes)
path_index Unsigned Byte 1
path_size/score Unsigned Byte 1
start_address IP Address 4
end_address/score IP Address 4/1 (score used when

routing_type = DISCOVERY)
event_type Unsigned Nibble ½
routing_type Unsigned Nibble ½
original_time Unsigned Long Long 8
event_id Unsigned Long 4

IPv4 addressing is assumed when noting the IP address sizes.

The grid resource discovery protocol sends various types of events through the

network that are introduced in Table 12. Each event has a common event header. The

path variable is a variable length list of IP addresses of path_size length and the

path_index is used to point to the next destination IP address in the path. Two other IP

addresses, the start_address and end_address are populated when possible to designate

 86

the origin and destination of the event. The event_type identifies the type of event

represented by the data and the routing_type indicates how to route the event to the grid

protocol software handling the event. When the routing_type is set to DISCOVERY, the

end_address is used as a score variable. The score represents the score of the resource

provider being sought. Two other fields, original_time and event_id are populated from

the originating device for use with tracking the event at its destination.

Routing Techniques

There are several different routing techniques used by the grid protocol design.

The routing techniques describe where the routers should direct each event based on the

event type and are outlined in Table 13.

Table 13

Routing Techniques

Routing Technique Description
STANDARD The events travel through the network the same way they

would in a normal TCP/IP environment. Each hop IP
address is stored in the event path storage field.

FORWARD PATH Events are passed through the network according the path
stored in the event.

REVERSE PATH Events are passed through the network according the
reverse order of the path stored in the event.

DISCOVERY Events hop between routers based on a scoring scheme.
Each hop IP address is stored in the event path storage
field.

The STANDARD routing type applies to events that are directed through the

network using TCP/IP routing. The first entry in the path is populated at the origin

device of the event and the path_index variable is set to 1. When a grid protocol event

arrives at a router capable of handling grid protocol events, the event is passed to the

 87

hardware which handles the protocol. The router then places the current IP address of the

router inside the event’s path structure, then increments the path_index variable by 1.

When the event traverses the entire route, the final device adds its IP address to the path

and the entire path is available to other events which will be constructed from this event.

The path variable plays an important role for this protocol. The reason why the

path is cached is because the IP routing protocol does not guarantee that the path used to

send a event one time to a destination will be the same path used to send the event again

to the same destination. Also, IP routing does not guarantee that the path the event takes

to the destination will be the same path the event will take on the way back. The path

allows the protocol to update specific resource tables within the network along the same

path each time. Otherwise, an event that arrives at the wrong router may not know how

to direct a event or it may drop the event if it is not authorized.

The FORWARD PATH routing scheme uses the path learned from the

STANDARD routing scheme to move an event from the IP address in the beginning of

the event to the IP address at the end of the event. The event is sent from the origin (the

first entry in the path) to the second entry in the path and the path_index is set to 2 (or 1

for a zero based array). Each time the event arrives at a hop recorded in the path, the

path_index is incremented by one and the event is sent to the next hop in the path. The

event arrives at its destination when the path_index equals the index of the final element

in the path.

The REVERSE PATH routing scheme is similar to the FORWARD PATH

routing scheme except that the event travels from the final destination in the path to the

 88

original destination. Also, the path_index initially points to the last address in the path

and is decremented to the origin address in the path.

The DISCOVERY routing scheme attempts to find a resource in the network by

using a one-byte score variable. The score variable is part of the event header when the

routing type is set to DISCOVERY. The score variable replaces the end_address

because the event is attempting to discover the end address. Similar to STANDARD

routing, the path is learned for the DISCOVERY scheme as well. The score value may

change between hops, so the path taken by the event may not be the same path that the

STANDARD event took when traveling between the resource provider and the VO host

computer.

Events

Over the course of the lifecycle, many events are exchanged over the network to

advertise resource availability, update router data tables, and maintain the security of the

network. The events sent during this protocol map to a lifecycle phase as shown in

Figure 29. If a router or VO host receives an event out of order, it either drops or

forwards the event and notes an entry in the blacklist. The following events are

associated with designated lifecycle stage as shown in Table 14.

 89

Table 14

Events Used by the Grid Resource Discovery Protocol

Lifecycle Phase Event Description
Subscription SIGNUP Signup a resource

provider to the grid.
 ACCEPT VO host accepts the

resource provider.
Advertisement ADVERTISE The resource provider

advertises its availability.
Transaction TASK The VO host wants to

discover a resource
provider.

 TASK COMPLETE The resource provider
finished completing a task.

 CONFIRM DELIVERY VO host acknowledges the
deliver of the task data.

 CONFIRM
TRANSACTION

Resource provider
acknowledges receipt of
the data by the VO host.

 TASK UNSATISFIED The TASK event could
not discover a resource
with the score sought.

Sign-off GOODBYE A resource provider is not
available to the grid.

Retirement UNSUBSCRIBE The resource provider
wished to leave the VO’s
grid network.

 90

Figure 29 Events Exchanged over the Network

Consumer VO Host Grid
Resource A

Grid
Resource B

Grid
Resource C

Grid NW

TASK 1

TASK 2

TASK 3

TASK 1

TASK 2

TASK 3

TASK 1

TASK 2

TASK 3

TASK COMPLETE 1

TASK COMPLETE 3

CONFIRM DELIVERY

CONFIRM TRANSACTION

Transaction

Advertisement

SIGNUP
SIGNUP

SIGNUP

ACCEPT
ACCEPT

ACCEPT

ADVERTISE
ADVERTISE

Subscription

ADVERTISE

GOODBYE
GOODBYE

GOODBYE

Sign-off

UNSUBSCRIBE
UNSUBSCRIBE

UNSUBSCRIBE

Retirement

Resource
tables are
updated

Grid
resource
discovery

Resource table
entry created

Delete
resource
entry

Delete
signup
entry

Signup
tables are
created

Delete
resource
entry

CONFIRM DELIVERY

CONFIRM DELIVERY

TASK COMPLETE 2
CONFIRM TRANSACTION

CONFIRM TRANSACTION

 91

SIGNUP Event

The SIGNUP event allows a resource provider to sign up to the VO and provide

its resource to the grid. The event is sent the first time a resource participates on the

network and periodically every 24 hours to update the SIGNUP table. It uses the

STANDARD routing technique populated with a unique event_id, traveling from a

resource provider to a VO host, and requires a score variable in its payload in addition to

the variables in the event header. When a SIGNUP event arrives at a router, it records

information in its SIGNUP and BLACKLIST tables. A router may reject a SIGNUP

event if the resource has been blacklisted, but generally the signup event is recorded and

the resource is awaiting acceptance from the VO.

An example SIGNUP event transaction is shown in Figure 30. The event

originates in the switch in the bottom of the diagram and makes its way through the

network until it reaches its VO host destination. Note that the simulator aggregates

resource providers into a switch (which is why the resource is not shown).

Internet

VO
Host

Router

Switch

ISP

Router

Switch

 92

Figure 30 SIGNUP Event Standard Routing Example

ACCEPT Event

The ACCEPT event notifies the routers to accept the resource in its resource

tables if it receives an ADVERTISE event. It uses the REVERSE PATH routing

technique with the path learned from the SIGNUP event populated with the same

event_id as used in the SIGNUP event, traveling from the VO to the resource provider,

and requires an accepted Boolean flag in its payload designating when the event is

accepted or not. The SIGNUP table marks the event as accepted, and the event is erased

from the BLACKLIST table. As shown in Figure 31, the VO sends the ACCEPT event

back to the resource provider (located in the switch).

Figure 31 ACCEPT Event Reverse Path Routing Example

ADVERTISE Event

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 93

The ADVERTISE event advertises the availability of a resource and allows

TASK events to discover the resource. It uses the FORWARD PATH routing technique

with the path learned from the SIGNUP event populated with a unique event_id, traveling

from the resource provider to the VO. The ADVERTISE event does not have any

additional data in its payload. If the resource provider is signed up and accepted in the

router, the ADVERTISE event signals the router to populate the RESOURCE TABLE.

As shown in Figure 32, the resource provider in the switch advertises its resources to the

router closest to the VO host. The VO host is not notified of the advertisement.

Figure 32 ADVERTISE Event Forward Path Routing Example

TASK Event

The purpose of the TASK event is to discover a resource available on the network

based on a score devised by the VO host. It uses the DISCOVERY routing technique

populated with the same event_id as the ADVERTISE event, traveling from a VO host to

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 94

a resource provider, and uses a next_address populated in its payload. As the event

travels from router to router, the next_address field is populated from the RESOURCE

tables. When a resource is found in the table based on the score, the resource entry is

removed from the RESOURCE table. If the score is not satisfied, then a TASK

UNSATISFIED event is sent back to the VO host indicating that the task request was

unfulfilled. Otherwise, the TASK event will eventually end up at a resource provider.

As shown in Figure 33, the VO host sends a TASK event which finds its way over to the

resource provider aggregated in the switch on the bottom of the diagram.

Figure 33 TASK Event Discovery Routing Example

TASK COMPLETE Event

The TASK COMPLETE event signals that a resource provider has finished

computing its tasks. It uses the STANDARD routing technique with the same event_id

as the ADVERTISE event, traveling from the resource provider to the VO host. No data

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 95

table entries are modified during the transmission though the possibility is available for

future use. The event includes a Boolean indicator to indicate if the event was complete.

When the resource provider has finished its task, it sends a TASK COMPLETE event

back to the VO host to indicate that results are ready to be transferred (Figure 34).

Figure 34 TASK COMPLETE Event Standard Routing Example

TASK UNSATISFIED Event

The TASK UNSATISFIED event is sent from a router or resource provider to a

VO host if a resource cannot be found with the score requested. It uses the STANDARD

routing technique since the score entries were erased from the RESOURCE tables along

the TASK event’s path. The event is populated with the same event_id as the

ADVERTISE event. Also, as the event hops between routers, no data tables are

modified. When the TASK UNSATISFIED event arrives at a VO host, it can decide to

resend the TASK event at a later time. As shown in Figure 35, the top-most router

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 96

cannot find a score that matches the VO host request. A TASK UNSATISFIED message

is sent back to the VO host to indicate that the TASK event did not find a resource

provider.

Figure 35 TASK UNSATISFIED Event Reverse Path Routing Example

CONFIRM DELIVERY Event

The CONFIRM DELIVERY event signals that a VO has received completed task

results from the resource provider. It uses the REVERSE PATH routing technique from

the TASK COMPLETE event with the same event_id as the ADVETISE event, traveling

from the VO host to the resource provider. No data table entries are modified during the

transmission though the possibility is available for future use. As shown in Figure 36, the

CONFIRM DELIVERY message is sent from the VO host to the resource provider when

the results have been successfully uploaded to the VO.

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 97

Figure 36 CONFIRM DELIVERY Event Reverse Path Routing Example

CONFIRM TRANSACTION Event

The CONFIRM TRANSACTION event signals that a VO acknowledged

receiving completed task results from the resource provider. It uses the FORWARD

PATH routing technique from the CONFIRM DELIVERY event with the same event_id

as the ADVETISE event, traveling from the resource provider to the VO host. No data

table entries are modified during the transmission though the possibility is available for

future use. As shown in Figure 37, the CONFIRM TRANSACTION event is sent from

the resource provider to the VO host indicating that it is aware that the VO has received

the task results and does not need to attempt to send them again.

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 98

Figure 37 CNFIRM TRANSACTION Event Forward Path Routing Example

GOODBYE Event

The GOODBYE event signals that a resource provider wishes to leave the grid

network. It uses the FORWARD PATH routing technique and the same event_id as the

SIGNUP event, traveling from the resource provider to the VO host. The GOODBYE

event removes the resource provider’s entries in the RESOURCE tables of the routers

along the path. The GOODBYE event is sent from the resource provider to the VO (as

shown in Figure 38).

Internet

Router

Switch

ISP

Router

Switch

VO
Host

 99

Figure 38 GOODBYE Event Forward Path Routing Example

UNSUBSCRIBE Event

The UNSUBSCRIBE event signals that a resource provider wishes to

permanently leave the grid network. It uses the FORWARD PATH routing technique

and the same event_id as the SIGNUP event, traveling from the resource provider to the

VO host. The UNSUBSCRIBE event removes the resource provider’s entries in the

SIGNUP tables of the routers along the path. The event also includes a permanent

Boolean to indicate if the un-subscription is permanent or temporary. A temporary un-

subscription will not remove resource provider information from the VO host, whereas

the permanent un-subscription will. The UNSUBSCRIBE event is sent from the resource

provider to the VO host as shown in Figure 39.

Internet

Router

ISP

Router

Switch

VO
Host Switch

 100

Figure 39 UNSUBSCRIBE Event Forward Path Routing Example

Resource Providers’ Responsibilities

Looking at Figure 29, the resource providers are involved with the sending and

processing of several interactions. When sending a SIGNUP event, the resource provider

must track what VO it sent the event to until it unsubscribes from the network. When

sending the ADVERTISE event, it can only send the event if the ACCEPT event was

received. Also, the resource provider cannot send another ADVERTISE event until a

TASK message arrives at the router or if the resource provider sends a GOODBYE

message. The TASK COMPLETE event depends on the TASK event reception, the

CONFIRM TRANSACTION event depends on the CONFIRM DELIVERY event. The

GOODBYE message can be sent when an ADVERTISE event was sent and the resource

provider was not tasked via a TASK message. The UNSUBSCRIBE event can be sent if

the router was accepted with the ACCEPT event.

Internet

Router

ISP

Router

Switch

VO
Host Switch

 101

Router Responsibilities and Usage of Data Tables

There are three data tables used by the grid protocol in the routers along an event

path: the SIGNUP, RESOURCE, and BLACKLIST tables. Each table serves a different

purpose and follows a set of guidelines when data should be added or removed from the

tables. The tables are presented in this section. Note that the tables have optimized

implementations that are specified in the simulation section.

SIGNUP Table Usage

The SIGNUP table’s purpose is to record when a resource is signed up and

allowed to participate on the grid network. In addition to maintaining the resource and

VO host IP addresses, the signup table keeps track of a timeout value, the resource score,

and whether or not the resource is accepted on the network. Table 17 is composed of

Table 16, which is composed of Table 15; this allows the implementation to save

memory when storing the data structures. Each router has a SIGNUP table.

Table 15

SIGNUP TABLE ENTRY Data Structure

SIGNUP TABLE ENTRY
Timeout Accepted Score

Table 16

SIGNUP TABLE HELPER Data Structure

SIGNUP TABLE HELPER
VO IP Address SIGNUP TABLE ENTRY

 102

Table 17

SIGNUP TABLE Data Structure

SIGNUP TABLE
Resource IP Address SIGNUP TABLE HELPER

The initial entry into the SIGNUP table occurs when the SIGNUP event arrives.

If the resource provider is not blacklisted, a 10-byte SIGNUP TABLE ENTRY is created

which contains the timeout value, accepted Boolean value, and the resource provider’s

score. Initially, the accepted Boolean is set to false, the timeout is set to 120 seconds

from the current time, and the other values are populated from the SIGNUP event. The

SIGNUP TABLE HELPER allows fast lookup of SIGNUP TABLE ENTRIES and helps

to save memory.

When the ACCEPT event arrives at the router, the SIGNUP TABLE ENTRY is

retrieved and the accepted value is set to TRUE if the ACCEPT event’s accepted value is

TRUE and the timeout value is set to 24 hours from the current time. If the ACCEPT

event’s accepted value is FALSE, the event is blacklisted and the entry is removed from

the SIGNUP table. The ACCEPT event is always sent to the next hop in the path

because each router must know the state of acceptance.

 Other events may access the SIGNUP table, but the only other event which

modifies the SIGNUP table is the UNSUBSCRIBE event. When the UNSUBSCRIBE

event arrives at a router, the SIGNUP TABLE ENTRY is removed from the router’s

SIGNUP table. From the router’s perspective, a resource can signup if a SIGNUP

TABLE ENTRY does not exist, if the 24 hour wait period expired, or even if the resource

retired from the VO’s network. The router does not track retired resource providers.

 103

RESOURCE Table Usage

The RESOURCE table is used to track which resource providers are available. A

resource becomes available when it advertises its availability via the ADVERTISE event.

When a router receives the ADVERTISE event, it populates the RESOURCE TABLE

ENTRY with data from the ADVERTISE event and the SIGNUP table. The

RESOURCE TABLE ENTRY is removed when a TASK reserves a resource or when a

GOODBYE event is received by a router.

Table 18

RESOURCE TABLE ENTRY Data Structure

RESOURCE TABLE ENTRY

Next Hop IP Number of Devices

Table 19

RESOURCE TABLE HELPER Data Structure

RESOURCE TABLE HELPER
Score RESOURCE TABLE ENTRY

Table 20

RESOURCE TABLE Data Structure

RESOURCE TABLE
VO Host Hash Key RESOURCE TABLE HELPER

Table 21

VO Host Hash Key Data Structure

VO Host Hash Key Data Structure (16 bits)
VO Host IP Last 4 Bits
of Field 3 IP Address

VO Host IP Field 4 (8 bits) VO Product Id (4 bits)

 104

Just as memory is saved for the signup tables, each router has a resource table like

Table 20 composed of Table 19, which is composed of Table 18. The RESOURCE

TABLE uses a VO Host Hash Key (shown in Table 21) to lookup RESOURCE TABLE

HELPER tables; the helper table has a score key to enable fast lookup to access the

RESOURCE TABLE ENTRY. The RESOURCE TABLE HELPER has a key to lookup

the entry by the one-byte score. The RESOURCE TABLE ENTRY holds the one-byte

number of devices available for the particular resource and the four-byte IP of the

previous hop address. If the number of devices decrements to zero, then the entry is

erased. Likewise, if the entry is removed then the helper entry is erased for that score

value.

BLACKLIST Table Usage

The BLACKLIST table (Table 22) is used to prevent unauthorized access or data

transmissions between members on grid network. When a resource provider sends a

SIGNUP event, a BLACKLIST table entry is created with a one-byte count of 1. If the

VO sends an ACCEPT event with an accepted value of TRUE, then the BLACKLIST

entry is erased. If the accepted value is FALSE, then the BLACKLIST entry is set to

three indicating that the resource is considered blacklisted and the resource provider is

not allowed to participate in the grid network.

Table 22

BLACKLIST TABLE Data Structure

BLACKLIST TABLE
Resource Provider IP Count

 105

VO Host Responsibilities

The VO host primarily serves as a resource provider and consumer authenticator

and authorizer. When the VO host receives the SIGNUP message, it sends an ACCEPT

message to the resource provider and optionally to the consumer (not shown in Figure

29). TASK messages sent from the consumer are sent to the VO Host (since the

consumer must be authenticated and authorized), and then to the grid network routers.

The VO host also receives CONFIRM TRANSACTION events for tracking purposes and

security reasons (like for allowing SIGNUP events to be accepted). When it receives an

UNSUBSCRIBE event, it allows resource providers to retire from VO membership when

the retiring flag is set.

Scoring

Each resource provider participating in a grid network has attributes that define

the resource: number of CPUs, CPU speed, amount of RAM, available hard drive space,

and the speed of their bandwidth connection are shown in Table 23. The grid protocol

scores these devices based on their attributes using a one-byte unsigned character.

Table 23

Score Data Structure

Score Data Structure (8 bits)
CPU Memory Hard Drive Bandwidth

Score data structure has four two-bit fields representing CPU type and count, memory,
hard drive, bandwidth.

The scores represent ranges of resource attributes from 0-3. The enumerations of

each range are specified for a VO. For example, VO #1 may designate a CPU class of 0

 106

to represent 1 CPU machine up to 2 GHz, a class of 1 to represent 1 CPU machine over 2

Ghz, a class of 2 to represent a 2 CPU machine under 2 GHz, and a class of 3 to represent

a 2 CPU machine over 2 GHz. Likewise, a different VO # 2 may designate a workstation

class CPU an enumeration of 0, a server class CPU an enumeration of 1, a multiprocessor

device with an enumeration of 2, and a cluster computer or higher with an enumeration of

3.

A sample scoring table is provided in Table 24. A score of 205, for example, can

be represented as 1000 1101 (binary) or 0x8D (hexadecimal) which decomposes into a

CPU score of 2, a memory score of 0, a hard drive score of 3, and a bandwidth score of 1.

Using Table 24, this translates into a 4 CPU machine with 512 megs of memory or less

available, a hard drive capacity over 120 gigs available, and a bandwidth connection

speed of 128 K.

Table 24

Example Scoring Table

VO #3 Scoring Table Example
 Score of 0 Score of 1 Score of 2 Score of 3
CPU 1 CPU 2 CPUs 4 CPUs 8 CPUs
Memory <= 512 Meg .5 – 1 Gig 1 – 2 Gig > 2 Gig
Hard Drive <= 10 Gig 10-80 Gig 80-120 Gig > 120 Gig
Bandwidth <= 56 K 128 K 256 K > 256 K

One other factor to consider for score is how the TASK events generate scores to

seek. The five deployment schemes and their score-seeking techniques are defined in

Table 25. The “don’t cares” indicate that the particular VO does not care about the

particular resource attribute when creating events.

When a TASK event arrives at a router, the score is looked up in the RESOURCE

TABLE. First the router checks to see if the score is matched perfectly. If it is not, it

 107

finds the next highest score. If it cannot find a score, then a TASK UNSATISFIED

event is sent back to the VO host.

Table 25

Deployment Environment Don’t Cares

Deployment Environment Don’t Cares
Science Portal Bandwidth
Distributed Computing None
Computer-in-the-Loop Instrumentation Hard Drive
Large-Scale Data Analysis CPU, Memory, Bandwidth
Collaborative Work Memory

Figure 40 Router Search Algorithm for Finding a Score in the RESOURCE TABLE

Grid Topology Scenarios

Since grid deployment environments [56], resource agreements, VMMs, and VOs

have been discussed in the Grid Computing Background section, consider the network

topology of the deployment environments. Each of these models will use the

decentralized concept of the resource discovery proposed. The differences lie in the

application of the model’s scenario and the way that the routers will use the scoring

mechanism to find resource providers.

If score matches perfectly
 Decrement the score in the RESOURCE TABLE
 Forward message to appropriate router
Else if a higher score is available
 Find a higher score that is as close to the desired score
 Change the desired score in the TASK event
 Decrement the score in the RESOURCE TABLE
 Forward the message to the appropriate router
Else
 Send TASK UNSATISFIED event to VO host
 Drop the TASK event

 108

The network topology can contain the following network devices: the root

network identifier node (usually the Internet), ISPs, routers, switches, and VO hosts. The

switches can aggregate up to 253 resource providers. The following rules apply when

building a network:

• The root network node can only have ISP children.

• The ISP nodes can only have router children.

• The router nodes can have ISPs, routers, switches, or VO hosts.

• The switch nodes can have routers, resource providers, or VO hosts.

• VO hosts cannot have children nodes.

Figure 41 shows an example of a network topology. The root node, labeled

“Internet,” has one ISP labeled “ATDN.” ATDN has two routers with the IP addresses

66.185.128.1 and 66.185.129.1. The switch under 66.185.128.1 has 253 available

devices with an IP range from 66.185.128.2-66.185.128.254 (not shown). The switch

under 66.185.129.1 has a VO host names “Example” with an IP of 66.185.129.2 and 252

resource providers with an IP range between 66.185.129.3-66.185.129.254 (not shown).

A minimum network topology is shown in Figure 42 which shows some resource

providers.

 109

Figure 41 Scenario Editor Network Topology Example

Figure 42 Minimum Network Layout

Science Portals

In the Science Portal deployment environment, a scientist would log onto a VO

host computer via a web-based thin client connection. The scientist sends a work order to

the VO web portal host computer, the VO host computer divides the tasks into

manageable pieces, and then the host computer sends the appropriate TASK events

Must have at least 2 IP
addresses to allocate.

Internet

VO Host

ISP

Router

Switch

Resource
Providers

 110

throughout the network to find resource providers. With the science portal scenario type,

the scientists do not care about bandwidth, so the bandwidth value in the score is set to a

“don’t care” value of zero. As shown in Figure 43, scientists would send work orders to

the VO web portal that would send the work out over the grid network. If the grid

network cloud were expanded out, it would look similar to the network in Figure 41

where the example VO would be the VO web portal.

Figure 43 Sending TASK Events in the Science Portal Scenario.

Distributed Computing

In the Distributed Computing deployment environment, the scenario allows

individual PCs to be combined via parallelization to provide substantial computational

resources. The VO host may have a very long list of TASK events to process. The VO

host can send these events when it receives a SIGNUP or CONFIRM TRANSACTION

event from a resource provider or whenever it chooses to. With the distributed

Grid
Network

VO
Web
Portal

Scientist
Resource
Consumers

Resource
Providers

 111

computing scenario type, all attribute values of the score are considered (none are set to

“don’t care” values). As shown in Figure 44, work orders are sent from the VO host to

work out over the grid network.

Figure 44 Sending TASK Events in the Distributed Computing Scenario

Large-Scale Data Analysis

In the Large-Scale Data Analysis deployment environment, computational grids

provide the capability of acting as a large storage facility in addition to providing

computational powerhouses. The VO host, for example, could try to periodically send

out TASK events requesting a particular sized hard drive. With the large-scale data

analysis scenario type, the hard drive space matters most and the other fields are marked

as “don’t cares.” As shown in Figure 45, researchers would send a request to store and

analyze a large amount of data to the VO host. The VO host would divide the request up

into multiple TASK events that would be sent out over the grid network.

Grid
Network

VO
Host

Resource
Providers

 112

Figure 45 Sending TASK Events in the Large-Scale Data Analysis Scenario

Computer in-the-loop Instrumentation

In the Computer-in-the-loop Instrumentation deployment environment, scientific

instruments are used to collect streams of data which are archived and processed later to

detect things of scientific value. The VO host, for example, could try to periodically send

out TASK events requesting a particular CPU, bandwidth speed, and block of memory to

receive streaming data. With the computer in-the-loop instrumentation scenario type, the

hard drive space available is marked as a “don’t care” assuming the VO requires a large

enough amount of free space when the resource subscribes to the VO. As shown in

Figure 46, scientific instruments constantly stream data to a VO host. The VO host

issues TASK events over the grid network.

Grid
Network

VO
Host

Research
Resource
Consumers

Resource
Providers

 113

Figure 46 Sending TASK Events in the Computer in-the-Loop Scenario

Collaborative Work

In the Collaborative Work deployment environment, scientists may want to

collaborate to discuss results and offer suggestions. The VO host, for example, could try

to periodically send out TASK events requesting a particular CPU, bandwidth speed, and

hard drive space to accommodate collaboration. With the collaborative work scenario

type, the memory available is marked as a “don’t care.” As shown Figure 47, Scientific

instruments constantly stream data to a VO host. The VO host issues TASK events over

the grid network.

Grid
Network

VO
Host

Scientific
Instrument
Consumers

Resource
Providers

 114

Figure 47 Sending TASK Events in the Collaborative Work Scenario

Grid Security

“Grid systems and applications may require any or all of the standard security

functions, including authentication, access control, integrity, privacy, and non-

repudiation,” [72]. Regarding security, the VOs act as a trust domain (as defined in [72]).

The VO host can handle grid resource provider and consumer authentication and

protection of credentials. VO hosts can also act as proxies to other VO hosts; they can

use criteria to judge another entity based on its VO sponsorship. Access control is

granted through authentication and use of the VOs API on the grid resources: the API

will only have functionality programmed into it which allows access to devices specified

by the security policy of the proxy or the VO which provides the API. Integrity of data

can be monitored by the grid routing protocol. For all successful transmissions, an

Grid
Network

VO
Host

Researcher
Resource
Consumers

Resource
Providers

 115

integrity counter can be incremented on the routers and at the proxy to indicate that a

successful transaction has occurred.

Privacy can be controlled somewhat by the use of encryption, but as [72] points

out, not all countries agree on similar types of encryption (assuming there is a world wide

distributed grid network). Also, if remnants of computer usage (i.e. temp files or source

code from the trusted consumer model) are not deleted, then privacy can be

compromised.

The new security risk that these models introduce has to do with data tables being

stored on routers. If someone could hack into a router, this person could alter credentials

or BLACKLIST tables and redirect more traffic to his or her own network to steal

information or to make more money. One way to discourage this behavior is for the

proxy to watch for a fair distribution of the grid resources. Based on the resources

available, if a resource appears to be a hog by not allowing other grid resources to get

their shares of the workload, the VO host temporarily suspends authentication for that

grid resource provider thus forcing work orders to go to different accounts.

Another security risk for the router integrity is for the resource providers to send

repetitive SIGNUP or ADVERTISE events to inflate the amount of available resources.

Routers track the frequency of SIGNUP and ADVERTISE events; if too many events

arrive in too short of a time or without any satisfactions over a long period of time, the

router can disable any TASK events from going to that resource provider.

One other security risk for the protocol is that any component can be an imposter

component: that is a component which looks and acts like a trusted component but is

really designed for malicious purposes. Proxies can be made to steal names, passwords,

 116

or other security credentials. Resource providers can steal data or produce bogus results.

Grid consumers can be falsely identified so a different customer is billed for activity the

customer did not use. These situations can also be monitored reactively through the use

of integrity counters as described above.

HLA Simulation Protocol and the Simulation Engine

Rather than building a simulation architecture from the ground up, after reviewing

three popular simulation architectures (ALSP, DIS, and HLA), the decision is made to

design a simulation engine that performs basic HLA operations. There are two reasons

for this decision: the first is because ALSP is a legacy product. It was designed by many

of the same people and the same organization (MITRE) that designed HLA [22], so the

shortcomings of ALSP were addressed in HLA [2][8][10]. The second reason is even

though DIS is considered legacy, it is still used in the industry today [19][20][21] and it

has been adapted to work in concert with HLA [1]. The architectural approach to

achieving this is to create a software simulation layer in-between the simulation code and

the RTI interface as shown in Figure 48. Also, this simulator can be built from core

software from the k-array n-cube and CLL simulators though it will introduce new code.

Another requirement for the simulation engine is for it to be able to operate

without the RTI as shown in Figure 49. Thus, time management, object and event

management, scenario parsing, and other features provided by the RTI will be provided

by the simulation engine. This requirement is imposed because not all simulations may

require distributed simulation or perhaps the simulation programmer desires a simplistic

testing environment.

 117

Figure 48 The Simulation Core is placed Between the Simulation Software Application
and the RTI

Figure 49 The Simulation Engine Supports a Mode Where RTI Services are not used

Simulation Core

The simulation core software component is responsible for keeping the simulation

running by managing simulation time, sending and receiving events, understanding the

FOM, and managing the network infrastructure. In the software, these classes are

packaged in the GPSC namespace (Grid Protocol Simulation Core). The core software

supports two modes of operation: with and without the RTI. The software components

are similar when running in either mode, but the RTI mode adds a few extra classes. As

shown in Figure 48, the GpsAmbassador receives messages from the RTI and the

RtiManager class sends messages over the network. The GpsAmbassador class inherits

from the RTI’s FederateAmbassador class as prescribed in the RTI spec [10].

Simulation Core

Grid Simulation Software

 118

The other core classes include: EventManager, Event, NetworkTree,

NetworkNodeBaseClass, StateMachine, and TimeManager. These classes are described

in the upcoming sections.

EventManager Class

The EventManager is responsible for scheduling and delivering simulation events,

maintaining an event queue, and remembering event statistics. The events are stored in

an ArrayList structure provided by the CLR framework. The structure is not sorted, but

the list is manually sorted each time advance. When events are sent, they are added to

the end of the event queue and sorted to the proper position when time is ready to

advance forward. Events can only be sent in the future (current time plus one or more),

not at the present or in the past.

The EventManager also tracks event statistics in a data structure. Each event that

is sent is counted. The event is only counted once because the event id is stored as a

unique key. When the simulation ends, the EventManager is asked to give statistics for

the all events passed through the simulation.

Event Class

The Event class is the base class for any event propagated or represented in the

simulation. Each event has the capability to track its path through the network, starting

and ending IP addresses, event starting time, time of next delivery, routing method, and

the event type. The path can be populated or used in forward or reverse based on the

routing method. Some events may not use parameters; like the TASK message that does

not know its destination because it has to be discovered.

 119

NetworkTree Class

The NetworkTree class is the container that holds all of the network devices. The

network tree is a tree structure with functions to assist in the routing of messages. In

some cases, particularly for routers, the network device will have to route the events. The

device is given the first chance to route an event. If the device routes the event, then the

network tree will not route the message; otherwise it will.

NetworkNodeBaseClass Class

The NetworkNodeBaseClass is the base class for all network devices contained in

the network tree (i.e. the routers, switches, and VO hosts). Any device inheriting from

the NetworkNodeBaseClass will have a name, a device type enumeration, and a reference

to its parent node in the tree.

StateMachine Class

The StateMachine class is responsible for maintaining the current state of the

simulation. The simulation states are: STOPPED, INITIALIZING, RUNNING,

SHUTTING_DOWN, and PAUSED. When the simulation is started, it transitions from

the STOPPED state to INITIALIZING and eventually to RUNNING. When the

simulation is complete, the simulation enters SHUTTING_DOWN state followed by the

STOPPED state. When the simulation is in RUNNING state, the simulation can

transition to PAUSED and then back to RUNNING.

During the STOPPED and PAUSED states, no simulation activity is occurring.

The INITIALIZING state signals the simulation to read in the scenario and populate the

 120

NetworkTree and EventManager event queue. The RUNNING state starts the simulation

clock and event transactions. When the simulation is in the SHUTTING_DOWN state,

the event statistics are calculated and the Excel spreadsheets are generated.

TimeManager Class

The TimeManager class is the container for the simulation’s current time while

running. The starting, advancing, and stopping of the clock is done from this class by

interfacing with the GpsGui class’ background worker thread that runs the simulation.

The TimeManager also provides mutex services for pausing the simulation and

synchronizing with RTI synchronization points.

Simulation Engine Common Library

In addition to the classes mentioned above, the simulation core includes an

additional namespace called SECL (Simulation Engine Common Library). The

distinction between the classes in the common library and the core is that common library

classes can only call standard C++, C++/CLR, and SECL classes. Thus, these classes are

designed to be the most reusable parts of the simulation engine. Examples include math

classes (such as Random), error display (such as GuiUtilities), and logging (such as

Logger).

Simulation Architecture

When using the RTI, this means that the simulated network event traffic can be

distributed to different computers running the simulation. Distributing the workload

means that the simulations run faster because each simulation event queue has to process

 121

fewer events and the network topology is smaller. The network is portioned out based on

the tier 1 ISPs that fall under the root network node. Consider an example where a two-

ISP network scenario is simulated on CPU 1. All of the simulation is done on this CPU

as shown in Figure 50; the thought cloud shows the CPU is computing messages through

two ISPs. The workload can be distributed over another CPU since there are two ISPs in

this particular scenario. This is done by CPU 1 loading the first ISP and CPU 2 loading

the second ISP as shown in the thought clouds in Figure 51. CPU 1 also will run the

RTIExec program that is responsible for creating and managing the federation. The

computers are connected over a LAN and events are exchanged as appropriate.

CPU 1CPU 1

Internet
ATDN

GBLX

Figure 50 Simulation without the RTI

 122

Figure 51 Simulation with the RTI

Scenarios contain network and event information. When the simulation not

running the RTI loads the scenario, it loads the entire network and event queue and

simulates the grid discovery protocol behavior. However, when using the RTI, CPU 1

only loads the first ISP and CPU 2 only loads the second ISP. Likewise, scenario events

that pertain to the other CPU are dropped based on the IP address of the resource

provider. For example, if a scenario event has a resource provider with an IP address of

92.168.123.123 and if that resource provider exists in the GBLX ISP, then CPU 1 will

drop the message and CPU 2 will process the message.

The RTI connection is used when an event has to cross from one ISP to the other;

thus the RTI acts as the Internet backbone between Tier 1 routers. For example, consider

a scenario where resource IP address 92.168.123.123 resides in GBLX and VO Host IP

address 93.168.123.123 exists in ATDN. When the first SIGNUP event has to travel

from GBLX to ATDN, a corresponding SIGNUP event is created (based on the FOM)

and the message is passed over the RTI.

CPU 1CPU 1

Internet
ATDN

CPU 2CPU 2

Internet

GBLX

RTIExec

 123

Time regulating and constraining settings are disabled when using the RTI. This

allows the simulator to control time rather than having the RTI control time. When

events are sent over the network, they call the sendInteraction() function which does not

take a time parameter. This does not timestamp messages the cross between the CPUs or

federates; messages are placed in the Receive Order (RO) queue rather than the

Timestamp Order (TSO) queue. Messages that arrive in the receive order queue may

arrive out of order. Considering the architecture of the simulation, messages can be

received out of order since each message is independent of the other.

The benefit of using the RTI is to save time simulating the scenarios, but there are

two drawbacks. The first drawback is the usability factor where the user will have to take

additional steps to run the simulation with the RTI. This includes starting the RTIExec

process, the RTI license manager, and setting up the simulator to run with the RTI

(enabling an RTI checkbox, setting the federate name, etc.) The added complexity leaves

more room for human error. The second drawback is that the simulation results will

reflect the results per each federate. So, when the scenario simulation is completed, the

user must combine the results across the federates to see the big picture of the simulation.

The simulation design allows this to happen because the events carry their statistics

internally (i.e. the number of hops, start time, etc.)

 124

CHAPTER FOUR: FINDINGS

K-Array N-Cube Evaluation and Results

Simulation Implementation and Techniques

Object-oriented software implementation strategies such as use of the STL,

singleton classes and pure virtual functions have been employed to provide a flexible,

extensible, and robust means to establish network hardware structures. These

implementation strategies are vital implementation methodologies to the network

benchmark model in order to obtain higher modularity and lower integration complexity.

A systematic usage of these functionalities throughout the simulator design lead to a

better model that improves system performance and supports future upgrades such as

additional types of networks, protocols and/or flow control mechanisms. A brief review

of the implementation techniques is provided in the next few sections.

The Singleton Class

The singleton classes [44], such as WormManager and Interconnect shown in

Figure 52, guarantee that only one class instantiation is created. Figure 52 shows all the

objects and functions (public and private) included in each of these singleton classes.

The single instance is held as a static variable as a private member of the class. These

singleton classes are not automatically initialized when the program loads. Instead,

initialization occurs the first time that singleton class’ create method is called by the

client. The create method also allows the callers to access methods of that singleton class

 125

since it returns a pointer to the class. In a similar manner the Singleton class can release

the object from memory by calling destroy. The Interconnect is a singleton class, that is

only one interconnect is created per simulation. The WormManager creates a new

interconnect at the start of each simulation and destroys it when done. The reason for this

is that there might be different configurations which require construction of the object in

different ways within the WormManager class.

Figure 52 Two Singleton Class Examples: WormManager and Interconnect

Pure Virtual Functions

The SaveRestoreInterface class provides save and restore functions that are pure

virtual functions which forces derived classes to override the functions [45]. By having

classes with only pure virtual functions, these classes can be declared as interfaces. This

means that classes can call the save() or restore() methods without having to know what

class it is saving. The following is an example of pure virtual function signatures:

 126

class SaveRestoreInterface {
public:
virtual File & save(File & file) = 0;
virtual File & restore(File & file) = 0};

In the save/restore functionality of the inheriting class, a sentinel acts as a

safeguard to assure that the correct version of code is used. The sentinel is recorded in

the saved file. Upon restore, it is verified that the saved file matches the current software

version.

System Design with the Standard Template Library (STL) Functions

The interconnect is modeled using a map data structure from the Standard

Template Library (STL). The STL is a general purpose library of algorithms and data

structures. The STL enables generic programming where reusable functions, data

structures and algorithms are available for the programmer [46][47]. The interconnect is

constructed of three main components: a face, a node, and a port Figure 53. For the 3D-

mesh interconnect, each face has four nodes at the corners. Each node has six ports

(some of which can point to nowhere). Therefore, a map is created for each component

to organize the connectivity and construct the interconnect structure. The map is

accessed based on the location of the face, node, or port desired to access. These

locations are predefined.

 127

Figure 53 Layout of the Interconnect

Face #ID to face map: typedef std::map<int, Face> FaceMap;
Node #ID to node map: typedef std::map<int, Node> NodeMap;
Port #ID to port map: typedef std::map<int, Port> PortMap;
VC #ID to VC map: typedef std::map<int, VirtualChannel> MemoryManager;

Figure 54 STL Map Declarations for the Faces, Nodes, Ports, and Virtual Channels

Simulation Data and Observations

During execution, the network simulator provides two windows to control the

pacing of simulation time and the collection simulation data. The runtime data window

(bottom right side of Figure 55) shows performance metrics updated on-the-fly. In

addition, runtime data is also recorded in the output spreadsheet files. The pacing

window (on the bottom left side of Figure 55) allows the user to control the pace of

simulation that can pause it completely if desired.

Latency and throughput analysis

Latency represents the time it takes for a worm to reach its destination.

Depending on the worm movement, latency sums wire transfer, switching and routing

 128

delays at each cycle. The resulting latency is an average of latencies collected from all

worms modeled at the end of the simulation.

Figure 55 Simulation Graphical Modes with the Pacing and Runtime Data Windows

Three representative k-array n-cube interconnects were chosen for the

simulations: 8-array 2-cube, 4-array 3-cube and 3D-mesh (all three interconnects have 64

nodes). Figure 56 shows a comparison among all three interconnects with VC and

channel partitioning enabled. The results shown are an average of 10 different

simulations with both short (128 B–1 KB) and long (1 KB–8 KB) worms and identical

interconnect settings. The lowest latency was recorded for the 3D-mesh, while the 4-ary

3-cube network has slightly higher latency than the 3D-mesh. Throughput is measured

by taking samples of the total bits processed within the interconnect at each cycle.

 129

Throughput significantly increases when VCs are enabled since they allow more worms

to occupy the interconnect without transmission failures. The highest throughput was

reached by the 3D-mesh interconnect for both short and long messages.

Figure 56 Latency (Left) and Throughput (Right) Comparisons Between 3D Mesh, 8-
Array 2-Cube and 4-Array 3-Cube

Worm Allocation and Distribution

Worm allocation and distribution measurements, depicted in Figure 57, show

three groups of worms: worms that are currently propagating in the interconnect, worms

that are waiting in jar to be modeled and worms that are finished and reached their

destinations. The figures show that the number of currently modeled worms (worms in

the interconnect) increases as the number of worms waiting in the jar and the number of

already modeled worms (finished) decreases.

 130

Figure 57 Worm Allocation and Distribution with (Right) and without (Left) Virtual
Channels

When VCs are enabled, more worms occupy the interconnect at a faster rate than

without VCs. This shows that as more worms are modeled, the number of worms waiting

to be modeled diminishes. It is also noticeable that when VCs are enabled more

simulation cycles are required.

Routing Accuracy

Routing accuracy measures how close the actual path of each worm is to its

shortest path. Routing accuracy is calculated by taking the ratio between the shortest

path possible to the actual path taken; this signifies the worm’s deviation from its shortest

path. Figure 58 shows a simulation of 100 worms using 3D-mesh interconnect with VCs

disabled and no sub-channeling. At the top of the figure, the top-most line portrays the

percentage of deviation from the shortest path. The top line shows, for example, a

triangular point for a certain worm is at 100, that means the worm has taken the shortest

path possible. If the value of the line is equal to 20, the worm deviated from its shortest

path by 80% (and has taken more channel links).

 131

Figure 58 3D Mesh Worm Deviation from its Shortest Path

On the left-hand side, Figure 58 shows the number of links passed for each worm

modeled using 3D-mesh interconnect. On the bottom part, the deviation of each worm

(top line) from its shortest path (bottom line) is shown. Therefore, when both lines

completely overlap each other for a certain worm, that worm has taken the shortest path.

For example, worm 44 took a path passing 12 nodes to get to its destination, but it should

have taken 7. As the number of channel links passed increases with respect to the

shortest path possible, the thin line becomes further apart from the thick line. It turns out,

the path the worm takes depends on the traffic load at certain nodes of the interconnect.

As the load increases, most worms deviate from their shortest path and adaptively

propagate to their destination avoiding areas of hot-spots [39].

 132

Interconnect and Bandwidth Utilization

Interconnect bandwidth utilization measures the number of occupied channels (or

sub-channels) with respect to the total number of channels available in the interconnect.

Figure 59 portrays that the highest bandwidth utilization is achieved by using the 4-array

3-cube network, while the 8-array 2-cube has the lowest utilization rate. Sub-channeling

improves bandwidth utilization as the channel is partitioned into more sub-channels. The

combination of VCs and SCs brings all interconnects close to their full capacity.

Figure 59 Bandwidth (Left) and Interconnect (Right) Utilization

Interconnect utilization counts the number of busy ports within each traffic

controller per simulation cycle. At the end of the simulation it provides the average

number of ports that were set to busy status out of the total number of ports available in

the interconnect throughout simulation. The results of interconnect utilization show very

close relationship to bandwidth utilization. Again, 4-array 3-cube ports are set to busy

status more often than the 3D-mesh or 8-array 2-cube. Although interconnect utilization

seems an equivalent measure to bandwidth utilization, it is a little different since the port

status is not directly related to the channel usage. An output port can stay in the not-busy

 133

state if a worm that intends to use it is buffered into virtual channels. Since each traffic

controller has a minimum of four ports, a worm entering from a different direction can

utilize the channel connected to the non-busy port.

Failure Rate

Failure rate is a measure of the number of worms, out of the total number of

worms generated that were retransmitted during simulation. Retransmission takes place

when a worm is blocked and it cannot obtain the resources it requires to maintain an

active status within the interconnect. For example, when VCs are disabled, then a worm

will require retransmission if it cannot be routed to any output port within a certain node

for more than one simulation cycle. Figure 60 depicts a failure rate comparison for all

interconnect types with VC switched to enabled/disabled. This figure shows that using

VCs significantly reduces failure rate. Moreover, the size of the VC has a major effect on

failure rate as well. As the size of the VC increases more worms can be buffered for

longer periods of time within each node instead of failing and being retransmitted [38].

Figure 60 Worm Failure Rate Comparisons with and without Virtual Channels (Left) and
with Different Virtual Channel Sizes (Right)

 134

Routing Accuracy vs. Hot-Spot Nodes

In this simulation, the paths taken by all worms using 3D-mesh, 8-array 2-cube

and 4-array 3-cube interconnects were recorded. Then, the paths were analyzed to collect

the nodes which were most frequently used and as a result caused other worms to deviate

from their shortest path to avoid transmission failure.

Figure 61 Hot Spots Versus Routing Accuracy

Results given in Figure 61 show that some hot-spot nodes caused approaching

worms to deviate from their shortest path by 50–60% more channel links than the shortest

path available. For example, the hot-spot in face 11 node 3 (F[11], n[3]) caused six

approaching worms to deviate from their shortest path by 62.5%. Traffic is randomly

generated with random message lengths and from random nodes. Since the adaptive

routing algorithm changes the path the worms take in each simulation, every simulation

creates hot-spots in different locations and in different frequencies. The right diagram in

Figure 61 shows a hot-spot which occurred in face 3 node 6 (F[3], n[6]) that caused

approaching worms to deviate from their shortest path by an average of 85%. Although

only few hot-spots occur per simulation, their effects on performance were significant. As

 135

the rate of hot-spot increases (a function of traffic load), worms tend to deviate from their

shortest path more frequently and, as a result, the overall interconnect latency increases.

K-Array N-Cube Interconnect Performance Comparison with Common Interconnects

In this section, 3D-mesh, 8-ary 2-cube, and 4-ary 3-cube interconnects are

compared with other currently used high-performance interconnect technologies such as

Hypertransport (HyperTransport Consortium, 2005), Infiniband (Infiniband Trade

Association, 2000) and PCI-Express (PCI Special Interest Group, 2003; Sassone, 2003).

Figure 62 Comparison of Different Interconnects

Reported results provided by each individual vendor were used to compare with

the results from this simulation. In addition, the performance properties of these

technologies take into account a constant channel size of 32-bits and a single

communication link. For the 3D-mesh interconnect the settings are: channel width is 32

 136

bits, interconnect size is 16 cubes, number of worms generated is 10, each worm is 1KB

in size.

Virtual channels as well as channel partitions were enabled. The throughput

comparison results are shown in Figure 62. The throughput values of the 3D-mesh, 8-ary

2-cube and 4-ary 3-cube interconnects represent the average throughput of each

interconnect. 3D-mesh shows superior results compared to all of its competitors reaching

a peak throughput of 452 Gbps (about twice the throughput of the best interconnect

available not including the other types of k-array n-cubes tested).

Cluster Leader Logic Evaluation and Results

Simulation experiments are conducted with enforced directional traffic patterns.

Two important results are presented in this section: power consumption per clusterhead

and average queuing delay for each clusterhead. Results in terms of message overheads,

number of clusterheads, power consumption, and queuing delay reveal that system

performance is enhanced when clusterheads are chosen considering the direction of the

traffic flow.

The CLL Simulator

In order to test the feasibility of the proposed CLL algorithm, a simulator was

created to validate the architecture and find the expected performance. NS-2 [55] was

evalutated, but it did not have native GPS-QHRA support. Also, it was important to

neglect conventional cluster-based routing algorithm shortcomings for dropping

messages because it would be difficult to figure out if messages are dropped from the

CLL algorithm or the routing algorithm choices.

 137

Thus, a custom simulator was written to create an omniscient routing protocol

which would not drop messages. The simulator console application is written in C++, is

object oriented, and implements advanced concepts such as templates and generics, and is

built from some of the simulation infrastructure as the simulator used for the k-array n-

cube simulator [25]. The simulator is composed of two executables: a scenario generator

and the CLL simulator. A configuration file was created to allow the tester to configure

the static constant variables defined above. The simulator is event-based and scenario

file driven.

The benefits of having scenario files include the ability to tweak test cases

without having to recompile code, the abilities for a human to read and edit the file, and

the capability to trace each test case to a scenario which can be re-run to double-check a

concept. The scenario format allows the tester to place nodes in cells, send time-stamped

messages between nodes, time-stamp node movement, and add comments to the scenario

file as appropriate.

The implementation of the simulator follows the CLL algorithm very closely; the

simulator varies from the real world because it is a single threaded single process and

does not have true simultaneous multithreaded communication. The benefits of having

simultaneous communications would not directly prove or disprove the CLL algorithm; it

would affect the performance of the algorithm since collisions would occur and message

would be dropped and re-transmitted more frequently.

When the simulator is executed, the simulator reads the scenario specified,

populates each node with its respective messages and movements, executes the

simulation by stepping through simulation time, and shuts down the program and logs

 138

statistics when complete. Validation scenarios were created with hand-calculated results

to test different aspects of the simulation to expose bugs with both the implementation

and the algorithm design and then later were used to fix the bugs. Once the validation

scenarios passed testing, scenarios were created to compare native GPS-QHRA to GPS-

QHRA with CLL.

Scenario Design

Once the simulator functionality stabilized and results matched hand-calculated

results, several larger scenarios were created to prove the concepts of the CLL algorithm.

The scenario set is divided into two classes: the slash scenario and the random scenario.

The slash scenario set organizes 76 nodes into a slash (a diagonal formation from

the top-left to the bottom-right) formation within a 128 cell region where only 37 cells

are occupied. There are several reasons for picking a slash pattern:

• The pattern represents a two-lane road with network traffic traveling one way

against the top part of the slash and the opposite way against the bottom part of

the slash.

• Cell fanning could be double-checked against expectations performed in hand-

calculations.

• A bottleneck is created which will force clusterheads to split.

 139

Figure 63 The Slash Scenario before Any Node Movement

There are two versions of the slash scenario: with and without node movement Figure

63. The arrow represents the direction of movement when the nodes start moving. The

algorithm is designed to not care if nodes are stationary or moving. The affects of

sending a message and then moving could cause a dropped packed: this is why the test

cases are differentiated. These are some other constraints imposed on this scenario set.

• There are no holes in connectivity that would cause the routing algorithm to drop

packets.

• There are at most 4 nodes in a cell.

• Messages originate in the bottom right and move up-left or messages originate on

the top and move down-right.

d
d d

d

d

d
dd

dd
d

d
d

d

d

d
d

d

d
d

dd
d

d

d

d

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

d
d d

d

d

d
dd

dd
d

d
d

d

d

d
d

d

d
d

dd
d

d

d

d

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

 140

The slash-movement scenario is the same as the first except that nodes move at

almost random times. The movements were designed not to break connectivity, so they

could not be truly random movements. But, the movements create different situations

where clusterheads would be forced to split, join, or do nothing based on the movements.

The second scenario set, the random scenarios, were also created with 250

randomly distributed nodes within an 8 x 16 play-box. Scenarios were created to inject

2000, 4000, 6000, 8000, and 10,000 messages over a 200 second time period where the

message origination and destinations were random but did not start and end in the same

cell. Within this 200 second time period, 10 nodes moved in a manner to cross the

boundaries of their cells to cause a state change from clusterhead to subordinate node or

vice versa or the clusterhead kept its state; at a minimum one example of each situation

was tested. The simulation should expect between 10-50 messages per second to be

generated. This translates approximately into each node sending a message between 5 to

25 seconds. These scenarios were run over 150 times each with variations to the

configuration files producing over 750 different results for this vignette. The quantity of

the variations were intended to find the best clusterhead configurations for each situation

(one, two, or four clusterheads) so these results could be compared and contrasted.

Results

The results are intended to prove or disprove the CLL algorithm concept that

includes the concept of cell fans. The proof of the concepts is achieved when enough test

cases are run with different parameters to see that in each case the clusterhead overloads

converge to a low value when parameters are altered. A clusterhead overload occurs

when the cluster leader cannot create a new cluster leader to share its load. In order to

 141

prove the concepts, 15 variables were examined to help identify trends and ways to

improve the algorithm and scenario design. 8 of those variables represent the

configurable variables. The 15 variables monitored are shown in Table 26.

One way the algorithm design was improved was to create the

PurgeWeightsWhenCHSplits variable. Before this variable existed, clusterheads always

handed all learned data to newly created clusterheads.

It was found through experimentation that this caused the clusterhead splitting to

be too aggressive for newly created clusterheads. By creating this variable and setting it

to true, the clusterhead gives a chance to observe its busy cell fans data flow for itself. In

all cases, the number of clusterhead overloads increased and the clusterhead stability

decreased significantly when the value is false. In addition to the observances above, for

moving node scenarios, additional clusterheads were created when the value is set to

false.

Scenario design was improved as well. A special test case scenario was designed

based on these parameters. Certain test cases with moving nodes had dropped packets

that should not have dropped packets. A scenario was created to test nodes moving and

communicating at the same time. The movements included clusterheads with and

without subordinate nodes. The communications included transmitting, receiving, and

hopping messages. This situation ended up being the most complex to fix since

movement of nodes can occur anywhere in the execution of the algorithm; but the fixes

applied increased the accuracy of the results of the simulator significantly.

The x-axis in Figure 64 represents different configurations for the same slash

scenario run for these tests: one through four clusterheads allowable per cell. When one

 142

clusterhead is present, this case reflects the native GPS-QHRA protocol. The y-axis of

the left diagram represents a count for each time a clusterhead is overloaded and has to

queue a message because it cannot share its workload with other nodes in its cell. The y-

axis of the right diagram represents the final clusterhead count.

Table 26

Simulation Variables Monitored

Variable Name Definition
InitialClusterheads Before the simulation starts, this is the count of

clusterheads selected based on lowest id.
FinalClusterheads When the simulation ends, this is the result of all

present clusterheads.
ClusterheadSplits The number of times any clusterhead splits.
ClusterheadJoins The number of times when a node joins a different

clusterhead.
ClusterheadStability This number is incremented each time

getEffectiveNodeCount() <= activation level.
ClusterheadPotentialOverload This number is incremented each time

getEffectiveNodeCount() > activation level.
ClusterheadOverload Equal to ClusterheadPotentialOverload –

ClusterheadSplits.
C2CRelay Incremented each time a clusterhead sends a message to

another clusterhead.
C2SRelay Incremented each time a clusterhead sends a message to

a subordinate node.
S2CRelay Incremented each time a subordinate node sends a

message to a clusterhead.
NotRelayed Incremented when the cell fans determine that a

clusterhead should not relay a message.
Messages Delayed Incremented when messages are delayed because of

queuing delays.
Power Consumption Calculates the amount of power used for message

transmission.
Dropped Number of messages not received by the intended

recipient.
Total Simulation Runtime
Cycles

Total amount of time taken to run the scenario.

 143

Figure 64 The Slash Scenario Results with No Node Movement – Clusterhead Overloads
(Left) and Clusterhead Counts (Right)

As mentioned earlier, one of the main performance metrics is the clusterhead

overload value. The number of overloads is affected by the

ClusterheadDivisionActivationLevel. As the EffectiveNodeCounts are calculated, they

are compared to the ClusterheadDivisionActivationLevel which is a constant value. If the

EffectiveNodeCount values are consistently below the activation level for a long period

of time, the clusterhead will try to become a subordiante to another clusterhead in its cell

(if one is available) by joining its cell fan with the other clusterhead and switching its

state machine to a subordinate node. When the EMA exceeds the activation level, the

clusterhead attempts to split its cell fan with another subordinate node (if available) and

switch to the clusterhead state machine. If in that case no subordinate node is available,

then the clusterhead is overloaded especially in the case in Figure 64 when the maximum

number of allowable clusterheads is one. Ideally, as the activation level increases, the

number of clusterhead overloads should decrease. Higher activation levels make the

algorithm less aggressive since the clusterheads split less often and allow more data to

flow through them.

Slash Clusterhead Overloads

0
1000
2000
3000
4000

0 1 2 3 4 5

Maximum Number of Clusterheads

N
um

be
r o

f
Cl

us
te

rh
ea

d
Ov

er
lo

ad
s

Activation Level 4 Activation Level 6
Activation Level 8 Activation Level 16

Slash Final Clusterhead Counts

0
20
40
60
80

0 1 2 3 4 5
Maximum Number of Clusterheads

Fi
na

l N
um

be
r o

f
Cl

us
te

rh
ea

ds

Activation Level 4 Activation Level 6
Activation Level 8 Activation Level 16

 144

The next important metric to measure is the final number of clusterheads. The

initial number of clusterheads may differ than the final count of clusterheads since there

will be splitting and joining throughout the simulation. The converged value would

determine the optimal amount of clusterheads this scenario could have. The results in

Figure 64 show the clusterhead overload value stabilizes as expected and achieves zero

clusterhead overloads in these test cases when the activation level is 16. As more

clusterheads are allowed, fewer overloads occur (left diagram). Higher activation levels

cause fewer clusterheads to be created (right diagram).

As shown in Figure 65, there are fewer clusterhead overloads with fewer

clusterheads existing in the end of the simulation when the nodes are moving. As more

clusterheads are allowed, less overloads occur (left diagram). Higher activation levels

cause fewer clusterheads to be created (right diagram). These numbers appear to

converge at about 52 for the stationary scenario and about 50 clusterheads for the motion

scenario. These results are proof that the concept of the CLL algorithm converges to a

meaningful value. These are meaningful values because 37 cells are occupied meaning

that about 74% of the cells have one clusterhead and about 26% have multiple

clusterheads. The algorithm does not appear too agressive.

Slash-Movement Clusterhead Overloads

0
500

1000
1500
2000
2500

3000
3500

0 1 2 3 4 5

Maximum Number of Clusterheads

N
um

be
r o

f
C

lu
st

er
he

ad

O
ve

rlo
ad

s

Activation Level 4 Activation Level 6
Activation Level 8 Activation Level 16

Slash-Movement Final Clusterhead
Counts

0

20

40

60

80

0 1 2 3 4 5

Maximum Number of Clusterheads

Fi
na

l N
um

be
r o

f
C

lu
st

er
he

ad
s

Activation Level 4 Activation Level 6
Activation Level 8 Activation Level 16

Figure 65 The Slash-Movement Scenario Results

 145

Once convincing results were obtained, the performance of GPS-QHRA and CLL

was measured and compared. As mentioned in the background section, GPS-QHRA is

similar to LCC; a comparison to Leader Election Algorithm was not performed because

the experimentation is not geared to measuring the performance difference between

having table or tree data structures.

The performance of GPS-QHRA and CLL was measured and compared. The five

randomly distributed scenarios described earlier were created and run over 750 different

ways. This includes five scenarios times three configurations (one, two, or four

clusterhead maximum) times 50 different values for activation level that are tweaked by

experimentation to produce a level playing field between the test cases.

Two important results are presented in this work: power consumption per

clusterhead (Figure 66) and average queuing delay for each clusterhead (Figure 67). The

power consumption compares between GPS-QHRA (1 clusterhead) and CLL with 2 or 4

maximum clusterheads in a cell. Depending on the amount of messages sent in the same

amount of time, the CLL algorithm can realize a maximum of 45% power savings. The

queuing delay also compares between GPS-QHRA (1 clusterhead) versus CLL (2 or 4

clusterheads maximum per cell). There are noticeable improvements (25% maximum)

between GPS-QHRA vs. 2 CH CLL. However, differences between 2CH and 4CH are

less than 1%.

Both of these results were run with one, two, and four maximum allowable

clusterheads for all of the scenarios. The one clusterhead maximum runs are meant to

mimic native GPS-QHRA. All allowable configurations for the maximum number of

clusterhead were initially run (one through seven clusterheads because there are at most

 146

seven different directions). However, eventually, only the one, two, and four maximum

clusterheads were reported because other allowances did not show any meaningfully

different results. It is hypothesized that more nodes and/or messages might have shown

more of a significant distribution between having varying maximum amounts of

clusterheads.

Power Consumption Per Clusterhead

0

0.2

0.4

0.6

0.8

1

1.2

1 CH 2 CH 4 CH

Maximum Number of Clusterheads per Cell

Po
w

er
 C

on
su

m
pt

io
n

(N
or

m
al

iz
ed

)

2000 Msgs 4000 Msgs 6000 Msgs
8000 Msgs 10000 Msgs

`

Figure 66 Power Consumption
Comparisons Between GPS-QHRA and
CLL

Number of Messages Delayed per Clusterhead

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 CH 2 CH 4 CH

Maximum Number of Clusterheads per Cell
M

es
sa

ge
s

D
el

ay
ed

 p
er

C

lu
st

er
he

ad
 (N

or
m

al
iz

ed
)

2000 Msgs 4000 Msgs 6000 Msgs 8000 Msgs 10000 Msgs

Figure 67 Queuing Delay Comparisons
Between GPS-QHRA and CLL

The results for power consumption show up to 45% power savings when using

CLL over GPS-QHRA. Power is conserved because clusterheads distribute the messages

that they need to transmit because of cell fanning. So, for instance, two clusterheads

transmitting one message each use half the amount of transmission power of one

clusterhead transmitting two messages. The best power savings is realized when more

messages are sent with more allowable clusterheads per cell than with GPS-QHRA.

Queuing delays are also improved when CLL is used over GPS-QHRA up to

25%. The effects of CLL versus GPS-QHRA are noticeable; this is most likely because

of the receiver side filtering available from cell fanning which is done before queuing

 147

takes place. However, unlike the power savings results, the differences between having

two or four maximum clusterheads per cell is negligible.

The Grid Protocol Simulator Evaluation and Results

The grid protocol was simulated using the Grid Protocol Simulator software suite.

The suite is composed of three major components: the Control Center, the Scenario

Editor, and the Grid Protocol Simulator. These three software applications are discussed

within this section along with a general discussion about the design and implementation

of the software.

The Control Center shown in Figure 68 is the entry point of the program and

enables the user to start the Scenario Editor and the Grid Protocol Simulator. The

interface allows the user to schedule multiple runs to happen sequentially after each other

which automates the testing and execution of the simulation. The user can also configure

runtime parameters such as logging, suppressing error messages, and creating situations

when events are blacklisted. Another useful feature is that the Control Center

configuration can be saved in and restored from “gsp” files. The gsp files allow you to

run the same experiment again or to restore the experiment, add or remove tests, and then

run the experiment.

The Scenario Editor shown in Figure 73 allows users to create and edit scenarios

to run in the simulation. The main outputs from scenario generation are the network tree,

the selection of which deployment environment (Figure 69) to simulate, and the event list

of events to run through the network. The Scenario Editor allows the user to use the

“Generate Network” feature (Figure 70) to automatically populate routers and switches

within a specified IP address range. The user can also manually add and remove nodes

 148

from the network one at a time. Once the network is laid out, the user can either select

where to place VO host devices or use the “Generate VOs” feature (Figure 71) to

automatically place where VOs are located in the network tree. This will allow you to

create events either manually or automatically. When using the “Event Generator”

(Figure 72), the user can choose what times and VO hosts to send the SIGNUP and

ADVERTISE events to.

Figure 68 The Grid Protocol Simulator Control Center

 149

Figure 69 Grid Deployment Selection Form

Figure 70 The Network Generator Form

Figure 71 The Generate VO Hosts Form

 150

Figure 72 The Event Generator Form

Figure 73 The Scenario Editor

Once the scenario is generated, it can be run in the Grid Protocol Simulator shown

in Figure 74. The simulator loads the scenario, builds the network and event queues,

 151

starts the clock, runs the simulation, stops the simulation when the event queue is empty,

and creates an Excel file output.

Figure 74 The Grid Protocol Simulator

Software Design and Implementation

The simulation suite is implemented in C++/CLR (Common Language Runtime)

which uses new features which are part of the CLS (Common Language Specification)

[77]. The major driving factor to use C++/CLR is the ability to use the latest .NET forms

and controls (a. k. a. widgets) and to interface directly with Microsoft Excel to create

spreadsheets through the software using Visual Studio Tools for Office (VSTO). The

CLR allows a common execution environment for Microsoft platforms (Windows XP,

Windows CE, etc.) Microsoft is in the process of making the CLI (Common Language

Interface) an IEEE standard.

 152

As the dissertation work progressed from simulator to simulator, there was a drive

to reuse common components from the previous simulator software when building the

next. C++/CLR is similar to C++, but there have been major changes [81]. While some

of the software was reused from the CLL and wormhole routing simulators, there was a

minor conversion effort to make the software classes work with the new language.

C++/CLR

There are three main distinguishing features between C++ and C++/CLR that are

relevant to this work: garbage collection, pointers, and new keywords.

Garbage Collection

Garbage collection allows for an automated way for developers to write code

without having to worry about the details of memory management and cleanup [75].

When the developer allocates a block of memory, it is registered with the garbage

collector. The allocation of the memory returns a handle to the memory in a managed

heap of memory. If the handle is copied, the garbage collector keeps track of the copies.

If all copies of the handle fall out of scope in the software or are marked with the nullptr

keyword, then the memory is ready for deletion from the heap.

Memory is usually not automatically deleted from the heap when it needs to be.

Memory allocations and de-allocations are typically temporally expensive operations

with unmanaged memory and they are faster when they are grouped together in one large

block with managed memory. When managed memory should be deleted, it is assigned

to an older generation of memory. When a generation of memory reaches a particular

 153

size, it may be deleted or given an older generation. As the generations get older, they

are deleted when resources are running low or when the application is closed.

The CLR garbage collector has two heaps: a managed heap and an unmanaged

heap. The unmanaged heap contains the memory used for regular C++ data types which

are allocated to dynamic memory. The managed heap contains the memory which is

allocated from the new C++/CLR managed objects. The drawback for using both heaps

is that memory is typically duplicated between heaps. The duplication not only wastes

memory, but there is additional overhead to copy, delete, and track both heaps.

To address this issue, the simulator was compiled in a managed mode which

means that the regular C++ keywords and operators no longer work and have been

replaced by the new C++/CLR keywords and operators. One tradeoff of doing this is

regular C++ variables are now boxed [76] meaning that they have been wrapped inside of

a C++ managed class (which adds a small amount of extra memory consumption and

processing time).

Using regular C++, dynamic memory is manually de-allocated using the delete

keyword. The delete keyword still exists in managed C++, but the use of it is different.

In regular C++, if you call the delete operator on dynamically allocated memory, the

destructor is called for the class and the memory is de-allocated. In managed C++, if you

call the delete operator, the destructor is called but the memory is not de-allocated. As

mentioned before, the timing of the memory release is up to the garbage collector. The

garbage collection method can be called, but it is not guaranteed to collect all freed

memory.

 154

In addition to implementing a destructor, the option exists to implement a Finalize

method [75]. The Finalize method is called from a special thread right before the

memory is de-allocated for that class. The developer cannot call the Finalize method

manually except when a child class calls a parent class’ Finalize method.

This poses an interesting dilemma. Sometimes, a developer may implement a

destructor to close a network or socket connection, file handle, or database connection.

Since the timing of the de-allocation is non-deterministic, the destructor may not be

called at a logical time. This results in open connections that probably should be closed

or a deadlock situation. Also, there is a possibility that a destructor can be called more

than once, so the closure of the connection must be guarded to prevent an exception from

being thrown or some other error condition. It may be a better option to implement a

Finalize method if the timing of the closure does not matter.

C++/CLR Pointers

Another new feature for using the CLR garbage collection is the way that

allocation and de-allocation strategies and procedures of memory occur. When allocating

managed classes with the managed mode compiler option, the regular C++ pointer (*)

does not work and has been replaced with the hat operator (^). Also, the C++ new

operator has been replaced with the gcnew operator. The “gc” indicates and reminds the

developer that memory is being managed by the garbage collector.

For example, int *x = new int(3); now becomes System::Integer

^x = gcnew System::Integer(3); with the new language. The new integer

class is a boxed implementation of the old integer data type. The hat handle operator

 155

replaces the star pointer operator, and the gcnew operator replaces the new operator. The

star operator is still used to deference a handle. However, the C++ reference operator (&)

has been replaced with the C++/CLR handle reference operator (%).

C++/CLR Keywords

In order to allocate a managed class, a class is marked as a managed class by

using the new ref keyword. For example, a developer would use public ref class

A in managed C++ rather than class A in C++ when defining a class. There are

several other new keywords that impact the implementation of the simulator such as:

sealed, for each, and abstract.

The sealed keyword allows a developer to seal a base class or base class method

from being over-ridden or overloaded in a child class. The for each operator allows a

developer to iterate through a Collection (which implements the IEnumerable interface)

with fewer lines of code [84]. The abstract keyword allows a developer to mark a parent

class as non-instantiatable class meaning that a class must inhert the class if the developer

wants to declare an object of that type.

Visual Studio Forms and Controls

Visual Studio provides a simplified way to create GUIs by allowing the developer

to drag-and-drop graphical objects into windows [78]. The windows and containers are

referred to as forms and the graphical objects the user interactions with are known as

controls. The .NET library contains a large library of controls including drop-down

combo boxes, spinners (or up-down numeric counters), text boxes, and check boxes.

 156

The Visual Studio 2005 Professional Edition allows a developer to use a more

“modernized” approach for working with Windows controls than previous versions of

Visual Studio (like version 6.0 used for the wormhole routing simulator) [82]. The

improvements have to do with the way that many of the detailed handling of Windows

events has been encapsulated inside of the forms classes. Also, the technique for

declaring event handlers using delegates simplifies the way to receive callbacks when

significant Windows events (like pressing a key or moving a mouse) occur.

Another improvement is the way that background threads can be spawned using

the BackgroundWorker class [83]. The BackgroundWorker was used several times in the

Grid Protocol Simulator to allow the GUI to function while performing lengthy tasks.

Examples of this are loading or saving a scenario file while showing the progress

indicator window and running the simulator while displaying the simulation GUI and

updating the simulation statistics on the fly.

Visual Studio Tools for Office

One of the main motivations of using Visual Studio is the ability to create

spreadsheets using the Excel API provided by Visual Studio Tools for Office (VSTO)

[85]. VSTO adds support for Word, Excel, Outlook, and Infopath and the 2005 version

of Visual Studio integrates the support into .NET. It allows developers to use the Office

System to display, format, chart, calculate and analyze data in Excel. For instance,

simulation data is recorded in an Excel workbook with several worksheets that include a

simulation summary, and VO, event, and memory statistics.

 157

Figure 75 Basic Steps to Create an Excel Workbook and Worksheet Using VSTO

The basic steps to create an Excel workbook and worksheet are shown in Figure

75. Creating the Excel application will spawn an Excel process. Note that calling the

quit method can kill the application. If the developer’s program crashes the process may

have to be manually killed using the Task Manager. Once the Excel application is

started, a workbook is added. By default, the workbook has three worksheets. The first

worksheet is active by default and can be accessed by the ActiveSheet data member.

Figure 76 Basic Worksheet Operations Using VSTO

Figure 77 Creating a Chart in Excel Using VSTO

Excel::Application
 ^app = gcnew Excel::ApplicationClass();
Excel::Workbook
 ^wb = app->Workbooks->Add(Type::Missing);
Excel::Worksheet

^ws = safe_cast<Excel::Worksheet ^>(wb->ActiveSheet);

ws->Name = "Simulation Summary";
ws->Range["C1", Type::Missing]->Value = "Simulation Summary";
ws->Range["C1", Type::Missing]->Font->Bold = true;
ws->Range["D1", Type::Missing]->Value = scenario_name;

Excel::ChartObjects
 ^chart_objects = safe_cast<Excel::ChartObjects ^>(
 ws->ChartObjects(Type::Missing));
Excel::ChartObject
 ^chart_object = chart_objects->Add(300, 0, 1200, 300);
Excel::Chart
 ^chart = chart_object->Chart;

chart->ChartWizard(
 ws->Range["B3:B" + row.ToString() +
 ",C3:C" + row.ToString(),Type::Missing],
 Excel::XlChartType::xl3DColumn,
 Type::Missing,
 Excel::XlRowCol::xlColumns,
 1, 1, false,
 "Number of Resource per VO",
 "VO IP",
 "Number of Resources",
 Type::Missing);

 158

In order to populate the worksheet, the developer specifies the range of cells to

edit. In the example in Figure 76, the first cell C1 is updated to show the text,

“Simulation Summary,” then on the next line of code the text is marked as bold. There

are many features available to the program such as writing formulas, auto-fitting the cells

around the text, and sorting data.

Another useful method allows the developer to chart data. Figure 77 shows an

example for creating a chart by instantiating a ChartObject in the worksheet. The chart is

moved to a specific location in the worksheet, then it is populated with data. In this

example, the data used for this 3D bar chart comes from columns B and C.

Software Design

There were several major design decisions made when implementing the

simulator. The first design topic introduced has to do with the layout of the network for

the scenario generator and the simulator. Both applications represent the network the

same way, but the differences lie in the way they are used.

Originally it was conceived that the network tree would be displayed in the

simulator and scenario generator. When the tree is displayed in the scenario generator, it

allows the user to add, remove, or modify network devices in the tree to configure the

network for scenario generation. Showing the network tree in the simulator would have

allowed the user to visually see the network traffic traveling through the network in real

time as the simulator was running.

It turns out that the TreeView form does not appropriately handle the large

network trees required for a grid network. The Microsoft online documentation [86]

recommends not exceeding 32,767 TreeNodes in the tree because the tree structure may

 159

lose references to nodes at that point. Also, the tree structure uses a very large amount of

memory and the expanding, inserting, and removing of nodes in the tree becomes

extremely slow when the tree is large. Another issue is that the tree uses a hash map to

find nodes. This means that it is possible to lose nodes in the tree if a duplicate hash

value is generated. Fortunately, since the hash values are four bytes and the IP addresses

used are four bytes, the IP address was used as the hash value that prevents duplication.

Since the network tree was necessary for the scenario generator, it has been

optimized to aggregate resource provider devices in one switch if they belong to that

subnet of IP addresses. However, the network tree was not used in the simulation GUI

because updating the tree was too slow and provided minimal value to the user when

comparing the performance tradeoff to the graphical depiction. This resulted in divergent

and repetitive implementations. The scenario editor version of the network tree inherits

from TreeView while the simulation version of the network tree does not inherit from a

Windows Form or Control.

Another major design decision involves how the messages are delivered through

the network. The original grid protocol spec declares four routing methodologies:

STANDARD, FORWARD_PATH, REVERSE_PATH, and DISCOVERY. Because of

the way events are managed on the event queue, all of the scenario events sit on the

queue when the simulator starts. So, if a node is supposed to receive an event at a

particular time, the only way to route the message was through one of those four

techniques (of which only STANDARD routing would apply). The downside of using

STANDARD routing is that the event is delayed one simulation second each time it

would travel from the network tree root to the destination node.

 160

Looking up the destination node not only circumvents the routing system, but also

incurs a delay of looking up the destination node in the network tree. So, since the

destination has to be looked up no matter what, a new routing technique called DIRECT

was created to allow a message to travel from the network tree root node to the

destination node outside of simulation time. This routing technique is a by-product of the

simulator implementation and is not included in the grid protocol spec. Also, it is not

“cheating” because these messages are supposed to occur at the appropriate time and

there is no other mechanism for doing that in the simulator and because the events that

use the DIRECT routing technique are logged and graphed in the simulation output files.

Scenario Design

The scenarios used to run in the grid protocol simulator are based on the five

deployment environments. Each deployment environment has a suite of scenarios with

the same basic layout; so there are five scenario suites. Each suite has five scenarios with

the same network topology but varying amounts of traffic. The scenarios vary based on

the number of messages: 25, 250, 2500, 10,000, and 25,000. The basis of this design is to

see whether or not the routers can hold enough information in their routing tables and to

see how many discovery messages are successful when comparing the deployment

environments.

The scenario files themselves are XML text files which can be displayed using

any XML text reader. The Scenario Editor automatically generates the files based on the

user’s depiction of the network and events. There are two major XML blocks: the

network and the events. The network has a name (usually “Internet”), and devices that

fall under it. The network can have Internet service providers (ISPs). Under the ISPs,

 161

the user can place routers, switches, and VO hosts. By default, the user will have two

ISPs pre-constructed with 1,052 routers and 1,048 switches representing 265,144

computers. Each computer is capable of sending one event in a scenario, this means

there is a maximum of 265,144 events that can be created.

The event block contains all of the scenario events. These events include

information about what resource would like to signup to a grid network and what VO

host the signup will go to. The resource score is determined runtime, thus it is not in the

scenario file. The score is generated randomly to allow different results to be achieved

with the same scenario run multiple times. An advantage of doing this prevents from

having to write many scenarios. A disadvantage is that it could be hard to reproduce

errors or special conditions.

The scenario network topology construction is laid out in Table 27. The networks

are intergrids [79] meaning that VOs do not communicate with each other. The Scenario

Editor randomly generates scenario topologies. A basic Internet topology is provided

with two ISPs, 1,052 routers (2 deep), and 1,048 switches representing 265,144

computers. From that, the user can extend the depth of the network; the scenarios tested

have an extended depth of 5. This means that the total depth of the network will not

exceed 6 routers deep for the first ISP or 7 routers deep for the second ISP giving a

diameter of 13 possible router hops a message can travel.

Notice there are four less switches than routers. This has to do with the way that

the basic Internet topology is represented. Each router has a switch except for four high-

level routers that host the maximum number of routers they can support. Also, even

though the same setup parameters are specified, this does not mean that each scenario

 162

will have the same number of devices. The algorithm in Figure 78 starts at the root

network node and creates the basic Internet. The algorithm goes to the first leaf node.

Then, if the network depth is not exceeded, the algorithm draws a random number

between zero and one. If the number is less than or equal to 0.5, then the algorithm

creates a router and a switch. It repeats this process for every branch until the entire tree

is traversed. This results in branches with varying depths.

Table 27

Scenario Network Topologies

Deployment Environment Routers Switches Computers
Science Portal 199781 199777 662162
Distributed Computing 388258 388254 1040539
Computer-in-the-Loop
Instrumentation

446260 446256 1155893

Large-Scale Data Analysis 890437 890433 2044676
Collaborative Work 371683 371679 1007067

Figure 78 Network Tree Generation Algorithm

Simulated Virtual Organization Scoring

This section explains the methodology used for scoring used in the simulator.

Each virtual organization uses the same scoring policy in the simulator. The scores

assigned to resource providers in the simulation cannot be discrete random variables

// Generate network tree
//
Generate basic network tree from flat file
Start at first leaf node
Loop until tree traversed
 If network depth is not exceeded
 If randomly extend tree

Create router and switch
 Advance to the next leaf node
End loop

 163

between 0-255. In other words, the simulator cannot simply pick an arbitrary number

between 0-255. This would yield computer configurations that most likely are not

implemented in the real world. One example is a very fast multi-CPU machine with 64

MB of memory and a 320 MB hard drive. Likewise, older machines typically cannot

support large amounts of RAM or disk storage.

The grid resource discovery protocol allows for the VO to define a 32-bit score

variable and a VO product id. The score must have 8-bit chunks for CPU, memory, hard

drive, and bandwidth scores (in that order). The VO product id can correspond to any

numbering scheme the VO wants to use. For this simulator’s virtual organizations, the 4-

bit product id is divided into a 2-bit CPU type and a 2-bit OS type. There are four CPU

types {PC_486, PC_586, APPLE_G4, SUN_SPARC} and four OS types {WINDOWS,

LINUX, OS_X, SOLARIS}. All of this information is stored in the ResourceSpecs class.

Table 28

Possible Scoring Combinations Based on CPU Type

CPU Type OS Type CPU Speed Memory Size HD Size Bandwidth
PC_486 WINDOWS

LINUX
400-800 MHz 256-512 MB 10-200 GB MODEM

CABLE
PC_586 WINDOWS

LINUX
.8-4 GHz 256-4096 MB 10-2000 GB MODEM

CABLE
DSL
T1
T3

APPLE_G4 OS_X 1.6-3.2 GHz 256-2048 10-2000 GB CABLE
DSL
T1
T3

SUN_SPARC SOLARIS 400-800 MHz 256-8192 MB 10-2000 GB T1
T3

Table 28 shows possible scoring combinations based on the CPU type. For

example in this hypothetical VO scheme, a 486 PC computer can run Windows or Linux,

 164

must have a speed of at least 400 MHz, RAM of at last 256 MB (free), hard drive of at

least 10 MB (free space), and must have at least a MODEM connection to the network.

The ranges (like 400-800 MHz for CPU speed) are there to give the range of score values

for the VO. If a CPU speed greater than 800 exists, the VO still assigns it a score as if it

has an 800 MHz processor.

When generating a random score for a resource provider, a discrete random

variable is found between 0-100. If the random variable is less than 2, the CPU type is

set to PC_486, when between 2 and 80 it is set to PC_586, when between 81 and 98 it is

set to APPLE_G4, and any number greater than 98 sets the CPU type to SUN_SPARC.

Once the random value is drawn for the CPU type, the other score attributes are

randomized based on the ranges in Table 29 through Table 32.

Table 29

Simulation PC_486 Scoring Table

 Score of 0 Score of 1 Score of 2 Score of 3
CPU 400-499 MHz 500-599 600-699 >= 700
Memory <= 256 > 256 N/A N/A
Hard Drive < 50 Gig 50-99 Gig 100-149 Gig >= 150 Gig
Bandwidth MODEM CABLE/DSL T1 >= T3

Table 30

Simulation PC_586 Scoring Table

 Score of 0 Score of 1 Score of 2 Score of 3
CPU < 1600 GHz 1600-2399 2400-3199 >= 3200
Memory <= 1024 1025-2048 2049-3072 >= 3073
Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500
Bandwidth MODEM CABLE/DSL T1 >= T3

Table 31

Simulation APPLE_G4 Scoring Table

 Score of 0 Score of 1 Score of 2 Score of 3
CPU < 2000 GHz 2000-2399 2400-2799 >= 2800
Memory <= 512 MB 512-1024 1024-1536 > 1537

 165

Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500
Bandwidth MODEM CABLE/DSL T1 >= T3

Table 32

Simulation SUN_SPARC Scoring Table

 Score of 0 Score of 1 Score of 2 Score of 3
CPU 500-599 MHz 600-699 700-799 >= 800
Memory <= 256 > 256 N/A N/A
Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500
Bandwidth MODEM CABLE/DSL T1 >= T3

Results

Results are presented for each of the deployment environments. The

methodology for presenting the results mainly come from [104], [107], and [108], but

some methods of reporting results for this work are new since the type of work is

different than traditional grid resource discovery protocols. Some new results reported

for this work are for signup, resource, and blacklist table usage as well as score

deviations. [105] presents resource usage of a single resource. Resource usage of a

single resource does not apply to this research because there are thousands of resources

modeled; reporting one does not aid in presentation of results. On the other hand, [104]

reports the amount of events dropped, average number of hops, and the distribution of

events that are reported for this work.

The work in [107] identifies four attributes: resource discovery speed, system

efficiency, load balancing, and discovery success rate. The resource discovery speed is

not considered in this work as a significant result because the time to discover a resource

is significantly less than the time to process a task. System efficiency, the balance

between resource advertisement and discovery, is defined by the scenarios and simulation

configuration and is a 1:1 relationship for all of the scenarios presented in this work. The

 166

user predefines load balancing when creating scenarios. In the case of this work, the load

balancing is randomly distributed as is shown in the event distribution bar charts below.

The discovery success rate is the opposite statistic of the amount of events dropped from

[104] which is presented in the results below.

[108] is based on a discovery protocol for sensor networks. One unique result

tracked is the amount of memory consumption in a sensor node based on the number of

nodes in the network. This is another important result to track for this work because the

memory consumption of entries in the routing tables must be implemented in hardware.

The grid resource discovery protocol has three different routing tables that are populated

and unpopulated at different times in the lifecycle of a message.

Science Portal

The science portal simulation results are presented in this section. The event

distribution diagrammed in Figure 79 shows that the distribution of traffic between each

of the VOs is roughly the same. The VO hosts and resource providers are distributed

throughout the network and the average number of hops is around 14.45 as shown in

Figure 80, and the discovery event hops are presented for each scenario in Figure 81 thru

Figure 85. A hop is considered movement from one network device to another.

 167

VO 1 VO 2 VO 3 VO 4 VO 5 VO 6 VO 7 VO 8 VO 9 VO
10

25

2500

25000
0

500

1000

1500

2000

2500

3000

Events

Virtual Organization

Scenario Size
(Number of Events)

Science Portal Scenario Event Distribution

25
250
2500
10000
25000

Figure 79 Science Portal Scenario Event Distribution

Science Portal Scenario TASK Event Average Number of Hops

14.2

14.25

14.3

14.35

14.4

14.45

14.5

14.55

14.6

25 250 2500 10000 25000

Scenario Size (Number of Events)

Nu
m

be
r

of
 H

op
s

Figure 80 Science Portal Scenario Average Number of Hops

 168

0

2

4

6

8

10

Fr
eq

ue
nc

y

8 12 13 14 15 16 17 21

Number of Hops

Science Portal 25 Task Event Hops Tracked

Figure 81 Science Portal Scenario Number of Hops for 25 Event Scenario

0

20

40

60

80

Fr
eq

ue
nc

y

6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Hops

Science Portal Scenario 250 Task Event Hops Tracked

Figure 82 Science Portal Scenario Number of Hops for 250 Event Scenario

 169

0

100

200

300

400

500

600

700

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Hops

Science Portal Scenario 2500 Task Event Hops Tracked

Figure 83 Science Portal Scenario Number of Hops for 2500 Event Scenario

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Hops

Science Portal Scenario 10000 Task Event Hops Tracked

Figure 84 Science Portal Scenario Number of Hops for 10000 Event Scenario

 170

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Hops

Science Portal Scenario 25000 Task Event Hops Tracked

Figure 85 Science Portal Scenario Number of Hops for 25000 Event Scenario

Science Portal Scenario TASK Event Performance

99.86%

99.88%

99.90%

99.92%

99.94%

99.96%

99.98%

100.00%

100.02%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
rie

s

0

5

10

15

20

25

D
ro

pp
ed

 E
ve

nt
s

Figure 86 Science Portal Scenario Successful TASK Events

One important metric measures how successful the discovery approach was at

finding a resource. Figure 86 shows the success rates of the TASK events finding an

available resource. The values range between 99.91%-100% successful discoveries or 0-

 171

23 dropped packets. In the case of the unsuccessful TASK event not finding a resource,

in the real world the VO host would simply try until it finds a resource. But, the

simulator does not model this for the purposes of finding the success rates.

One new statistic provided in this research has to do with tracking how scores

deviate from a perfect score. A perfect score does not deviate from the score of the

resource, that score deviation value would be zero. With the case of science portal

scnenario, the bandwidth field is a “don’t care.” This means that the 8 bit score

composed of CPU, memory, hard drive, and bandwidth would have a mask of 0xFC.

This yields scores in the ranges of {0-3} with a deviation of zero. Considering the bit

positions, one would expect scores to deviate around 0, 1, 2, and 3 depending when the

resource score has a 0 or 1 in the spot of the don’t care.

0

2000

4000

6000

8000

10000

12000

Fr
eq

ue
nc

y

0 1 2 3

Score Deviation

Science Portal Scenario Task Message Score Deviations

Figure 87 Science Portal Scenario Score Deviation for the 25,000 Event Scenario

Looking at Figure 87, the scores tend to deviate in that fashion. This figure

represents the score deviations in the 25,000 event scenario. 100% of the scores fall

 172

exactly on 0, 1, 2, and 3. When numbers deviate from the desired score, they deviate by

an average of 1.47.

Science Portal Scenario Peak Signup Table Usage (Bytes)

0

5000

10000

15000

20000

25000

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 88 Science Portal Scenario Peak Signup Table Usage

The signup table peak memory usage is shown in Figure 88. As the number of

events is increased, the memory usage caps at 21876 bytes. This happens because

devices are un-subscribing from the network as time is advancing which reduces the size

of the signup table usage. By default, the resource providers unsubscribe from the VO in

200 simulation seconds after the CONFIRM DELIVERY event is sent. The signup table

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent. Since there are

25,000 events (worst case) from 25,000 different resource providers with a 4 byte

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP

TABLE ENTRY, then the worst case peak memory consumption for any particular router

 173

is 450 KB or 25KB * (4 + 4 + 10). As a reminder, signup entries are removed every 24

hours to prevent uncontrolled growth of these tables.

Science Portal Scenario Peak Resource Table Usage (Bytes)

0

100

200

300

400

500

600

700

800

900

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 89 Science Portal Scenario Peak Resource Table Usage

Next, the peak resource table usage is examined in Figure 89. The usage caps at

796 bytes as the number of TASK events grow. This happens for different reasons than

the signup table previously presented. The resource table has a smaller sized hash key

and uses a one-byte score to lookup data. As the scenarios grow larger, once there are

more than 256 resource providers, the scores will definitely overlap. The resource table

is optimized to aggregate and count the number of devices with a particular score rather

than to list individual resource providers. Also in this case, the simulation is greedy in

discovering resources. Because resources are discovered in a greedy fashion, the table

size does not grow very large because resources are consumed very quickly. Again the

 174

worst case tables size could be estimated by considering 25,000 resource IP addresses

with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1).

Science Portal Scenario Peak Blacklist Table Usage (Bytes)

0

50

100

150

200

250

300

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 90 Science Portal Scenario Peak Blacklist Table Usage

The final results examined for the science portal scenarios are the blacklist tables.

Since the blacklist tables are populated when the SIGNUP event is sent and unpopulated

with the ACCEPT event is sent, the tables are much smaller than the others because the

SIGNUP and ACCEPT events happen very close to each other in time. As shown in

Figure 90, the memory usage caps at a value similarly to the other tables; this time

around a value of 255 bytes. Doing the math, the BLACKLIST TABLE contains a four-

byte IP address and a one-byte count totaling 5 bytes. Dividing 255 by 5 means that each

router kept no more than 51 entries in its BLACKLIST TABLE at a given time. The

 175

worst case blacklist size can be calculated as well by multiplying 25,000 resource

providers times 5 bytes totaling 125KB. This would imply that all 25,000 resource

providers send their SIGNUP events at the same time through the same router.

Distributed Computing

The distributed computing scenario simulation results are presented in this

section. The event distribution diagrammed in Figure 91 shows that the distribution of

traffic between each of the VOs is roughly the same. The VO hosts and resource

providers are distributed throughout the network and the average number of hops is

around 15.09 as shown in Figure 92, and the discovery event hops are presented for each

scenario in Figure 93 thru Figure 97. A hop is considered movement from one network

device to another.

VO 1 VO 2 VO 3 VO 4 VO 5 VO 6 VO 7 VO 8 VO 9 VO
10

25

2500

25000
0

500

1000

1500

2000

2500

3000

Events

Virtual Organization

Scenario Size
(Number of Events)

Distributed Scenario Event Distribution

25
250
2500
10000
25000

Figure 91 Distributed Computing Scenario Event Distribution

 176

Distributed Scenario TASK Event Average Number of Hops

14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

15.4

25 250 2500 10000 25000

Scenario Size (Number of Events)

N
um

be
r o

f H
op

s

Figure 92 Distributed Computing Scenario Average Number of Hops

0

1

2

3

4

5

6

Fr
eq

ue
nc

y

8 11 13 14 15 17 18 19 20 21 23

Number of Hops

Distributed Scenario 25 Task Events Hops Tracked

Figure 93 Distributed Computing 25 Event Scenario Number of Hops

 177

0

10

20

30

40

50

Fr
eq

ue
nc

y

8 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Number of Hops

Distributed Scenario 250 Task Events Hops Tracked

Figure 94 Distributed Computing 250 Event Scenario Number of Hops

0

100

200

300

400

500

Fr
eq

ue
nc

y

6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Hops

Distributed Scenario 2500 Task Events Hops Tracked

Figure 95 Distributed Computing 2500 Event Scenario Number of Hops

 178

0

500

1000

1500

2000

Fr
eq

ue
nc

y

6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Hops

Distributed Scenario 10000 Task Events Hops Tracked

Figure 96 Distributed Computing 10000 Event Scenario Number of Hops

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Hops

Distributed Scenario 25000 Task Events Hops Tracked

Figure 97 Distributed Computing 25000 Event Scenario Number of Hops

 179

Distributed Scenario TASK Event Performance

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
ri
es

0

10

20

30

40

50

60

70

80

90

D
ro

pp
ed

 E
ve

nt
s

Figure 98 Distributed Computing Scenario Successful TASK Events

One important metric measures how successful the discovery approach was at

finding a resource. Figure 98 shows the success rates of the TASK events finding an

available resource. The values range between 99.04%-100% successful discoveries or 0-

85 dropped packets. In the case of the unsuccessful TASK event not finding a resource,

in the real world the VO host would simply try until it finds a resource. But, the

simulator does not model this for the purposes of finding the success rates.

One new statistic provided in this research has to do with tracking how scores

deviate from a perfect score. A perfect score does not deviate from the score of the

resource, that score deviation value would be zero. With the case of the distributed

computing scenario, no fields are marked as “don’t cares.” This means that the 8 bit

score composed of CPU, memory, hard drive, and bandwidth would have a mask of

0xFF. This yields scores in the ranges of {0} with a deviation of zero. Considering the

 180

bit positions, one would expect scores to deviate around 0 since deviations are not

expected in this scenario.

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

0 61

Score Deviation

Task Message Score Deviations

Figure 99 Distributed Computing 25,000 Event Scenario Score Deviation

Looking at Figure 99, almost all of the scores (except one) have the expected

score. This figure represents the score deviations in the worst-case 25,000 event

scenario. Approximately 100% of the scores fall exactly on 0; the deviation was about

0.2%. Investigating the log file, the one message deviated because another SINGUP

message coming from the same resource provider was already in the routing table with a

score of 173. Since SIGNUP tables are unpopulated with UNSUBSCRIBE messages,

this means the UNSUBSCRIBE message did not arrive at the router yet.

 181

Distributed Scenario Peak Signup Table Usage (Bytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 100 Distributed Computing Scenario Peak Signup Table Usage

The signup table peak memory usage is shown in Figure 100. As the number of

events is increased, the memory usage caps at about 9519 bytes. This happens because

devices are un-subscribing from the network as time is advancing which reduces the size

of the signup table usage. By default, the resource providers unsubscribe from the VO in

200 simulation seconds after the CONFIRM DELIVERY event is sent. The signup table

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent. Since there are

25,000 events (worst case) from 25,000 different resource providers with a 4 byte

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP

TABLE ENTRY, then the worst case peak memory consumption for any particular router

is 450 KB or 25KB * (4 + 4 + 10). As a reminder, signup entries are removed every 24

hours to prevent uncontrolled growth of these tables.

 182

Distributed Scenario Peak Resource Table Usage (Bytes)

0

50

100

150

200

250

300

350

400

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 101 Distributed Computing Scenario Peak Resource Table Usage

Next, the peak resource table usage is examined in Figure 101. The usage caps at

366 bytes as the number of TASK events grow. This happens for different reasons than

the signup table previously presented. The main reason is that the resource table has a

smaller sized hash key and uses a one-byte score to lookup data. As the scenarios grow

larger, once there are more than 256 resource providers, the scores will definitely overlap.

The resource table is optimized to aggregate and count the number of devices with a

particular score rather than to list individual resource providers. Also in this case, the

simulation is greedy in discovering resources. Because resources are discovered in a

greedy fashion, the table size does not grow very large because resources are consumed

very quickly. Again the worst case tables size could be estimated by considering 25,000

resource IP addresses with 2 byte hash key, the score of one byte, the next hop IP of 4

bytes, and the count of one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1).

 183

Distributed Scenario Peak Blacklist Table Usage (Bytes)

0

20

40

60

80

100

120

140

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 102 Distributed Computing Scenario Peak Blacklist Table Usage

The final results examined for the distributed computing scenarios are the

blacklist tables. Since the blacklist tables are populated when the SIGNUP event is sent

and unpopulated with the ACCEPT event is sent, the tables are much smaller than the

others because the SIGNUP and ACCEPT events happen very close to each other in time.

As shown in Figure 102, the memory usage caps at a value similarly to the other tables;

this time at a value of 120 bytes. Doing the math, the BLACKLIST TABLE contains a

four-byte IP address and a one-byte count totaling 5 bytes. Dividing 120 by 5 means that

each router kept no more than 24 entries in its BLACKLIST TABLE at a given time.

The worst case blacklist size can be calculated as well by multiplying 25,000 resource

providers times 5 bytes totaling 125KB. This would imply that all 25,000 resource

providers send their SIGNUP events at the same time through the same router.

 184

Computer-in-the-Loop Instrumentation

The computer-in-the-loop simulation results are presented in this section. The

event distribution diagrammed in Figure 103 shows that the distribution of traffic

between each of the VOs is roughly the same. The VO hosts and resource providers are

distributed throughout the network and the average number of hops is around 14.1 as

shown in Figure 104, and the discovery event hops are presented for each scenario in

Figure 105 thru Figure 109. A hop is considered movement from one network device to

another.

VO 1 VO 2 VO 3 VO 4 VO 5 VO 6 VO 7 VO 8 VO 9 VO
10

25

2500

25000
0

500

1000

1500

2000

2500

3000

Events

Virtual Organization

Scenario Size
(Number of Events)

Computer-in-the-Loop Event Distribution

25
250
2500
10000
25000

Figure 103 Computer-in-the-Loop Scenario Event Distribution

 185

Computer-in-the-Loop TASK Event Average Number of Hops

0

2

4

6

8

10

12

14

25 250 2500 10000 25000

Scenario Size (Number of Events)

N
um

be
r

of
 H

op
s

Figure 104 Computer-in-the-Loop Scenario Average Number of Hops

0

1

2

3

4

5

6

Fr
eq

ue
nc

y

4 6 8 9 10 12 13 15 17

Number of Hops

Computer Scenario 25 Task Event Hops Tracked

Figure 105 Computer-in-the-Loop 25 Event Scenario Number of Hops

 186

0

10

20

30

40

50

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Hops

Computer Scenario 250 Task Event Hops Tracked

Figure 106 Computer-in-the-Loop 250 Event Scenario Number of Hops

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23

Number of Hops

Computer Scenario 2500 Task Event Hops Tracked

Figure 107 Computer-in-the-Loop 2500 Event Scenario Number of Hops

 187

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23

Number of Hops

Computer Scenario 10000 Task Event Hops Tracked

Figure 108 Computer-in-the-Loop 10000 Event Scenario Number of Hops

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23

Number of Hops

Computer Scenario 25000 Task Event Hops Tracked

Figure 109 Computer-in-the-Loop 25000 Event Scenario Number of Hops

 188

Computer-in-the-Loop Scenario TASK Event Performance

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
ri
es

0

20

40

60

80

100

120

140

D
ro

pp
ed

 E
ve

nt
s

Figure 110 Computer-in-the-Loop Scenario Successful TASK Events

One important metric measures how successful the discovery approach was at

finding a resource. Figure 110 shows the success rates of the TASK events finding an

available resource. The values range between 98.96%-100% successful discoveries or 0-

126 dropped packets. In the case of the unsuccessful TASK event not finding a resource,

in the real world the VO host would simply try until it finds a resource. But, the

simulator does not model this for the purposes of finding the success rates.

One new statistic provided in this research has to do with tracking how scores

deviate from a perfect score. A perfect score does not deviate from the score of the

resource, that score deviation value would be zero. With the case of the computer-in-the-

loop scenario, the hard drive field is marked as a “don’t care.” This means that the 8 bit

score composed of CPU, memory, hard drive, and bandwidth would have a mask of

0xF3. This yields scores in the set of {0, 4, 8, 12} with a deviation of zero. Considering

the bit positions, one would expect scores to deviate around spots of the don’t cares.

 189

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Score Deviation

Computer-in-the-Loop Scenario 25000 Task Event Score Deviations

Figure 111 Computer-in-the-Loop Scenario Score Deviation for the 25,000 Event
Scenario

Looking at Figure 111, the scores tend to deviate in that fashion. This figure

represents the score deviations in the 25,000 event scenario. Approximately 86% of the

scores have a deviation of zero from the intended score. When numbers deviate from the

desired score, they deviate by an average of 6.07.

Computer-in-the-Loop Scenario Peak Signup Table Usage (Bytes)

0

2000

4000

6000

8000

10000

12000

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 112 Computer-in-the-Loop Scenario Peak Signup Table Usage

 190

The signup table peak memory usage is shown in Figure 112. As the number of

events is increased, the memory usage caps at about 10043 bytes. This happens because

devices are un-subscribing from the network as time is advancing which reduces the size

of the signup table usage. By default, the resource providers unsubscribe from the VO in

200 simulation seconds after the CONFIRM DELIVERY event is sent. The signup table

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent. Since there are

25,000 events (worst case) from 25,000 different resource providers with a 4 byte

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP

TABLE ENTRY, then the worst case peak memory consumption for any particular router

is 450 KB or 25KB * (4 + 4 + 10). As a reminder, signup entries are removed every 24

hours to prevent uncontrolled growth of these tables.

Computer-in-the-Loop Scenario Peak Resource Table Usage (Bytes)

0

50

100

150

200

250

300

350

400

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 113 Computer-in-the-Loop Scenario Peak Resource Table Usage

 191

Next, the peak resource table usage is examined in Figure 113. The usage caps at

339 bytes as the number of TASK events grow. This happens for different reasons than

the signup table previously presented. The resource table has a smaller sized hash key

and uses a one-byte score to lookup data. As the scenarios grow larger, once there are

more than 256 resource providers, the scores will definitely overlap. The resource table

is optimized to aggregate and count the number of devices with a particular score rather

than to list individual resource providers. Also in this case, the simulation is greedy in

discovering resources. Because resources are discovered in a greedy fashion, the table

size does not grow very large because resources are consumed very quickly. Again the

worst case tables size could be estimated by considering 25,000 resource IP addresses

with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1).

Computer-in-the-Loop Scenario Peak Blacklist Table Usage (Bytes)

0

10

20

30

40

50

60

70

80

90

100

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 114 Computer-in-the-Loop Scenario Peak Blacklist Table Usage

 192

The final results examined for the computer-in-the-loop scenarios are the blacklist

tables. Since the blacklist tables are populated when the SIGNUP event is sent and

unpopulated with the ACCEPT event is sent, the tables are much smaller than the others

because the SIGNUP and ACCEPT events happen very close to each other in time. As

shown in Figure 114, the memory usage caps at a value similarly to the other tables; this

time at value of 95 bytes. Doing the math, the BLACKLIST TABLE contains a four-

byte IP address and a one-byte count totaling 5 bytes. Dividing 95 by 5 means that each

router kept no more than 19 entries in its BLACKLIST TABLE at a given time. The

worst case blacklist size can be calculated as well by multiplying 25,000 resource

providers times 5 bytes totaling 125KB. This would imply that all 25,000 resource

providers send their SIGNUP events at the same time through the same router.

Large-Scale Data Analysis

The large-scale data analysis simulation results are presented in this section. The

event distribution diagrammed in Figure 115 shows that the distribution of traffic

between each of the VOs is roughly the same. The VO hosts and resource providers are

distributed throughout the network and the average number of hops is around 14.43 as

shown in Figure 116, and the discovery event hops are presented for each scenario in

Figure 117 thru Figure 121. A hop is considered movement from one network device to

another.

 193

VO 1 VO 2 VO 3 VO 4 VO 5 VO 6 VO 7 VO 8 VO 9 VO
10

25

2500

25000
0

500

1000

1500

2000

2500

3000

Events

Virtual Organization

Scenario Size
(Number of Events)

Large-Scale Scenario Event Distribution

25
250
2500
10000
25000

Figure 115 Large-Scale Scenario Event Distribution

Large-Scale Scenario TASK Event Average Number of Hops

14

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

25 250 2500 10000 25000

Scenario Size (Number of Events)

N
um

be
r

of
 H

op
s

Figure 116 Large-Scale Scenario Average Number of Hops

 194

0

1

2

3

4

5

Fr
eq

ue
nc

y

8 9 10 11 12 14 17 19 20 21 27

Number of Hops

Large Scale 25 TASK Events Hops Tracked

Figure 117 Large-Scale Scenario Number of Hops for 25 Event Scenario

0

10

20

30

40

50

Fr
eq

ue
nc

y

6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27

Number of Hops

Large Scale 250 TASK Events Hops Tracked

Figure 118 Large-Scale Scenario Number of Hops for 250 Event Scenario

 195

0

100

200

300

400

500

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27

Number of Hops

Large Scale 2500 TASK Events Hops Tracked

Figure 119 Large-Scale Scenario Number of Hops for 2500 Event Scenario

0

500

1000

1500

2000

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27

Number of Hops

Large Scale 10000 TASK Events Hops Tracked

Figure 120 Large-Scale Scenario Number of Hops for 10000 Event Scenario

 196

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27

Number of Hops

Large Scale 25000 TASK Events Hops Tracked

Figure 121 Large-Scale Scenario Number of Hops for 25000 Event Scenario

Large-Scale Scenario TASK Event Performance

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

100.10%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
rie

s

0

10

20

30

40

50

60

70

80

90

100

Dr
op

pe
d

E
ve

nt
s

Figure 122 Large-Scale Scenario Successful TASK Events

One important metric measures how successful the discovery approach was at

finding a resource. Figure 122 shows the success rates of the TASK events finding an

available resource. The values range between 99.6%-100% successful discoveries or 0-

93 dropped packets. In the case of the unsuccessful TASK event not finding a resource,

 197

in the real world the VO host would simply try until it finds a resource. But, the

simulator does not model this for the purposes of finding the success rates.

One new statistic provided in this research has to do with tracking how scores

deviate from a perfect score. A perfect score does not deviate from the score of the

resource, that score deviation value would be zero. With the case of the large-scale

scenario, the CPU, memory, and bandwidth fields are “don’t cares.” This means that the

8 bit score composed of CPU, memory, hard drive, and bandwidth would have a mask of

0x0C. This yields scores in the set of {0-3, 16-19, 32-35, …, 240-243} with a deviation

of zero. Considering the bit positions, one would expect scores to deviate around spots of

the don’t cares.

0
100

200
300
400

500
600
700

Fr
eq

ue
nc

y

0 9 18 27 36 46 55 64 73 82 91 100 109 118 127 136 145 154 163 173 182 192 201 210 219 228 238 247

Score Deviation

Large-Scale Scenario Task Message Score Deviations

Figure 123 Large-Scale Scenario Score Deviation for the 25,000 Event Scenario

Looking at Figure 123, the scores tend to deviate in that fashion. This figure

represents the score deviations in the 25,000 event scenario. Approximately 89.9% of the

scores have a deviation of zero from the intended score. When numbers deviate from the

desired score, they deviate by an average of 125.42.

 198

Large-Scale Scenario Peak Signup Table Usage (Bytes)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

25 250 2500 10000 25000

Scenario Size (Number of Events)

Pe
ak

 U
sa

ge

Figure 124 Large-Scale Scenario Peak Signup Table Usage

The signup table peak memory usage is shown in Figure 124. As the number of

events is increased, the memory usage caps at about 4300 bytes. This happens because

devices are un-subscribing from the network as time is advancing which reduces the size

of the signup table usage. By default, the resource providers unsubscribe from the VO in

200 simulation seconds after the CONFIRM DELIVERY event is sent. The signup table

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent. Since there are

25,000 events (worst case) from 25,000 different resource providers with a 4 byte

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP

TABLE ENTRY, then the worst case peak memory consumption for any particular router

is 450 KB or 25KB * (4 + 4 + 10). As a reminder, signup entries are removed every 24

hours to prevent uncontrolled growth of these tables.

 199

Large-Scale Scenario Peak Resource Table Usage (Bytes)

0

50

100

150

200

250

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
U

sa
ge

Figure 125 Large-Scale Scenario Peak Resource Table Usage

Next, the peak resource table usage is examined in Figure 125. The usage caps at

213 bytes as the number of TASK events grow. This happens for different reasons than

the signup table previously presented. The resource table has a smaller sized hash key

and uses a one-byte score to lookup data. As the scenarios grow larger, once there are

more than 256 resource providers, the scores will definitely overlap. The resource table

is optimized to aggregate and count the number of devices with a particular score rather

than to list individual resource providers. Also in this case, the simulation is greedy in

discovering resources. Because resources are discovered in a greedy fashion, the table

size does not grow very large because resources are consumed very quickly. Again the

worst case tables size could be estimated by considering 25,000 resource IP addresses

 200

with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1).

Large-Scale Scenario Peak Blacklist Table Usage (Bytes)

0

10

20

30

40

50

60

70

80

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
U

sa
ge

Figure 126 Large-Scale Scenario Peak Blacklist Table Usage

The final results examined for the large-scale scenarios are the blacklist tables.

Since the blacklist tables are populated when the SIGNUP event is sent and unpopulated

with the ACCEPT event is sent, the tables are much smaller than the others because the

SIGNUP and ACCEPT events happen very close to each other in time. As shown in

Figure 126, the memory usage caps at a value similarly to the other tables; this time at

value of 75 bytes. Doing the math, the BLACKLIST TABLE contains a four-byte IP

address and a one-byte count totaling 5 bytes. Dividing 75 by 5 means that each router

kept no more than 15 entries in its BLACKLIST TABLE at a given time. The worst case

blacklist size can be calculated as well by multiplying 25,000 resource providers times 5

 201

bytes totaling 125KB. This would imply that all 25,000 resource providers send their

SIGNUP events at the same time through the same router.

Collaborative Work

The collaborative work simulation results are presented in this section. The event

distribution diagrammed in Figure 127 shows that the distribution of traffic between each

of the VOs is roughly the same. The VO hosts and resource providers are distributed

throughout the network and the average number of hops is around 15 as shown in Figure

128, and the discovery event hops are presented for each scenario in Figure 129 thru

Figure 133. A hop is considered movement from one network device to another.

VO 1 VO 2 VO 3 VO 4 VO 5 VO 6 VO 7 VO 8 VO 9 VO
10

25

2500

25000
0

500

1000

1500

2000

2500

3000

Events

Virtual Organization

Scenario Size
(Number of Events)

Collaborative Scenario Event Distribution

25
250
2500
10000
25000

Figure 127 Collaborative Work Scenario Event Distribution

 202

Collaborative Scenario TASK Event Average Number of Hops

14.8

14.9

15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

25 250 2500 10000 25000

Scenario Size (Number of Events)

N
um

be
r o

f H
op

s

`

Figure 128 Collaborative Work Scenario Average Number of Hops

0

1

2

3

4

Fr
eq

ue
nc

y

8 10 12 13 14 15 16 17 18 19 23 24

Number of Hops

Collaborative Scenario 25 Task Event Hops Tracked

Figure 129 Collaborative Work Scenario Number of Hops for 25 Event Scenario

 203

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

6 8 10 12 13 14 15 16 17 18 19 20 21 22 23 24 26

Number of Hops

Collaborative Scenario 250 Task Event Hops Tracked

Figure 130 Collaborative Work Scenario Number of Hops for 250 Event Scenario

0
50

100
150
200
250
300
350

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Hops

Collaborative Scenario 2500 Task Message Hops Tracked

Figure 131 Collaborative Work Scenario Number of Hops for 2500 Event Scenario

 204

0
200
400
600
800

1000
1200
1400

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Hops

Collaborative Scenario 10000 Task Event Hops Tracked

Figure 132 Collaborative Work Scenario Number of Hops for 10000 Event Scenario

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y

4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Hops

Collaborative Scenario 25000 Task Event Hops Tracked

Figure 133 Collaborative Work Scenario Number of Hops for 25000 Event Scenario

 205

Collaborative Scenario TASK Event Performance

98.20%

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
rie

s

0

10

20

30

40

50

60

70

80

90

100

Dr
op

pe
d

Ev
en

ts

Figure 134 Collaborative Work Scenario Successful TASK Events

One important metric measures how successful the discovery approach was at

finding a resource. Figure 134 shows the success rates of the TASK events finding an

available resource. The values range between 98.88%-100% successful discoveries or 0-

88 dropped packets. In the case of the unsuccessful TASK event not finding a resource,

in the real world the VO host would simply try until it finds a resource. But, the

simulator does not model this for the purposes of finding the success rates.

One new statistic provided in this research has to do with tracking how scores

deviate from a perfect score. A perfect score does not deviate from the score of the

resource, that score deviation value would be zero. With the case of collaborative work,

the memory field is a “don’t care.” This means that the 8 bit score composed of CPU,

memory, hard drive, and bandwidth would have a mask of 0xCF. This yields scores in

the ranges of {0-15, 64-79, 128-143, 192-207} with a deviation of zero. Thus, since

 206

there are gaps of 48 between the score values, most of the score deviations should be

between 0 and 48. Also considering the bit positions, one would expect scores to deviate

around 0, 16, 32, and 48 depending when the resource score has a 0 or 1 in the spot of the

don’t care.

0

1000

2000

3000

4000

5000

Fr
eq

ue
nc

y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

Score Deviation

Collaborative Scenario Task Message Score Deviations

Figure 135 Collaborative Work Score Deviation for the 25,000 Event Scenario

Looking at Figure 135, the scores tend to deviate in that fashion. This figure

represents the score deviations in the 25,000 event scenario. Approximately 63% of the

scores fall exactly on 0, 16, 32, and 48 with the other scores tending to be very close to

those numbers. When numbers deviate from the desired score, they deviate by an

average of 24.11. Also, approximately 31% of the scores were less than 16 which

explains why the 0 value is larger than the other three spikes.

 207

Collaborative Peak Signup Table Usage (Bytes)

0

1000

2000

3000

4000

5000

6000

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 136 Collaborative Work Scenario Peak Signup Table Usage

The signup table peak memory usage is shown in Figure 136. As the number of

events is increased, the memory usage caps at about 5500 bytes. This happens because

devices are un-subscribing from the network as time is advancing which reduces the size

of the signup table usage. By default, the resource providers unsubscribe from the VO in

200 simulation seconds after the CONFIRM DELIVERY event is sent. The signup table

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent. Since there are

25,000 events (worst case) from 25,000 different resource providers with a 4 byte

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP

TABLE ENTRY, then the worst case peak memory consumption for any particular router

is 450 KB or 25KB * (4 + 4 + 10). As a reminder, signup entries are removed every 24

hours to prevent uncontrolled growth of these tables.

 208

Collaborative Peak Resource Table Usage (Bytes)

0

50

100

150

200

250

300

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 137 Collaborative Work Scenario Peak Resource Table Usage

Next, the peak resource table usage is examined in Figure 137. Notice that the

usage caps at 245 bytes as the number of TASK events grows. This happens for different

reasons than the signup table previously presented. The main reason is that the resource

table has a smaller sized hash key and uses a one-byte score to lookup data. As the

scenarios grow larger, once there are more than 256 resource providers, the scores will

definitely overlap. The resource table is optimized to aggregate and count the number of

devices with a particular score rather than to list individual resource providers. Also in

this case, the simulation is greedy in discovering resources. Because resources are

discovered in a greedy fashion, the table size does not grow very large because resources

are consumed very quickly. Again the worst case tables size could be estimated by

 209

considering 25,000 resource IP addresses with 2 byte hash key, the score of one byte, the

next hop IP of 4 bytes, and the count of one byte totaling 200KB or 25KB * (2 + 1 + 4 +

1).

Collaborative Peak Blacklist Table Usage (Bytes)

0

10

20

30

40

50

60

70

80

90

25 250 2500 10000 25000

Scenario Size (Number of Events)

P
ea

k
Us

ag
e

Figure 138 Collaborative Work Scenario Peak Blacklist Table Usage

The final results examined for the collaborative work scenarios are the blacklist

tables. Since the blacklist tables are populated when the SIGNUP event is sent and

unpopulated with the ACCEPT event is sent, the tables are much smaller than the others

because the SIGNUP and ACCEPT events happen very close to each other in time. As

shown in Figure 138, the memory usage caps at a value similarly to the other tables; this

time around a value of 85 bytes. Doing the math, the BLACKLIST TABLE contains a

four-byte IP address and a one-byte count totaling 5 bytes. Dividing 85 by 5 means that

each router kept no more than 17 entries in its BLACKLIST TABLE at a given time.

 210

The worst case blacklist size can be calculated as well by multiplying 25,000 resource

providers times 5 bytes totaling 125KB. This would imply that all 25,000 resource

providers send their SIGNUP events at the same time through the same router.

Deployment Environment Summary

Memory Usage Normalized

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Signup Table

Resource Table

Blacklist Table

Ta
bl

e
Na

m
e

Memory Used

Science Portal Distributed Computing Computer-in-the-Loop
Large-Scale Data Analysis Collaborative Work

Figure 139 Memory Used Normalized

Five different deployment environments were modeled with 25, 250, 2500,

10,000, and 25,000 TASK messages sent from 10 VOs to many resource providers.

Figure 139 shows the amount of memory used in each table for each of the five scenarios.

The science portal scenario uses the most amount of memory per router where the large-

scale scenario uses the least. Memory usage depends on the timing of the messages being

sent, the length of time each task takes to process, and the overall size of the network. As

 211

evident in Figure 140, the science portal scenario had the least amount of computers

where the large-scale analysis had the most. Since the each of the deployment scenarios

was allowed to expand to the same maximum number of hops (network tree depth), this

meant that the science portal had the thinnest tree (network tree width) whereas the large-

scale data analysis had the widest tree. The wider the tree, the less of a chance that a

router will have to store data in its tables. Note that the memory usage does not appear to

be impacted by the average number of hops as shown in Figure 141.

Number of Computers

0

500000

1000000

1500000

2000000

2500000

Science Portal Distributed
Computing

Computer-in-the-
Loop

Instrumentation

Large-Scale Data
Analysis

Collaborative
Work

Figure 140 Number of Computers

 212

Average Number of Hops

0

2

4

6

8

10

12

14

16

18

Science Portal Distributed
Computing

Computer-in-the-
Loop

Large-Scale Data
Analysis

Collaborative
Work

Deployment Environment

Ho
p

C
ou

nt

Figure 141 Average Number of Hops

Table Memory Consumption Normalized

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Memory Consumed

Signup Table Resource Table Blacklist Table

Figure 142 Table Memory Consumption Normalized

 213

Clearly, the signup table consumes the most amount of memory in the simulation

Figure 142. This happens because the signup table has more persistent entries lasting

longer in the table than the other tables. The resource table is reduced quickly because

VO hosts are aggressive when finding resource providers. The blacklist table is small

because the entry size is much smaller than the other tables and the blacklist table is

cleared quickly as well.

Average % Successful TASK Event Transmissions

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

Science Portal Distributed
Computing

Computer-in-the-
Loop

Large-Scale Data
Analysis

Collaborative
Work

Figure 143 Average Successful TASK Event Transmissions

The averaged percentage of successful TASK (discovery) event transmissions is

shown in Figure 143. The best performing scenario is the science portal (99.92%) where

as the worst performing scenario is the computer-in-the-loop scenario (99.46%). The

scoring does not appear to impact the performance of the discovery algorithm. This is

suspected because the distributed computing scenarios are designed not to have a score

deviation; and the distributed computing scenario ranks in the middle of the range. This

is shown in Figure 144 because the distributed computing scenario’s score deviation

 214

barely registers in the chart. The values do not correspond to the number of computers

(Figure 140), the average number of hops (Figure 141), or the memory usage statistics

(Figure 142) either. This means that the differences lie with the simulation, the scenario

generation process, the timing of the messages relative to each other, and the distribution

of the messages. Thus, the discovery process does not appear to be impacted by the

network size, memory consumption, score deviation, or number of hops each message

travels. The results indicate that the grid resource discovery algorithm will produce

satisfactory results when deployed.

25000 Event Score Deviations Summary

0

20

40

60

80

100

120

140

Science Portal Distributed
Computing

Computer-in-the-
Loop

Large-Scale Data
Analysis

Collaborative
Work

Figure 144 25000 Event Score Deviations Summary

HLA/RTI Evaluation

The final purpose of this work is to make the simulation engine perform basic

HLA operations. By making the simulator HLA compatible, the workload can be divided

between different federates to model the grid resource discovery protocol. All tests

 215

performed in this section had two federates: one federate managed the network traffic for

one ISP (ATDN), the other federate managed the network traffic for the other ISP

(GBLX). If an event needed to travel from one ISP to the other, it had to go through the

RTI. This section summarizes the work done and how the results were verified.

RTI and Experimentation Hardware Information

There are several RTI implementations available on the market. The

experimentation done for this work used RTI-NG Pro Version 3.0.2.3 available from

Raytheon VTC. This version of the RTI implements HLA Version 1.3. The license

management and configuration of the laptop used only allows operations from a 2 GHz

single core laptop computer with 512 MB of memory. Under normal circumstances, the

license server can be accessed from any remote machine. However this particular laptop

configuration locked down the ability to do that.

Due to the limitations of the laptop hardware, large simulation executions could

not be performed on this platform since a minimum of four processes were needed to

include the RTIExec, two federates, and the license manager. Though the license

manager and RTIExec are lightweight processes, the federate software is not. The

execution time on this platform was slower than if the work could be distributed either on

a multi-core machine or between different computers. Also, there were memory

constraints as the scenario and network size grew larger. This limited the ability to test

large and complex scenarios; thus the RTI experiments provide a proof of principle

instead.

 216

Results

Basic Federation and Federate Operation

The most important and basic operations for participating in an HLA federation

are creating a federation, joining a federate to the federation, resigning the federate from

the federation, and destroying the federation executable. The results of these actions can

be verified by looking at the RTIExec screen which prints this basic information to the

screen. In Figure 145, the federation name was “UCF” and the two federates were named

“GPS_1” and “GPS_2”. The federation is created and the FOM format is verified when

UCF was finished initializing about half way through the output screen. Next GPS_1 and

GPS_2 have joined the federation. Time stepping is not shown on the display. When the

federates were done modeling, they resigned from the federation. Finally, the federation

was destroyed when the fedex was shutdown.

Event Management

There are several aspects of the simulation that have to do with event

management. The first is declaring the ability to publish and subscribe to events. While

doing this process, the software caches the event and parameter RTI handles needed for

sending the events later. This functionality cannot be verified on the RTIExec console

window. The RTI usually uses negative acknowledgements to let the user know

something has gone wrong (rather than indicating something has gone right). The RTI

does this by throwing exceptions. By examining the log outputs, there are no errors

related to publications or subscriptions or for invalid FOM class name lookups.

 217

Figure 145 RTIExec Output Window

Another aspect of event management is actually publishing or receiving an RTI

event. This is verified by examining the output of the simulation on the GUI screen and

in the log files. The GUI screen shows that event counts are incrementing. The log files

 218

indicate that some messages have been dropped on the local machine and transferred to

the other federate. This can be traced by looking up the event id for that event. The

event converted to text on the sending federate must match the event on the receiving

federate when converted to text. 10 events out of 100 were manually checked to cross

from one federate to the other and no problems were found. Also, since both federates

are sending and receiving events, this also helps verify the publication and subscription

task.

Synchronization Points

The grid protocol simulator uses two different synchronization points: a start

synch point and a stop synch point. The start synch point is used to hold federates from

starting the clock until the last federate joins. This is achieved by having the final

federate register a synchronization point with the RTI, then having each of the federates

accept the synch point announcement. Once the two federates accept the synch points,

the RTI notifies the federates that the federation is synchronized. Upon receipt of this

notification, the simulation clock is officially started.

Thus, the start synch point was verified in two ways. The first was the first

federate to join the RTI sat and did not advance the clock until the second federate joined.

The federate is actually sitting on a mutex that does not release until the federation is

synchronized. The second verification came when the second federate joined, but

federate clocks began advancing (as was evident on the GUI screen).

The stop synch point has a similar implementation, but for a different purpose.

Even through the two federates are running concurrently, it is important that each

federate stays in the federation until federation execution is complete. Thus, the federate

 219

will keep advancing time until the synch point stop is received. Once received, the

federate resigns from the federation. This is verified by seeing that both federates resign

from the federation at approximately the same time. If one federate resigns when its

event queue is empty, this will be premature. In that case, one federate will resign and

the other will continue to advance its clock until its event queue is emptied. During

validation, both federates resigned at the same time.

Time Management

As mentioned above, time was advancing when the start and stop synch points

were achieved. There is another way to verify proper time management. This simulation

is time constrained and time regulating. It was hypothesized and observed that the

federates try to catch up to each other’s clocks. Thus, by watching the clocks on the two

federates GUI screens, the racing was observed and verified.

 220

Figure 146 Two Federates Running a Scenario with the RTI

 221

CHAPTER FIVE: CONCLUSIONS

K-Array N-Cube Design Conclusion

An event-driven, custom-designed interconnect simulation environment was

created to evaluate the performance of off-chip k-array n-cube interconnect architectures

for line cards. The interconnects were examined using the network simulator in order to

find which of the interconnects can provide the highest performance and memory

bandwidth to replace the existing shared-bus systems.

The simulator provides the user with a flexible and robust tool that can emulate

multiple interconnect architectures under non-uniform traffic patterns. The simulator

offers the user with extensive control over network parameters, performance enhancing

features and simulation time frames that make the platform as close as possible to the

physical line card features.

Performance results show that k-array n-cube topologies can sustain higher traffic

load than the currently used interconnects. Flow control mechanisms such as virtual

channels (VC) and sub-channeling (SC) have an important impact on the interconnect

performance. VC and SC mechanisms, together, reduce the transmission failure rate

significantly by 75% and increase the interconnect bandwidth utilization in the range of

15–25% depending on the topology. A variation of 2-array 3-cube, called 3D-mesh, was

introduced that provides a better processor-memory distribution under non-uniform

traffic. The combination of the 3D-mesh interconnect and the adaptive routing algorithm

facilitate to reach the highest throughput of 452 Gbps; this is better than twice the

throughput of the leading solution in the marketplace. 3D-mesh meets both the stringent

 222

performance requirements and the physical constraints on the line card while enabling

future scalability to adopt higher line rates.

CLL Algorithm Conclusion

A new cluster leader election algorithm called the cluster leader logic (CLL)

algorithm was proposed and simulated. GPS-QHRA is based on the presence of a GPS

device with the networking node. The cluster leaders react to data flow patterns of the

network by providing better load balancing throughout the wireless GPS-based ad-hoc

network by sharing their load. Based on the geographical direction of the net traffic flow,

the clusterheads are selected in such a manner that there are more clusterheads at

locations where there is more traffic activity.

Thus the clusterheads are able to share the load for forwarding packets.

At locations of lower or no traffic flow, there are less numbers of clusterheads since

clusterhead overloading is not a problem. The clusterheads can filter data sent based on

the ground and perceived truth knowledge of the network and by introducing a new

concept called cell fanning. Cell fanning allows a clusterhead to split into two

clusterheads preventing the original clusterhead from becoming overloaded and the new

clusterhead becoming starved for data transmissions.

Extensive simulation experiments were conducted to demonstrate that the system

performance is enhanced when the proposed algorithm chooses clusterheads. The

simulator was built on top of the simulation infrastructure used in the k-array n-cube

simulator. The results show up to 45% power savings and up to 25% improvement in

queuing delays when CLL is compared to GPS-QHRA.

 223

Grid Resource Protocol Conclusion

The Grid Protocol Simulator, the third simulator in this work, simulated five

different deployment environments with 25, 250, 2500, 10,000, and 25,000 TASK

messages sent from 10 VOs to many resource providers. The five different environments

varied the application of the scoring mechanism used to route the TASK messages

through the network. Hop counts, memory usage, message distribution, discovery

message successes, and score deviation statistics were collected and presented in this

work.

The science portal scenario uses the most amount of memory per router where the

large-scale scenario uses the least. Memory usage depends on the timing of the messages

being sent, the length of time each task takes to process, and the overall size of the

network. The science portal scenario had the least amount of computers where the large-

scale analysis had the most.

The signup table consumes the most amount of memory in the simulation. This

happens because the signup table has more persistent entries lasting longer in the table

than the other tables. The resource table is reduced quickly because VO hosts are

aggressive when finding resource providers. The blacklist table is small because the

entry size is much smaller than the other tables and the blacklist table is cleared quickly

as well. Also, worst-case memory consumption was calculated in the results section.

The signup table worst-case memory consumption per router is 450KB, the resource table

is 200KB, and the blacklist is 125KB totaling 775 KB per router for 25,000 resource

providers mapped to 10 VO Hosts.

 224

The best performing scenario with respect to successful discovery message

transmissions is the science portal scenario (99.96%) where as the worst performing

scenario is the computer-in-the-loop scenario (99.43%). The scoring does not impact the

performance of the discovery algorithm. The discovery process does not appear to be

impacted by the network size, memory consumption, score deviation, or number of hops

each message travels.

Simulation Engine Conclusion

The main purpose of this work is to model and simulate networking architectures

and protocols by developing a common underlying simulation infrastructure. All three

simulators kept the same overall architecture: creating scenarios, feeding them into an

event-driven simulation, and getting results at the end. The scenario generation process

evolved into the generation of XML-based text files to represent networks and event.

The simulator evolved to support HLA/RTI which is a primary simulation architecture in

the present time. The results generation has evolved into the software automatically

producing multi-worksheet spreadsheets with sorted and formatted data, formulas, charts,

and graphs. In conclusion, the simulation engine supplies reusable modules at a

minimum if not an entire infrastructure that can be built from or expanded.

The sim engine allows the developer to perform basic HLA functions such as

time-constrained time-regulating time management, the creation, sending, and receiving

of RTI events, and synch point management. The simulation engine is configured

through the use of a GUI control form and the results are stored in the RtiManager class.

 225

The developer can create and join a federation, subscribe to interactions, and designate

which FED FOM file to use.

In addition to performing those functions with the RTI, the sim engine supports a

mode where the RTI is not present. This is configurable at run time rather than compile

time thus allowing the developer to support one executable software delivery. The

developer inherits base classes to perform the duties required. The sim engine also

allows the developer to reuse the capability to represent a network by reading in XML

scenario files. The sim engine also provides auxiliary functionalities such as logging and

error reporting, an IP V4 address container, and random number generator. The sim

engine also provides graphical interfaces for asking the user questions or displaying an

error message GUI.

Future Directions for this Work

Even though a considerable amount of work was done to conclude this work,

there are still enhancements and improvements that can be made which are beyond the

scope of this work. For the k-array n-cube wormhole routing protocol, a good

continuation would be to attempt to emulate the protocol in hardware. Results can be

gathered to compare the simulated results to the emulated results.

For the CLL algorithm, it would be beneficial to find more scenarios to simulate;

similar to researching and representing the five grid deployment environments done for

the grid discovery protocol. Possible places to look for deployment environments are

military live training ranges such as 29 Palms [110]. Once these ad-hoc wireless

deployments are identified, scenarios can be generated to represent the terrain, situation,

and node characteristics and then simulated.

 226

As for the grid discovery protocol, a very useful experiment would be to

implement the algorithm either in programmable routers (such as [111]), hardware, or

computers simulating routers by directing network traffic like the protocol would. A lab

would be needed with enough devices to represent a reasonably sized network to test on.

A different continuation of work would be to study the GLOBUS architecture

[65][79][80] to see how the grid discovery protocol can fit into it. This would require a

possible replacement of the GLOBUS broker services, GIS, MDS, GRAM, and

scheduler.

The simulation engine can be evolved further to increase the HLA capabilities.

One improvement would be for the simulation engine to support any type of time

management (various combinations of time regulating and time constraining). The event

interface can be cleaned up to encapsulate the ability for directly calling the RTI

functions. For instance, the Event class requires the developer to create RTI handle value

pairs and call the sendInteraction() function. A more elegant design would be for the

developer to serialize the data in FOM order into memory and hand the block of memory

to a class that would perform the responsibilities of converting the memory into RTI data

and function calls. Another goal would be to implement HLA objects and save/restore

functionality. The grid protocol simulator does not own any objects and the functionality

to create them or to have a save/restore capability was never needed or developed.

 227

LIST OF REFERENCES

[1] Reilly, Sean and Keith Briggs. “Guidance, Rationale, and Interoperability Modalities

for the Real-time Platform Reference Federation Object Model (RPR FOM).”

Simulation Interoperability Standards Organization, September 1999.

[2] Weatherly, Richard M., Annette L. Wilson, Bradford S. Canova, Ernest H. Page,

Anita A. Zabek. “Advanced Distributed Simulation through the Aggregate Level

Simulation Protocol.” Proceedings of the 29th International Conference on

System Sciences. Vol. 1, pp. 407-415, Wailea, Hawaii, 3-6 January 1996,

[Online]. Available WWW: http://www.thesimguy.com/ernie/papers/hicss-

29/camera.html.

[3] Corps Battle System. [Online]. Available WWW:

http://www.peostri.army.mil/PRODUCTS/CBS/.

[4] Intelligence Electronic Warfare Tactical Proficiency Trainer. [Online]. Available

WWW: http://www.peostri.army.mil/PRODUCTS/IEWTPT/.

[5] One Semi-Automated Forces. [Online]. Available WWW:

http://www.peostri.army.mil/PRODUCTS/ONESAF/.

[6] Tactical Simulation. [Online]. Available WWW:

http://www.peostri.army.mil/PRODUCTS/TACSIM/.

[7] Warfighters’ Simulation. [Online]. Available WWW:

http://www.peostri.army.mil/PRODUCTS/WARSIM/.

[8] Seidel, D. (1993). ``Aggregate Level Simulation Protocol (ALSP) Program Status and

History,'' The MITRE Corporation, McLean, VA, 22102, March.

http://www.thesimguy.com/ernie/papers/hicss-29/camera.html
http://www.thesimguy.com/ernie/papers/hicss-29/camera.html
http://www.peostri.army.mil/PRODUCTS/CBS/
http://www.peostri.army.mil/PRODUCTS/IEWTPT/
http://www.peostri.army.mil/PRODUCTS/ONESAF/
http://www.peostri.army.mil/PRODUCTS/TACSIM/
http://www.peostri.army.mil/PRODUCTS/WARSIM/

 228

[9] Deitel, Harvey and Paul Deitel. “C++ How to Program.” Prentice Hall, 5th Edition

January 5, 2005.

 [10] “RTI NG Pro Programmer’s Guide.” Virtual Technology Corporation, version 3.0,

Jume 2005.

 [11] “MODELING AND SIMULATION (M&S) MASTER PLAN.” United States of

America Department of Defense, DoD 5000.59-P, October 2005. [Online].

Available WWW:

https://www.dmso.mil/public/library/policy/guidance/500059p.pdf.

 [12] “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture

(HLA) - Object Model Template (OMT) Specification.” IEEE 1516.2-2000.

[13] OMDT Pro. [Online]. Available WWW:

http://www.aegistg.com/labcut/lwProducts/productsheets/OMDTPro101.pdf.

[14] "High-Level Architecture Object Model Template Specification Version 1.3.” U.S.

Department of Defense, 5 February 1998.

[15] “IEEE Standard for Distributed Interactive Simulation - Application Protocols,”

IEEE Std 1278.1-1995.

[16] “IEEE Standard for Distributed Interactive Simulation - Application Protocols,”

IEEE Std 1278.1A-1998.

[17] Geocentric Coordinate Systems. [Online]. Available WWW:

http://en.wikipedia.org/wiki/Geocentric_coordinates.

[18] “Draft, Recommended Practice for Distributed Interactive Simulation Exercise

Management and Feedback,” IEEE Std P1278.3.

https://www.dmso.mil/public/library/policy/guidance/500059p.pdf
http://www.aegistg.com/labcut/lwProducts/productsheets/OMDTPro101.pdf
http://en.wikipedia.org/wiki/Geocentric_coordinates

 229

[19] Extended Air Defense Simulation. [Online]. Available WWW:

http://www.eadsim.com/.

[20] FireSim XXI. [Online]. Available WWW: http://sill-

www.army.mil/blab/sims/FireSimXXI.htm.

[21] Tactical Simulation Interface Unit. [Online]. Available WWW:

http://www.aegistg.com/dbst/index.htm.

[22] High Level Architecture. [Online]. Available WWW:

http://www.mitre.org/news/the_edge/january_98/fourth.html.

[23] The Network Simulator 2. [Online]. Available WWW:

http://www.isi.edu/nsnam/ns/.

[24] OSI Model. [Online]. Available WWW: http://en.wikipedia.org/wiki/OSI_model.

[25] Engel, Jacob, Daniel Lacks, Taskin Kocak. “Modelling and simulation of off-chip

communication architectures for high-speed packet processors.” The Journal of

Systems and Software, Volume 79, May 6, 2006: 1701-1714.

[26] Kumar, R., Zyuban, V., Tullsen, D.M., 2005. Interconnections in multicore

architectures: understanding mechanisms, overheads and scaling. Proceedings of

the IEEE 32nd International Symposium on Computer Architecture, June 2005.

[27] Test Procedures, March 5, 2001. [Online]. Available WWW:

http://www.lightreading.com

[28] Dally, W.J., 1990. Performance analysis of k-ary n-cube interconnection networks.

IEEE Transactions on Computers 39 (6), 775–785.

[29] Agarwal, A., 1991. Limits on interconnection network performance. IEEE

Transactions on Parallel and Distributed Systems, 2 (4), 398–412.

http://www.eadsim.com/
http://sill-www.army.mil/blab/sims/FireSimXXI.htm
http://sill-www.army.mil/blab/sims/FireSimXXI.htm
http://www.aegistg.com/dbst/index.htm
http://www.mitre.org/news/the_edge/january_98/fourth.html
http://www.isi.edu/nsnam/ns/
http://en.wikipedia.org/wiki/OSI_model
http://www.lightreading.com/

 230

[30] One Tactical Engagement Simulation System. [Online]. Available WWW:

http://www.peostri.army.mil/PRODUCTS/ONETESS/.

[31] Ogier, Richard. “A Simulation Comparison of TBRPF and AODV.” SRI

International, December, 2001. [Online]. Available WWW:

http://www.sri.com/esd/projects/tbrpf/docs/NS2-Sim_Com.ppt.

[32] Jung, J.W., Mudumbai, R., Montgomery, D., Kahng, H.K., 2003. “Performance

evaluation of two layered mobility management using mobile IP and session

initiation protocol.” Proceedings of the Global Telecommunications Conference,

Vol. 3, pp. 1190–1194.

[33] Kornblit, R., Schwartzmann, E. “Multicast Protocols Evaluation in Wireless

Domains, Project report.” Technion, Israel, 2004.

[34] Qualnet. [Online]. Available WWW: http://www.scalable-

networks.com/products/developer/new_in_40.php.

[35] Hsu, J., Bhatia, S., Takai, M., Bagrodia, R., Acriche, M.J., 2003. “Performance of

mobile ad hoc networking routing protocols in realistic scenarios.” Proceedings

of the Military Communications Conference, vol. 2, pp. 1268–1273.

[36] Zhang, Y., 2003. “Microstrip-multilayer delay line on printed-circuit board.”

Technical Report, University of Nebraska, Lincoln, April 2003.

[37] Chiu, G.M., 2000. “The odd–even turn model for adaptive routing.” IEEE

Transactions on Parallel and Distributed Systems 11 (7), 729–738.

[38] Dally, W.J., 1992. “Virtual-channel flow control.” IEEE Transactions on Parallel

and Distributed Systems 3 (2), 194–199.

http://www.peostri.army.mil/PRODUCTS/ONETESS/
http://www.sri.com/esd/projects/tbrpf/docs/NS2-Sim_Com.ppt
http://www.scalable-networks.com/products/developer/new_in_40.php
http://www.scalable-networks.com/products/developer/new_in_40.php

 231

[39] Lysne, O., 1999. “Deadlock avoidance for switches based on wormhole networks.”

Proceedings of the Annual International Conference of Parallel Processing, pp.

68–74.

[40] Cope, M.C., 2005. “Object Oriented Analysis and Design Using UML.” White

paper, Ratio group. [Online]. Available WWW:

http://www.ratio.co.uk/white.html.

[41] Nakata, T., Kuwamura, S., Zhu, Q., Matsuda, A., Shoji, M., 2002. “An object-

oriented design process for system-on-chip using UML.” Proceedings of the 15th

international symposium on System Synthesis, pp. 249–254.

[42] Schach, S.R., 1996. “Classical and Object-Oriented Software Engineering.” Third

ed., Irwin group.

[43] Fritz, D.G., Sargent, R.G., 1995. “An overview of hierarchical control flow graph

models.” Proceedings of the IEEE Simulation Conference, pp. 1347–1355.

[44] Townsend, M., 2002. “The Singleton Design Pattern.” Microsoft Corporation,

MSDN library, February 2002. [Online]. Available WWW:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnbda/html/singletondespatt.asp.

[45] “Pure Virtual Functions and Abstract Classes.” Microsoft Corporation, MSDN

library, 2005. [Online]. Available WWW:

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/vccore98/html/_langref_pure_virtual_functions_and_abstract_classes.asp.)

[46] “Introduction to the Standard Template Library.” SGI, white paper, 2003. [Online].

Available WWW: http://www.sgi.com/tech/stl/stl_introduction.html.

http://www.ratio.co.uk/white.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/singletondespatt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/singletondespatt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_langref_pure_virtual_functions_and_abstract_classes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore98/html/_langref_pure_virtual_functions_and_abstract_classes.asp
http://www.sgi.com/tech/stl/stl_introduction.html

 232

[47] Meyers, S. “Effective STL: 50 Specific Ways to Improve Your Use of the Standard

Template Library.” Addison-Wesley, Boston, Mass. 2001.

[48] E. M. Royer and C.-K. Toh. ``A Review of Current Routing Protocols for Ad-Hoc

Mobile Wireless Networks." {\it IEEE Personal Communications Magazine},

April 1999, pp. 46-55.

[49] I. Hwang, C. Chien, and C. Wang, ``A Novel GPS-Based Quorum Hybrid Routing

Algorithm (GPS-QHRA) for Cellular-Based Ad Hoc Wireless Networks", {\em

Journal of Information and Science Engineering}, Vol. 21, pp. 1-21, 2005.

[50] Lee, Keun-Ho, Han, Sang-Bum, Suh, Heyi-Sook, Lee, SangKeun, Hwang, Chong-

Sun. “Authentication based on multilayer clustering in ad hoc networks.”

EURASIP Journal on Wireless Communications and Networking, Dec 15, 2005

i5 p731(12).

[51] Vasudevan, Sudarshan, Kurose, Jim, Towsley, Don. “Design and Analysis of a

Leader Election Algorithm for Mobile Ad Hoc Networks.” UMass Computer

Science Techincal Report 03-20.

[52] Elizabeth M. Royer and C.-K. Toh. "A Review of Current Routing Protocols for Ad-

Hoc Mobile Wireless Networks." IEEE Personal Communications Magazine,

April 1999, pp. 46-55.

[53] Burgstahler, Lars, Neubauer, Martin. “New modifications of the exponential

moving average algorithm for bandwidth estimation.” Proceedings of the 15th

ITC Specialist Seminar on Internet Traffic Engineering and Traffic Management,

Würzburg, 2002, pp. 210-219. [Online]. Available WWW: http://www.ikr.uni-

stuttgart.de/en/Content/Publications/

http://www.ikr.uni-stuttgart.de/en/Content/Publications/
http://www.ikr.uni-stuttgart.de/en/Content/Publications/

 233

[54] L. Harte, R. Levine, R. Kikta. ``3G Wireless Demystified." McGraw-Hill, 2002,

pp. 39-40.

[55] K. Fall and K. Varadhan. ``The ns Manual." January 20, 2007. UC Berkeley, LBL,

USC/ISI, and Xerox PARC. [Online]. Available WWW:

http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf.

[56] Lacks, Daniel, and Taskin Kocak. “A Distributed Grid Resource Discovery and

Management Protocol and Its Deployment Environments.” GCA'06 - The 2006

International Conference on Grid Computing and Applications, June 2006, pp.

11-17.

[57] SETI@Home. [Online]. Available WWW: http://setiathome.ssl.berkeley.edu/.

[58] Einstein@Home. [Online]. Available WWW: http://einstein.phys.uwm.edu/.

[59] Buyya, Rajkumar. “Economic-based Distributed ResourceManagement and

Scheduling for Grid Computing.” School of Computer Science and Software

Engineering of Monash University, 2002.

[60] Bernatz, John C. COL (Ret.), Shockley, John. “A Funny Thing Happened on the

Way to an LVC Integration: Great Training.” SRI International, 2004. [Online].

Available WWW: http://www.jtepforguard.com/pubs/04E-SIW-065.pdf.

[61] T. Kocak and L. Boloni, “Highly distributed resource discovery and allocation in the

grid”, Proc. of the 47th IEEE Midwest Symp. on Circuits and Systems,

Hiroshima, Japan, July 2004.

[62] Joseph, J., Ernest, M., Fellenstein, C. “Evolution of grid computing architecture and

grid adoption models.” IBM Systems Journal, Dec 2004 v43.

http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://setiathome.ssl.berkeley.edu/
http://einstein.phys.uwm.edu/
http://www.jtepforguard.com/pubs/04E-SIW-065.pdf

 234

[63] Navy Organization. [Online]. Available WWW:

http://www.navy.mil/navydata/organization/org-over.asp.

[64] M. Riedel, V. Sander, P. Wieder, J. Shan. “Web Services Agreement-based

Resource Negotiation in UNICORE.” Central Institute of Applied Mathematics,

2005.

[65] GLOBUS. [Online]. Available WWW: http://www.globus.org.

[66] L. Peterson, T. Anderson, D. Culler, and T. Roscoem “A blueprint for introducing

disruptive technology into the Internet.” Proceedings of the First ACM Workshop

on Hot Topics in Networks (HotNets-I), Princeton, NJ, October 2002. [Online].

Available WWW:

http://www.cs.princeton.edu/courses/archive/fall03/cs597B/handouts/pdn02-

001.pdf.

[67] M. Riedel, V. Sander, P. Wieder, J. Shan, “Web services agreement-based resource

negotiation in UNICORE.” Proc. of the 2005 International Conference on

Parallel and Distributed Processing Techniques and Applications, Las Vegas,

NV, June 2005.

[68] I. Foster, “The Grid: A new infrastructure for 21st century science.” Physics Today,

February 2002.

[69] G. von Laszewski, E. Blau, Eric, M. Bletzinger, J. Gawor, P. Lane, S. Martin, and

M. Russell. “Software, component, and service deployment in computational

grids.” Lecture Notes in Computer Science, vol. 2370, pp. 244-256, Springer,

2002.

http://www.navy.mil/palib/organization/org-over.html
http://www.globus.org/
http://www.cs.princeton.edu/courses/archive/fall03/cs597B/handouts/pdn02-001.pdf
http://www.cs.princeton.edu/courses/archive/fall03/cs597B/handouts/pdn02-001.pdf

 235

[70] FightAIDS@Home. [Online]. Available WWW:

http://www.worldcommunitygrid.org/projects_showcase/viewFaahResearch.do.

[71] LHC Grid Project. [Online]. Available WWW:

http://lcg.web.cern.ch/LCG/overview.html.

[72] Ian Foster, Carl Kesselman , Gene Tsudik , Steven Tuecke. “A security architecture

for computational grids.” Proceedings of the 5th ACM conference on Computer

and communications security, November 1998. [Online]. Available WWW:

http://www.ee.princeton.edu/~rblee/ELE572Papers/p83-foster.pdf.

[73] Breslau, Lee, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed

Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobu

Yu. “Advances in Network Simulation.” IEEE, May 2000.

[74] Sulistio, Anthony, Chee Shin Yeo and Rajkumar Buyya. “A taxonomy of computer-

based simulations and its mapping to parallel and distributed systems simulation

tools.” Software – Practice and Experience, Vol. 34, 2004: pp. 653-673.

[75] Löwy, Juval. “Programming .NET Components, Second Edition.” O'Reilly Media,

July 2005.

[76] Templeman, Julian, and Andy Olsen. “Microsoft® Visual C++® .NET: Step by

Step.” Microsoft Press, March 26, 2003.

[77] Shepherd, George and David Kruglinski. “Programming with Microsoft Visual C++

.NET.” Microsoft Press, October 25, 2002.

[78] Gregory, Kate. “Microsoft® Visual C++® .NET 2003 Kick Start.” Sams,

December 4, 2003.

http://www.worldcommunitygrid.org/projects_showcase/viewFaahResearch.do
http://lcg.web.cern.ch/LCG/overview.html
http://www.ee.princeton.edu/~rblee/ELE572Papers/p83-foster.pdf

 236

[79] Ferreira, Luis, Viktors Berstis, and Jonathan Armstrong. “Introduction to Grid

Computing with Globus.” IBM, October 1, 2003.

[80] Jacob, Bart, Luis Ferreira, and Norbert Bieberstein. “Enabling Applications for Grid

Computing with Globus.” IBM, June 18, 2003.

[81] Powers, Lars and Mike Snell. “Microsoft Visual Studio 2005 Unleashed.” Sams,

2007.

[82] Hurwitz, Dan and Jesse Liberty. “Programming .NET Windows Applications.”

O’Reilly, October 2003.

[83] Sells, Chris and Michael Weinhardt. “Windows Forms 2.0 Programming.” Addison

Wesley Professional, May 16, 2006.

[84] Marshall, Donis. “Programming Microsoft® Visual C#® 2005: The Language.”

Microsoft Press, December 20, 2005.

[85] Carter, Eric and Eric Lippert. “Visual Studio Tools for Office: Using Visual Basic

2005 with Excel, Word, Outlook, and InfoPath.” Addison Wesley Professional,

April 26, 2006.

[86] BUG: TreeView Nodes Count Property Limited to 32767. [Online]. Available

WWW: http://support.microsoft.com/kb/182231.

[87] S. Chakrabarti, A. Mishra, “QoS issues in ad hoc wireless networks”, IEEE

Communications Magazine, Feb 2001, Vol. 39 Issue 2, pp. 142-148.

[88] A. Boukerche, M.Z. Ahmad, B. Turgut, and D. Turgut, “A Survey on Routing

Protocols in Ad hoc Networks”, Handbook on Algorithms and Protocols for

Wireless Ad hoc and Sensor Networks, Eds. Boukerche, Wiley, 2007.

http://support.microsoft.com/kb/182231

 237

[89] H. Hassanein and A. Zhou. “Routing with load balancing in wireless Ad hoc

networks.” Proceedings of the 4th ACM International Workshop on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 2001, pp. 89-96.

[90] A. Amis and R. Prakash, “Load-balancing clusters in wireless ad hoc networks”,

Proc. of ASSET, Richardson, TX, March 2000, pp. 25-32.

[91] M. Chatterjee, S.K. Das and D. Turgut, “WCA: A Weighted Clustering Algorithm

for Mobile Ad hoc Networks”, Journal of Cluster Computing (Special Issue on

Mobile Ad hoc Networks), Vol. 5, No. 2, April 2002, pp. 193-204.

[92] M. Gerla and J.T.C. Tsai, “Multicluster, mobile, multimedia radio network”,

Wireless Networks, Vol. 1, No. 3, 1995, pp. 255-265.

[93] A.B. McDonald and T.F. Znati, “A mobility-based framework for adaptive

clustering in wireless ad hoc networks”, IEEE Journal on Selected Areas in

Communications, Vol. 17, No. 8, 1999, pp. 1466-1487.

[94] D.J. Baker and A. Ephremides, “A distributed algorithm for organizing mobile radio

telecommunication networks”, Proc. of the 2nd Int. Conference on Distributed

Computer Systems, April 1981, pp. 476-483.

[95] D.J. Baker and A. Ephremides, “The architectural organization of a mobile radio

network via a distributed algorithm,” IEEE Transactions on Communications

COM-29 11 (1981), pp. 1694-1701.

[96] A.K. Parekh, “Selecting routers in ad-hoc wireless networks”, Proceedings of the

SBT/IEEE International Telecommunications Symposium, August 1994.

 238

[97] S. Basagni, “Distributed and mobility-adaptive clustering for multimedia support in

multi-hop wireless networks”, Proc. of Vehicular Technology Conference, VTC,

Vol. 2, 1999-Fall, pp. 889-893.

[98] K. Nikano, S. Olariu, “Uniform Leader Election Protocols for Radio Networks”,

IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 5, May

2002, pp. 516-526.

[99] K. Nikano, S. Olariu, “Randomized Leader Election Protocols in Radio Networks

with No Collision Detection”, Proc. of the 11th International Conference on

Algorithms and Computation, 2000, pp. 362-373.

[100] C.C. Chiang, H.K. Wu, W. Liu, and M. Gerla, “Routing in clustered multihop,

mobile wireless networks with fading channel”, Proc. of IEEE SICON, 1997, pp.

197-211.

[101] T.C. Hou and T.J. Tsai, “An access-based clustering protocol for multihop wireless

ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol. 19,

no. 7, July 2001.

[102] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-Min D-cluster formation

in wireless ad hoc networks”, Proc. Of IEEE INFOCOM, 2002, pp. 32-41.

[103] S. Basagni, M. Mastrogiovanni, A. Panconesi, and C. Petrioli, “Localized Protocols

for Ad Hoc Clustering and Backbone Formation: A Performance Comparison”,

IEEE Transactions on Parallel and Distributed Systems, Volume 17, Issue 4, April

2006, pp. 292-306.

 239

[104] Iamnitchi, A. and I. Foster. “On Fully Decentralized Resource Discovery in Grid

Environments.” International Workshop on Grid Computing, Denver, CO,

November 2001.

[105] Bradley, Alan, Kevin Curran and Gerard Parr. “Discovering Resource in

Computational GRID Environments.” The Journal of Supercomputing, Volume

35, 2006, pp. 27-49.

[106] Joseph, Joshy, and Craig Fellenstein. “Grid Computing.” IBM Press, Upper

Saddle River, N. J., December 30, 2003.

[107] Leong, P., Chunyan Miao, and Bu-Sung Lee. “Agent oriented software

engineering for grid computing.” Parallel Computing in Electrical Engineering,

2006.

[108] Bucur, Doina. “Resource Discovery in Activity-Based Sensor Networks.” Mobile

Networks and Applications, Vol. 12 Issue 2/3, pp. 129-142.

[109] Dubhashi, Devdatt, Olle Häggström, Gabriele Mambrini, Alessandro Panconesi,

and Chiara Petrioli. “Blue pleiades, a new solution for device discovery and

scatternet formation in multi-hop bluetooth networks.” Wireless Networks,

Volume 13 Issue 1, pp. 107-125.

[110] Joint Training Experimentation Program. [Online]. Available WWW:

http://www.jtepforguard.com/29Palms405.html

[111] Possio’s PX 30 Hackable Wireless Router. [Online]. Available WWW:

http://linuxdevices.com/articles/AT7459336271.html

http://www.jtepforguard.com/29Palms405.html
http://linuxdevices.com/articles/AT7459336271.html

	Modeling, Design And Evaluation Of Networking Systems And Protocols Through Simulation
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE: INTRODUCTION
	Introduction to K-Array N-Cube Networks
	Introduction to Clusterhead Routing
	Introduction to Grid Computing
	Introduction to HLA, DIS, and the Simulation Engine
	Main Contributions

	CHAPTER TWO: BACKGROUND
	K-Array N-Cube Interconnect Background
	K-Array N-Cube Networks
	Communications
	Simulating K-Array N-Cube Interconnects

	Cluster Leader Logic Background
	Cluster Leader Election
	Load Balancing Techniques
	Related Work on Clustering
	GPS-QHRA

	Grid Computing Background
	State-of-the-art Grid Computing
	Virtual Organizations
	Scheduling
	Resource Brokers
	Grid Toolkits and Middleware
	PlanetLab
	UNICORE
	Legion
	Condor-G

	Grid Computing Constraints and Issues
	Grid Deployment Environments
	Science Portals
	Distributed Computing
	Large-Scale Data Analysis
	Computer In-The-Loop Instrumentation
	Collaborative Work

	Simulation Protocol Background
	Aggregate Level Simulation Protocol (ALSP)
	Distributed Interactive Simulation (DIS)
	Application Protocols
	Real-Time Communications
	Time Management

	Exercise Management and Feedback

	High Level Architecture (HLA)
	Federation Rules
	Run-Time Infrastructure (RTI)
	The RTI Software
	Improvements from DIS and ALSP
	The Lifecycle of a Federation
	Object Declaration and Management
	Time Management
	Sync Points and Federation Commands

	Object Model Template (OMT) and the Federation Object Model

	Distributed Interactive Simulation (DIS) Revisited

	CHAPTER THREE: METHODOLOGY
	Computer Networking
	K-Array N-Cube Interconnect Design
	The Simulation Architecture
	The Simulation Modeling Approach
	Software Algorithms

	Cluster Leader Logic Algorithm Design
	Assumptions
	CLL Algorithm High Level Design
	Algorithm Detailed Design
	Messages
	Variables
	Data Flow Tables
	Load Balancing and Algorithm Execution
	Cell Fanning

	Grid Resource Discovery Protocol Design
	Protocol Design
	Lifecycle
	Event Header
	Routing Techniques
	Events
	SIGNUP Event
	ACCEPT Event
	ADVERTISE Event
	TASK Event
	TASK COMPLETE Event
	TASK UNSATISFIED Event
	CONFIRM DELIVERY Event
	CONFIRM TRANSACTION Event
	GOODBYE Event
	UNSUBSCRIBE Event

	Resource Providers’ Responsibilities
	Router Responsibilities and Usage of Data Tables
	SIGNUP Table Usage
	RESOURCE Table Usage
	BLACKLIST Table Usage

	VO Host Responsibilities
	Scoring

	Grid Topology Scenarios
	Science Portals
	Distributed Computing
	Large-Scale Data Analysis
	Computer in-the-loop Instrumentation
	Collaborative Work

	Grid Security

	HLA Simulation Protocol and the Simulation Engine
	Simulation Core
	EventManager Class
	Event Class
	NetworkTree Class
	NetworkNodeBaseClass Class
	StateMachine Class
	TimeManager Class
	Simulation Engine Common Library

	Simulation Architecture

	CHAPTER FOUR: FINDINGS
	K-Array N-Cube Evaluation and Results
	Simulation Implementation and Techniques
	The Singleton Class
	Pure Virtual Functions
	System Design with the Standard Template Library (STL) Funct

	Simulation Data and Observations
	Latency and throughput analysis
	Worm Allocation and Distribution
	Routing Accuracy
	Interconnect and Bandwidth Utilization
	Failure Rate
	Routing Accuracy vs. Hot-Spot Nodes
	K-Array N-Cube Interconnect Performance Comparison with Comm

	Cluster Leader Logic Evaluation and Results
	The CLL Simulator
	Scenario Design
	Results

	The Grid Protocol Simulator Evaluation and Results
	Software Design and Implementation
	C++/CLR
	Garbage Collection
	C++/CLR Pointers
	C++/CLR Keywords

	Visual Studio Forms and Controls
	Visual Studio Tools for Office
	Software Design

	Scenario Design
	Simulated Virtual Organization Scoring
	Results
	Science Portal
	Distributed Computing
	Computer-in-the-Loop Instrumentation
	Large-Scale Data Analysis
	Collaborative Work
	Deployment Environment Summary

	HLA/RTI Evaluation
	RTI and Experimentation Hardware Information
	Results
	Basic Federation and Federate Operation
	Event Management
	Synchronization Points
	Time Management

	CHAPTER FIVE: CONCLUSIONS
	K-Array N-Cube Design Conclusion
	CLL Algorithm Conclusion
	Grid Resource Protocol Conclusion
	Simulation Engine Conclusion
	Future Directions for this Work

	LIST OF REFERENCES

