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ABSTRACT 

 

Computer modeling and simulation is a practical way to design and test a system 

without actually having to build it.  Simulation has many benefits which apply to many 

different domains: it reduces costs creating different prototypes for mechanical engineers, 

increases the safety of chemical engineers exposed to dangerous chemicals, speeds up the 

time to model physical reactions, and trains soldiers to prepare for battle. 

The motivation behind this work is to build a common software framework that 

can be used to create new networking simulators on top of an HLA-based federation for 

distributed simulation.  The goals are to model and simulate networking architectures and 

protocols by developing a common underlying simulation infrastructure and to reduce the 

time a developer has to learn the semantics of message passing and time management to 

free more time for experimentation and data collection and reporting.   

This is accomplished by evolving the simulation engine through three different 

applications that model three different types of network protocols.  Computer networking 

is a good candidate for simulation because of the Internet’s rapid growth that has 

spawned off the need for new protocols and algorithms and the desire for a common 

infrastructure to model these protocols and algorithms.  One simulation, the 

3DInterconnect simulator, simulates data transmitting through a hardware k-array n-cube 

network interconnect.  Performance results show that k-array n-cube topologies can 

sustain higher traffic load than the currently used interconnects.  The second simulator, 

Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc wireless routing protocol 

that uses a data distribution methodology based on the GPS-QHRA routing protocol.  



 iv

CLL algorithm can realize a maximum of 45% power savings and maximum 25% 

reduced queuing delay compared to GPS-QHRA.  The third simulator simulates a grid 

resource discovery protocol for helping Virtual Organizations to find resource on a grid 

network to compute or store data on.  Results show that worst-case 99.43% of the 

discovery messages are able to find a resource provider to use for computation.  The 

simulation engine was then built to perform basic HLA operations.  Results show 

successful HLA functions including creating, joining, and resigning from a federation, 

time management, and event publication and subscription. 
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CHAPTER ONE: INTRODUCTION 

This work evolves a custom-built simulation engine through three different 

simulations; some of this work has already been used to publish conference papers and a 

journal paper.  One simulation, the 3DInterconnect simulator, simulates data transmitting 

through a hardware k-array n-cube network interconnect (defined on Page 1).  The 

second simulator, Cluster Leader Logic Algorithm Simulator, simulates an ad-hoc 

wireless routing protocol that uses a data distribution methodology based on the GPS-

QHRA routing protocol (defined on Page 3).  The third simulator simulates a grid 

resource discovery protocol (defined on Page 4).  The first two simulators have been 

loosely built with common software but with no compatibility to HLA or DIS or any 

other standard simulation architecture, however throughout each evolution of the 

simulation engine, the functionalities are improved and the third simulation has basic 

HLA operations (defined on Page 4). 

Introduction to K-Array N-Cube Networks  

There are many candidates in the area of interconnects that can be used to provide 

a communication link between processors and memories.  An interconnect is a 

conductive connection between two or more circuits on an integrated circuit or between 

components on a printed circuit board.  Networks such as k-array n-cubes include 

hypercubes, mesh and torus networks.  But the uniqueness of the interconnect 

architecture we seek is contained by the physical constraints characterizing the line card 

board.  Area and I/O pins are limited on the line card.  Hence, the number of alternative 

designs that can physically and functionally fit, given those constraints, is limited.  Each 
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embedded chip has fixed and limited number of I/O pins.  Therefore, a low-dimensional, 

packet-switched network may be a good solution. 

 

Figure 1 (a) 4 Array 3 Cube Interconnect  (b) 8 Array 2 Cube Interconnect 

Increasing line rates and deep packet processing operations place heavy strain on 

the memory bandwidth requirements between the line card network processing elements 

(PE) and memory modules (M) [25].  In order to support new services, line cards are 

required to perform multiple functions simultaneously.  Moreover, as the network 

expands, lookup table entries and parameters consume more memory space to store data.  

As a result, the memory bandwidth requirements, which are greatly limited by the 

interconnection mechanism used to communicate between PEs and memories, are raised.  

Although new router architectures and packet processing techniques improve the 

performance, they still cannot keep up with network capacity growth rates in order to 

avoid a major traffic bottleneck. 

In the heart of every line card there is a network processor unit (NPU) that 

performs multiple processes in order to analyze the flow of incoming packets.  The nature 

of packet processing requires frequent read/write operations to memories distributed 

around the NPU.  The simulator described in this work replicates the physical and 
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functional environments by imitating different configurations in which the PEs and 

memories are physically located on the line card.  The simulator generates random 

messages with explicitly random parameters such as source/destination addresses, size of 

messages, and arrival/departure times from PEs to memory modules and vice versa. 

Introduction to Clusterhead Routing 

Ad hoc networks, usually characterized as self-creating, self-organizing, and self-

administering, consist of wireless devices that communicate with each other directly or 

indirectly through multiple hops. Such multi-hop networks, also called peer-to-peer 

networks, play a critical role in places where there are no preexisting infrastructure or not 

economical to build; such operational aspect is ideal for disorganized or hostile mobile 

computing environments, law enforcement, and rescue operations. 

As various kinds of applications are supported over these networks, there is a 

need to address the quality of service (QoS) issues. QoS mainly pertains to delay and 

bandwidth guarantees. In order to improve QoS attributes, one can consider issues related 

to routing, medium access issues, mobility management, power management, and 

security [87]. As far as routing is concerned, there are many types of ad hoc routing 

protocols that have been proposed over the years [48]. 

A comprehensive survey of routing protocols for ad hoc networks can be found in 

[88]. Routing protocols have their advantages and disadvantages depending on the 

network characteristics and the objective of the network. These routing algorithms are 

distributed in nature; however, a clusterhead-based architecture helps in using some of 

the well-known centralized concepts that have demonstrated better performance. A 

clusterhead is one of the mobile nodes that assumes the responsibility of forming a cluster 
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(each consisting of a number of ordinary nodes) and managing the radio resources in that 

cluster. The fulcrum of cluster based routing protocols is the clusterleader (synonymous 

with clusterhead). The dynamic and distributed nature of cluster leader election is critical 

to support the networking hierarchy created by the clusterheads. 

Introduction to Grid Computing 

Computational grids have been emerging as a new paradigm for solving large 

complex problems over the recent years [59].  Instead of having one large computer 

working on a problem using all the data at the same time, grid computers "eat-the-

elephant" one bite at a time.  The problem space and data set is divided into smaller 

pieces which are processed in parallel over the grid network and reassembled upon 

completion. 

There are countless examples of how grid technology can be used for research, 

monitoring, reporting, data storage, modeling and simulation, or other tasks for land, sea, 

air, and space operations.  Examples include weather and oceanographic analysis and/or 

reporting, networks of real-time sensors, route planning, mission planning, Live Virtual 

Constructive (LVC) training and simulation, cryptology, and distributed automatic test 

equipment to name a few. 

Introduction to HLA, DIS, and the Simulation Engine 

Complex modern software simulation systems, such as constructive simulators 

used by the military [3][4][5][6][7], share common functionality governed by their 

infrastructure architecture and protocols.  This commonality allows them to pass 

messages back and forth in formats that the different simulators can interpret and 
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(depending on the infrastructure used) can synchronize time with each other.  Most of 

those simulators are designed to work with a variety of different infrastructures to 

accommodate different customers whom have funded functionality over time. 

For some older or legacy systems [3][7], the infrastructure was built to 

accommodate a particular customer.  As time marches on and new architectures become 

available or new requirements are imposed, it becomes too costly to change out the 

underlying infrastructure.  So, what is typically done is for the simulation to add a bridge 

or translator component that allows the old infrastructure to work with the new Figure 2.  

The bridge acts as a translator between the old and new infrastructure and protocols. 

 

 

 

 

 

Figure 2 Legacy Simulators Connected to New Simulators via a Bridge 

In order to find candidate simulation infrastructure architectures and designs to 

base a common software infrastructure on, a review of already existing simulation 

infrastructure was conducted.   

Two common simulation architectures, HLA (High Level Architecture) and DIS 

(Distributed Interactive Simulation), address many of the issues with simulation; 

however, they do not address all of the issues.  DIS has simpler concepts than HLA, 

however messages are transmitted unreliably resulting in dropped packets and time is 

managed in real time which means that it may be difficult for a simulator to keep up or it 

may be difficult or impossible to roll back time to a saved state.  HLA is fairly 
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sophisticated and has very advanced data and time management policies; but only one 

data model (or FOM (Federation Object Model)) can be used per simulation (or 

federation) and the process of bridging federations can be difficult when two or more 

FOMs should be shared among federations.  FOMs are discussed on page 52. 

The motivation behind this work is to build a common software framework that 

can be used to create new networking simulators for HLA-based federations.  The goal is 

to reduce the time a developer has to learn the semantics of message passing and time 

management.  This is accomplished by evolving the simulation engine through three 

different applications.  The simulation engine developed is a discrete-event event-driven 

simulation engine [74] meaning that state changes occur at time intervals that can occur 

at any time.  Also, the simulation engine is non-visual (no GUI), though it provides GUI 

helper functionality, and uses statistical generation. 

Computer networking is a good candidate for simulation because of the Internet’s 

rapid growth that has spawned off the need for new protocols and algorithms and the 

desire for a common simulator to model these protocols and algorithms [73].  The 

common simulator in [73], VINT, was built on top of ns-2 and nam [23] in a similar 

fashion how this work is built on HLA.  Unlike ns-2 however, this simulation engine will 

be built to work in a distributed environment. 

Main Contributions 

There are four main contributions for this work: 

• Show results that the k-array n-cube topologies can sustain higher traffic load than the 

currently used interconnects using wormhole routing. 
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• Show that the CLL algorithm can realize power savings and reduced queuing delay 

when compared to GPS-QHRA using cell fans. 

• Show results that the grid resource discovery protocol discovery messages are able to 

find resource providers to use for computation by scoring resource providers. 

• Show that the simulation engine evolved through the three simulators above has 

matured to the point of being HLA compatible. 
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CHAPTER TWO: BACKGROUND 

K-Array N-Cube Interconnect Background 

K-Array N-Cube Networks 

A k-array n-cube network consists of N = kn nodes, where n represents the 

dimension of the network and k represents the number of nodes in each dimension.  

Figure 1 presents 8-ary 2-cube and 4-ary 3-cube networks (as captured from the 

interconnect simulator introduced later.)  Each node in k-ary n-cube interconnect is 

uniquely labeled and elements of the same plane are connected together.  PEs and 

memories are distributed throughout the interconnect in different configurations and 

allow each PE to use multiple memories as storage as well as data sharing with other 

processing elements. 

Each node is connected to all of its nearest neighbors via bi-directional channels.  

The address/location of a node can be represented as a vector consists of two bit-vector 

fields [28].  Figure 3 represents the 3D-mesh interconnect architecture, which is based on 

a 2-ary 3-cube network, that is extended in the x-direction.  The 3D-mesh interconnect 

is a packet-based multiple path interconnect that allows network packets to be shared by 

different processing elements (PE) and memory modules (M) on the network line card.  

Memories are distributed around processing elements, such as traffic manager, QoS co-

processor or classification processor, to allow data sharing among modules and direct 

processor memory storage.  If a link goes down, not only should the fault be limited to 
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the link, the additional links from the intermediate nodes should ensure the connectivity 

continues. 

Communications 

Processors and memories communicate by using message-passing mechanisms.  Each 

message is transmitted independently. Each message is partitioned into smaller data 

segments, also called flits, which contain the maximum amount of data (in bits) that can 

be transmitted in one cycle from one node to another.  Each cycle another flit of the same 

message is transmitted.  Flits of the same message follow one another in a pipeline 

manner.  Therefore, a message is also referred to as a worm since the movement of the 

message within the interconnect resembles a worm movement. Virtual channels (VCs) 

allow worms to be stored within a node if all of the output ports of that node are busy 

transferring other messages.  This technique prevents worm transmission failures by 

holding a worm within a node until one of its ports becomes available. 
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Figure 3 3D Mesh Interconnect Architecture 

 

Figure 4 Four Sub-Channels Containing Four Worms Simultaneously 

Channels can change their configuration by dividing their width into two or four 

sub-channels Figure 4.  Sub-channeling (SC) permits worms to share the same channel 

simultaneously.  Although per-worm the channel has smaller capacity when sub-divided, 
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it provides worms with extra flexibility in routing through the interconnect instead of 

being buffered or retransmitted.  

The message passing algorithm adaptively routes worms according to three 

predefined guidelines and by incorporating interconnect traffic conditions.  The first 

guideline ensures that a worm will always attempt to take the shortest path possible to its 

destination.  If the required port is taken by the shortest path rule is occupied as a result 

of high traffic load, it will test the availability of other ports.  The second guideline 

utilizes past moves to determine the next node that a worm will take towards its 

destination and avoids certain consecutive moves to inhibit deadlock/livelock situations. 

The last guideline preserves the worm’s relative movement from its source node towards 

its destination; it will never reverse its direction towards its source.   

PEs and memories can be physically located in many different configurations 

depending on the number of PEs and memories required to complete packet processing 

tasks.  The location and ratio between the number of PEs to memory modules will 

determine the average distance that a message has to pass in order to reach destination.  

Average distance has a direct effect on the interconnect performance.  Intuitively, as 

network dimensions increase more configurations can be formed.   

One objective, which can be gained by utilizing a simulator, is to find the optimal 

value of k and n to achieve best performance. The optimal configuration depends on 

many design constraints as well, such as channel width/density, number of elements 

connected to the network, and cost.  In general, when node delays are neglected and 

constant bisection width is assumed, a network with lower dimensions has lower latency 

than higher dimensional networks [29]. 
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Simulating K-Array N-Cube Interconnects 

There are several discrete event network simulation and modeling tools available 

that contain some of the architectural features and functionalities that are incorporated in 

the model.  However, none of these simulation frameworks are capable of delivering the 

physical and functional attributes required to emulate offchip communications on line 

cards.  Consider three of these simulators, NS-2, Qualnet and OPNET, and the distinction 

between applications.  NS-2, Qualnet and OPNET are well-known network simulators 

currently used by universities and network design companies [30][31]. 

NS-2 is an object-oriented, discrete, event-driven network simulator developed at 

UC Berkeley, written in C++ and OTcl [23].  NS-2 is primarily useful for simulating 

local and wide area networks; and it supports simulation of TCP, UDP, routing, and 

multicast protocols over wired and wireless networks [32][33].   

The Qualnet is a real-time simulation framework, developed by Scalable Network 

Technologies (SNT), to emulate the communications of multiple network models [34]. 

Qualnet includes a rich 3D-visualization interface to provide the user with control over 

data packets, network topology and performance evaluation.  It supports wireless and ad 

hoc networks as well as parallel and distributed architectures [35]. In addition, it supports 

multiple routing protocols such as BGP, SIP, RIP, ARP, and BRP. Some related 

applications that can benefit by using this network simulator include: microwave 

technologies, high frequency radio communications or satellite communications. 

OPNET’s network modeling and simulation environment delivers a scalable simulation 

engine that can emulate wireless, point-to-point and multi-point network links. It has the 
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capability to support routing protocols such as voice, HTTP, TCP, IP, Ethernet, frame 

relay and more (Wu et al., 2001). Some of the application best 

suit for this simulator are mobile, cellular, ad hoc, wireless LAN, and satellite networks. 

The OPNET simulator allows the user to custom design traffic models since it supports 

finite state machines and object-oriented modeling (Chang, 1999). 

These network simulators are not designed to emulate off-chip communication 

environment required for our application based on the following differentiations: 

• Physical attributes: none of these simulators include specific PCB physical 

properties which have a great effect on the interconnect performance. Physical 

properties are crucial to meet the stringent area restrictions on line cards. 

• Applications: all three simulators fit better for LAN, AN, mobile and ad hoc 

communications, not small scale interconnects which require different routing 

algorithms and flow control mechanisms. The line card simulator must include 

message flow enhancement features such as virtual channels and sub-channeling. 

• Message control: our interconnect simulator provides control of how to deliver 

messages, perform statistics, gather data, route the packets through the network 

and run auto test cases. Furthermore, the user has more control of how to save and 

re-run data using the simulator options menus, rather than learning OTcl or 

Parsec. 

• Participants: while our simulator models communication among PEs and 

memories, the other simulators include other participants such as PCs, satellite  

communication, routers or other moving objects. 
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• Communication medium: most of communication mediums used in these 

simulators have different signal propagation characteristics and performance. Our 

off-chip interconnect model is a small scale network in which packets propagate 

from point-to-point via PCB buses no longer than 1 inch in length. 

Cluster Leader Logic Background 

Cluster Leader Election 

There are three cluster leader election protocols considered for background 

research to include Control Cluster Head (CCH) [50], Leader Election Algorithm [51], 

and Least Clusterhead Change (LCC) [52].  CCH and LCC are based on the DMAC 

(distributed mobility-adaptive clustering) algorithm.  DMAC causes clusterheads to 

change when either of these conditions is met: 

1. When two clusterheads come within range of each other. 

2. When a node becomes disconnected from the cluster. 

DMAC assumes that each node knows its own ID, weight, and role of all its 

neighbors.  In order for this to occur, clusterheads must periodically update their 

knowledge to other clusterheads.  LEA works in a slightly different manner. A new 

clusterhead is elected when the current clusterhead leaves an area. Clusterheads are 

organized into a spanning tree; elections can also occur when a clusterhead detects that 

the spanning tree needs to grow. The spanning tree technique is not used for CLL; 

however, CLL uses tables similar to LCC. 

The background knowledge of the algorithms presents two possible areas of 

improvement.  The first is to reduce or eliminate periodic updates of network statuses to 
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achieve the full picture of the network topology.  The second possible improvement 

would be to eliminate the need for clusterheads to know where each of the other 

clusterheads is located.  These improvements may be realized by using concepts from 

GPS-QHRA and CLL. 

Load Balancing Techniques 

Load balancing is an important issue in ad-hoc networks as it translates to end-to-

end performance.  Among other load balancing techniques, LBAR (Load-Balanced Ad-

Hoc Routing) [89] defined a metric called the degree of node activity which represents 

the load on a node. LBAR sends all the learned routes from the source to a destination 

node when sending messages. The destination node has the ability to pick the most cost 

effective route to send messages back. LBAR also uses a path maintenance technique to 

fix broken links and re-routes packets to other nodes when necessary. 

The CLL design for the distributed clustering algorithm is motivated by DMAC 

and LBAR. The intention is to reduce or eliminate periodic updates (or path maintenance 

as used in DMAC or LBAR) to maintain a view of the network topology. Also, there is a 

desire to eliminate the need for clusterheads to know where each of the other clusterheads 

is located (as used in DMAC). When designing CLL, information is not maintained about 

network connectivity which is beyond what a particular node needs to know about its 

immediate surrounding. This reduces the information exchange because routing 

information does not need to be passed between nodes. Also, when connectivity state is 

learned by a node, a path maintenance cycle is necessary to maintain and track this 

information. Depending how far the routes traverse and how fast the wireless nodes may 

be moving, this overhead could provide little benefit. Aside from the speed of a node, a 
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node may move to an area where the terrain prevents the strongest signal on the least-cost 

path after the cost is evaluated. CLL tries to emulate wired networking protocols where 

only the next hop information is known; however due to the more volatile nature of 

wireless networks, more factors other than just maintaining routing tables are considered 

and CLL is designed to compensate for these factors. 

Related Work on Clustering 

Several clustering algorithms and heuristics have been proposed for ad-hoc 

networks [90], [91], [92], [93]. Many existing solutions take into account various 

parameters of clusterhead suitability. However the most recognized ones are based on 

clusterhead selection which rely on random events such as node id assignment (as in the 

lowest id algorithm) and the degree of connectivity (as in the highest degree algorithm).  

The lowest id [94], [95] heuristic assigns a unique id to each node and chooses the 

node with the minimum id as a clusterhead. Thus, the ids of the neighbors of the 

clusterhead will be higher than that of the clusterhead.  

In highest degree [92], [96], each node broadcasts its id to the nodes that are 

within its transmission range. A node x is considered to be a neighbor of another node y 

if x lies within the transmission range of y. The node with maximum number of 

neighbors (i.e., maximum degree) is chosen as a clusterhead. If there is a tie, it is broken 

arbitrarily by the nodes’ ids. There are other clustering schemes that consider node and 

network parameters for deciding the nodes best suited to act as clusterheads.  

In the node weight heuristic [97], the nodes are assigned weights based on 

clusterhead suitability; the neighbor with highest weight wins. This scheme has 
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infrequent node updates but moderate computational overhead. Also, it is not optimized 

for system throughput and power control. 

Uniform leader election [98] is a scheme where a rotated binary tree is used. The 

non-uniform leader election and the oblivious leader election [99] algorithms are similar 

in nature; however, based only on a ternary tree and transmit slots respectively. Once 

again, node suitability is not taken into consideration in neither of the three schemes. The 

least cluster change (LCC) [100] scheme is based on lowest id or highest connectivity. 

Re-election is only initiated when a clusterhead moves into another cluster or when a 

node becomes separated from a cluster. This scheme reduces cluster re-association and 

increases stability, but is potentially unfair in terms of load distribution.  

The mobility-based adaptive clustering scheme is an event driven algorithm based 

on hybrid routing and node mobility [93]. Two parameters control path availability and 

effective capacity of path as well as cluster size. It is capable of multi-path transmission 

to increase capacity; however it has high computational complexity.  

In access-based clustering protocol [101] a node receiving a clusterhead 

declaration from its neighbor prior to declaring itself as a clusterhead becomes a member 

node. Access to control channel is based on time-division multiplexing with short 

execution time and incurs low control message overhead. However, clusterhead 

suitability is not considered. In linked cluster algorithm (LCA) [95], the entire band is 

divided into M sub-bands (epochs) and the algorithm is performed on each sub-band. The 

nodes are assumed to have precise synchronized clocks and the number of nodes are 

known priori.  
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The max-min D-clustering [102] scheme uses two consecutive broadcasts that are 

sent in N timeslots to each one-hop neighbor. The scheme is fault tolerant due to 

availability of multiple paths from gateway nodes; produces fewer clusterheads and is 

more stable than LCA. The weighted clustering algorithm (WCA) [91] is a weight-based 

distributed clustering algorithm takes into consideration the ideal degree, transmission 

power, mobility, and battery power of mobile nodes. A comprehensive comparative 

performance evaluation of various clustering protocols that help backbone formation in 

ad-hoc networks can be found in [103]. 

GPS-QHRA 

This work is motivated by GPS-Quorum Hybrid Routing Algorithm (GPS-

QHRA) [49].  GPS-QHRA is a routing protocol which uses the clusterhead election 

process. The routing protocol divides the two-dimensional area into grids and assumes 

that every mobile node is equipped with GPS capability.  A clusterhead, which is also 

called the Location Database Node (LDN), is identified within a grid. The LDN 

maintains two routing tables – an inter-zone routing table and an intra-zone routing table.  

GPS-QHRA establishes danger zones which give LDNs the ability to change 

clusterheads if the LDN starts to roam out of a grid. A comparison of proactive (table-

driven), reactive (on-demand), and hybrid protocols using geographical zoning and a 

combination of proactive and reactive routing techniques affirmed that by dividing the 

GPS-based ad-hoc network into statically allocated hexagonally cellular shaped regions 

(as opposed to rectangular regions), larger scaled topology networks could be created.  
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Figure 5 GPS-QHRA Terrain Projected onto 2D Hexagon Cells 

 
The partitioning of such a 2-dimension region is shown in Fig. 1 where the region 

of interest is divided into fixed sized fixed-location cells. Though nodes and clusterheads 

move, the cells do not move. The dark regions around the center of the hexagons are the 

safe zones. The lighter colored regions near the edges of a cell are the danger zones; 

when a clusterhead is in a danger zone, it may pass (described later) the clusterhead 

responsibility to another node and change its status to a regular node. These hexagonal 

regions are an integral part of the algorithm to sort nodes on the topography. The radius 

of these hexagons is estimated based on the transmission range of the nodes. 

Grid Computing Background 

State-of-the-art Grid Computing 

The grid computing discipline allows for the world’s largest computers to be 

created [106].  Grids enable resource sharing and aggregation of millions of 

computational resources over geographically distributed organizations and administrative 

domains.  Grid computing achieves three goals [62]:   

1. Resource Aggregation – group computers that are geographically distributed 

where it appears that there is a single computational system where resources are 

used as needed. 
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2. Data Sharing – allow data to be shared between grid resources in a trustworthy 

and secure fashion. 

3. Collaboration – allow different organizations to work together on or integrate 

projects. 

One example of a computational grid problem is a very large problem that can be 

broken up into pieces where the answers to each piece do not depend on each other.  Each 

piece can be sent out over a network to many computers to be solved.  As each piece is 

solved, it is collected by a server and assembled into a final solution when all pieces 

arrive. 

Consider a hypothetical example for naval military mission planning.  Suppose 

several friendly warships are to engage enemy warships.  Two sets of inputs are needed 

to complete the plan: sensor inputs and platform data.  Sensors provide data for friendly 

and enemy tracking, weather conditions which are needed for weapon systems 

calculations, oceanographic conditions are necessary for movement calculations, fuel 

sensors aid in calculating that there is enough fuel to complete the mission and return 

home, etc.  Platform data represents the expected properties of friendly and enemy ships 

which can include the total number of personnel, the munitions the ship can fire, the 

quantities of the munitions, the material the hull is made from, etc. 

The mission is planned by essentially “rolling the die” for each of these variables 

with different combinations of quantities or expected behaviors.  This type of problem is 

ideal for a grid because it can be broken into parts where each part represents a roll of the 

dice; once each set of circumstances is simulated, the results can return to a central 

location to be compared and reduced to a small set of answers or a single answer.  Also, 
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because of the communication medium having little spare bandwidth that the warships 

use, the ships can only afford to send a limited amount of data to start the planning. 

The process by which resources are discovered to plan a mission is unique to this 

proposal.  Typically, resources are logged into a resource broker that is somewhat aware 

of all of the participants available on the grid.  As noted in [60], the resource broker 

scheme can be a bottleneck because of the amount computational power and network 

bandwidth needed to maintain a fresh view of the grid.  Otherwise, the broker’s view of 

the grid is stale which could produce extra network traffic for work orders to be 

redirected to different providers.  [61] suggests a new concept of placing the load of 

managing the network on the network itself: inside of the network routing processor 

(NPU) and memory.   

Virtual Organizations 

There are several example models that show different configurations where this 

type of resource discovery would be useful.  Before the usage models are introduced, 

consider the concept of a virtual organization (VO) [62].  Virtual organizations are 

logical entities, usually with a limited lifetime that are dynamically created to solve a 

specific problem [106].  VO members negotiate the terms of resource sharing, 

membership management, security, and access control.  For instance, the VO may impose 

rules for resource sharing that include the amount of time a participant can use the grid, 

the sharing relationships among the participants, or the sensitivity of the data that 

participants can process or access.  VOs can be organized in many different fashions: for 

instance a corporation, school, charity, or project can act as a VO. 
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It is interesting to note revenue possibilities for having a grid infrastructure 

because membership to an alliance can be billed by a VO Host and/or the VO Host can 

collect royalties from the transactions delivered and computed on the VO’s grid.  By 

being a member of a VO, consumers are aware of the products, security, access, 

resources available, and protocols run by the VO. 

Scheduling 

One of the primary grid computing applications is to provision and distribute 

application codes to specific nodes [106].  One component of the grid computer 

architecture that performs this functionality is the scheduler.  Schedulers can allocate 

resource for a task and partition the tasks to execute in parallel.  A scheduler can be 

placed on a single machine or distributed throughout the network.  The scheduler may 

schedule resources based on their platform requirements.  It may reserve resources in 

advance, enforce and/or validates service level agreements, enforce resource turn-around 

policies, monitor job execution status, and reschedule events. 

Resource Brokers 

The resource broker pairs resources between the resource consumers and resource 

providers.  By knowing various attributes about the grid network, the resource broker can 

match tasks the best fitting resources.  Some factors a resource broker may consider are 

availability, hardware/software capabilities, bandwidth, and costs.  In order for the 

resource broker to make these types of decisions, it must be aware of job allocation, 

status management, and data distribution [106].  Middleware exists as part of the 



 23

GLOBUS project [65], called GRAM, which allows the resource broker to perform these 

services: resource allocation, process creation, monitoring, and management services. 

Grid Toolkits and Middleware 

PlanetLab 

PlanetLab [66] provides distributed resources on top of the Internet using the 

Globus Grid Infrastructure [65, 79, 80].  PlanetLab has two purposes: 

• Act as a test bed: 

– Gives researchers access to a large set of geographically distributed 

machines. 

– This is a realistic network that experiences congestion, failures, and 

diverse link behaviors (as opposed to just a simulation). 

– There is a potential for real client workloads. 

• Act as a deployment platform providing: 

– Researchers with a direct technology transfer path for popular new 

services. 

– Users with access to those services. 

PlanetLab includes a feature called the Virtual Machine Monitor (VMM).  One 

must install the PlanetLab software that downloads a VMM and installs it on the resource 

node.  This is done to add machines to the network and to make them available (which is 

technically called “slices” of available resources).  The VMM specifies the interface to 

which the services distributed over the testbed are written.  The VMM also provides strict 

security over the amount of memory, disk, bandwidth, and processing power is 
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allowable: with the appropriate password, one can log in as “root”; but even as root some 

privileges are denied. 

UNICORE 

UNICORE [9, 64] covers another interesting and applicable area of concern: 

resource agreements.  UNICORE-style resource agreement can be used to form and 

maintain VO agreements.  Using UNICORE as a base, an agreement is made from an 

agreement template that is converted into an agreement offer that then becomes an 

agreement instance.  This is achieved by an automatic factory service is what provides 

and allows access rights for the grid consumer.  This ideology appears fine, but 

UNICORE is not very clear on what services are available from the automatic factory 

service. 

Legion 

Legion applications use objects to represent processors, data systems, and file 

systems and construct a shared virtual workspace to collaborate and exchange 

information [106].  Legion is middleware that resides on the operating system and 

mediates resources between resource consumers and providers.  This allows users to 

create context spaces to use objects in distributed systems.  As objects are defined, they 

are managed by object metaclasses that have capabilities to create, destroy, activate, or 

deactivate class instances as well as provide information to client objects. 

Condor-G 
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Condor is a workload management system optimized for high throughput 

computing where tasks do not need to communicate with each other [106].  It provides 

task queuing, task scheduling and prioritization, and resource monitoring and 

managements functions.  Condor-G is implemented to work in concert with Globus’ 

GRAM service for inter-domain resource management while using its own software for 

intra-domain resource management.   

Grid Computing Constraints and Issues 

Despite the powerful benefits of grid computing as shown with SETI@Home[57] 

and Einstein@Home [58], the grid has not been formally deployed because of scalability 

and security concerns.  The goal is to design a grid resource discovery protocol to 

enhance scalability and to develop a simulation to model the grid network using these 

new developments built on a common software baseline that can be used to create other 

simulators. 

Typically, computational grid resources are logged into a resource broker [66][67] 

that is aware of the participants available on the grid.  The resource broker scheme can be 

a bottleneck because of the amount computational power and network bandwidth needed 

to maintain a fresh view of the grid.  Otherwise, if the view is not maintained, the 

broker’s view of the grid becomes stale which could produce extra network traffic for 

work orders to be redirected to different providers.  A new concept is suggested of 

placing the load of managing the network resource discovery on the network itself: inside 

of the network processor (NPU) that is employed on the line cards in routers.   

This imposes changes to the grid computing architecture as well as to the 

networking infrastructure.  The traditional role of the resource broker is greatly 
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simplified.  The grid resource discovery protocol finds resources by using a scoring 

mechanism; the resource broker only needs to determine a desired score of a task.  The 

role of the scheduler is changed as well.  The scheduler will less work to do for 

monitoring resources since the network routers will be doing that work as resource 

providers update them as they become available or consumed. 

Grid Deployment Environments 

In order to see how the resource discovery protocol fits in the real world, it helps 

to understand the environments that grids are deployed in [56].  These environments 

provide the scenario that the resource discovery protocol can be simulated in.  The 

differences between different environments lie in the application of the scenario, the type 

of deployment, and the security needed.  Five such environments are discussed in [68]: 

science portals, distributed computing, large-scale data analysis, computer-in-the-loop 

instrumentation, and collaborative work.  Each of these examples is discussed in detail in 

this section with a brief statement of how the resource discovery protocol can be used in 

this situation. 

Science Portals 

Science portals on the web can allow scientists to perform tasks on a grid without 

having to learn how to install or maintain the grid components necessary to run [68].  

This type of deployment for portals is known as thin deployment [69] that allows 

communication to occur using standard web browsers and HTML and DHTML. 

[67] highlights an example science portal called the astrophysical computing.  The 

goal of the resource discovery protocol characterized in this work is for the workload to 
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be possibly reduced or eliminated for two of the components identified in the 

astrophysical portal design: resource monitoring and resource management.  These 

components can be moved from the application server to the networking hardware 

infrastructure if the resource discovery protocol proves to be effective.  For this scenario, 

the discovery routing protocol could work as follows: 

1. A scientist logs onto a science portal and identify the task to be computed. 

2. The portal identifies the types of resources needed to perform the computation 

and sends a request message through the networking infrastructure, which uses 

the proposed resource discovery routing protocol. 

3. If resources are found, each resource sends a message to the portal via reverse 

path forwarding. 

4. The portal negotiates the connection between the resource and the scientist’s 

computer and computation thus begins. 

Distributed Computing 

Individual PCs can be combined via parallelization to provide substantial 

computational resources.  One such example of distributed computing is 

FightAIDS@Home that is part of the World Community Grid [70].  Individuals wishing 

to donate their idle computational clock cycles can have their PC’s run molecular 

analysis to help find drugs to fight HIV and AIDS.  To help FightAIDS@Home, one 

downloads an agent (pictured in Figure 6) which requests for drug molecule 

representations and models its effects on HIV or AIDS. 

The grid resource discovery protocol could help the server which doles out drug 

molecule models expedite its workload more efficiently.  Rather than waiting for pings 
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from available agents, the server could send the work order out over the network and the 

routers will deliver the drug molecule model to an appropriate resource.  Consider a 

resource running an agent that has available idle computational power and no molecule to 

model: 

1. The agent sends a resource availability message out through the grid network.   

2. The routers in the network record the resource availability as the message is 

forwarded. 

3. The server has a new drug molecule to model and sends the request through the 

network. 

4. The request is routed through the network and ends at an available resource. 

5. The resource agent contacts the drug molecule server, downloads the molecular 

model, and begins computation. 

 
Figure 6 FightAIDS@Home Execution Window 

To help FightAIDS@Home, download the agent shown in Figure 6.  When your 

computer becomes idle (for instance when your screen saver is on), the agent will 

download a drug molecule to model fighting HIV/AIDS and begin modeling it.   The 
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proposed resource discovery protocol can help this situation by allowing the molecule 

server to expedite requests without having to wait for pings from available agents. 

Large-Scale Data Analysis 

Computational grids provide the capability of acting as a large storage facility in 

addition to providing computational powerhouses.  Scientific problems exist which 

require petabytes (1,000,000 gigabytes) of data to be stored and processed throughout a 

grid network [71].  The grid resource discovery protocol can help with this scenario 

because it uses storage as one of the determining factors for tracking grid resource 

providers.  The discovery protocol would as follows in this scenario: 

1. A grid resource with s megabytes of storage space becomes available to the grid 

network.  A resource availability message is sent from the resource provider to the 

central archive that indicates the CPU speed, storage space s, and various other 

parameters. 

2. As the message hops from router to router in the archive, the parameters 

(including s) in the message are recorded in tables within the networking 

hardware. 

3. When the central archive is ready, it sends out a new work order through the grid 

network containing a tuple of search criteria: CPU speed and storage capacity. 

4. As the order hops through the networking hardware, the parameters are compared 

to the values in the resource tables to ensure that the CPU speed needed is met or 

exceeded and that the storage capacity needed is less than or equal to s. 

6. Eventually, the work order will arrive at a grid resource provider, the data will be 

downloaded, and the processing can begin. 
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Computer In-The-Loop Instrumentation 

There are scientific instruments that are used to collect streams of data which are 

archived and processed later to detect things of scientific value [6].  The processing can 

take a significant amount of time that may result in finding a brief period of information 

that is very useful to a scientist.  It would be more practical, for instance, for automated 

software to detect when useful information is about to be captured, process that 

information immediately and then highlight intermediate results to a scientist before the 

entire data set is collected.  The on-demand type of analysis can be conducted using a 

grid network.  The transaction would work like this: 

1. The instrumentation detects that an important event is about to occur.  A resource 

discovery message is sent out through the grid network for available resources. 

2. When the resources reply back to the instrumentation device, the device 

immediately sends work orders through the grid networking infrastructure. 

3. The data is sent to the grid resources for processing.  When the processing is 

complete, the instrumentation (or another computer) can receive the message and 

notify a scientist of an important observation as it is being monitored by 

instrumentation and processed in the grid. 

Collaborative Work 

When scientific results are collected and analyzed, scientists may want to 

collaborate to discuss results and offer suggestions.  This type of collaboration can be 

done in real time that demands high bandwidth, fast processing power, and access to 

stored results [68].  While one group of scientists review simulation results, other 
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scientists may be examining the data or similar data from different runs more closely or 

they may be running their own simulations to verify the results.  The resource discovery 

protocol proposed in this work suits this scenario as well since the distributed nature of 

the protocol does not allow for many scientists to simultaneously accessing the same 

resource broker while the resources are talking to it.  The discovery protocol would as 

follows in this scenario: 

1. A scientist wishes to validate a fellow’s work by running a similar analysis.  A 

resource availability message is sent from the resource provider to the central 

server that indicates the task to be run. 

2. As the order hops through the networking hardware, the message is routed to an 

available server. 

4. Eventually, the work order will arrive at a grid resource provider, the work order 

will be downloaded, and the processing can begin. 

Simulation Protocol Background 

Aggregate Level Simulation Protocol (ALSP) 

One example of a legacy simulation protocol is Aggregate Level Simulation 

Protocol (ALSP) [2] developed in 1992.  ALSP is an example of a protocol allowing 

Advanced Distributed Simulation (ADS): the integration of simulations to support 

training in a large parallel computing environment called a confederation.  This allowed 

the formal introduction of four important principles that ALSP borrowed from SIMNET 

[8]: dynamic configurability, geographic distribution, autonomous entities, and 

communication protocols.  ALSP also introduced new concepts, at the time, to include 



 32

simulation time management, data management, and architecture independence.  These 

features are described in Table 1. 

Simulators that participate in an ALSP confederation are called actors.  Actor 

simulation objects, or entities, go through a dynamic lifecycle from creation to removal 

during a simulation exercise.  Each entity has associated attributes or values belonging to 

it as defined in the confederation object model.  This is similar to an object in Object 

Oriented Design (OOD) [9].   

Table 1  
 
ALSP Architectural Features 

Architectural Feature Description 
Dynamic Configurability Allows simulators to arbitrarily join or leave a 

confederation. 
Geographic Distribution Simulators can exist anywhere around the world, but the 

terrain used is the same logical terrain. 
Autonomous Entities Each simulation controls its own resources (objects or 

entities.) 
Communication Protocols Information is passed from simulator to simulator using the 

same messaging protocol. 
Time Management Constructive simulators can operate outside of the normal 

wall-clock time experienced:  faster or slower than wall-
clock time.   

Data Management Maps the internal simulator state representation consistently 
at the confederation level. 

Architectural 
Independence 

By being architecturally independent, ALSP was designed 
to be non-obtrusive and easy to adapt. 

 

One distinguishing feature of ALSP from OOD is that different actors can own 

different ALSP attributes within the same entity object.  The process of owning an 

attribute in ALSP is called locking.  Objects are locked based on their registration or 

discovery.  An actor registers objects into the ACM by default in the locked state (or 

optionally in the unlocked state).  Another actor’s ACM discovers the object registry and 

puts the information in its local database.  Also, objects that are seen but not owned by 
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other actors are known as ghosts.  Interactions are the messages that are passed between 

actors when there is a change to an object and the ghost must reflect that change. 

The ALSP infrastructure is composed of four components: 

• The ALSP Common Module (ACM) 

o Performs time synchronization: synchronous (time-stepped) or 

asynchronous (next-event). 

o Manages objects. 

o Coordinates actors joining and leaving the confederation. 

o Filters out incoming messages that are not needed by the receiver. 

o Allows and enforces attribute ownership transferability. 

• The ALSP Broadcast Emulator (ABE) – provides message distribution 

capabilities in LAN and WAN environments. 

• The ALSP Control Terminal (ACT) – used to control confederation wide 

messages. 

• The Confederation Management Tool (CMT) – used to view various 

confederation parameters or statistics. 

Object management introduces the concept of filters.  The ACM database is 

composed of several data sets about object creations, object updates, and other object 

interests.  These can be used in conjunction with filters to prevent the actor from knowing 

certain interactions while allowing the actor to know other interactions.  Filters can be 

used to discriminate objects, attribute values or ranges, and/or geographic locations of the 

entities to notify the actor of only relevant data. 
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Data is passed from actor to actor via a text-based messaging scheme.  The 

semantics of the protocol are confederation dependent; so if a simulator is blindly 

transferred from one confederation to another, there is no guarantee that it will be able to 

successfully read or write understandable messages to or from other actors. 

Distributed Interactive Simulation (DIS) 

Distributed Interaction Simulation (DIS) was designed to be an infrastructure to 

build distributed simulations on [15].  DIS addresses application protocols, real-time 

communications, and exercise management and feedback.  Even though ALSP [2] and 

HLA [10] were spawned from Department of Defense interests, DIS is tightly coupled to 

military exercises where ALSP and HLA are looser and can be applied to other domains.  

Like ALSP [8], DIS has origins from SIMNET. 

DIS, functionally, is designed to achieve seven functional requirements [15]: 

1. Entity Information and Interactions.  An entity can be a vehicle, person, 

building, munition, or cloud.  All entities are enumerated based on their entity 

type as defined in the DIS spec [15]. 

2. Warfare.  Warfare involves firing and detonating munitions.   

3. Logistics.  Logistics messages are composed of supply (or resupply) and 

repair services to include medical repair. 

4. Radio Communications.  Sending entities define the details of the 

communications device and the data communicated; the receiving entity 

determines if the data can be received. 

5. Distributed Emission Generation.  Representation of lasers and active 

electromagnetic and acoustic emissions are essential in certain simulation 
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exercises. Emitting entities simulate their emitter and output real-time 

operational parameters. Each receiving entity is responsible for determining if 

the emission is detectable. [15] 

6. Management.  DIS management is divided into network management and 

simulation management.  The network manager analyzes performance, 

monitors load and network nodes and gateways, and helps with error 

recovery.  The simulation manager manages the simulation exercise which 

includes starting, stopping, and pausing the exercise, removing models from 

an exercise, and the collection and distribution of data within the exercise. 

7. Environment Information.  Different factors in the environment (terrain, 

weather, oceans/water, ambient illumination, engineering objects like bridges 

and buildings, and atmospheric conditions) make the simulation exercises 

more realistic.   

Application Protocols 

The main application protocol mechanism, which distinguishes DIS from HLA 

and ALSP, is the transfer of Protocol Data Units (PDU) [15][16].  PDUs are data 

messages sent between simulation applications on a network.  Messages are grouped into 

specialized domains called protocol families.  All PDU information is “hard-coded” into 

the DIS standard that guarantees that, in theory, any DIS application can work with any 

other DIS application. 

Simulations are generally responsible for controlling at least one entity in the 

simulation.  Also as an added responsibility, when the entity modeled performs an 

observable action, the simulation that controls the entity is responsible to send the 
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appropriate PDUs on the network to the applications.  The receiving simulations are 

responsible for tracking and monitoring these messages.  These observable actions or 

states are known as ground truth data.  The receiving simulation may take this ground 

truth data and change it to what its model thinks it sees (known as perceived truth.)  For 

instance, a radar simulator may be notified of a flying aircraft before it is supposed to 

display it to the operator (perhaps due to the limitation of the radar fan).  So, the operator 

does not perceive an aircraft until the simulator calculates that it is within range of the 

radar. 

Table 2  
 
An example PDU: Minefield Response NACK PDU 

Field Size in Bits Minefield Response NACK PDU 
Protocol Version—8-bit enumeration 
Exercise ID—8-bit unsigned integer 
PDU Type—8-bit enumeration 
Protocol Family—8-bit enumeration 
Timestamp—32-bit unsigned integer 
Length—16-bit unsigned integer 

96 PDU Header 

Padding—16 bits unused 
Site—16-bit unsigned integer 
Application—16-bit unsigned integer 

48 Minefield ID 

Entity—16-bit unsigned integer 
Site—16-bit unsigned integer 
Application—16-bit unsigned integer 

48 Requesting Entity ID 

Entity—16-bit unsigned integer 
8 Request ID 8-bit unsigned integer 
8 Number of Missing PDUs 8-bit unsigned integer 
8n Missing PDU Sequence 

Numbers 
8-bit unsigned integer 

The number of bits, type of data, and format of data is specified. 

When entity location PDUs are passed around the simulation, a standard view of 

the world is used which rotates just as the Earth does.  A right-handed geocentric 

coordinate system is used.  Geocentric means the origin of the (x, y, z) axes is that the 
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center of the Earth [17].  The positive x-axis passes through the Prime Meridian at the 

Equator, the positive y-axis passes through the Equator 90 degrees east of the Prime 

Meridian, and the positive z-axis passes through the North Pole.  One unit of 

measurement in this system is equal to 1 meter in the simulation.  An entity’s location is 

based on its center of its bounded volume and excludes extremities.  When firing 

munitions, the location of the weapon and type of munitions (at a minimum) are 

communicated. 

Real-Time Communications 

DIS promotes ad-hoc networking by not requiring any computer to control the 

simulation [15].  Thus, simulation applications can join or leave the DIS exercise at any 

time (from a technical perspective).  The simulations are responsible for knowing the 

state of the entities in an exercise.   

In an attempt to reduce the amount of data on a DIS network, an algorithm known 

as dead reckoning [15] is used to limit the amount of positional (or “Here I am!”) 

messages on the wire.  One technique of achieving this is to send an entities orientation 

and speed (or its velocity vector) with its initial location.  Receiving simulations can then 

estimate, or dead reckon, the course the entity would take over time.  When the entity 

changes speed or direction, if the entity moves past a particular threshold, or on occasion, 

the controlling simulator will send out a new PDU indicating the new location, speed, and 

orientation of the entity. 

 

There are a couple of caveats worth mentioning about dead reckoning.  For most 

military ground objects, dead reckoning is an appropriate algorithm.  However, for “fast-
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movers” such as airplanes, jets, and especially missiles, the dead reckoning calculation is 

not as effective as when it is used for ground entities.  By the time the next positional 

update PDU is generated, the missile has most likely hit its target and the airplane or jet 

has moved so fast that the dead reckoning algorithm may not be of much value.  Also, 

each simulation may use different parameters or formulas when calculating dead 

reckoning.  So, one simulation may show an entity in a particular location where another 

simulation might show the same entity in a different location.  This could produce an 

issue, for example, where if a bomb goes off in the first location, one simulation may 

perceive the entity as alive whereas the other simulation may perceive the entity as 

destroyed. 

There are other ways of optimizing communications in DIS.  These can include 

data compression, simulations filtering out data, putting different simulations on different 

multicast subnets, and sending only changes to PDUs rather than entire PDU updates. 

Time Management 

DIS communications are real-time (as defined by the Universal Coordinated Time 

(UTC)) and an exercise can commence during a simulation time.  So, the UTC real-time 

is the present time, but a simulated time could be two years ago.  PDUs can be time-

stamped to indicate the time when the PDU is valid.  Also, DIS has the concept of a 

heartbeat when all entities are refreshed periodically.  This allows DIS simulations that 

leave and re-enter an exercise the opportunity to catch-up to what has been going on 

since the simulator left.  Also, DIS traffic is unreliable, so if a message was dropped due 

to network congestion, the heartbeat allows a mechanism to resend this data. 
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Exercise Management and Feedback 

Simulation management functions can be divided into exercise management and 

data management [15][18].  Both entities and exercises can be initialized, started, or 

stopped by the simulation manager and entities can be paused, reconstituted, or removed.  

When entities are created, an acknowledgement message is sent to affirm the creation.  A 

Set Data PDU can be issued to change parameters of an entity. 

Entities are allowed to have three states [15]:  

• Simulation state - when the entity is being simulated. 

• Wait state – when an entity is removed. 

• Stopped or Frozen state – when the entity is not simulating and can be started 

at any time. 

Feedback is provided to the simulation management through several mechanisms 

to include the Event Reporting PDU.  Also, data can be requested by using the Data 

Query PDU.  A simulator can monitor this traffic and display it to a simulation manager 

as appropriate or it can record this information for retrieval or playback at a later time. 

High Level Architecture (HLA) 

Signed into effect October 2005, the U.S. Department of Defense created their 

Modeling and Simulation Master Plan [11].  Among other things, the plan calls for all 

DoD models and simulations to conform to HLA (High Level Architecture.)  HLA, as 

outlined by the plan, serves many purposes: 

• Facilitate interoperability. 

• Encourage reuse. 
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• Make no specification about the internal structures of simulation. 

• Provide the Runtime Infrastructure (RTI) Services that allow models and 

simulations to participate in an HLA simulation. 

• Use the Object Model Template (OMT) that describes the entities and interactions 

in an HLA simulation. 

Thus, HLA was officially born and work began creating federation rules, an interface 

specification, and the OMT [10].  The federation rules help to define the proper 

interactions between simulations and describe each simulation’s responsibilities.  The 

interface specification defines the RTI services and identifies callback functions each 

federate must provide.  The OMT provides a common way for simulations to share data 

by creating the Federation Object Model (FOM), Simulation Object Model (SOM), and 

Management Object Model (MOM). 

Federation Rules 

HLA definitely has similarities to ALSP [2]: ALSP has a confederation with 

actors, a confederation object model, and objects and interactions; HLA has a federation 

with federates, a federation object model, and objects and interactions.  The federation 

rules differ between ALSP and HLA and HLA is more specific in some instances than 

ALSP with federation rules.  Also, ALSP was an architecture and an implementation 

where HLA is an architecture and the RTI is the implementation; the two were 

completely split apart.  There are ten basic rules of HLA as defined in [10] and the next 

section. 
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Run-Time Infrastructure (RTI) 

The Run-Time Infrastructure (RTI) is the implementation of HLA [10].  As 

outlined in the DoD M&S Master Plan [11], the RTI encourages interoperability and 

distributed computing.  One of the primary concepts behind the RTI is that it separates 

simulation from communication: the federates simulate, the RTI encapsulates federate-to-

federate communications.  Main functionalities of the RTI are discussed below: 

improvements from DIS and ALSP, the lifecycle of a federation, object declaration and 

management, time management, and sync points and federation commands. 

The RTI Software 

The RTI software is composed of the RTI Executive Process (RtiExec), the 

Federation Executive Process (FedExec), and the libRTI library.  The RtiExec manages 

the creation of a FedExec process within a single network.    The libRTI library provides 

the HLA services to the federate.  Any model that desires to become a federate must 

include the RTI header files, call the appropriate functions to act as a federate, and link to 

the libRTI library.   

The RTI can execute on a single computer, on a LAN, or on a distributed complex 

network.  The RtiExec process is started on a computer; when the first federate creates a 

federation, the RtiExec process forks off a FedExec process on its same computer.  The 

FedExec process manages federates entering and leaving the federation. 

When a federate initializes their local instance of the RTI, the libRTI creates the 

Local RTI Component (LRC).  The mechanism by which the LRC knows how to 

communicate to the RtiExec is through settings in the RID file which indicate the IP 
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address of the computer hosting the RtiExec process.  When a connection is successfully 

established, the federate can start sending and receiving objects and interactions and 

perform all other HLA functionalities. 

Table 3  
 
HLA Federation and Federate Rules 

Federation Rules Federate Rules 
Federations shall have an HLA Federation 
Object Model (FOM), documented in 
accordance with the HLA OMT. 

Federates shall have an HLA Simulation 
Object Model (SOM), documented in 
accordance with the HLA OMT. 

In a federation, all representation of objects 
in the FOM shall be in the federates, not in 
the RTI. 

Federates shall be able to update and/or 
reflect any attributes of objects in their 
SOM and send and/or receive SOM object 
interactions externally, as specified in their 
SOM. 

During a federation execution, all exchange 
of FOM data among federates shall occur 
via the RTI. 

Federates shall be able to transfer and/or 
accept ownership of an attribute 
dynamically during a federation execution, 
as specified in their SOM. 

During a federation execution, federates 
shall interact with the RTI in accordance 
with the HLA Interface Specification. 

Federates shall be able to vary the 
conditions under which they provide 
updates of attributes of objects, as specified 
in their SOM. 

During a federation execution, an attribute 
of an instance of an object shall be owned 
by only one federate at any given time. 

Federates shall be able to manage local 
time in a way that will allow them to 
coordinate data exchange with other 
members of a federation. 

 

 

Figure 7 Federate Outbound RTIambassador and Inbound FederateAmbassador 
Architecture 
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The libRTI library contains the RTIambassador class which gives access to all of 

the functions defined to provide HLA services.  Federates receive callbacks and 

information through the FederateAmbassador abstract class either synchronously or 

asynchronously.  Shown inFigure 7, the federate cannot access the LRC or network 

directly.  All calls are made into the RTIambassador by the federate. 

Improvements from DIS and ALSP 

There are several improvements of the RTI over DIS and ALSP:   

• The simulation is separate from the communications.  This means that minimal 

changes are needed to a federate as the RTI changes.  In DIS, the communication 

mechanisms are generally wide open.  This also allows for sophisticated 

communications models that can be shared among different federations. 

• The RTI is information independent and the RTI saves no state and message 

passing is generally consistent from federation to federation.  DIS heavily relies 

on predefined PDUs.  ALSP has data formats that differ from confederation to 

confederation.   

• The RTI dynamically handles FOM data as the FOM is read in during federation 

creation.  In DIS, the PDUs are actually part of the IEEE spec.  So, changing the 

default PDUs officially requires an act of IEEE. 

• The RTI handles synchronous and asynchronous time models as well as 

connected and connectionless modes.  With the connected mode, synchronous 

time management is possible as well as creating federations that manage the 

joining and resigning of federates.  Connectionless mode enables ad-hoc joining 
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and resigning and asynchronous without requiring RtiExec or FedExec processes 

(thus the RTI has the ability to back-support DIS in an HLA style).  There is no 

realistic way to run an HLA federation using a DIS backbone. 

• The RTI introduced the MOM which allows federates to know the internal status 

of the RTI and the federation at any time.  Also, the federation can be controlled 

through MOM interactions. 

• RTI messages are passed as binary data where ALSP passes data as human 

readable strings.  This allows a greater variety of data types and increases their 

accuracy. 

The Lifecycle of a Federation 

Each HLA federate maintains a similar lifecycle as pictured in Figure 8.  The 

federate attempts to create a federation and then joins it either if it was created 

successfully or was already created.  Then, the federate declares what objects and 

interactions it is capable of publishing.  Objects are created and registered, and then the 

federate subscribes to the objects it wishes to know about.  A discovery is received for 

each object in the federation.  Messages are sent and received and object updates are 

received.  Optionally, the federate may choose to exchange attribute ownership with other 

federates.  Eventually, some objects will be deleted.  When the federate is ready to retire, 

it resigns from the federation and tries to destroy it.  If there are other federates in the 

federation, the RTI will not allow the FedExec to be destroyed. 

 

Object Declaration and Management 
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As outlined in Figure 8, federates can publish (send) and subscribe to (receive) 

object creation and updates and interactions.  If a federate does not subscribe to any data, 

it will not receive any data.  Publication and subscription requests can be modified at any 

time during the simulation.  So, for instance, if a federate has a GUI window open which 

pertains to monitoring vehicle locations, the federate can subscribe to the vehicle location 

updates.  However, if the GUI window is closed, then the federate can unsubscribe from 

the vehicle updates since they are no longer visible to the user; this could improve the 

performance of this particular federate and the network traffic. 

Objects are the things being simulated; interactions represent the events that 

happen between these objects.  Objects have attributes and federates subscribe and 

publish the individual attributes of each object.  Interactions have parameters and either a 

federate subscribes to or publishes an entire interaction; the federate cannot just subscribe 

or publish a particular interaction parameter.  Objects persist throughout the game (unless 

removed) whereas interactions only occur once when sent.  Both interactions and 

attribute updates can be time stamped. 

Creating and updating objects are two separate tasks when using the RTI.  The procedure 

of creating an object is called object registration ( 

Figure 10).  Once the object is registered, it can be updated (Figure 11).  Interactions, on 

the other hand, are just sent (Figure 9).  Further details regarding the function calls and 

code examples are in [10]. 
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Figure 8 A Typical Federate Lifecycle 

 
 

 

 

 

Figure 9 RTI Methods to Send and Receive an Interaction 

 
 
 
 
 
 
 
 
 
 

 

Figure 10 Object Creation and Deletion Sequence Diagram 
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sendInteraction() 
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deleteObjectInstance() 
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Figure 11 Updating an Object’s Attributes 

Time Management 

There are several time management policies available from the RTI [10] as 

described in Table 4.  Time management with the RTI can work cooperatively with other 

federates in a simulation or there can be no time management at all.  Different federates 

in the same federation can have different time management policies.  By default, the RTI 

does not have a time policy, but time always moves forward. 

Table 4  
 
RTI Federate Four Time Management Options 

 Not Time Regulating Time Regulating 

Not Time Constrained Default setting.  The RTI 
does not manage this 
federate’s time. 

This federate can control 
the advancement of time for 
federates that are time 
constrained. 

Time Constrained This federate is controlled 
by federates that are time 
regulating. 

This federate can control 
the advancement of time 
and be affected by other 
federates that are time 
regulating. 

 

When time management is enabled, the time advances are designed to make sure 

that object updates and events are delivered in an ordered fashion.  It is possible for 

different federates to have a different current time.  If a federate can hold the clock, then 

it is a time regulating federate and the appropriate RTI call is made to set the federate as 

Federate 1 RTI 

updateAttributeValues() 
reflectAttributeValues() 

Federate 2 
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time regulating.  When time regulating federates hold or advance time, the RTI can 

throttle federates to either pause or process when time constraining is enabled by a 

federate.  Note that the status of regulating or constraining can be changed at any time 

during a federate’s lifetime. 

To apply a timely delivery of an interaction or object updates, these orders must 

be time-stamped to alert the RTI that these messages are time sensitive.  Time 

constrained federates receive their events in time-stamp order.  Time-stamped messages 

must be sent from a time regulating federate at a time equal time its current time plus the 

lookahead value which is greater than or equal to zero (note that zero is a special case).   

At the time a federate becomes time regulating, it specifies the lookahead value 

for the RTI and the federate to use.  TSO events do not have to be generated in order; but 

they must be greater than current time plus lookahead.  When the time regulating federate 

posts time-stamped messages, the messages are placed in a Time-Stamped Ordered 

Queue (TSO Queue).  Time constrained federates receive the TSO events in order; non-

time constrained federates receive the event but not in any guaranteed order and absent of 

the time-stamp information.  These events are considered receive-ordered (RO) events 

and are placed in a FIFO RO queue.  The fact at which a message can be placed in a TSO 

queue is identified in the FED file (discussed in the OMT section) when a message’s time 

management policy is marked as “timestamp” (as opposed to “receive”). 

The lowest time for a message that a federate can receive is the Lower Bound 

Time-Stamp (LBTS).   The LBTS calculations consider the earliest possible time that any 

of the federates can send a message [10].  So, this value is continuously being updated as 
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each time regulating federate progresses through time.  A federate can never advance its 

internal clock past the LBTS. 

All federates, regardless if they are time constrained or not, ask the RTI (the LRC) 

for a time grant.  Unconstrained federates will immediately receive a time grant.  Time 

constrained federates, however, will wait for the RTI to grant them permission; when 

permission is granted, the RTI will notify the federate what time to advance to (thus 

preventing them from exceeding their LBTS).  Interestingly, if a federate joins late into a 

federation with time regulating and constrained federates, the federate will be granted a 

time where it cannot send events in the past. 

Time advancement requests can be one of three ways which can be changed 

during any time during the execution of a federation: time-step, event-based, or 

optimistic.  Time-step federates process all events within the window of current time plus 

the time step.  When a federate calls timeAdvanceRequest() (TAR) or 

timeAdvanceRequestAvailable(), the federate is then allowed to receive messages in the 

RO queue and messages from the TSO queue less than or equal to the time requested 

from the TSO queue.  When all eligible TSO events are received, the federate receives a 

timeAdvanceGrant() (TAG) callback from the LRC with the time requested from the 

TAR. 

Event-based simulations would call the nextEventRequest() (NER) or 

nextEventRequestAvailable() function (NERA) similar to the TAR.  The reason for using 

event-based time requests is that the sending of events is dependent on the time of receipt 

of a previous event.  Likewise when using TAR, a TAG is received equal to the minimum 
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event time in the TSO queue or the NER or NERA when all possible TSO messages with 

time equal to the minimum next event time have been received. 

Optimistic federates can actually process events ahead of the LBTS in the future.  

Thus, the federate wants to receive all events regardless of their time-stamp.  Federates 

enact this by calling the flushQueueRequest() function.  Similarly, once all messages 

flagged for delivery are de-queued, a TAG is given of the time requested from the 

flushQueueRequest() call.  Optimistic messages are received out of order; so the 

possibility exists for a new event occurring before an event already received could 

invalidate previous messages.  Thus, the invalid message has to be retracted through 

retraction services provided by the RTI. 

An RTI mechanism, rather than an HLA mechanism, of ticking time is required 

by the RTI in order to receive events.  Since the RTI is multi-threaded, the tick() method 

notifies the RTI that it can do internal processing so the LRC.  Failing to tick() the RTI 

could cause a federation wide deadlock condition.  Note that a call to tick() does not 

advance the federation time, it allows the RTI to process data. 

Sync Points and Federation Commands 

The RTI also allows for additional functionalities such as sync points and the 

federation wide saving and restoring of data [10].  Since there are varying time 

advancement policies, it may be necessary to have the federates synchronize at a 

particular point in time before continuing on through time.  To synchronize a federation, 

the caller needs to provide a string label to the registerFederationSynchronizationPoint() 

function call in Figure 12. 
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The RTI also has the ability for a federation wide save or restore capability.  The 

save feature is requested by a federate, all federates save their local state to local files.  

Then, the LRC, RtiExec, and FedExec processes save their data as appropriate.  Once all 

saves are complete, then the federation continues its normal processing.  Each federation 

save is essentially a snapshot of the federation at a particular time.   

 
 

 

 

 

 

 

Figure 12 Announcing and Achieving a Synchronization Point 

The RTI supports two types of restore methodologies: cold and warm (or hot) 

restore.  For a cold restore, the federation is brought up in a minimal state, then the 

federate state is restored from a previous save file.  When all federates and the federation 

have restored, the simulation continues on from the time it left off.  A warm restore 

happens when a simulation is running and a restore occurs when the simulation is not 

starting from scratch.  Thus, each federate must appropriately clean up all of its memory, 

data, and open file handles and sockets before attempting to restore from a previous save 

file.  When the federates and federation have restored their states, the federation 

essentially jumps to the time of the saved federation. 

Federate 1 RTI Federate 2
registerFederationSynchronizationPoint() 
synchronizationPointRegistrationSucceeded() 
announceSynchronizationPoint() announceSynchronizationPoint() 
synchronizationPointAchieved() 

synchronizationPointAchieved() 

federationSynchronized() federationSynchronized() 
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Object Model Template (OMT) and the Federation Object Model (FOM) 

The Object Model Template (OMT) provides the common framework for object 

and interaction documentation and interoperability, and encourages reuse of objects [14].  

These objects and interactions are described as managed by a federate and what is visible 

outside of that federate.  Data definitions fall into three areas of the OMT: the FOM, the 

SOM, and the MOM. 

The FOM is described in several different files at different levels of detail: the 

FED file, the omd file, and the omt file.  For HLA 1.3 [10] the fed file has a custom 

format but in the most recent HLA version IEEE 1516 [12], the FOM is in an XML 

format.  The RTI uses the FED (Federation Execution Data) file which is really a subset 

of the FOM, the other files are products of a tool called OMDT Pro [13].  The omd and 

omt files contain additional data (such as FOM item descriptions) which some federates 

may find useful.  The SOM is a federate’s local copy of the FOM with additional items 

(if desired) that are included within the federate only and not shared in the federation. 

The MOM provides simulation management data by fields specified in the FOM.  

Though the RTI is technically FOM independent, if the MOM is present in the FOM 

(which it should always be), then the RTI can provide useful information such as: 

• Federates in a federation. 

• Current time. 

• Federates status of time constraining and time regulating. 

• Save and restore features. 

• The pacing rate if set and other time and LBTS calculation information. 

• The ability to turn advisories on or off. 
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• The ability to resign a federate. 

Distributed Interactive Simulation (DIS) Revisited 

Modern adaptations of DIS actually make DIS more like HLA.  One such spec, 

the GRIM RPR (Guidance, Rationale, and Interoperability Modalities Real-time Platform 

Reference) [1], is based on DIS where the DIS PDUs are placed into a RPR (pronounced 

reaper) FOM.  Using the RTI [10], which has connectionless features (unreliable 

message delivery) and time unconstrained and non-regulation, DIS has an improved 

networking backbone than the traditional way of sending messages in DIS by 

broadcasting.  Also, depending on the implementation of the RTI, the MOM can still 

provide useful federation and federate data in the connectionless mode.  By using the 

RTI, this also means that other HLA federates or tools can participate in a DIS exercise. 
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CHAPTER THREE: METHODOLOGY 

To this point, background research has been presented in the following areas: 

• Computer Networking  

• K-Array N-Cube Interconnects 

• Clusterhead Leader Logic Algorithm 

• Grid Computing 

• Simulation Protocols 

Computer Networking 

The proposed research covers an understanding of different computer networking 

systems and protocols.  All of the areas of simulation incorporate knowledge from 

computer networking.  For the k-array n-cube interconnects, wormhole routing is used to 

route packets through the hardware interconnect.  The CLL algorithm requires knowledge 

of wireless ad-hoc networks and the GPS-QHRA protocol.  HLA involve applications of 

networking and an understanding of nuances of distributed computing such as routing 

and multicasting, and load balancing.  Grid computing also requires knowledge of 

distributed computing, and in the case of the proposed research, the OSI network model 

and routing protocols. 

K-Array N-Cube Interconnect Design 

The objective for the k-array n-cube networks work is to find which k-array n-

cube based interconnect architecture can be the best candidate to replace existing line 

card communication mechanisms, such as shared-bus or crossbars.  Both shared-bus and 
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the crossbar cannot scale well as the number of modules (PEs or memories) connected to 

it increases.  In addition, the shared-bus requires a distributed arbitration mechanism, as 

the number of modules connected to it grows, thus, adding latency and space to the 

overall system.  Pin constraints bound the bus size that can be interfaced with the NPU 

[26]. 

Hence, only a packet-based network-on-board can provide the required 

performance improvement between the NPU and off-chip memory modules.  The work 

entails creating a simulation model that includes statistical data such as IP length 

distribution [27] and physical measures of PCB placement and spacing, as well as 

network properties such as IP packet size, in order to increase the accuracy of 

calculations. In addition, true IP network properties such as switching, propagation and 

routing latencies are applied. The simulator must provide real time performance analysis 

with detailed metrics on packets processed at each simulation cycle and overall detailed 

results at the end of each simulation.  

The Simulation Architecture 

The simulator architecture, shown in Figure 13, depicts the interconnect 

interaction with the control modules which adjust, collect and modify the interconnect 

settings, data flow, and performance metrics.  These attributes are built in the 

functionalities of the modules.  The simulator configuration manager sets the interconnect 

type, its properties (wire propagation delay, switching delay or routing delay) and 

enable/disable enhanced features such as channel width, VC on/off, and bi-directional 

channel. 
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The interconnect properties are set by the user interface and are recorded to allow 

the configuration manager to be updated via the worm manager.  The worm manager 

utilizes interconnect properties and configuration parameters in order to set other 

modules accordingly in the system that participate in the simulation. The traffic sampler 

continuously records performance data such as throughput, latency, routing accuracy, 

interconnect bandwidth utilization and interconnect resources utilization. This 

information is fed back to the worm manager that adjusts worm generation rate and load 

balances the traffic.  The routing algorithm receives each individual worm location and 

its destination node from the worm manager.  Then, it determines the shortest route 

possible for each worm by avoiding spots of heavy traffic. 

The worm jar is a storage module that contains worms.  In the simulator there are 

two instances of the worm jar: one jar is for worms waiting to enter the interconnect and 

the other jar contains worms that are processed. The total number of worms during 

simulation are initially determined by the user.  The scheduler is responsible to inject 

worms into the interconnect taking into account the total network capacity and traffic 

load.  Since the worm manager knows the total number of worms that are modeled 

throughout the simulation, it must inform the scheduler at the end of the simulation when 

there are no more worms to model. 
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Figure 13 The K-Array N-Cube Simulator Architecture 

The simulator accounts for all practical parameters characterizing off-chip 

interconnect architectures such as switching delays (Ts), routing delays (Tr) and 

propagation delays (Tw) as well as the complete functionality of each system components 

(nodes, links, PE/Memory, interfaces, virtual channels, and channel partitioning) [36].  

The user has the option to change each of these parameters in case new technology 

introduces higher standards.  Simulation time is based on a unit cycle that equals one 

clock cycle (Tw + Tr).  All other delays are calculated as multiples of it; that provides the 

advantage of having single uniform simulation clock. 
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Message size in bytes and message generation-time are obtained by using pseudo-

random number generator, which is utilized to resemble the randomness of packet 

transmission by both processors and memories.  Each worm is linked to performance-

bookkeeping function which records its latency, throughput, simulation cycles, failures, 

and route-taken from the moment the worm enters the interconnect until it completely 

reaches its destination.  Comprehensive performance results are provided at the end of 

each simulation in a comma separated value spreadsheet. 

The Simulation Modeling Approach 

The high-level design of the simulator is comprised of four sets of C++ classes 

(Figure 14) supporting: the interconnect topology and configuration (Interconnect), the 

user interface (User Interface), the worm controller and administrator (WormManager), 

and worm structure and characteristics class (Worm). The worm contains a header field 

and data payload. 

The Interconnect class represents the physical structure and includes all the 

hardware required to implement it.  The properties represent two types of parameters: 

physical parameters of electrical components comprising the interconnect (such as wire 

delays, switching delays, routing delays), and parameters of additional features that 

enhance the interconnect performance (for example, channel partitioning, virtual 

channels, interconnect configuration).  The simulator models the interconnect 

functionality in order to evaluate and compare different configurations and settings. 
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Figure 14 Major Class Relationships with Each Other and the User 

Interconnect layout, of VCs and SC for example, affect worm routing flexibility 

and resources it can use while propagating through the interconnect.  The Port class 

contains VCs and SCs which are modeled as logical topologies on top of the physical 

network architecture.  VCs as well as SCs have a great effect on the worms transmission 

success/failure rates and deadlock/livelock avoidance.  Although VCs improve routing 

accuracy and reduce worm transmission failure rate, they also increase the worm latency 

and interconnect implementation costs.  The WormManager class records worm data, 

arrival and departure time stamps of worms, and controls the worm generation rate in 

order to load balance the number of worms processed simultaneously within the 

interconnect. The Worm class encapsulates the properties of a worm such as the header 

with source/destination fields and the route that the worm takes through the interconnect.  

The worm routes itself through the interconnect while continuously being monitored by 

the worm manager.  The adaptive routing algorithm is used by the worm to determine 

Interface
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the best available path that it can take to reach destination.  The routing algorithm is 

derived and based on [37], [38], and [39].  The worm updates its shortest path coordinates 

with each movement to ensure its optimal path even when it is required to take a detour 

as a result of hot-spot node.  Figure 15 shows a UML class diagram of the interconnect 

architecture [40][41].  A single type of interconnect is a set of faces which each contain 

multiple nodes.  Within each node there are six ports.  A node can be modeled as either a 

memory or a PE; in this case the node still possess the same structure and functionality as 

any node, but it reserves one port as an I/O port to the device.   

 

Figure 15 UML Class Diagram of the Interconnect 

The simulation setup shown in Figure 16 is an abstract view of the high level 

system components and their interactions in order to initialize, execute, and complete the 

simulation.  First, the user sets the simulation properties.  These properties are crucial for 

worm generation, timing delays, and other simulation aspects.  Then, the messages 
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(worms) are created and are placed in a data structure (the Jar class).  Since the 

interconnect configurations can be changed, PE and memory locations will be changed 

accordingly.  Therefore, source/destination addresses must be correctly set before the 

worms can be generated.   

 

Figure 16 Process for Running the Simulator 

The simulation properties are configured and the WormManager creates all of the 

worms needed and puts them in a jar.  Then, when the simulation begins, the worms are 

picked up from the jar and are placed in the interconnect to route their way through.  

When the worms are complete, the WormManager places them in the worms modeled jar 

and then computes the modeling data. 

When the user chooses to run the simulation, the properties and the data of the 

worms in the jar are recorded in separate files.  The interconnect receives worms from the 

jar of generated worms according to a configurable probability called worm generation 

rate (GR).  In addition, the user can determine the maximum number of worms that can 

occupy the interconnect at any one given time by changing the value of the 

MAX_WORMS_IN_INTERCONNECT variable (MWII).  If no value is set for this 
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variable, the default value is unlimited number of worms.  The worms that enter the 

interconnect are modeled until they reach their destination.   

All runtime worm data is collected in a separate output file that provides 

individual details about each worm. After the complete simulation is modeled, several 

spreadsheet files are generated recording the performance of the simulation. 

Software Algorithms 

Figure 17 portrays a dynamic model (action oriented) of the routing algorithm 

class and its subclasses with interconnect system components and the WormManager 

class.  This model depicts the actions performed by the routing algorithm in order to 

maneuver each worm within the interconnect with respect to its current position, its 

destination and traffic conditions [42].  The routing algorithm is coupled with the worm 

manager since the worm manager controls worms entering and leaving the interconnect 

while the routing algorithm controls the worms within the interconnect.   

First, the routing algorithm analyzes the source node type (where the worm is 

generated) and the enabled interconnect features such as virtual channels, bi-directional 

channels and PE–M configuration.  Then, it checks the preferred (shortest path) direction 

in which the worm needs to move.  The routing algorithm scans each node’s port and 

dictates the movement of the worm giving priority to ports that are pointing in direction 

towards its destination.  If none of the ports are available, the routing algorithm will 

check the availability of virtual channels.  If enabled, the worm will be queued into one 

of the virtual channels until one of the ports clears.  If virtual channels are not available 

then the routing algorithm notifies the worm manager of a worm routing failure.  This 
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will result in a retransmission of the same worm but statistics are kept to identify the 

failure. 

 

Figure 17 Dynamic Model of the Routing Algorithm Used 

Figure 18 depicts a data flow diagram (DFD) of the user interface module.  DFD 

charts assisted in determining what to automate in the simulator design and which data 

must be inputted exclusively by the user [42][43]. The user has two choices: using default 

settings or changing settings/properties in order to simulate the interconnect with 

different configuration. Once the interconnect type and configuration are defined, the 

user must complete the following steps before the simulation execution: 

• Select if new worms will be generated or worms should be restored from an 

existing file. 

• Determine the number of worms to simulate. 

• Decide if worms are generated randomly or manually. 
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• Input the number of sampled throughput points (include the initial sampling point 

and the number of simulation cycles between samples). 

• Select if the newly generated worms will be saved or not. 

 

Figure 18 Data Flow Diagram of the Steps the Used to Start the Simulation. 
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Cluster Leader Logic Algorithm Design 

This work proposes a new clustering algorithm for GPS-based mobile ad-hoc 

networks that takes into consideration the direction of the overall traffic flow in the 

network.  The proposed cluster leader logic (CLL) algorithm is motivated by the GPS 

quorum hybrid routing algorithm (QHRA) where clusterheads react to changing data 

flow patterns of the network to provide better load balancing throughout the network 

using a new concept called cell fanning. 

There are several key concepts used in the CLL algorithm which were built from 

GPS-QHRA which are summarized here: 

 Dividing the area into cellular regions 

 Establishing danger zones 

 Maintaining inter-cell and intra-cell tables 

 Assuming that nodes have GPS capabilities 

Assumptions 

In order for the CLL algorithm to work, some assumptions are made.  As 

mentioned previously, all nodes must have positioning (GPS) capabilities that provide 

position information and clock synchronization.  This is essential for a node to know 

which hexagonal grid it is located in. Also, this allows the CLL algorithm to measure 

where and how data traffic is changing. The accuracy of the positioning resolution is not 

so important for the sake of describing the algorithm; though the accuracy of the 

resolution affects the performance of the algorithm. 
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An important distinction from GPS-QHRA is the assumption that the cell sizes 

are at most one half of the distance of the transmission range between two adjacent nodes 

minus the width of the danger zone of a cell: ½ * largest_two_adjacent_node_distance – 

danger_zone_width.  See Figure 19.  This way, worst case, a clusterhead that is farthest 

away from the neighboring clusterhead can still communicate with that clusterhead. If 

cell sizes are smaller than the transmission range, then the algorithm will still work but 

the performance will degrade. This extra padding will allow for either fast moving nodes 

or instances when the cell zones are very small. 

 

 
 
 
 
 
 
 
 

Figure 19 Danger Zone Width and Clusterhead Transmission Range 

In Figure 19, Node 1 is the clusterhead for cell A and Node 2 is the clusterhead 

for cell B.  The Danger Zone (DZ) width is shown for reference.  This is a worst-case 

circumstance where the clusterheads are at farthest points in the danger zone - almost 

touching the next cell’s safe zone.  The diameter for any give cell should be at least 1/2 * 

distance12 – DZ_width. 

In addition to the cell size distinction, it is assumed that the messages transmit 

from an omni-directional antenna.  A directional antenna could possibly provide some 

improvements [13]; but this work only focuses on free space omni-directional 

transmissions.  An important assumption is that the routing algorithms or transport 
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mechanisms used do not directly affect cluster leader election.  For instance, the routing 

can be IP based, Geocasted [9], or routed from cell to cell.  One assumption is that the 

clusterheads talk to other nodes or clusterheads in a single thread of execution.  Also, it is 

assumed that subordinate nodes talk to clusterheads and clusterheads talk to other 

clusterheads and subordinate nodes. The final assumption is that all nodes have been pre-

initialized to know the cell topology and their node identifiers. 

CLL Algorithm High Level Design 

Before the details of the algorithm are discussed, it is important to understand the 

high level workings which surround the algorithm.  The following figures give a context 

for the algorithm and the underlying mechanisms which make the algorithm work.  Some 

aspects are taken for granted and are not covered (like routing needs) because this does 

not affect CLL.   

 

 

 

 

Figure 20 The Cluster Leader Election Algorithm Initialization Sequence 

From a high level perspective, a designated master node initializes the network 

and nodes, loops until the nodes are ready to shutdown, then shuts down the simulator 

and logs statistics.  First, in Figure 20, the initialization pseudo code is executed.  If a 

void initialize() 
{ 
Nodes are turned on or enabled and clocks are synchronized 
Establish static cellular grid regions with danger zones  
All nodes are numbered 
Initial clusterheads are elected // For example using lowest id 
or highest degree of connectivity 
Wait for synchronized start signal // Nodes continuously listen 
when started 

} 
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node is a clusterhead, then the code performs as pictured in Figure 21.  Otherwise, if the 

node is a subordinate node, then the code performs as depicted in Figure 22. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21 The Cluster Leader High Level Design State Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 The Subordinate Node High Level Design State Diagram 

As a clusterhead, communication with the subordinate nodes is performed and 

CLL truth values are gathered (more on this later).  The clusterhead checks to see if it is 

entering a danger zone; if so, then it must hand-off its clusterhead responsibilities, if 

necessary, and join or form a new cluster in the new cell.  If the clusterhead is not in the 

danger zone, it tries to determine if it is starving for data or if it must acquire a new 

Communicate with 
Subordinate Nodes 

Communicate with 
Other Clusterheads 

Maintain CLL Truth 
Tables 

Check to see if 
entering danger zone

Check for starvation 
or join messages 

Determine if this 
clusterhead is 
overwhelmed 

Create New 
Clusterhead 

Become Subordinate 
Node 

Start 

Perform normal node 
processing 

Make sure 
clusterhead 

communications are 
in tact  

Check to see if 
entering danger zone

Communicate with 
clusterhead 

Become Clusterhead Join Different 
Clusterhead 

Determine if 
becoming a 
clusterhead 

Start 



 69

subordinate node.  If it is starving, then it joins another clusterhead and negotiates its 

subordinate nodes to that clusterhead.  Otherwise, if the clusterhead is overwhelmed, the 

final step is to determine if it should split its duties with a new clusterhead based on the 

CLL truth values it perceives. 

As a subordinate node, the node begins by performing normal tasks.  Routinely, 

clusterhead communications are checked.  If communications are bad or if designated, 

then it can join a new clusterhead or become one.  Similar to the clusterhead algorithm, 

the subordinate node checks to see if it is in a danger zone.  If not, then it communicates 

with the clusterhead.  The clusterhead will let its subordinate know if it should become a 

clusterhead. 

Algorithm Detailed Design 

Up to this point, the high level simulator design was described to show how the 

algorithm can fit in the context of clusterhead networks.  In order to understand the 

algorithm detail design, the variables and data structures are first explained and then the 

algorithm is introduced. 

Messages 

In order to establish, transfer, or decommission clusterheads, there are several 

messages which communicate essential parameters which are outlined in Table 5.  The 

ClusterheadElectionAck and ClusterheadJoinAck messages contain an acknowledgement 

Boolean flag where acknowledge is true and decline is false.  The TruthValuesAck 

message itself is an acknowledgement; so receiving this message constitutes the 

acknowledgement. 
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Table 5  
 
Messages Used in the CLL Algorithm 

Message Type Message Description 
RequestClustheadChange A clusterhead sends this message when it determines that 

either an additional clusterhead is needed in a cell or another 
node needs to take its place in the cell.  The message is sent 
to a specific node that the clusterhead finds to be a suitable 
clusterhead candidate. 

ClusterheadElectionAck A node sends this message back to the originating clusterhead 
when it accepts or rejects becoming a clusterhead leader. 

JoinClusterhead A node sends this message to neighboring clusterheads when 
it needs to join another clusterhead.  This could be from a 
circumstance when a clusterhead has no subordinate nodes. 

ClusterheadJoinAck Either a clusterhead sends this message to a node indicating 
that it can or cannot support this node as a subordinate node 
or a node sends this to a clusterhead acknowledging that it 
accepts or denies joining its cluster. 

TransferTruthValues A clusterhead send this message to a node to notify it of its 
truth-telling data traffic behavior. 

TruthValuesAck A node sends this message acknowledging receipt of a 
TransferTruthValues message. 

Variables 

There are several static constant variables that are configured prior to initialization 

of the network for the CLL algorithm.  The idea of making these variables static for 

distributed computing means that each node has a copy of the same values.  Also, making 

a variable constant means that the value of the variable cannot change.   

Most important for the CLL algorithm are the variables that represent the truth 

weights.  These variables are neither static nor constant.  The CLL algorithm has 

persistent truth weights, PTWeightDir and GTWeightDir, and temporary weights, 

PTTransmissionFreqDir and GTTransmissionFreqDir.  
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Table 6  
 
CLL Constants 

Simulation Constants Description 
MaxClusterheadsPerCell Data distribution is based on a divide-and-conquer 

approach.  This variable controls when the CLL 
algorithm can divide a cell between multiple 
clusterheads and how many divisions can occur per 
cell. 

ClusterheadDivisionTruthThreshold Indicates the threshold of the number of effective 
subordinate nodes a clusterhead can maintain. 

PTTimeout Perceived table entries do not persist forever.  This 
variable controls the limit when a PTWeight value 
becomes stale and when the weights are updated 
with the latest traffic information. 

GTTimeout This variable helps control when a GTWeight 
value is updated with the latest traffic updates. 

GTWeighingFactor Designates how important to make the weighing 
calculations for determining subordinate node 
transmission factors. 

PTWeighingFactor Designates how important to make the weighing 
calculations for determining neighboring cell 
transmission factors. 

StartingWeight Designates what value the weights should start at. 
PurgeWeightsWhenCHSplit Has a true or false value.  When clusterheads (CH) 

split, this determines if truth weights should be 
transferred to the new clusterhead or if the weights 
should be purged instead of being transferred. 

 

Ground truth represents accurate knowledge that a clusterhead has about traffic 

density in its current cell and the transmissions that start from or end at its cell; perceived 

truth represents the clusterhead's best guess at what the traffic looks like in cells 

surrounding it based on transmissions that are hopped through its cell.  Knowledge of 

traffic density is used to weigh whether or not a clusterhead should split its load with a 

new clusterhead, become a subordinate node to another clusterhead, or maintain its status 
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as a clusterhead.  The next section on data flow tables walks through a ground/perceived 

truth example and explains how the values are used and differ from each other. 

Table 7  
 
CLL Simulation Variables 

Simulation Variables Description 
PTWeightDir A positive real number on a scale of 1 to 100.  This is the 

perceived truth (PT) weighing factor and it is initialized to 
StartingWeight.  A clusterhead has independent PTWeight 
variables, one for each neighboring cell.  As messages are 
forwarded from one cell to another, the weight is adjusted using 
an exponential mean average.   

GTWeightDir A positive real number representing a ground truth (GT) 
weighing factor, from 1 to 100, initialized to StartingWeight.  A 
clusterhead has independent GTWeight variables, one for each 
neighboring cell and one for its cell.  As messages are 
transmitted to or received from subordinate nodes, the weight is 
adjusted using an exponential mean average. 

GTTransmissionFreqDir The temporary number of ground truth transmissions which 
sets purged each time an EffectiveNodeCountGT calculation is 
done.  Each node has a transmission frequency for each 
direction capable of transmitting to. 

GTTransmissionFreqDir The temporary number of perceived truth transmissions which 
gets purged each time an EffectiveNodeCountPT calculation is 
done.  Each node has a transmission frequency for each 
direction capable of transmitting to. 

 

Note that both the PTWeightDir and GTWeightDir variables are adjusted using an 

exponential mean average (EMA) [53] shown in Equation 3 (ground truth exponential 

mean average equation) and Equation 4 (percieved truth exponential mean average 

equation).  Note that Equation 1 has the alpha value used in the GT EMA equation and 

Equation 2 has the alpha value used in the PT EMA equation.  The EMA was chosen 

because brief spikes in network traffic influence the result as little as possible; the EMA 

lags behind the actual trend and prevents over-reacting.  Also, since the timeouts which 

clear the tables are constantly occurring, it helps to balance the symmetry between 
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increasing and decreasing the weight values; this also helps for the weights to converge if 

traffic stabilizes. 

( )GTTimeoutGT +
=

1
2α                                      (Equation 1)  

( )PTTimeoutPT +
=

1
2α                                      (Equation 2) 

FreqEMAEMAGT GTiGTi ∗+−= − αα 1)1(_                        (Equation 3) 

FreqEMAEMAPT PTiPTi ∗+−= − αα 1)1(_                        (Equation 4) 

 

Each GTWeightDir and PTWeightDir has an independent EMA allocated for it.  As 

mentioned earlier, there is one weight for each of the six directions and the weight of the 

intra-zone messages direction is used as the seventh GTWeightDir.  The frequency of 

message transmissions or receptions in Equation 5 (ground truth message frequency) is 

the summation of transmissions in a particular direction based on the CLL tables.  For 

instance, GTFreqUP = 4 if the ground truth table has four entries for data flowing up.  See 

Equation 5 for calculating ground truth frequencies and Equation 6 (perceived truth 

message frequency) for calculating perceived truth frequencies.  Please note that the 

frequencies help determine how often messages travel in a particular direction (not to be 

confused with transmission tuning frequencies). 
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Values are also based on truth: ground or perceived truth.  Thus, α for ground 

truth will use GTTimeout and α for perceived truth will use PTTimeout.  As the timeout 

value increases, more stress is placed on older values compared to newer values. 

Data Flow Tables 

Each clusterhead maintains two data flow tables for network characteristics.  Both 

tables have the same column headings, but the tables themselves have two different 

purposes and are populated and unpopulated using different heuristics.  The table format 

is specified in Table 8. 

Table 8  
 
CLL Ground Truth and Perceived Truth Table Format 

Time Traffic Direction Destination Id 
Time of message 
forwarding or receipt 

Up, Down, Up-Left, Up-Right, Down-Left, 
Down-Right, and Intra-cell (GT Only) 

Destination 
node id 

Note that the time recorded is either the time the message is forwarded or when the 
destination node receives the message. 

 
The first column of Table 8 designates the time either that a message is forwarded 

or the time the message is received at the last hop.  The second column is the direction 

that the message is traveling.  There is no need to record intra-zone transmissions or 

receptions for perceived truth because perceived truth only applies to messages hopping 

through a cell.  The final column is the destination node id.  Please note that the bit-width 

and ranges of the destination node ids, time, and other variables is implementation 

dependent.  The simulation created used unsigned long values for destination node id and 

time with a range of [0, UNSIGNED_LONG_MAX]. 
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There are two instances of table maintained for CLL by each node: a ground truth 

table and a perceived truth table.  Both tables count any type of message including 

messages that are retransmitted due to failure.  The ground truth table represents two 

types of factual transmissions:  

• Messages that emanated from a clusterhead's subordinate nodes or the 

clusterhead. 

• Messages received by a cell's clusterhead for either itself or a subordinate node.   

The perceived truth table represents communications that are forwarded on behalf 

of a clusterhead's cell to another cell.  The purpose of recording perceived truth data 

applies to data flowing to or from neighboring cells only.  Thus, an individual node can 

estimate traffic load in other directions, but these estimations are not factual because 

there could be transmission occuring that a neighboring node may not know about. 

The perceived truth tables can vary very differently from the ground truth data 

flow tables.  This is the key for the CLL algorithm: there is no desire to have ground truth 

global knowledge of the entire network data flow.  Each clusterhead only cares about the 

transmission characteristics through its cell and around its cell.  It is hypothesized that 

having ground truth knowledge of the entire network could actually degrade data flow 

performance of the CLL algorithm. 

Figure 23 shows two simultaneous message transmissions starting at time 1: one 

from node 1 to node 2, the other from node 3 to node 4.  White circles represent 

subordinate nodes and dark circles represent clusterheads.  These nodes are mobile, so 

the clusterheads are free to move about their cells as long as they stay within the danger 

zone of their respective cell.  Assuming the data flow tables are empty before 
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transmission, the clusterheads in cells {A, D, E} modify their ground truth tables.  

Clusterheads in cells {B, C} modify their perceived truth tables.  Three example table 

entries are shown in Table 9, Table 10, and Table 11.  Since clusterhead 7 is forwarding 

the message from cell A to cell D, it perceives the terminating cell to be cell C even 

though the transmission is through cell C to clusterhead 8.  As a reminder, the 

clusterheads may be mobile and they may not be centrally located in a cell.  Clusterheads 

on the periphery fall into the danger zone and will become subordinate nodes if another 

clusterhead is around for it to join with. 

A B
C

DE

1

23

4

5
6

7

8

9
 

Figure 23 Two Simultaneous Message Transmissions; Nodes are Numbered Circles.   

 

Table 9  
 
Clusterhead 7’s Ground Truth Table Entry 

Time Traffic Direction Destination Id 
1 Down-Right 2 

Based on the communications in Figure 23. 

Table 10  
 
Clusterhead 5’s Perceived Truth Table Entry 

Time Traffic Direction Destination Id 
2 Down-Right 2 

Based on the communications in Figure 23.   
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Table 11  
 
Clusterhead 9’s Ground Truth Table Entry 

Time Traffic Direction Destination Id 
1 Intra-Cell 4 

Based on the message flow in Figure 23. 

 

Dark circles are clusterheads, white circles are subordinate nodes.  Dark arrows 

represent clusterhead-node transmissions, light arrows represent node-to-node forwarded 

transmissions.  One message travels from cell A to cell D, the other message starts and 

ends in cell E.  Clusterheads in cells {A, D, E} modify ground truth data flow tables.  

Clusterheads in cells {B, C} modify perceived truth data flow tables.  Since the 

clusterhead is forwarding the message from cell A to cell D, it perceives the terminating 

cell to be cell C even though the transmission going to node 2 through cell C. 

Load Balancing and Algorithm Execution 

Now consider how CLL truth data is used to achieve load balancing.  The CLL 

algorithm is composed of three separate functions: initialize(), updateTables(), and 

process().  The initialize() function Figure 24, called in the high level design initialize 

function, sets up the internal variables needed for the CLL algorithm and sets timers for 

the values of GTTimeout and PTTimeout.  The updateTables() function (Figure 25) will 

update the GT or PT tables with a new row of information.  The information includes 

data gathered about whether a clusterhead has transmitted any information and whether 

the transmission affects perceived or ground truth. 
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void initialize() 
{ 
    setInitialGTTimeout();
    setInitialPTTimeout();
}  

Figure 24 The CLL initialize() Function Sets the Initial GT and PT Timers 

void updateTables() 
{ 
    if (isForwardedMessage())
    { 
        updatePTTable(); 
    } 
    else 
    { 
        updateGTTable(); 
    } 
}  

Figure 25 The CLL updateTables() Function 

 
The process() function takes the updated data and adjusts the weight values for 

the clusterhead depending on whether a GT or PT timeout has been received.  The 

process() function also purges stale PT data before weights are adjusted.  Most important, 

the process() function calculates effective node counts and splits a clusterhead if 

necessary. 

In order to determine when to create a new clusterhead, the algorithm calculates 

the EffectiveNodeCount.  This counts subordinate nodes that transmit and receive data 

based on their weights and adds the perceived truth weights based on their weights as 

well.  This value is then compared to the ClusterheadDivisionActivationLevel and a 

clusterhead will split its load when this value is exceeded.   
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Figure 26 The CLL process() Function is Called when Timeouts Occur 

When each weight is adjusted according to Equations 3 and 4, the data flow tables 

are evaluated by summing the frequencies for each direction as shown in Equations 5 and 

6.  The EffectiveNodeCount is calculated in Equation 7 that is based on Equation 8 

(ground truth EffectiveNodeCount) plus Equation 9 (perceived truth 

EffectiveNodeCount). 

EffectiveNodeCount = EffectiveNodeCountGT  + EffectiveNodeCountPT    (Equation 7) 
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void process() 
{ 
    if (isGTTimeout()) 
    { 
        adjustGTWeights(); 
    } 
    else 
    { 
        purgeOldPTEntries(current_time – pt_timer_length); 
        adjustPTWeights(); 
    } 
 
    if (getEffectiveNodeCount() > ClusterheadDivisionActivationLevel and  
        NumClusterheadsInCell < MaxClusterheadsPerCell) 
    { 
        createNewClusterhead(); 
    } 
 
    resetTimer() 
} 
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As a reminder, the variables in these formulas are described in Table 6 and Table 

7.  GTWeightDir and PTWeightDir vary between 1 and 100; they are multiplied by 0.01 to 

make this value a percentage.  The ground truth transmission frequencies in Formula 7 

represent all of the frequencies recorded for a particular cell if 

PurgeWeightsWhenCHSplit is false.  If PurgeWeightsWhenCHSplit is true, then each 

time a clusterhead splits, the ground truth value is erased; this option prevents over-

reacting to sudden data flow changes.  Also, it contains the growth of the tables to 

consuming too much memory.   

The perceived truth transmission frequencies account for transmission frequencies 

since the last PTTimeout occurred.  If no messages were hopped in this cell, then 

EffectiveNodeCountPT is zero. 

Cell Fanning 

A new concept called cell fanning is introduced for the clusterheads.  For 

traditional cellular architectures, techniques like cell sectoring and cell splitting [54] can 

be used to transmit signals directionally or limit signal transmission for different 

frequencies. Since, for this study, no assumption is made about directional antennas or 

multi-frequency transmission capabilities, cell sectoring and cell splitting techniques are 

not considered. However, it would be useful to assign directions of responsibility for 

clusterheads within a cell to share the workload fairly.   
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Cell fanning allows a clusterhead to split its workload with another clusterhead in 

its cell which prevents the original clusterhead from becoming overloaded and the new 

clusterhead becoming starved for data transmissions.  This is achieved by designating, via 

round-robin mechanism, which clusterhead will forward messages to other cells within a 

fan-out pattern.  Collocated clusterheads within one cell can share the transmissions to 

other cells by transmitting data to their designated set of adjacent cells. 

Due to the cell distance constraints, all clusterheads within one cell distance 

should hear a message that needs to be forwarded. Only one receiving clusterhead in a 

cell will forward the message however.  This receiver-side filtering is determined by the 

cell fans that the sending clusterhead is assigned.  In other words, the receiving 

clusterhead determines if the message is for its cell and either processes it or drops it if it 

is meant for another clusterhead. 

Considering Figure 27.  When there was one clusterhead (dark circle) in the 

center cell, its cell fan set included cells in all directions. However, when the load was 

high for one clusterhead, the clusterhead split its duties with another subordinate node. 

The numbers in the adjacent cells represent the EffectiveNodeCount of those cells. When 

the clusterhead splits its duties, it fans in a round-robin fashion based on the frequencies 

of the numbers of transmissions in descending order.  The result is shown where one 

clusterhead will filter data transmission to the bottom left cell fan and the other 

clusterhead will filter data transmission to the top right cell fan. 

For example, if a clusterhead has the cell fan set (‘up’, ‘up-right’, ‘down’) and the 

clusterhead receives a message which is destined upward according to the routing 

algorithm used, then this clusterhead will relay the message to the clusterhead in the cell 
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above it because ‘up’ is in the cell fan set. If, however, the same clusterhead receives a 

message destined for ‘down-right’, then the clusterhead does not relay the message. Note 

the term not relaying is not the same as a packet being dropped. Not relaying a message 

implies another node collocated in the same cell should relay the message. Dropping a 

message means that a message was not able to reach its destination. 

Figure 27 Cell Fanning Example – Before (Left) and After (Right) 

 
Even though the clusterhead in the previous example forwarded the message 

‘upward’, all clusterheads in all adjacent directions may hear the message if omni-

directional antennas are used. However, only the ’upward’ adjacent clusterheads will 

react to the message; the other clusterheads will filter out the message. 

Grid Resource Discovery Protocol Design 

The additional focus of this work is to create an ad-hoc grid resource discovery 

protocol.  This protocol will find computing resources on the Internet without the need 

for dedicated servers to track existing clients on the Internet.  In the real world, this can 

be implemented inside of custom networking hardware or programmable networking 

hardware by introducing a new protocol layer on the OSI network stack just above the 
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network layer [24].  The hardware would maintain resource tables that can help make 

efficient use of the grid computing resources.  Since it is not feasible to create and deploy 

this hardware over the Internet to create of grid computing network of thousands of 

computers, there is a need to build a simulator to model this environment to test the 

feasibility of the algorithm and to find the best parameters for the algorithm to operate 

within. 

Although it is feasible that this simulation can be built using NS-2 [23], since the 

K-Array N-Cube simulator has been built from the ground up and the CLL Simulator has 

shared some parts of that simulator, there is motivation to create a simulation architecture 

based on the previous work done.  Both of the previous simulators also model network 

traffic.  This work can be done in a fashion where a simulation engine can be built which 

other simulators can be built from in the future.  Unlike NS-2, this simulation engine 

could be more generic to simulate other non-networking related models. 

Protocol Design 

This section details the protocol design that considers the lifecycle of the resource 

providers, the events exchanged over the network, the structure of the data tables used 

inside the routers, and the technique used for scoring resource providers.  Also, the 

responsibilities are reviewed for the resource provider, the router, and the VO host to 

include a description of how data tables are modified and the conditions needed to send 

events.   
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Lifecycle 

There are five phases involved in the lifetime of a grid resource provider: 

subscription, advertisement, transaction, sign-off, and retirement.  See Figure 28 for a 

lifecycle view of the different phases.  Before the subscription phase, the resource 

provider acquired software from the VO (introduced on page 21).  During the 

subscription phase, the resource provider is subscribed to the VO’s list of resource 

providers.  During this transaction, an account is setup that includes ways for the VO to 

track the trustworthiness of the resource provider.   

 

1 2 4 

3 

5 

 

Figure 28 The Lifecycle of a Grid Resource Provider has Five Phases: 1) Subscription, 2) 
Advertisement, 3) Transaction, 4) Sign-off, and 5) Retirement 

The second phase, advertisement, is when the grid resources advertise their 

availability to the grid.  Information sent to the grid includes any statistical information 

necessary for the grid to facilitate tasks.  The information includes the following fields: 

• VO Memberships (The VO would track the software packages) 

• Number of CPUs 

• Available CPU Speed 

• Available Memory/Disk 

• Network Connection Speed 
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The transaction, the third phase, is when the actual task is delivered to, computed 

on, and published from the resource providers.  For the sign-off phase, the grid is notified 

that the resource is unavailable for an unknown period of time.  This differs from the 

retirement phase because when the resource retires, it may never rejoin the network 

again.  Resources can either retire because they want or need to base on their own 

assessment or they can retire because their trustworthiness rating is poor and the VO 

kicks them off of the network. 

Event Header 

Table 12  
 
Event Header Data Variables 

Variable Name Variable Data Type Size in Bytes 
path List of IP Addresses 0…n (multiple of 4 bytes) 
path_index Unsigned Byte 1 
path_size/score Unsigned Byte 1 
start_address IP Address 4 
end_address/score IP Address 4/1 (score used when 

routing_type = DISCOVERY) 
event_type Unsigned Nibble ½ 
routing_type Unsigned Nibble ½  
original_time Unsigned Long Long 8 
event_id Unsigned Long 4 

IPv4 addressing is assumed when noting the IP address sizes. 

 

The grid resource discovery protocol sends various types of events through the 

network that are introduced in Table 12.  Each event has a common event header.  The 

path variable is a variable length list of IP addresses of path_size length and the 

path_index is used to point to the next destination IP address in the path.  Two other IP 

addresses, the start_address and end_address are populated when possible to designate 
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the origin and destination of the event.  The event_type identifies the type of event 

represented by the data and the routing_type indicates how to route the event to the grid 

protocol software handling the event.  When the routing_type is set to DISCOVERY, the 

end_address is used as a score variable.  The score represents the score of the resource 

provider being sought.  Two other fields, original_time and event_id are populated from 

the originating device for use with tracking the event at its destination.   

Routing Techniques 

There are several different routing techniques used by the grid protocol design.  

The routing techniques describe where the routers should direct each event based on the 

event type and are outlined in Table 13. 

Table 13  
 
Routing Techniques 

Routing Technique Description 
STANDARD The events travel through the network the same way they 

would in a normal TCP/IP environment.  Each hop IP 
address is stored in the event path storage field. 

FORWARD PATH Events are passed through the network according the path 
stored in the event. 

REVERSE PATH Events are passed through the network according the 
reverse order of the path stored in the event. 

DISCOVERY Events hop between routers based on a scoring scheme.  
Each hop IP address is stored in the event path storage 
field. 

 

The STANDARD routing type applies to events that are directed through the 

network using TCP/IP routing.  The first entry in the path is populated at the origin 

device of the event and the path_index variable is set to 1.  When a grid protocol event 

arrives at a router capable of handling grid protocol events, the event is passed to the 
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hardware which handles the protocol.  The router then places the current IP address of the 

router inside the event’s path structure, then increments the path_index variable by 1.  

When the event traverses the entire route, the final device adds its IP address to the path 

and the entire path is available to other events which will be constructed from this event. 

The path variable plays an important role for this protocol.  The reason why the 

path is cached is because the IP routing protocol does not guarantee that the path used to 

send a event one time to a destination will be the same path used to send the event again 

to the same destination.  Also, IP routing does not guarantee that the path the event takes 

to the destination will be the same path the event will take on the way back.  The path 

allows the protocol to update specific resource tables within the network along the same 

path each time.  Otherwise, an event that arrives at the wrong router may not know how 

to direct a event or it may drop the event if it is not authorized. 

The FORWARD PATH routing scheme uses the path learned from the 

STANDARD routing scheme to move an event from the IP address in the beginning of 

the event to the IP address at the end of the event.  The event is sent from the origin (the 

first entry in the path) to the second entry in the path and the path_index is set to 2 (or 1 

for a zero based array).  Each time the event arrives at a hop recorded in the path, the 

path_index is incremented by one and the event is sent to the next hop in the path.  The 

event arrives at its destination when the path_index equals the index of the final element 

in the path. 

The REVERSE PATH routing scheme is similar to the FORWARD PATH 

routing scheme except that the event travels from the final destination in the path to the 
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original destination.  Also, the path_index initially points to the last address in the path 

and is decremented to the origin address in the path.   

The DISCOVERY routing scheme attempts to find a resource in the network by 

using a one-byte score variable.  The score variable is part of the event header when the 

routing type is set to DISCOVERY.  The score variable replaces the end_address 

because the event is attempting to discover the end address.  Similar to STANDARD 

routing, the path is learned for the DISCOVERY scheme as well.  The score value may 

change between hops, so the path taken by the event may not be the same path that the 

STANDARD event took when traveling between the resource provider and the VO host 

computer. 

Events 

Over the course of the lifecycle, many events are exchanged over the network to 

advertise resource availability, update router data tables, and maintain the security of the 

network.  The events sent during this protocol map to a lifecycle phase as shown in 

Figure 29.  If a router or VO host receives an event out of order, it either drops or 

forwards the event and notes an entry in the blacklist.  The following events are 

associated with designated lifecycle stage as shown in Table 14. 
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Table 14  
 
Events Used by the Grid Resource Discovery Protocol 

Lifecycle Phase Event Description 
Subscription SIGNUP Signup a resource 

provider to the grid. 
 ACCEPT VO host accepts the 

resource provider. 
Advertisement ADVERTISE The resource provider 

advertises its availability. 
Transaction TASK The VO host wants to 

discover a resource 
provider. 

 TASK COMPLETE The resource provider 
finished completing a task.

 CONFIRM DELIVERY VO host acknowledges the 
deliver of the task data. 

 CONFIRM 
TRANSACTION 

Resource provider 
acknowledges receipt of 
the data by the VO host. 

 TASK UNSATISFIED The TASK event could 
not discover a resource 
with the score sought. 

Sign-off GOODBYE A resource provider is not 
available to the grid. 

Retirement UNSUBSCRIBE The resource provider 
wished to leave the VO’s 
grid network. 
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Figure 29 Events Exchanged over the Network 

Consumer VO Host Grid 
Resource A

Grid 
Resource B

Grid 
Resource C

Grid NW

TASK 1 

TASK 2 

TASK 3 

TASK 1 

TASK 2 

TASK 3 

TASK 1 

TASK 2 

TASK 3 

TASK COMPLETE 1 

TASK COMPLETE 3 

CONFIRM DELIVERY 

CONFIRM TRANSACTION 

Transaction 

Advertisement 

SIGNUP 
SIGNUP 

SIGNUP 

ACCEPT 
ACCEPT 

ACCEPT 

ADVERTISE 
ADVERTISE 

Subscription 

ADVERTISE 

GOODBYE 
GOODBYE 

GOODBYE 

Sign-off 

UNSUBSCRIBE 
UNSUBSCRIBE 

UNSUBSCRIBE 

Retirement 

Resource 
tables are 
updated 

Grid 
resource 
discovery 

Resource table 
entry created 

Delete 
resource 
entry 

Delete 
signup 
entry 

Signup 
tables are 
created 

Delete 
resource 
entry 

CONFIRM DELIVERY 

CONFIRM DELIVERY 

TASK COMPLETE 2 
CONFIRM TRANSACTION 

CONFIRM TRANSACTION 



 91

SIGNUP Event 

The SIGNUP event allows a resource provider to sign up to the VO and provide 

its resource to the grid.  The event is sent the first time a resource participates on the 

network and periodically every 24 hours to update the SIGNUP table.  It uses the 

STANDARD routing technique populated with a unique event_id, traveling from a 

resource provider to a VO host, and requires a score variable in its payload in addition to 

the variables in the event header.  When a SIGNUP event arrives at a router, it records 

information in its SIGNUP and BLACKLIST tables.  A router may reject a SIGNUP 

event if the resource has been blacklisted, but generally the signup event is recorded and 

the resource is awaiting acceptance from the VO. 

An example SIGNUP event transaction is shown in Figure 30.  The event 

originates in the switch in the bottom of the diagram and makes its way through the 

network until it reaches its VO host destination.  Note that the simulator aggregates 

resource providers into a switch (which is why the resource is not shown). 
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Figure 30 SIGNUP Event Standard Routing Example 

ACCEPT Event 

The ACCEPT event notifies the routers to accept the resource in its resource 

tables if it receives an ADVERTISE event.  It uses the REVERSE PATH routing 

technique with the path learned from the SIGNUP event populated with the same 

event_id as used in the SIGNUP event, traveling from the VO to the resource provider, 

and requires an accepted Boolean flag in its payload designating when the event is 

accepted or not.  The SIGNUP table marks the event as accepted, and the event is erased 

from the BLACKLIST table.  As shown in Figure 31, the VO sends the ACCEPT event 

back to the resource provider (located in the switch). 

 
Figure 31 ACCEPT Event Reverse Path Routing Example 
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The ADVERTISE event advertises the availability of a resource and allows 

TASK events to discover the resource.  It uses the FORWARD PATH routing technique 

with the path learned from the SIGNUP event populated with a unique event_id, traveling 

from the resource provider to the VO.  The ADVERTISE event does not have any 

additional data in its payload.  If the resource provider is signed up and accepted in the 

router, the ADVERTISE event signals the router to populate the RESOURCE TABLE.  

As shown in Figure 32, the resource provider in the switch advertises its resources to the 

router closest to the VO host.  The VO host is not notified of the advertisement. 

 

Figure 32 ADVERTISE Event Forward Path Routing Example 
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a resource provider, and uses a next_address populated in its payload.  As the event 

travels from router to router, the next_address field is populated from the RESOURCE 

tables.  When a resource is found in the table based on the score, the resource entry is 

removed from the RESOURCE table.  If the score is not satisfied, then a TASK 

UNSATISFIED event is sent back to the VO host indicating that the task request was 

unfulfilled.  Otherwise, the TASK event will eventually end up at a resource provider.  

As shown in Figure 33, the VO host sends a TASK event which finds its way over to the 

resource provider aggregated in the switch on the bottom of the diagram. 

 

Figure 33 TASK Event Discovery Routing Example 
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table entries are modified during the transmission though the possibility is available for 

future use.  The event includes a Boolean indicator to indicate if the event was complete.  

When the resource provider has finished its task, it sends a TASK COMPLETE event 

back to the VO host to indicate that results are ready to be transferred (Figure 34). 

 

Figure 34 TASK COMPLETE Event Standard Routing Example 
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cannot find a score that matches the VO host request.  A TASK UNSATISFIED message 

is sent back to the VO host to indicate that the TASK event did not find a resource 

provider. 

 

Figure 35 TASK UNSATISFIED Event Reverse Path Routing Example 
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Figure 36 CONFIRM DELIVERY Event Reverse Path Routing Example 

CONFIRM TRANSACTION Event 

The CONFIRM TRANSACTION event signals that a VO acknowledged 

receiving completed task results from the resource provider.  It uses the FORWARD 

PATH routing technique from the CONFIRM DELIVERY event with the same event_id 
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Figure 37 CNFIRM TRANSACTION Event Forward Path Routing Example 

GOODBYE Event 

 
The GOODBYE event signals that a resource provider wishes to leave the grid 

network.  It uses the FORWARD PATH routing technique and the same event_id as the 

SIGNUP event, traveling from the resource provider to the VO host.  The GOODBYE 

event removes the resource provider’s entries in the RESOURCE tables of the routers 

along the path.  The GOODBYE event is sent from the resource provider to the VO (as 

shown in Figure 38). 
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Figure 38 GOODBYE Event Forward Path Routing Example 

UNSUBSCRIBE Event 

The UNSUBSCRIBE event signals that a resource provider wishes to 

permanently leave the grid network.  It uses the FORWARD PATH routing technique 

and the same event_id as the SIGNUP event, traveling from the resource provider to the 

VO host.  The UNSUBSCRIBE event removes the resource provider’s entries in the 

SIGNUP tables of the routers along the path.  The event also includes a permanent 

Boolean to indicate if the un-subscription is permanent or temporary.  A temporary un-

subscription will not remove resource provider information from the VO host, whereas 

the permanent un-subscription will.  The UNSUBSCRIBE event is sent from the resource 

provider to the VO host as shown in Figure 39. 
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Figure 39 UNSUBSCRIBE Event Forward Path Routing Example 

Resource Providers’ Responsibilities 

Looking at Figure 29, the resource providers are involved with the sending and 

processing of several interactions.  When sending a SIGNUP event, the resource provider 

must track what VO it sent the event to until it unsubscribes from the network.  When 

sending the ADVERTISE event, it can only send the event if the ACCEPT event was 

received.  Also, the resource provider cannot send another ADVERTISE event until a 

TASK message arrives at the router or if the resource provider sends a GOODBYE 

message.  The TASK COMPLETE event depends on the TASK event reception, the 

CONFIRM TRANSACTION event depends on the CONFIRM DELIVERY event.  The 

GOODBYE message can be sent when an ADVERTISE event was sent and the resource 

provider was not tasked via a TASK message.  The UNSUBSCRIBE event can be sent if 

the router was accepted with the ACCEPT event. 
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Router Responsibilities and Usage of Data Tables 

There are three data tables used by the grid protocol in the routers along an event 

path: the SIGNUP, RESOURCE, and BLACKLIST tables.  Each table serves a different 

purpose and follows a set of guidelines when data should be added or removed from the 

tables.  The tables are presented in this section.  Note that the tables have optimized 

implementations that are specified in the simulation section. 

SIGNUP Table Usage 

The SIGNUP table’s purpose is to record when a resource is signed up and 

allowed to participate on the grid network.  In addition to maintaining the resource and 

VO host IP addresses, the signup table keeps track of a timeout value, the resource score, 

and whether or not the resource is accepted on the network.  Table 17 is composed of 

Table 16, which is composed of Table 15; this allows the implementation to save 

memory when storing the data structures.  Each router has a SIGNUP table.   

Table 15  
 
SIGNUP TABLE ENTRY Data Structure 

SIGNUP TABLE ENTRY   
Timeout Accepted Score 
 

Table 16  
 
SIGNUP TABLE HELPER Data Structure 

SIGNUP TABLE HELPER 
VO IP Address SIGNUP TABLE ENTRY 
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Table 17  
 
SIGNUP TABLE Data Structure 

SIGNUP TABLE 
Resource IP Address SIGNUP TABLE HELPER 

 

The initial entry into the SIGNUP table occurs when the SIGNUP event arrives.  

If the resource provider is not blacklisted, a 10-byte SIGNUP TABLE ENTRY is created 

which contains the timeout value, accepted Boolean value, and the resource provider’s 

score.  Initially, the accepted Boolean is set to false, the timeout is set to 120 seconds 

from the current time, and the other values are populated from the SIGNUP event.  The 

SIGNUP TABLE HELPER allows fast lookup of SIGNUP TABLE ENTRIES and helps 

to save memory. 

When the ACCEPT event arrives at the router, the SIGNUP TABLE ENTRY is 

retrieved and the accepted value is set to TRUE if the ACCEPT event’s accepted value is 

TRUE and the timeout value is set to 24 hours from the current time.  If the ACCEPT 

event’s accepted value is FALSE, the event is blacklisted and the entry is removed from 

the SIGNUP table.  The ACCEPT event is always sent to the next hop in the path 

because each router must know the state of acceptance. 

   Other events may access the SIGNUP table, but the only other event which 

modifies the SIGNUP table is the UNSUBSCRIBE event.  When the UNSUBSCRIBE 

event arrives at a router, the SIGNUP TABLE ENTRY is removed from the router’s 

SIGNUP table.  From the router’s perspective, a resource can signup if a SIGNUP 

TABLE ENTRY does not exist, if the 24 hour wait period expired, or even if the resource 

retired from the VO’s network.  The router does not track retired resource providers. 
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RESOURCE Table Usage 

The RESOURCE table is used to track which resource providers are available.  A 

resource becomes available when it advertises its availability via the ADVERTISE event.  

When a router receives the ADVERTISE event, it populates the RESOURCE TABLE 

ENTRY with data from the ADVERTISE event and the SIGNUP table.  The 

RESOURCE TABLE ENTRY is removed when a TASK reserves a resource or when a 

GOODBYE event is received by a router.   

Table 18  
 
RESOURCE TABLE ENTRY Data Structure 

RESOURCE TABLE ENTRY 

Next Hop IP Number of Devices 

 

Table 19  
 
RESOURCE TABLE HELPER Data Structure 

RESOURCE TABLE HELPER 
Score RESOURCE TABLE ENTRY 

 

Table 20  
 
RESOURCE TABLE Data Structure 

RESOURCE TABLE 
VO Host Hash Key RESOURCE TABLE HELPER 

 

Table 21  
 
VO Host Hash Key Data Structure 

VO Host Hash Key Data Structure (16 bits) 
VO Host IP Last 4 Bits 
of Field 3 IP Address 

VO Host IP Field 4 (8 bits) VO Product Id (4 bits) 
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Just as memory is saved for the signup tables, each router has a resource table like 

Table 20 composed of Table 19, which is composed of Table 18.  The RESOURCE 

TABLE uses a VO Host Hash Key (shown in Table 21) to lookup RESOURCE TABLE 

HELPER tables; the helper table has a score key to enable fast lookup to access the 

RESOURCE TABLE ENTRY.  The RESOURCE TABLE HELPER has a key to lookup 

the entry by the one-byte score.  The RESOURCE TABLE ENTRY holds the one-byte 

number of devices available for the particular resource and the four-byte IP of the 

previous hop address.  If the number of devices decrements to zero, then the entry is 

erased.  Likewise, if the entry is removed then the helper entry is erased for that score 

value. 

BLACKLIST Table Usage 

The BLACKLIST table (Table 22) is used to prevent unauthorized access or data 

transmissions between members on grid network.  When a resource provider sends a 

SIGNUP event, a BLACKLIST table entry is created with a one-byte count of 1.  If the 

VO sends an ACCEPT event with an accepted value of TRUE, then the BLACKLIST 

entry is erased.  If the accepted value is FALSE, then the BLACKLIST entry is set to 

three indicating that the resource is considered blacklisted and the resource provider is 

not allowed to participate in the grid network.   

Table 22  
 
BLACKLIST TABLE Data Structure 

BLACKLIST TABLE 
Resource Provider IP Count 
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VO Host Responsibilities 

The VO host primarily serves as a resource provider and consumer authenticator 

and authorizer.  When the VO host receives the SIGNUP message, it sends an ACCEPT 

message to the resource provider and optionally to the consumer (not shown in Figure 

29).  TASK messages sent from the consumer are sent to the VO Host (since the 

consumer must be authenticated and authorized), and then to the grid network routers.  

The VO host also receives CONFIRM TRANSACTION events for tracking purposes and 

security reasons (like for allowing SIGNUP events to be accepted).  When it receives an 

UNSUBSCRIBE event, it allows resource providers to retire from VO membership when 

the retiring flag is set. 

Scoring 

Each resource provider participating in a grid network has attributes that define 

the resource: number of CPUs, CPU speed, amount of RAM, available hard drive space, 

and the speed of their bandwidth connection are shown in Table 23.  The grid protocol 

scores these devices based on their attributes using a one-byte unsigned character.   

Table 23  
 
Score Data Structure 

Score Data Structure (8 bits) 
CPU Memory Hard Drive Bandwidth 

Score data structure has four two-bit fields representing CPU type and count, memory, 
hard drive, bandwidth. 

 
The scores represent ranges of resource attributes from 0-3.  The enumerations of 

each range are specified for a VO.  For example, VO #1 may designate a CPU class of 0 
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to represent 1 CPU machine up to 2 GHz, a class of 1 to represent 1 CPU machine over 2 

Ghz, a class of 2 to represent a 2 CPU machine under 2 GHz, and a class of 3 to represent 

a 2 CPU machine over 2 GHz.  Likewise, a different VO # 2 may designate a workstation 

class CPU an enumeration of 0, a server class CPU an enumeration of 1, a multiprocessor 

device with an enumeration of 2, and a cluster computer or higher with an enumeration of 

3.   

A sample scoring table is provided in Table 24.  A score of 205, for example, can 

be represented as 1000 1101 (binary) or 0x8D (hexadecimal) which decomposes into a 

CPU score of 2, a memory score of 0, a hard drive score of 3, and a bandwidth score of 1.  

Using Table 24, this translates into a 4 CPU machine with 512 megs of memory or less 

available, a hard drive capacity over 120 gigs available, and a bandwidth connection 

speed of 128 K. 

Table 24  
 
Example Scoring Table 

VO #3 Scoring Table Example  
 Score of 0 Score of 1 Score of 2 Score of 3 
CPU 1 CPU 2 CPUs 4 CPUs 8 CPUs 
Memory <= 512 Meg .5 – 1 Gig  1 – 2 Gig > 2 Gig 
Hard Drive <= 10 Gig 10-80 Gig 80-120 Gig > 120 Gig 
Bandwidth <= 56 K 128 K 256 K > 256 K 

 

One other factor to consider for score is how the TASK events generate scores to 

seek.  The five deployment schemes and their score-seeking techniques are defined in 

Table 25.  The “don’t cares” indicate that the particular VO does not care about the 

particular resource attribute when creating events. 

When a TASK event arrives at a router, the score is looked up in the RESOURCE 

TABLE.  First the router checks to see if the score is matched perfectly.  If it is not, it 
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finds the next highest score.  If  it cannot find a score, then a TASK UNSATISFIED 

event is sent back to the VO host. 

Table 25 
 
Deployment Environment Don’t Cares 

Deployment Environment Don’t Cares 
Science Portal Bandwidth 
Distributed Computing None 
Computer-in-the-Loop Instrumentation Hard Drive 
Large-Scale Data Analysis CPU, Memory, Bandwidth 
Collaborative Work Memory 
 

 

Figure 40 Router Search Algorithm for Finding a Score in the RESOURCE TABLE 

Grid Topology Scenarios 

Since grid deployment environments [56], resource agreements, VMMs, and VOs 

have been discussed in the Grid Computing Background section, consider the network 

topology of the deployment environments.  Each of these models will use the 

decentralized concept of the resource discovery proposed.  The differences lie in the 

application of the model’s scenario and the way that the routers will use the scoring 

mechanism to find resource providers.  

If score matches perfectly 
 Decrement the score in the RESOURCE TABLE 
 Forward message to appropriate router 
Else if a higher score is available 
 Find a higher score that is as close to the desired score 
 Change the desired score in the TASK event 
 Decrement the score in the RESOURCE TABLE 
 Forward the message to the appropriate router 
Else 
 Send TASK UNSATISFIED event to VO host 
 Drop the TASK event 
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The network topology can contain the following network devices: the root 

network identifier node (usually the Internet), ISPs, routers, switches, and VO hosts.  The 

switches can aggregate up to 253 resource providers.  The following rules apply when 

building a network: 

• The root network node can only have ISP children. 

• The ISP nodes can only have router children. 

• The router nodes can have ISPs, routers, switches, or VO hosts. 

• The switch nodes can have routers, resource providers, or VO hosts. 

• VO hosts cannot have children nodes. 

Figure 41 shows an example of a network topology.  The root node, labeled 

“Internet,” has one ISP labeled “ATDN.”  ATDN has two routers with the IP addresses 

66.185.128.1 and 66.185.129.1.  The switch under 66.185.128.1 has 253 available 

devices with an IP range from 66.185.128.2-66.185.128.254 (not shown).  The switch 

under 66.185.129.1 has a VO host names “Example” with an IP of 66.185.129.2 and 252 

resource providers with an IP range between 66.185.129.3-66.185.129.254 (not shown).  

A minimum network topology is shown in Figure 42 which shows some resource 

providers. 
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Figure 41 Scenario Editor Network Topology Example 

 

 
Figure 42 Minimum Network Layout 

Science Portals 

In the Science Portal deployment environment, a scientist would log onto a VO 

host computer via a web-based thin client connection.  The scientist sends a work order to 

the VO web portal host computer, the VO host computer divides the tasks into 

manageable pieces, and then the host computer sends the appropriate TASK events 
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throughout the network to find resource providers.  With the science portal scenario type, 

the scientists do not care about bandwidth, so the bandwidth value in the score is set to a 

“don’t care” value of zero.  As shown in Figure 43, scientists would send work orders to 

the VO web portal that would send the work out over the grid network.  If the grid 

network cloud were expanded out, it would look similar to the network in Figure 41 

where the example VO would be the VO web portal. 

  
Figure 43 Sending TASK Events in the Science Portal Scenario.   

Distributed Computing 

In the Distributed Computing deployment environment, the scenario allows 

individual PCs to be combined via parallelization to provide substantial computational 

resources.  The VO host may have a very long list of TASK events to process.  The VO 

host can send these events when it receives a SIGNUP or CONFIRM TRANSACTION 

event from a resource provider or whenever it chooses to.  With the distributed 
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computing scenario type, all attribute values of the score are considered (none are set to 

“don’t care” values).  As shown in Figure 44, work orders are sent from the VO host to 

work out over the grid network. 

 

Figure 44 Sending TASK Events in the Distributed Computing Scenario   

Large-Scale Data Analysis 

In the Large-Scale Data Analysis deployment environment, computational grids 

provide the capability of acting as a large storage facility in addition to providing 

computational powerhouses.  The VO host, for example, could try to periodically send 

out TASK events requesting a particular sized hard drive.  With the large-scale data 

analysis scenario type, the hard drive space matters most and the other fields are marked 

as “don’t cares.”  As shown in Figure 45, researchers would send a request to store and 

analyze a large amount of data to the VO host.  The VO host would divide the request up 

into multiple TASK events that would be sent out over the grid network. 
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Figure 45 Sending TASK Events in the Large-Scale Data Analysis Scenario 

Computer in-the-loop Instrumentation 

In the Computer-in-the-loop Instrumentation deployment environment, scientific 

instruments are used to collect streams of data which are archived and processed later to 

detect things of scientific value.  The VO host, for example, could try to periodically send 

out TASK events requesting a particular CPU, bandwidth speed, and block of memory to 

receive streaming data.  With the computer in-the-loop instrumentation scenario type, the 

hard drive space available is marked as a “don’t care” assuming the VO requires a large 

enough amount of free space when the resource subscribes to the VO.  As shown in 

Figure 46, scientific instruments constantly stream data to a VO host.  The VO host 

issues TASK events over the grid network. 
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Figure 46 Sending TASK Events in the Computer in-the-Loop Scenario 

Collaborative Work 

In the Collaborative Work deployment environment, scientists may want to 

collaborate to discuss results and offer suggestions.  The VO host, for example, could try 

to periodically send out TASK events requesting a particular CPU, bandwidth speed, and 

hard drive space to accommodate collaboration.  With the collaborative work scenario 

type, the memory available is marked as a “don’t care.”  As shown Figure 47, Scientific 

instruments constantly stream data to a VO host.  The VO host issues TASK events over 

the grid network. 
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Figure 47 Sending TASK Events in the Collaborative Work Scenario 

Grid Security 

“Grid systems and applications may require any or all of the standard security 

functions, including authentication, access control, integrity, privacy, and non-

repudiation,” [72].  Regarding security, the VOs act as a trust domain (as defined in [72]).  

The VO host can handle grid resource provider and consumer authentication and 

protection of credentials.  VO hosts can also act as proxies to other VO hosts; they can 

use criteria to judge another entity based on its VO sponsorship.  Access control is 

granted through authentication and use of the VOs API on the grid resources: the API 

will only have functionality programmed into it which allows access to devices specified 

by the security policy of the proxy or the VO which provides the API.  Integrity of data 

can be monitored by the grid routing protocol.  For all successful transmissions, an 
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integrity counter can be incremented on the routers and at the proxy to indicate that a 

successful transaction has occurred.   

Privacy can be controlled somewhat by the use of encryption, but as [72] points 

out, not all countries agree on similar types of encryption (assuming there is a world wide 

distributed grid network).  Also, if remnants of computer usage (i.e. temp files or source 

code from the trusted consumer model) are not deleted, then privacy can be 

compromised. 

The new security risk that these models introduce has to do with data tables being 

stored on routers.  If someone could hack into a router, this person could alter credentials 

or BLACKLIST tables and redirect more traffic to his or her own network to steal 

information or to make more money.  One way to discourage this behavior is for the 

proxy to watch for a fair distribution of the grid resources.  Based on the resources 

available, if a resource appears to be a hog by not allowing other grid resources to get 

their shares of the workload, the VO host temporarily suspends authentication for that 

grid resource provider thus forcing work orders to go to different accounts. 

Another security risk for the router integrity is for the resource providers to send 

repetitive SIGNUP or ADVERTISE events to inflate the amount of available resources.  

Routers track the frequency of SIGNUP and ADVERTISE events; if too many events 

arrive in too short of a time or without any satisfactions over a long period of time, the 

router can disable any TASK events from going to that resource provider.   

One other security risk for the protocol is that any component can be an imposter 

component: that is a component which looks and acts like a trusted component but is 

really designed for malicious purposes.  Proxies can be made to steal names, passwords, 
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or other security credentials.  Resource providers can steal data or produce bogus results.  

Grid consumers can be falsely identified so a different customer is billed for activity the 

customer did not use.  These situations can also be monitored reactively through the use 

of integrity counters as described above. 

HLA Simulation Protocol and the Simulation Engine 

Rather than building a simulation architecture from the ground up, after reviewing 

three popular simulation architectures (ALSP, DIS, and HLA), the decision is made to 

design a simulation engine that performs basic HLA operations.  There are two reasons 

for this decision: the first is because ALSP is a legacy product.  It was designed by many 

of the same people and the same organization (MITRE) that designed HLA [22], so the 

shortcomings of ALSP were addressed in HLA [2][8][10].  The second reason is even 

though DIS is considered legacy, it is still used in the industry today [19][20][21] and it 

has been adapted to work in concert with HLA [1].  The architectural approach to 

achieving this is to create a software simulation layer in-between the simulation code and 

the RTI interface as shown in Figure 48.  Also, this simulator can be built from core 

software from the k-array n-cube and CLL simulators though it will introduce new code. 

Another requirement for the simulation engine is for it to be able to operate 

without the RTI as shown in Figure 49.  Thus, time management, object and event 

management, scenario parsing, and other features provided by the RTI will be provided 

by the simulation engine.  This requirement is imposed because not all simulations may 

require distributed simulation or perhaps the simulation programmer desires a simplistic 

testing environment. 
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Figure 48 The Simulation Core is placed Between the Simulation Software Application 
and the RTI 

 

 

 

 

Figure 49 The Simulation Engine Supports a Mode Where RTI Services are not used 

Simulation Core 

The simulation core software component is responsible for keeping the simulation 

running by managing simulation time, sending and receiving events, understanding the 

FOM, and managing the network infrastructure.  In the software, these classes are 

packaged in the GPSC namespace (Grid Protocol Simulation Core).  The core software 

supports two modes of operation: with and without the RTI.  The software components 

are similar when running in either mode, but the RTI mode adds a few extra classes.  As 

shown in Figure 48, the GpsAmbassador receives messages from the RTI and the 

RtiManager class sends messages over the network.  The GpsAmbassador class inherits 

from the RTI’s FederateAmbassador class as prescribed in the RTI spec [10]. 

Simulation Core 

Grid Simulation Software 
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The other core classes include: EventManager, Event, NetworkTree, 

NetworkNodeBaseClass, StateMachine, and TimeManager.  These classes are described 

in the upcoming sections. 

EventManager Class 

The EventManager is responsible for scheduling and delivering simulation events, 

maintaining an event queue, and remembering event statistics.  The events are stored in 

an ArrayList structure provided by the CLR framework.  The structure is not sorted, but 

the list is manually sorted each time advance.  When events are sent, they are added to 

the end of the event queue and sorted to the proper position when time is ready to 

advance forward.  Events can only be sent in the future (current time plus one or more), 

not at the present or in the past. 

The EventManager also tracks event statistics in a data structure.  Each event that 

is sent is counted.  The event is only counted once because the event id is stored as a 

unique key.  When the simulation ends, the EventManager is asked to give statistics for 

the all events passed through the simulation. 

Event Class 

The Event class is the base class for any event propagated or represented in the 

simulation.  Each event has the capability to track its path through the network, starting 

and ending IP addresses, event starting time, time of next delivery, routing method, and 

the event type.  The path can be populated or used in forward or reverse based on the 

routing method.  Some events may not use parameters; like the TASK message that does 

not know its destination because it has to be discovered. 
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NetworkTree Class 

The NetworkTree class is the container that holds all of the network devices.  The 

network tree is a tree structure with functions to assist in the routing of messages.  In 

some cases, particularly for routers, the network device will have to route the events.  The 

device is given the first chance to route an event.  If the device routes the event, then the 

network tree will not route the message; otherwise it will. 

NetworkNodeBaseClass Class 

The NetworkNodeBaseClass is the base class for all network devices contained in 

the network tree (i.e. the routers, switches, and VO hosts).  Any device inheriting from 

the NetworkNodeBaseClass will have a name, a device type enumeration, and a reference 

to its parent node in the tree. 

StateMachine Class 

The StateMachine class is responsible for maintaining the current state of the 

simulation.  The simulation states are: STOPPED, INITIALIZING, RUNNING, 

SHUTTING_DOWN, and PAUSED.  When the simulation is started, it transitions from 

the STOPPED state to INITIALIZING and eventually to RUNNING.  When the 

simulation is complete, the simulation enters SHUTTING_DOWN state followed by the 

STOPPED state.  When the simulation is in RUNNING state, the simulation can 

transition to PAUSED and then back to RUNNING. 

During the STOPPED and PAUSED states, no simulation activity is occurring.  

The INITIALIZING state signals the simulation to read in the scenario and populate the 
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NetworkTree and EventManager event queue.  The RUNNING state starts the simulation 

clock and event transactions.  When the simulation is in the SHUTTING_DOWN state, 

the event statistics are calculated and the Excel spreadsheets are generated. 

TimeManager Class 

The TimeManager class is the container for the simulation’s current time while 

running.  The starting, advancing, and stopping of the clock is done from this class by 

interfacing with the GpsGui class’ background worker thread that runs the simulation.  

The TimeManager also provides mutex services for pausing the simulation and 

synchronizing with RTI synchronization points. 

Simulation Engine Common Library 

In addition to the classes mentioned above, the simulation core includes an 

additional namespace called SECL (Simulation Engine Common Library).  The 

distinction between the classes in the common library and the core is that common library 

classes can only call standard C++, C++/CLR, and SECL classes.  Thus, these classes are 

designed to be the most reusable parts of the simulation engine.  Examples include math 

classes (such as Random), error display (such as GuiUtilities), and logging (such as 

Logger). 

Simulation Architecture 

When using the RTI, this means that the simulated network event traffic can be 

distributed to different computers running the simulation.  Distributing the workload 

means that the simulations run faster because each simulation event queue has to process 
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fewer events and the network topology is smaller.  The network is portioned out based on 

the tier 1 ISPs that fall under the root network node.  Consider an example where a two-

ISP network scenario is simulated on CPU 1.  All of the simulation is done on this CPU 

as shown in Figure 50; the thought cloud shows the CPU is computing messages through 

two ISPs.  The workload can be distributed over another CPU since there are two ISPs in 

this particular scenario.  This is done by CPU 1 loading the first ISP and CPU 2 loading 

the second ISP as shown in the thought clouds in Figure 51.  CPU 1 also will run the 

RTIExec program that is responsible for creating and managing the federation.  The 

computers are connected over a LAN and events are exchanged as appropriate. 

CPU 1CPU 1

Internet
ATDN

GBLX

 

Figure 50 Simulation without the RTI 
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Figure 51 Simulation with the RTI 

Scenarios contain network and event information.  When the simulation not 

running the RTI loads the scenario, it loads the entire network and event queue and 

simulates the grid discovery protocol behavior.  However, when using the RTI, CPU 1 

only loads the first ISP and CPU 2 only loads the second ISP.  Likewise, scenario events 

that pertain to the other CPU are dropped based on the IP address of the resource 

provider.  For example, if a scenario event has a resource provider with an IP address of 

92.168.123.123 and if that resource provider exists in the GBLX ISP, then CPU 1 will 

drop the message and CPU 2 will process the message. 

The RTI connection is used when an event has to cross from one ISP to the other; 

thus the RTI acts as the Internet backbone between Tier 1 routers.  For example, consider 

a scenario where resource IP address 92.168.123.123 resides in GBLX and VO Host IP 

address 93.168.123.123 exists in ATDN.  When the first SIGNUP event has to travel 

from GBLX to ATDN, a corresponding SIGNUP event is created (based on the FOM) 

and the message is passed over the RTI. 
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Time regulating and constraining settings are disabled when using the RTI.  This 

allows the simulator to control time rather than having the RTI control time.  When 

events are sent over the network, they call the sendInteraction() function which does not 

take a time parameter.  This does not timestamp messages the cross between the CPUs or 

federates; messages are placed in the Receive Order (RO) queue rather than the 

Timestamp Order (TSO) queue.  Messages that arrive in the receive order queue may 

arrive out of order.  Considering the architecture of the simulation, messages can be 

received out of order since each message is independent of the other. 

The benefit of using the RTI is to save time simulating the scenarios, but there are 

two drawbacks.  The first drawback is the usability factor where the user will have to take 

additional steps to run the simulation with the RTI.  This includes starting the RTIExec 

process, the RTI license manager, and setting up the simulator to run with the RTI 

(enabling an RTI checkbox, setting the federate name, etc.)  The added complexity leaves 

more room for human error.  The second drawback is that the simulation results will 

reflect the results per each federate.  So, when the scenario simulation is completed, the 

user must combine the results across the federates to see the big picture of the simulation.  

The simulation design allows this to happen because the events carry their statistics 

internally (i.e. the number of hops, start time, etc.)   
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CHAPTER FOUR: FINDINGS 

K-Array N-Cube Evaluation and Results 

Simulation Implementation and Techniques 

Object-oriented software implementation strategies such as use of the STL, 

singleton classes and pure virtual functions have been employed to provide a flexible, 

extensible, and robust means to establish network hardware structures.  These 

implementation strategies are vital implementation methodologies to the network 

benchmark model in order to obtain higher modularity and lower integration complexity.  

A systematic usage of these functionalities throughout the simulator design lead to a 

better model that improves system performance and supports future upgrades such as 

additional types of networks, protocols and/or flow control mechanisms.  A brief review 

of the implementation techniques is provided in the next few sections. 

The Singleton Class 

The singleton classes [44], such as WormManager and Interconnect shown in 

Figure 52, guarantee that only one class instantiation is created.  Figure 52 shows all the 

objects and functions (public and private) included in each of these singleton classes.  

The single instance is held as a static variable as a private member of the class.  These 

singleton classes are not automatically initialized when the program loads.  Instead, 

initialization occurs the first time that singleton class’ create method is called by the 

client.  The create method also allows the callers to access methods of that singleton class 
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since it returns a pointer to the class.  In a similar manner the Singleton class can release 

the object from memory by calling destroy.  The Interconnect is a singleton class, that is 

only one interconnect is created per simulation.  The WormManager creates a new 

interconnect at the start of each simulation and destroys it when done. The reason for this 

is that there might be different configurations which require construction of the object in 

different ways within the WormManager class.   

 

Figure 52 Two Singleton Class Examples: WormManager and Interconnect 

Pure Virtual Functions  

The SaveRestoreInterface class provides save and restore functions that are pure 

virtual functions which forces derived classes to override the functions [45].  By having 

classes with only pure virtual functions, these classes can be declared as interfaces.  This 

means that classes can call the save() or restore() methods without having to know what 

class it is saving.  The following is an example of pure virtual function signatures: 
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class SaveRestoreInterface { 
public: 
virtual File & save(File & file) = 0; 
virtual File & restore(File & file) = 0}; 

 

In the save/restore functionality of the inheriting class, a sentinel acts as a 

safeguard to assure that the correct version of code is used.  The sentinel is recorded in 

the saved file.  Upon restore, it is verified that the saved file matches the current software 

version. 

System Design with the Standard Template Library (STL) Functions 

The interconnect is modeled using a map data structure from the Standard 

Template Library (STL).  The STL is a general purpose library of algorithms and data 

structures.  The STL enables generic programming where reusable functions, data 

structures and algorithms are available for the programmer [46][47].  The interconnect is 

constructed of three main components: a face, a node, and a port Figure 53.  For the 3D-

mesh interconnect, each face has four nodes at the corners.  Each node has six ports 

(some of which can point to nowhere).  Therefore, a map is created for each component 

to organize the connectivity and construct the interconnect structure.  The map is 

accessed based on the location of the face, node, or port desired to access.  These 

locations are predefined. 
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Figure 53 Layout of the Interconnect 

 
Face #ID to face map: typedef std::map<int, Face> FaceMap; 
Node #ID to node map: typedef std::map<int, Node> NodeMap; 
Port #ID to port map: typedef std::map<int, Port> PortMap; 
VC #ID to VC map: typedef std::map<int, VirtualChannel> MemoryManager; 

Figure 54 STL Map Declarations for the Faces, Nodes, Ports, and Virtual Channels 

Simulation Data and Observations 

During execution, the network simulator provides two windows to control the 

pacing of simulation time and the collection simulation data.  The runtime data window 

(bottom right side of Figure 55) shows performance metrics updated on-the-fly.  In 

addition, runtime data is also recorded in the output spreadsheet files.  The pacing 

window (on the bottom left side of Figure 55) allows the user to control the pace of 

simulation that can pause it completely if desired. 

Latency and throughput analysis 

Latency represents the time it takes for a worm to reach its destination.  

Depending on the worm movement, latency sums wire transfer, switching and routing 
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delays at each cycle. The resulting latency is an average of latencies collected from all 

worms modeled at the end of the simulation. 

 

Figure 55 Simulation Graphical Modes with the Pacing and Runtime Data Windows 

Three representative k-array n-cube interconnects were chosen for the 

simulations: 8-array 2-cube, 4-array 3-cube and 3D-mesh (all three interconnects have 64 

nodes).  Figure 56 shows a comparison among all three interconnects with VC and 

channel partitioning enabled.  The results shown are an average of 10 different 

simulations with both short (128 B–1 KB) and long (1 KB–8 KB) worms and identical 

interconnect settings.  The lowest latency was recorded for the 3D-mesh, while the 4-ary 

3-cube network has slightly higher latency than the 3D-mesh.  Throughput is measured 

by taking samples of the total bits processed within the interconnect at each cycle. 
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Throughput significantly increases when VCs are enabled since they allow more worms 

to occupy the interconnect without transmission failures.  The highest throughput was 

reached by the 3D-mesh interconnect for both short and long messages. 

 

 

Figure 56 Latency (Left) and Throughput (Right) Comparisons Between 3D Mesh, 8-
Array 2-Cube and 4-Array 3-Cube 

Worm Allocation and Distribution 

Worm allocation and distribution measurements, depicted in Figure 57, show 

three groups of worms: worms that are currently propagating in the interconnect, worms 

that are waiting in jar to be modeled and worms that are finished and reached their 

destinations. The figures show that the number of currently modeled worms (worms in 

the interconnect) increases as the number of worms waiting in the jar and the number of 

already modeled worms (finished) decreases.   
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Figure 57 Worm Allocation and Distribution with (Right) and without (Left) Virtual 
Channels 

When VCs are enabled, more worms occupy the interconnect at a faster rate than 

without VCs.  This shows that as more worms are modeled, the number of worms waiting 

to be modeled diminishes.  It is also noticeable that when VCs are enabled more 

simulation cycles are required. 

Routing Accuracy 

Routing accuracy measures how close the actual path of each worm is to its 

shortest path.  Routing accuracy is calculated by taking the ratio between the shortest 

path possible to the actual path taken; this signifies the worm’s deviation from its shortest 

path.  Figure 58 shows a simulation of 100 worms using 3D-mesh interconnect with VCs 

disabled and no sub-channeling.  At the top of the figure, the top-most line portrays the 

percentage of deviation from the shortest path.  The top line shows, for example, a 

triangular point for a certain worm is at 100, that means the worm has taken the shortest 

path possible.  If the value of the line is equal to 20, the worm deviated from its shortest 

path by 80% (and has taken more channel links).   
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Figure 58 3D Mesh Worm Deviation from its Shortest Path 

On the left-hand side, Figure 58 shows the number of links passed for each worm 

modeled using 3D-mesh interconnect.  On the bottom part, the deviation of each worm 

(top line) from its shortest path (bottom line) is shown.  Therefore, when both lines 

completely overlap each other for a certain worm, that worm has taken the shortest path. 

For example, worm 44 took a path passing 12 nodes to get to its destination, but it should 

have taken 7.  As the number of channel links passed increases with respect to the 

shortest path possible, the thin line becomes further apart from the thick line.  It turns out, 

the path the worm takes depends on the traffic load at certain nodes of the interconnect.   

As the load increases, most worms deviate from their shortest path and adaptively 

propagate to their destination avoiding areas of hot-spots [39]. 
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Interconnect and Bandwidth Utilization 

Interconnect bandwidth utilization measures the number of occupied channels (or 

sub-channels) with respect to the total number of channels available in the interconnect.  

Figure 59 portrays that the highest bandwidth utilization is achieved by using the 4-array 

3-cube network, while the 8-array 2-cube has the lowest utilization rate.  Sub-channeling 

improves bandwidth utilization as the channel is partitioned into more sub-channels.  The 

combination of VCs and SCs brings all interconnects close to their full capacity. 

  

Figure 59 Bandwidth (Left) and Interconnect (Right) Utilization 

Interconnect utilization counts the number of busy ports within each traffic 

controller per simulation cycle.  At the end of the simulation it provides the average 

number of ports that were set to busy status out of the total number of ports available in 

the interconnect throughout simulation.  The results of interconnect utilization show very 

close relationship to bandwidth utilization.  Again, 4-array 3-cube ports are set to busy 

status more often than the 3D-mesh or 8-array 2-cube. Although interconnect utilization 

seems an equivalent measure to bandwidth utilization, it is a little different since the port 

status is not directly related to the channel usage. An output port can stay in the not-busy 
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state if a worm that intends to use it is buffered into virtual channels.  Since each traffic 

controller has a minimum of four ports, a worm entering from a different direction can 

utilize the channel connected to the non-busy port. 

Failure Rate 

Failure rate is a measure of the number of worms, out of the total number of 

worms generated that were retransmitted during simulation.  Retransmission takes place 

when a worm is blocked and it cannot obtain the resources it requires to maintain an 

active status within the interconnect.  For example, when VCs are disabled, then a worm 

will require retransmission if it cannot be routed to any output port within a certain node 

for more than one simulation cycle.  Figure 60 depicts a failure rate comparison for all 

interconnect types with VC switched to enabled/disabled.  This figure shows that using 

VCs significantly reduces failure rate.  Moreover, the size of the VC has a major effect on 

failure rate as well.  As the size of the VC increases more worms can be buffered for 

longer periods of time within each node instead of failing and being retransmitted [38]. 

 

Figure 60 Worm Failure Rate Comparisons with and without Virtual Channels (Left) and 
with Different Virtual Channel Sizes (Right) 
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Routing Accuracy vs. Hot-Spot Nodes 

In this simulation, the paths taken by all worms using 3D-mesh, 8-array 2-cube 

and 4-array 3-cube interconnects were recorded.  Then, the paths were analyzed to collect 

the nodes which were most frequently used and as a result caused other worms to deviate 

from their shortest path to avoid transmission failure.   

 

Figure 61 Hot Spots Versus Routing Accuracy 

 
Results given in Figure 61 show that some hot-spot nodes caused approaching 

worms to deviate from their shortest path by 50–60% more channel links than the shortest 

path available.  For example, the hot-spot in face 11 node 3 (F[11], n[3]) caused six 

approaching worms to deviate from their shortest path by 62.5%.  Traffic is randomly 

generated with random message lengths and from random nodes.  Since the adaptive 

routing algorithm changes the path the worms take in each simulation, every simulation 

creates hot-spots in different locations and in different frequencies.  The right diagram in 

Figure 61 shows a hot-spot which occurred in face 3 node 6 (F[3], n[6]) that caused 

approaching worms to deviate from their shortest path by an average of 85%.  Although 

only few hot-spots occur per simulation, their effects on performance were significant. As 
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the rate of hot-spot increases (a function of traffic load), worms tend to deviate from their 

shortest path more frequently and, as a result, the overall interconnect latency increases. 

K-Array N-Cube Interconnect Performance Comparison with Common Interconnects 

In this section, 3D-mesh, 8-ary 2-cube, and 4-ary 3-cube interconnects are 

compared with other currently used high-performance interconnect technologies such as 

Hypertransport (HyperTransport Consortium, 2005), Infiniband (Infiniband Trade 

Association, 2000) and PCI-Express (PCI Special Interest Group, 2003; Sassone, 2003). 

 
Figure 62 Comparison of Different Interconnects 

Reported results provided by each individual vendor were used to compare with 

the results from this simulation.  In addition, the performance properties of these 

technologies take into account a constant channel size of 32-bits and a single 

communication link.  For the 3D-mesh interconnect the settings are: channel width is 32 
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bits, interconnect size is 16 cubes, number of worms generated is 10, each worm is 1KB 

in size. 

Virtual channels as well as channel partitions were enabled.  The throughput 

comparison results are shown in Figure 62.  The throughput values of the 3D-mesh, 8-ary 

2-cube and 4-ary 3-cube interconnects represent the average throughput of each 

interconnect.  3D-mesh shows superior results compared to all of its competitors reaching 

a peak throughput of 452 Gbps (about twice the throughput of the best interconnect 

available not including the other types of k-array n-cubes tested). 

Cluster Leader Logic Evaluation and Results 

Simulation experiments are conducted with enforced directional traffic patterns. 

Two important results are presented in this section: power consumption per clusterhead 

and average queuing delay for each clusterhead.  Results in terms of message overheads, 

number of clusterheads, power consumption, and queuing delay reveal that system 

performance is enhanced when clusterheads are chosen considering the direction of the 

traffic flow. 

The CLL Simulator 

In order to test the feasibility of the proposed CLL algorithm, a simulator was 

created to validate the architecture and find the expected performance.  NS-2 [55] was 

evalutated, but it did not have native GPS-QHRA support.  Also, it was important to 

neglect conventional cluster-based routing algorithm shortcomings for dropping 

messages because it would be difficult to figure out if messages are dropped from the 

CLL algorithm or the routing algorithm choices. 
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Thus, a custom simulator was written to create an omniscient routing protocol 

which would not drop messages.  The simulator console application is written in C++, is 

object oriented, and implements advanced concepts such as templates and generics, and is 

built from some of the simulation infrastructure as the simulator used for the k-array n-

cube simulator [25].  The simulator is composed of two executables: a scenario generator 

and the CLL simulator.  A configuration file was created to allow the tester to configure 

the static constant variables defined above.  The simulator is event-based and scenario 

file driven.   

The benefits of having scenario files include the ability to tweak test cases 

without having to recompile code, the abilities for a human to read and edit the file, and 

the capability to trace each test case to a scenario which can be re-run to double-check a 

concept.  The scenario format allows the tester to place nodes in cells, send time-stamped 

messages between nodes, time-stamp node movement, and add comments to the scenario 

file as appropriate. 

The implementation of the simulator follows the CLL algorithm very closely; the 

simulator varies from the real world because it is a single threaded single process and 

does not have true simultaneous multithreaded communication.  The benefits of having 

simultaneous communications would not directly prove or disprove the CLL algorithm; it 

would affect the performance of the algorithm since collisions would occur and message 

would be dropped and re-transmitted more frequently. 

When the simulator is executed, the simulator reads the scenario specified, 

populates each node with its respective messages and movements, executes the 

simulation by stepping through simulation time, and shuts down the program and logs 
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statistics when complete.  Validation scenarios were created with hand-calculated results 

to test different aspects of the simulation to expose bugs with both the implementation 

and the algorithm design and then later were used to fix the bugs.  Once the validation 

scenarios passed testing, scenarios were created to compare native GPS-QHRA to GPS-

QHRA with CLL. 

Scenario Design 

Once the simulator functionality stabilized and results matched hand-calculated 

results, several larger scenarios were created to prove the concepts of the CLL algorithm.  

The scenario set is divided into two classes: the slash scenario and the random scenario.   

The slash scenario set organizes 76 nodes into a slash (a diagonal formation from 

the top-left to the bottom-right) formation within a 128 cell region where only 37 cells 

are occupied. There are several reasons for picking a slash pattern: 

• The pattern represents a two-lane road with network traffic traveling one way 

against the top part of the slash and the opposite way against the bottom part of 

the slash. 

• Cell fanning could be double-checked against expectations performed in hand-

calculations. 

• A bottleneck is created which will force clusterheads to split. 
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Figure 63 The Slash Scenario before Any Node Movement   

There are two versions of the slash scenario: with and without node movement Figure 

63.  The arrow represents the direction of movement when the nodes start moving.  The 

algorithm is designed to not care if nodes are stationary or moving.  The affects of 

sending a message and then moving could cause a dropped packed: this is why the test 

cases are differentiated.  These are some other constraints imposed on this scenario set. 

• There are no holes in connectivity that would cause the routing algorithm to drop 

packets. 

• There are at most 4 nodes in a cell. 

• Messages originate in the bottom right and move up-left or messages originate on 

the top and move down-right. 
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The slash-movement scenario is the same as the first except that nodes move at 

almost random times.  The movements were designed not to break connectivity, so they 

could not be truly random movements.  But, the movements create different situations 

where clusterheads would be forced to split, join, or do nothing based on the movements. 

The second scenario set, the random scenarios, were also created with 250 

randomly distributed nodes within an 8 x 16 play-box.  Scenarios were created to inject 

2000, 4000, 6000, 8000, and 10,000 messages over a 200 second time period where the 

message origination and destinations were random but did not start and end in the same 

cell.  Within this 200 second time period, 10 nodes moved in a manner to cross the 

boundaries of their cells to cause a state change from clusterhead to subordinate node or 

vice versa or the clusterhead kept its state; at a minimum one example of each situation 

was tested.  The simulation should expect between 10-50 messages per second to be 

generated.  This translates approximately into each node sending a message between 5 to 

25 seconds.  These scenarios were run over 150 times each with variations to the 

configuration files producing over 750 different results for this vignette.  The quantity of 

the variations were intended to find the best clusterhead configurations for each situation 

(one, two, or four clusterheads) so these results could be compared and contrasted. 

Results 

The results are intended to prove or disprove the CLL algorithm concept that 

includes the concept of cell fans.  The proof of the concepts is achieved when enough test 

cases are run with different parameters to see that in each case the clusterhead overloads 

converge to a low value when parameters are altered.  A clusterhead overload occurs 

when the cluster leader cannot create a new cluster leader to share its load.  In order to 
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prove the concepts, 15 variables were examined to help identify trends and ways to 

improve the algorithm and scenario design.  8 of those variables represent the 

configurable variables.  The 15 variables monitored are shown in Table 26. 

One way the algorithm design was improved was to create the 

PurgeWeightsWhenCHSplits variable.  Before this variable existed, clusterheads always 

handed all learned data to newly created clusterheads.   

It was found through experimentation that this caused the clusterhead splitting to 

be too aggressive for newly created clusterheads.  By creating this variable and setting it 

to true, the clusterhead gives a chance to observe its busy cell fans data flow for itself.  In 

all cases, the number of clusterhead overloads increased and the clusterhead stability 

decreased significantly when the value is false.  In addition to the observances above, for 

moving node scenarios, additional clusterheads were created when the value is set to 

false. 

Scenario design was improved as well.  A special test case scenario was designed 

based on these parameters.  Certain test cases with moving nodes had dropped packets 

that should not have dropped packets.  A scenario was created to test nodes moving and 

communicating at the same time.  The movements included clusterheads with and 

without subordinate nodes.  The communications included transmitting, receiving, and 

hopping messages.  This situation ended up being the most complex to fix since 

movement of nodes can occur anywhere in the execution of the algorithm; but the fixes 

applied increased the accuracy of the results of the simulator significantly. 

The x-axis in Figure 64 represents different configurations for the same slash 

scenario run for these tests: one through four clusterheads allowable per cell.  When one 
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clusterhead is present, this case reflects the native GPS-QHRA protocol.  The y-axis of 

the left diagram represents a count for each time a clusterhead is overloaded and has to 

queue a message because it cannot share its workload with other nodes in its cell.  The y-

axis of the right diagram represents the final clusterhead count. 

Table 26  
 
Simulation Variables Monitored 

Variable Name Definition 
InitialClusterheads Before the simulation starts, this is the count of 

clusterheads selected based on lowest id. 
FinalClusterheads When the simulation ends, this is the result of all 

present clusterheads. 
ClusterheadSplits The number of times any clusterhead splits. 
ClusterheadJoins The number of times when a node joins a different 

clusterhead. 
ClusterheadStability This number is incremented each time 

getEffectiveNodeCount() <= activation level. 
ClusterheadPotentialOverload This number is incremented each time 

getEffectiveNodeCount() > activation level. 
ClusterheadOverload Equal to ClusterheadPotentialOverload – 

ClusterheadSplits. 
C2CRelay Incremented each time a clusterhead sends a message to 

another clusterhead. 
C2SRelay Incremented each time a clusterhead sends a message to 

a subordinate node. 
S2CRelay Incremented each time a subordinate node sends a 

message to a clusterhead. 
NotRelayed Incremented when the cell fans determine that a 

clusterhead should not relay a message. 
Messages Delayed Incremented when messages are delayed because of 

queuing delays. 
Power Consumption Calculates the amount of power used for message 

transmission. 
Dropped Number of messages not received by the intended 

recipient. 
Total Simulation Runtime 
Cycles 

Total amount of time taken to run the scenario. 
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Figure 64 The Slash Scenario Results with No Node Movement – Clusterhead Overloads 
(Left) and Clusterhead Counts (Right)   

As mentioned earlier, one of the main performance metrics is the clusterhead 

overload value. The number of overloads is affected by the 

ClusterheadDivisionActivationLevel.  As the EffectiveNodeCounts are calculated, they 

are compared to the ClusterheadDivisionActivationLevel which is a constant value. If the 

EffectiveNodeCount values are consistently below the activation level for a long period 

of time, the clusterhead will try to become a subordiante to another clusterhead in its cell 

(if one is available) by joining its cell fan with the other clusterhead and switching its 

state machine to a subordinate node. When the EMA exceeds the activation level, the 

clusterhead attempts to split its cell fan with another subordinate node (if available) and 

switch to the clusterhead state machine. If in that case no subordinate node is available, 

then the clusterhead is overloaded especially in the case in Figure 64 when the maximum 

number of allowable clusterheads is one. Ideally, as the activation level increases, the 

number of clusterhead overloads should decrease. Higher activation levels make the 

algorithm less aggressive since the clusterheads split less often and allow more data to 

flow through them. 
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The next important metric to measure is the final number of clusterheads. The 

initial number of clusterheads may differ than the final count of clusterheads since there 

will be splitting and joining throughout the simulation. The converged value would 

determine the optimal amount of clusterheads this scenario could have. The results in 

Figure 64 show the clusterhead overload value stabilizes as expected and achieves zero 

clusterhead overloads in these test cases when the activation level is 16.  As more 

clusterheads are allowed, fewer overloads occur (left diagram).  Higher activation levels 

cause fewer clusterheads to be created (right diagram). 

As shown in Figure 65, there are fewer clusterhead overloads with fewer 

clusterheads existing in the end of the simulation when the nodes are moving.  As more 

clusterheads are allowed, less overloads occur (left diagram).  Higher activation levels 

cause fewer clusterheads to be created (right diagram).  These numbers appear to 

converge at about 52 for the stationary scenario and about 50 clusterheads for the motion 

scenario.  These results are proof that the concept of the CLL algorithm converges to a 

meaningful value.  These are meaningful values because 37 cells are occupied meaning 

that about 74% of the cells have one clusterhead and about 26% have multiple 

clusterheads.  The algorithm does not appear too agressive. 
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Figure 65 The Slash-Movement Scenario Results 
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Once convincing results were obtained, the performance of GPS-QHRA and CLL 

was measured and compared.  As mentioned in the background section, GPS-QHRA is 

similar to LCC; a comparison to Leader Election Algorithm was not performed because 

the experimentation is not geared to measuring the performance difference between 

having table or tree data structures.   

The performance of GPS-QHRA and CLL was measured and compared.  The five 

randomly distributed scenarios described earlier were created and run over 750 different 

ways.  This includes five scenarios times three configurations (one, two, or four 

clusterhead maximum) times 50 different values for activation level that are tweaked by 

experimentation to produce a level playing field between the test cases.   

Two important results are presented in this work: power consumption per 

clusterhead (Figure 66) and average queuing delay for each clusterhead (Figure 67).  The 

power consumption compares between GPS-QHRA (1 clusterhead) and CLL with 2 or 4 

maximum clusterheads in a cell.  Depending on the amount of messages sent in the same 

amount of time, the CLL algorithm can realize a maximum of 45% power savings.  The 

queuing delay also compares between GPS-QHRA (1 clusterhead) versus CLL (2 or 4 

clusterheads maximum per cell).  There are noticeable improvements (25% maximum) 

between GPS-QHRA vs. 2 CH CLL.  However, differences between 2CH and 4CH are 

less than 1%. 

Both of these results were run with one, two, and four maximum allowable 

clusterheads for all of the scenarios.  The one clusterhead maximum runs are meant to 

mimic native GPS-QHRA.  All allowable configurations for the maximum number of 

clusterhead were initially run (one through seven clusterheads because there are at most 
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seven different directions).  However, eventually, only the one, two, and four maximum 

clusterheads were reported because other allowances did not show any meaningfully 

different results.  It is hypothesized that more nodes and/or messages might have shown 

more of a significant distribution between having varying maximum amounts of 

clusterheads. 
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Figure 66 Power Consumption 
Comparisons Between GPS-QHRA and 
CLL 
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Figure 67 Queuing Delay Comparisons 
Between GPS-QHRA and CLL

The results for power consumption show up to 45% power savings when using 

CLL over GPS-QHRA.  Power is conserved because clusterheads distribute the messages 

that they need to transmit because of cell fanning.  So, for instance, two clusterheads 

transmitting one message each use half the amount of transmission power of one 

clusterhead transmitting two messages.  The best power savings is realized when more 

messages are sent with more allowable clusterheads per cell than with GPS-QHRA. 

Queuing delays are also improved when CLL is used over GPS-QHRA up to 

25%.  The effects of CLL versus GPS-QHRA are noticeable; this is most likely because 

of the receiver side filtering available from cell fanning which is done before queuing 
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takes place.  However, unlike the power savings results, the differences between having 

two or four maximum clusterheads per cell is negligible. 

The Grid Protocol Simulator Evaluation and Results 

The grid protocol was simulated using the Grid Protocol Simulator software suite.  

The suite is composed of three major components: the Control Center, the Scenario 

Editor, and the Grid Protocol Simulator.  These three software applications are discussed 

within this section along with a general discussion about the design and implementation 

of the software. 

The Control Center shown in Figure 68 is the entry point of the program and 

enables the user to start the Scenario Editor and the Grid Protocol Simulator.  The 

interface allows the user to schedule multiple runs to happen sequentially after each other 

which automates the testing and execution of the simulation.  The user can also configure 

runtime parameters such as logging, suppressing error messages, and creating situations 

when events are blacklisted.  Another useful feature is that the Control Center 

configuration can be saved in and restored from “gsp” files.  The gsp files allow you to 

run the same experiment again or to restore the experiment, add or remove tests, and then 

run the experiment. 

The Scenario Editor shown in Figure 73 allows users to create and edit scenarios 

to run in the simulation.  The main outputs from scenario generation are the network tree, 

the selection of which deployment environment (Figure 69) to simulate, and the event list 

of events to run through the network.  The Scenario Editor allows the user to use the 

“Generate Network” feature (Figure 70) to automatically populate routers and switches 

within a specified IP address range.  The user can also manually add and remove nodes 
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from the network one at a time.  Once the network is laid out, the user can either select 

where to place VO host devices or use the “Generate VOs” feature (Figure 71) to 

automatically place where VOs are located in the network tree.  This will allow you to 

create events either manually or automatically.  When using the “Event Generator” 

(Figure 72), the user can choose what times and VO hosts to send the SIGNUP and 

ADVERTISE events to. 

 

Figure 68 The Grid Protocol Simulator Control Center 
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Figure 69 Grid Deployment Selection Form 

 

Figure 70 The Network Generator Form 

 

Figure 71 The Generate VO Hosts Form 
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Figure 72 The Event Generator Form 

 

 

Figure 73 The Scenario Editor 

Once the scenario is generated, it can be run in the Grid Protocol Simulator shown 

in Figure 74.  The simulator loads the scenario, builds the network and event queues, 
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starts the clock, runs the simulation, stops the simulation when the event queue is empty, 

and creates an Excel file output.   

 

Figure 74 The Grid Protocol Simulator 

Software Design and Implementation 

The simulation suite is implemented in C++/CLR (Common Language Runtime) 

which uses new features which are part of the CLS (Common Language Specification) 

[77].  The major driving factor to use C++/CLR is the ability to use the latest .NET forms 

and controls (a. k. a. widgets) and to interface directly with Microsoft Excel to create 

spreadsheets through the software using Visual Studio Tools for Office (VSTO).  The 

CLR allows a common execution environment for Microsoft platforms (Windows XP, 

Windows CE, etc.)  Microsoft is in the process of making the CLI (Common Language 

Interface) an IEEE standard. 
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As the dissertation work progressed from simulator to simulator, there was a drive 

to reuse common components from the previous simulator software when building the 

next.  C++/CLR is similar to C++, but there have been major changes [81].  While some 

of the software was reused from the CLL and wormhole routing simulators, there was a 

minor conversion effort to make the software classes work with the new language. 

C++/CLR 

There are three main distinguishing features between C++ and C++/CLR that are 

relevant to this work: garbage collection, pointers, and new keywords.   

Garbage Collection 

Garbage collection allows for an automated way for developers to write code 

without having to worry about the details of memory management and cleanup [75].  

When the developer allocates a block of memory, it is registered with the garbage 

collector.  The allocation of the memory returns a handle to the memory in a managed 

heap of memory.  If the handle is copied, the garbage collector keeps track of the copies.  

If all copies of the handle fall out of scope in the software or are marked with the nullptr 

keyword, then the memory is ready for deletion from the heap. 

Memory is usually not automatically deleted from the heap when it needs to be.  

Memory allocations and de-allocations are typically temporally expensive operations 

with unmanaged memory and they are faster when they are grouped together in one large 

block with managed memory.  When managed memory should be deleted, it is assigned 

to an older generation of memory.  When a generation of memory reaches a particular 
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size, it may be deleted or given an older generation.  As the generations get older, they 

are deleted when resources are running low or when the application is closed. 

The CLR garbage collector has two heaps: a managed heap and an unmanaged 

heap.  The unmanaged heap contains the memory used for regular C++ data types which 

are allocated to dynamic memory.  The managed heap contains the memory which is 

allocated from the new C++/CLR managed objects.  The drawback for using both heaps 

is that memory is typically duplicated between heaps.  The duplication not only wastes 

memory, but there is additional overhead to copy, delete, and track both heaps.   

To address this issue, the simulator was compiled in a managed mode which 

means that the regular C++ keywords and operators no longer work and have been 

replaced by the new C++/CLR keywords and operators.  One tradeoff of doing this is 

regular C++ variables are now boxed [76] meaning that they have been wrapped inside of 

a C++ managed class (which adds a small amount of extra memory consumption and 

processing time). 

Using regular C++, dynamic memory is manually de-allocated using the delete 

keyword.  The delete keyword still exists in managed C++, but the use of it is different.  

In regular C++, if you call the delete operator on dynamically allocated memory, the 

destructor is called for the class and the memory is de-allocated.  In managed C++, if you 

call the delete operator, the destructor is called but the memory is not de-allocated.  As 

mentioned before, the timing of the memory release is up to the garbage collector.  The 

garbage collection method can be called, but it is not guaranteed to collect all freed 

memory. 
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In addition to implementing a destructor, the option exists to implement a Finalize 

method [75].  The Finalize method is called from a special thread right before the 

memory is de-allocated for that class.  The developer cannot call the Finalize method 

manually except when a child class calls a parent class’ Finalize method.   

This poses an interesting dilemma.  Sometimes, a developer may implement a 

destructor to close a network or socket connection, file handle, or database connection.  

Since the timing of the de-allocation is non-deterministic, the destructor may not be 

called at a logical time.  This results in open connections that probably should be closed 

or a deadlock situation.  Also, there is a possibility that a destructor can be called more 

than once, so the closure of the connection must be guarded to prevent an exception from 

being thrown or some other error condition.  It may be a better option to implement a 

Finalize method if the timing of the closure does not matter. 

C++/CLR Pointers 

Another new feature for using the CLR garbage collection is the way that 

allocation and de-allocation strategies and procedures of memory occur.  When allocating 

managed classes with the managed mode compiler option, the regular C++ pointer (*) 

does not work and has been replaced with the hat operator (^).  Also, the C++ new 

operator has been replaced with the gcnew operator.  The “gc” indicates and reminds the 

developer that memory is being managed by the garbage collector.   

For example, int *x = new int(3); now becomes System::Integer 

^x = gcnew System::Integer(3); with the new language.  The new integer 

class is a boxed implementation of the old integer data type.  The hat handle operator 
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replaces the star pointer operator, and the gcnew operator replaces the new operator.  The 

star operator is still used to deference a handle.  However, the C++ reference operator (&) 

has been replaced with the C++/CLR handle reference operator (%). 

C++/CLR Keywords 

In order to allocate a managed class, a class is marked as a managed class by 

using the new ref keyword.  For example, a developer would use public ref class 

A in managed C++ rather than class A in C++ when defining a class.  There are 

several other new keywords that impact the implementation of the simulator such as: 

sealed, for each, and abstract. 

The sealed keyword allows a developer to seal a base class or base class method 

from being over-ridden or overloaded in a child class.  The for each operator allows a 

developer to iterate through a Collection (which implements the IEnumerable interface) 

with fewer lines of code [84].  The abstract keyword allows a developer to mark a parent 

class as non-instantiatable class meaning that a class must inhert the class if the developer 

wants to declare an object of that type. 

Visual Studio Forms and Controls 

Visual Studio provides a simplified way to create GUIs by allowing the developer 

to drag-and-drop graphical objects into windows [78].  The windows and containers are 

referred to as forms and the graphical objects the user interactions with are known as 

controls.  The .NET library contains a large library of controls including drop-down 

combo boxes, spinners (or up-down numeric counters), text boxes, and check boxes. 
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The Visual Studio 2005 Professional Edition allows a developer to use a more 

“modernized” approach for working with Windows controls than previous versions of 

Visual Studio (like version 6.0 used for the wormhole routing simulator) [82].  The 

improvements have to do with the way that many of the detailed handling of Windows 

events has been encapsulated inside of the forms classes.  Also, the technique for 

declaring event handlers using delegates simplifies the way to receive callbacks when 

significant Windows events (like pressing a key or moving a mouse) occur.   

Another improvement is the way that background threads can be spawned using 

the BackgroundWorker class [83].  The BackgroundWorker was used several times in the 

Grid Protocol Simulator to allow the GUI to function while performing lengthy tasks.  

Examples of this are loading or saving a scenario file while showing the progress 

indicator window and running the simulator while displaying the simulation GUI and 

updating the simulation statistics on the fly. 

Visual Studio Tools for Office 

One of the main motivations of using Visual Studio is the ability to create 

spreadsheets using the Excel API provided by Visual Studio Tools for Office (VSTO) 

[85].  VSTO adds support for Word, Excel, Outlook, and Infopath and the 2005 version 

of Visual Studio integrates the support into .NET.  It allows developers to use the Office 

System to display, format, chart, calculate and analyze data in Excel.  For instance, 

simulation data is recorded in an Excel workbook with several worksheets that include a 

simulation summary, and VO, event, and memory statistics.  



 157

Figure 75 Basic Steps to Create an Excel Workbook and Worksheet Using VSTO 

 
The basic steps to create an Excel workbook and worksheet are shown in Figure 

75.  Creating the Excel application will spawn an Excel process.  Note that calling the 

quit method can kill the application.  If the developer’s program crashes the process may 

have to be manually killed using the Task Manager.  Once the Excel application is 

started, a workbook is added.  By default, the workbook has three worksheets.  The first 

worksheet is active by default and can be accessed by the ActiveSheet data member. 

Figure 76 Basic Worksheet Operations Using VSTO 

Figure 77 Creating a Chart in Excel Using VSTO 

Excel::Application 
    ^app = gcnew Excel::ApplicationClass(); 
Excel::Workbook 
    ^wb = app->Workbooks->Add(Type::Missing); 
Excel::Worksheet 

^ws = safe_cast<Excel::Worksheet ^>(wb->ActiveSheet); 
 

ws->Name = "Simulation Summary"; 
ws->Range["C1", Type::Missing]->Value = "Simulation Summary"; 
ws->Range["C1", Type::Missing]->Font->Bold = true; 
ws->Range["D1", Type::Missing]->Value = scenario_name; 

Excel::ChartObjects 
    ^chart_objects = safe_cast<Excel::ChartObjects ^>( 
        ws->ChartObjects(Type::Missing)); 
Excel::ChartObject 
    ^chart_object = chart_objects->Add(300, 0, 1200, 300); 
Excel::Chart 
    ^chart = chart_object->Chart; 
 
chart->ChartWizard( 
    ws->Range["B3:B" + row.ToString() +  
        ",C3:C" + row.ToString(),Type::Missing], 
    Excel::XlChartType::xl3DColumn, 
    Type::Missing, 
    Excel::XlRowCol::xlColumns, 
    1, 1, false, 
    "Number of Resource per VO", 
    "VO IP", 
    "Number of Resources", 
    Type::Missing); 
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In order to populate the worksheet, the developer specifies the range of cells to 

edit.  In the example in Figure 76, the first cell C1 is updated to show the text, 

“Simulation Summary,” then on the next line of code the text is marked as bold.  There 

are many features available to the program such as writing formulas, auto-fitting the cells 

around the text, and sorting data. 

Another useful method allows the developer to chart data.  Figure 77 shows an 

example for creating a chart by instantiating a ChartObject in the worksheet.  The chart is 

moved to a specific location in the worksheet, then it is populated with data.  In this 

example, the data used for this 3D bar chart comes from columns B and C.   

Software Design 

There were several major design decisions made when implementing the 

simulator.  The first design topic introduced has to do with the layout of the network for 

the scenario generator and the simulator.  Both applications represent the network the 

same way, but the differences lie in the way they are used.   

Originally it was conceived that the network tree would be displayed in the 

simulator and scenario generator.  When the tree is displayed in the scenario generator, it 

allows the user to add, remove, or modify network devices in the tree to configure the 

network for scenario generation.  Showing the network tree in the simulator would have 

allowed the user to visually see the network traffic traveling through the network in real 

time as the simulator was running.   

It turns out that the TreeView form does not appropriately handle the large 

network trees required for a grid network.  The Microsoft online documentation [86] 

recommends not exceeding 32,767 TreeNodes in the tree because the tree structure may 
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lose references to nodes at that point.  Also, the tree structure uses a very large amount of 

memory and the expanding, inserting, and removing of nodes in the tree becomes 

extremely slow when the tree is large.  Another issue is that the tree uses a hash map to 

find nodes.  This means that it is possible to lose nodes in the tree if a duplicate hash 

value is generated.  Fortunately, since the hash values are four bytes and the IP addresses 

used are four bytes, the IP address was used as the hash value that prevents duplication. 

Since the network tree was necessary for the scenario generator, it has been 

optimized to aggregate resource provider devices in one switch if they belong to that 

subnet of IP addresses.  However, the network tree was not used in the simulation GUI 

because updating the tree was too slow and provided minimal value to the user when 

comparing the performance tradeoff to the graphical depiction.  This resulted in divergent 

and repetitive implementations.  The scenario editor version of the network tree inherits 

from TreeView while the simulation version of the network tree does not inherit from a 

Windows Form or Control. 

Another major design decision involves how the messages are delivered through 

the network.  The original grid protocol spec declares four routing methodologies: 

STANDARD, FORWARD_PATH, REVERSE_PATH, and DISCOVERY.  Because of 

the way events are managed on the event queue, all of the scenario events sit on the 

queue when the simulator starts.  So, if a node is supposed to receive an event at a 

particular time, the only way to route the message was through one of those four 

techniques (of which only STANDARD routing would apply).  The downside of using 

STANDARD routing is that the event is delayed one simulation second each time it 

would travel from the network tree root to the destination node.   
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Looking up the destination node not only circumvents the routing system, but also 

incurs a delay of looking up the destination node in the network tree.  So, since the 

destination has to be looked up no matter what, a new routing technique called DIRECT 

was created to allow a message to travel from the network tree root node to the 

destination node outside of simulation time.  This routing technique is a by-product of the 

simulator implementation and is not included in the grid protocol spec.  Also, it is not 

“cheating” because these messages are supposed to occur at the appropriate time and 

there is no other mechanism for doing that in the simulator and because the events that 

use the DIRECT routing technique are logged and graphed in the simulation output files. 

Scenario Design 

The scenarios used to run in the grid protocol simulator are based on the five 

deployment environments.  Each deployment environment has a suite of scenarios with 

the same basic layout; so there are five scenario suites.  Each suite has five scenarios with 

the same network topology but varying amounts of traffic.  The scenarios vary based on 

the number of messages: 25, 250, 2500, 10,000, and 25,000.  The basis of this design is to 

see whether or not the routers can hold enough information in their routing tables and to 

see how many discovery messages are successful when comparing the deployment 

environments. 

The scenario files themselves are XML text files which can be displayed using 

any XML text reader.  The Scenario Editor automatically generates the files based on the 

user’s depiction of the network and events.  There are two major XML blocks: the 

network and the events.  The network has a name (usually “Internet”), and devices that 

fall under it.  The network can have Internet service providers (ISPs).  Under the ISPs, 
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the user can place routers, switches, and VO hosts.  By default, the user will have two 

ISPs pre-constructed with 1,052 routers and 1,048 switches representing 265,144 

computers.  Each computer is capable of sending one event in a scenario, this means 

there is a maximum of 265,144 events that can be created. 

The event block contains all of the scenario events.  These events include 

information about what resource would like to signup to a grid network and what VO 

host the signup will go to.  The resource score is determined runtime, thus it is not in the 

scenario file.  The score is generated randomly to allow different results to be achieved 

with the same scenario run multiple times.  An advantage of doing this prevents from 

having to write many scenarios.  A disadvantage is that it could be hard to reproduce 

errors or special conditions. 

The scenario network topology construction is laid out in Table 27.  The networks 

are intergrids [79] meaning that VOs do not communicate with each other.  The Scenario 

Editor randomly generates scenario topologies.  A basic Internet topology is provided 

with two ISPs, 1,052 routers (2 deep), and 1,048 switches representing 265,144 

computers.  From that, the user can extend the depth of the network; the scenarios tested 

have an extended depth of 5.  This means that the total depth of the network will not 

exceed 6 routers deep for the first ISP or 7 routers deep for the second ISP giving a 

diameter of 13 possible router hops a message can travel. 

Notice there are four less switches than routers.  This has to do with the way that 

the basic Internet topology is represented.  Each router has a switch except for four high-

level routers that host the maximum number of routers they can support.  Also, even 

though the same setup parameters are specified, this does not mean that each scenario 
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will have the same number of devices. The algorithm in Figure 78 starts at the root 

network node and creates the basic Internet.  The algorithm goes to the first leaf node.  

Then, if the network depth is not exceeded, the algorithm draws a random number 

between zero and one.  If the number is less than or equal to 0.5, then the algorithm 

creates a router and a switch.  It repeats this process for every branch until the entire tree 

is traversed.  This results in branches with varying depths. 

Table 27 
 
Scenario Network Topologies 

Deployment Environment Routers Switches Computers 
Science Portal 199781 199777 662162 
Distributed Computing 388258 388254 1040539 
Computer-in-the-Loop 
Instrumentation 

446260 446256 1155893 

Large-Scale Data Analysis 890437 890433 2044676 
Collaborative Work 371683 371679 1007067 

 

Figure 78 Network Tree Generation Algorithm 

Simulated Virtual Organization Scoring 

This section explains the methodology used for scoring used in the simulator.  

Each virtual organization uses the same scoring policy in the simulator.  The scores 

assigned to resource providers in the simulation cannot be discrete random variables 

// Generate network tree 
// 
Generate basic network tree from flat file 
Start at first leaf node 
Loop until tree traversed 
 If network depth is not exceeded 
  If randomly extend tree  

Create router and switch 
 Advance to the next leaf node 
End loop 
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between 0-255.  In other words, the simulator cannot simply pick an arbitrary number 

between 0-255.  This would yield computer configurations that most likely are not 

implemented in the real world.  One example is a very fast multi-CPU machine with 64 

MB of memory and a 320 MB hard drive.  Likewise, older machines typically cannot 

support large amounts of RAM or disk storage. 

The grid resource discovery protocol allows for the VO to define a 32-bit score 

variable and a VO product id.  The score must have 8-bit chunks for CPU, memory, hard 

drive, and bandwidth scores (in that order).  The VO product id can correspond to any 

numbering scheme the VO wants to use.  For this simulator’s virtual organizations, the 4-

bit product id is divided into a 2-bit CPU type and a 2-bit OS type.  There are four CPU 

types {PC_486, PC_586, APPLE_G4, SUN_SPARC} and four OS types {WINDOWS, 

LINUX, OS_X, SOLARIS}.  All of this information is stored in the ResourceSpecs class. 

Table 28 
 
Possible Scoring Combinations Based on CPU Type 

CPU Type OS Type CPU Speed Memory Size HD Size Bandwidth 
PC_486 WINDOWS 

LINUX 
400-800 MHz 256-512 MB 10-200 GB MODEM 

CABLE 
PC_586 WINDOWS 

LINUX 
.8-4 GHz 256-4096 MB 10-2000 GB MODEM 

CABLE 
DSL 
T1 
T3 

APPLE_G4 OS_X 1.6-3.2 GHz 256-2048 10-2000 GB CABLE 
DSL 
T1 
T3 

SUN_SPARC SOLARIS 400-800 MHz 256-8192 MB 10-2000 GB T1 
T3 

 

Table 28 shows possible scoring combinations based on the CPU type.  For 

example in this hypothetical VO scheme, a 486 PC computer can run Windows or Linux, 
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must have a speed of at least 400 MHz, RAM of at last 256 MB (free), hard drive of at 

least 10 MB (free space), and must have at least a MODEM connection to the network.  

The ranges (like 400-800 MHz for CPU speed) are there to give the range of score values 

for the VO.  If a CPU speed greater than 800 exists, the VO still assigns it a score as if it 

has an 800 MHz processor. 

When generating a random score for a resource provider, a discrete random 

variable is found between 0-100.  If the random variable is less than 2, the CPU type is 

set to PC_486, when between 2 and 80 it is set to PC_586, when between 81 and 98 it is 

set to APPLE_G4, and any number greater than 98 sets the CPU type to SUN_SPARC.  

Once the random value is drawn for the CPU type, the other score attributes are 

randomized based on the ranges in Table 29 through Table 32. 

Table 29  
 
Simulation PC_486 Scoring Table 

 Score of 0 Score of 1 Score of 2 Score of 3 
CPU 400-499 MHz 500-599 600-699 >= 700 
Memory <= 256 > 256 N/A N/A 
Hard Drive < 50 Gig 50-99 Gig 100-149 Gig >= 150 Gig 
Bandwidth MODEM CABLE/DSL T1 >= T3 

Table 30  
 
Simulation PC_586 Scoring Table 

 Score of 0 Score of 1 Score of 2 Score of 3 
CPU < 1600 GHz 1600-2399 2400-3199 >= 3200 
Memory <= 1024 1025-2048 2049-3072 >= 3073 
Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500 
Bandwidth MODEM CABLE/DSL T1 >= T3 

Table 31  
 
Simulation APPLE_G4 Scoring Table 

 Score of 0 Score of 1 Score of 2 Score of 3 
CPU < 2000 GHz 2000-2399 2400-2799 >= 2800 
Memory <= 512 MB 512-1024 1024-1536 > 1537 
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Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500 
Bandwidth MODEM CABLE/DSL T1 >= T3 

Table 32  
 
Simulation SUN_SPARC Scoring Table 

 Score of 0 Score of 1 Score of 2 Score of 3 
CPU 500-599 MHz 600-699 700-799 >= 800 
Memory <= 256 > 256 N/A N/A 
Hard Drive < 500 Gig 500-999 Gig 1000-1499 >= 1500 
Bandwidth MODEM CABLE/DSL T1 >= T3 

Results 

Results are presented for each of the deployment environments.  The 

methodology for presenting the results mainly come from [104], [107], and [108], but 

some methods of reporting results for this work are new since the type of work is 

different than traditional grid resource discovery protocols.  Some new results reported 

for this work are for signup, resource, and blacklist table usage as well as score 

deviations.  [105] presents resource usage of a single resource.  Resource usage of a 

single resource does not apply to this research because there are thousands of resources 

modeled; reporting one does not aid in presentation of results.  On the other hand, [104] 

reports the amount of events dropped, average number of hops, and the distribution of 

events that are reported for this work.   

The work in [107] identifies four attributes: resource discovery speed, system 

efficiency, load balancing, and discovery success rate.  The resource discovery speed is 

not considered in this work as a significant result because the time to discover a resource 

is significantly less than the time to process a task.  System efficiency, the balance 

between resource advertisement and discovery, is defined by the scenarios and simulation 

configuration and is a 1:1 relationship for all of the scenarios presented in this work.  The 
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user predefines load balancing when creating scenarios.  In the case of this work, the load 

balancing is randomly distributed as is shown in the event distribution bar charts below.  

The discovery success rate is the opposite statistic of the amount of events dropped from 

[104] which is presented in the results below.   

[108] is based on a discovery protocol for sensor networks.  One unique result 

tracked is the amount of memory consumption in a sensor node based on the number of 

nodes in the network.  This is another important result to track for this work because the 

memory consumption of entries in the routing tables must be implemented in hardware.  

The grid resource discovery protocol has three different routing tables that are populated 

and unpopulated at different times in the lifecycle of a message. 

Science Portal 

The science portal simulation results are presented in this section.  The event 

distribution diagrammed in Figure 79 shows that the distribution of traffic between each 

of the VOs is roughly the same.  The VO hosts and resource providers are distributed 

throughout the network and the average number of hops is around 14.45 as shown in 

Figure 80, and the discovery event hops are presented for each scenario in Figure 81 thru 

Figure 85.  A hop is considered movement from one network device to another. 
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Figure 79 Science Portal Scenario Event Distribution 
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Figure 80 Science Portal Scenario Average Number of Hops 
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Figure 81 Science Portal Scenario Number of Hops for 25 Event Scenario 
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Figure 82 Science Portal Scenario Number of Hops for 250 Event Scenario 
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Figure 83 Science Portal Scenario Number of Hops for 2500 Event Scenario 
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Figure 84 Science Portal Scenario Number of Hops for 10000 Event Scenario 
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Figure 85 Science Portal Scenario Number of Hops for 25000 Event Scenario 
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Figure 86 Science Portal Scenario Successful TASK Events  

 
One important metric measures how successful the discovery approach was at 

finding a resource.  Figure 86 shows the success rates of the TASK events finding an 

available resource.  The values range between 99.91%-100% successful discoveries or 0-
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23 dropped packets.  In the case of the unsuccessful TASK event not finding a resource, 

in the real world the VO host would simply try until it finds a resource.  But, the 

simulator does not model this for the purposes of finding the success rates. 

One new statistic provided in this research has to do with tracking how scores 

deviate from a perfect score.   A perfect score does not deviate from the score of the 

resource, that score deviation value would be zero.  With the case of science portal 

scnenario, the bandwidth field is a “don’t care.”  This means that the 8 bit score 

composed of CPU, memory, hard drive, and bandwidth would have a mask of 0xFC.  

This yields scores in the ranges of {0-3} with a deviation of zero.  Considering the bit 

positions, one would expect scores to deviate around 0, 1, 2, and 3 depending when the 

resource score has a 0 or 1 in the spot of the don’t care. 
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Figure 87 Science Portal Scenario Score Deviation for the 25,000 Event Scenario 

Looking at Figure 87, the scores tend to deviate in that fashion.  This figure 

represents the score deviations in the 25,000 event scenario.  100% of the scores fall 
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exactly on 0, 1, 2, and 3.  When numbers deviate from the desired score, they deviate by 

an average of 1.47.   
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Figure 88 Science Portal Scenario Peak Signup Table Usage 

The signup table peak memory usage is shown in Figure 88.  As the number of 

events is increased, the memory usage caps at 21876 bytes.  This happens because 

devices are un-subscribing from the network as time is advancing which reduces the size 

of the signup table usage.  By default, the resource providers unsubscribe from the VO in 

200 simulation seconds after the CONFIRM DELIVERY event is sent.  The signup table 

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent.  Since there are 

25,000 events (worst case) from 25,000 different resource providers with a 4 byte 

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP 

TABLE ENTRY, then the worst case peak memory consumption for any particular router 
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is 450 KB or 25KB * (4 + 4 + 10).  As a reminder, signup entries are removed every 24 

hours to prevent uncontrolled growth of these tables. 
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Figure 89 Science Portal Scenario Peak Resource Table Usage 

 
Next, the peak resource table usage is examined in Figure 89.  The usage caps at 

796 bytes as the number of TASK events grow.  This happens for different reasons than 

the signup table previously presented.  The resource table has a smaller sized hash key 

and uses a one-byte score to lookup data.  As the scenarios grow larger, once there are 

more than 256 resource providers, the scores will definitely overlap.  The resource table 

is optimized to aggregate and count the number of devices with a particular score rather 

than to list individual resource providers.  Also in this case, the simulation is greedy in 

discovering resources.  Because resources are discovered in a greedy fashion, the table 

size does not grow very large because resources are consumed very quickly.  Again the 
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worst case tables size could be estimated by considering 25,000 resource IP addresses 

with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of 

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1). 
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Figure 90 Science Portal Scenario Peak Blacklist Table Usage 

The final results examined for the science portal scenarios are the blacklist tables.  

Since the blacklist tables are populated when the SIGNUP event is sent and unpopulated 

with the ACCEPT event is sent, the tables are much smaller than the others because the 

SIGNUP and ACCEPT events happen very close to each other in time.  As shown in 

Figure 90, the memory usage caps at a value similarly to the other tables; this time 

around a value of 255 bytes.  Doing the math, the BLACKLIST TABLE contains a four-

byte IP address and a one-byte count totaling 5 bytes.  Dividing 255 by 5 means that each 

router kept no more than 51 entries in its BLACKLIST TABLE at a given time.  The 
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worst case blacklist size can be calculated as well by multiplying 25,000 resource 

providers times 5 bytes totaling 125KB.  This would imply that all 25,000 resource 

providers send their SIGNUP events at the same time through the same router. 

Distributed Computing 

The distributed computing scenario simulation results are presented in this 

section.  The event distribution diagrammed in Figure 91 shows that the distribution of 

traffic between each of the VOs is roughly the same.  The VO hosts and resource 

providers are distributed throughout the network and the average number of hops is 

around 15.09 as shown in Figure 92, and the discovery event hops are presented for each 

scenario in Figure 93 thru Figure 97.  A hop is considered movement from one network 

device to another. 
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Figure 91 Distributed Computing Scenario Event Distribution 
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Figure 92 Distributed Computing Scenario Average Number of Hops 
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Figure 93 Distributed Computing 25 Event Scenario Number of Hops 
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Figure 94 Distributed Computing 250 Event Scenario Number of Hops 
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Figure 95 Distributed Computing 2500 Event Scenario Number of Hops 
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Figure 96 Distributed Computing 10000 Event Scenario Number of Hops 
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Figure 97 Distributed Computing 25000 Event Scenario Number of Hops 



 179

Distributed Scenario TASK Event Performance

98.40%

98.60%

98.80%

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

100.20%

25 250 2500 10000 25000

Scenario Size (Number of Events)

Su
cc

es
sf

ul
 D

is
co

ve
ri
es

0

10

20

30

40

50

60

70

80

90

D
ro

pp
ed

 E
ve

nt
s

 

Figure 98 Distributed Computing Scenario Successful TASK Events  

 
One important metric measures how successful the discovery approach was at 

finding a resource.  Figure 98 shows the success rates of the TASK events finding an 

available resource.  The values range between 99.04%-100% successful discoveries or 0-

85 dropped packets.  In the case of the unsuccessful TASK event not finding a resource, 

in the real world the VO host would simply try until it finds a resource.  But, the 

simulator does not model this for the purposes of finding the success rates. 

One new statistic provided in this research has to do with tracking how scores 

deviate from a perfect score.   A perfect score does not deviate from the score of the 

resource, that score deviation value would be zero.  With the case of the distributed 

computing scenario, no fields are marked as “don’t cares.”  This means that the 8 bit 

score composed of CPU, memory, hard drive, and bandwidth would have a mask of 

0xFF.  This yields scores in the ranges of {0} with a deviation of zero.  Considering the 
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bit positions, one would expect scores to deviate around 0 since deviations are not 

expected in this scenario. 
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Figure 99 Distributed Computing 25,000 Event Scenario Score Deviation 

Looking at Figure 99, almost all of the scores (except one) have the expected 

score.  This figure represents the score deviations in the worst-case 25,000 event 

scenario.  Approximately 100% of the scores fall exactly on 0; the deviation was about 

0.2%.  Investigating the log file, the one message deviated because another SINGUP 

message coming from the same resource provider was already in the routing table with a 

score of 173.  Since SIGNUP tables are unpopulated with UNSUBSCRIBE messages, 

this means the UNSUBSCRIBE message did not arrive at the router yet. 
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Figure 100 Distributed Computing Scenario Peak Signup Table Usage 

The signup table peak memory usage is shown in Figure 100.  As the number of 

events is increased, the memory usage caps at about 9519 bytes.  This happens because 

devices are un-subscribing from the network as time is advancing which reduces the size 

of the signup table usage.  By default, the resource providers unsubscribe from the VO in 

200 simulation seconds after the CONFIRM DELIVERY event is sent.  The signup table 

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent.  Since there are 

25,000 events (worst case) from 25,000 different resource providers with a 4 byte 

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP 

TABLE ENTRY, then the worst case peak memory consumption for any particular router 

is 450 KB or 25KB * (4 + 4 + 10).  As a reminder, signup entries are removed every 24 

hours to prevent uncontrolled growth of these tables. 
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Figure 101 Distributed Computing Scenario Peak Resource Table Usage 

 
Next, the peak resource table usage is examined in Figure 101.  The usage caps at 

366 bytes as the number of TASK events grow.  This happens for different reasons than 

the signup table previously presented.  The main reason is that the resource table has a 

smaller sized hash key and uses a one-byte score to lookup data.  As the scenarios grow 

larger, once there are more than 256 resource providers, the scores will definitely overlap.  

The resource table is optimized to aggregate and count the number of devices with a 

particular score rather than to list individual resource providers.  Also in this case, the 

simulation is greedy in discovering resources.  Because resources are discovered in a 

greedy fashion, the table size does not grow very large because resources are consumed 

very quickly.  Again the worst case tables size could be estimated by considering 25,000 

resource IP addresses with 2 byte hash key, the score of one byte, the next hop IP of 4 

bytes, and the count of one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1). 
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Figure 102 Distributed Computing Scenario Peak Blacklist Table Usage 

The final results examined for the distributed computing scenarios are the 

blacklist tables.  Since the blacklist tables are populated when the SIGNUP event is sent 

and unpopulated with the ACCEPT event is sent, the tables are much smaller than the 

others because the SIGNUP and ACCEPT events happen very close to each other in time.  

As shown in Figure 102, the memory usage caps at a value similarly to the other tables; 

this time at a value of 120 bytes.  Doing the math, the BLACKLIST TABLE contains a 

four-byte IP address and a one-byte count totaling 5 bytes.  Dividing 120 by 5 means that 

each router kept no more than 24 entries in its BLACKLIST TABLE at a given time.  

The worst case blacklist size can be calculated as well by multiplying 25,000 resource 

providers times 5 bytes totaling 125KB.  This would imply that all 25,000 resource 

providers send their SIGNUP events at the same time through the same router. 
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Computer-in-the-Loop Instrumentation 

The computer-in-the-loop simulation results are presented in this section.  The 

event distribution diagrammed in Figure 103 shows that the distribution of traffic 

between each of the VOs is roughly the same.  The VO hosts and resource providers are 

distributed throughout the network and the average number of hops is around 14.1 as 

shown in Figure 104, and the discovery event hops are presented for each scenario in 

Figure 105 thru Figure 109.  A hop is considered movement from one network device to 

another. 
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Figure 103 Computer-in-the-Loop Scenario Event Distribution 
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Figure 104 Computer-in-the-Loop Scenario Average Number of Hops 
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Figure 105 Computer-in-the-Loop 25 Event Scenario Number of Hops 
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Figure 106 Computer-in-the-Loop 250 Event Scenario Number of Hops 
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Figure 107 Computer-in-the-Loop 2500 Event Scenario Number of Hops 
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Figure 108 Computer-in-the-Loop 10000 Event Scenario Number of Hops 
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Figure 109 Computer-in-the-Loop 25000 Event Scenario Number of Hops 
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Figure 110 Computer-in-the-Loop Scenario Successful TASK Events  

 
One important metric measures how successful the discovery approach was at 

finding a resource.  Figure 110 shows the success rates of the TASK events finding an 

available resource.  The values range between 98.96%-100% successful discoveries or 0-

126 dropped packets.  In the case of the unsuccessful TASK event not finding a resource, 

in the real world the VO host would simply try until it finds a resource.  But, the 

simulator does not model this for the purposes of finding the success rates. 

One new statistic provided in this research has to do with tracking how scores 

deviate from a perfect score.   A perfect score does not deviate from the score of the 

resource, that score deviation value would be zero.  With the case of the computer-in-the-

loop scenario, the hard drive field is marked as a “don’t care.”  This means that the 8 bit 

score composed of CPU, memory, hard drive, and bandwidth would have a mask of 

0xF3.  This yields scores in the set of {0, 4, 8, 12} with a deviation of zero.  Considering 

the bit positions, one would expect scores to deviate around spots of the don’t cares. 
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Figure 111 Computer-in-the-Loop Scenario Score Deviation for the 25,000 Event 
Scenario 

Looking at Figure 111, the scores tend to deviate in that fashion.  This figure 

represents the score deviations in the 25,000 event scenario.  Approximately 86% of the 

scores have a deviation of zero from the intended score.  When numbers deviate from the 

desired score, they deviate by an average of 6.07.   
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Figure 112 Computer-in-the-Loop Scenario Peak Signup Table Usage 
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The signup table peak memory usage is shown in Figure 112.  As the number of 

events is increased, the memory usage caps at about 10043 bytes.  This happens because 

devices are un-subscribing from the network as time is advancing which reduces the size 

of the signup table usage.  By default, the resource providers unsubscribe from the VO in 

200 simulation seconds after the CONFIRM DELIVERY event is sent.  The signup table 

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent.  Since there are 

25,000 events (worst case) from 25,000 different resource providers with a 4 byte 

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP 

TABLE ENTRY, then the worst case peak memory consumption for any particular router 

is 450 KB or 25KB * (4 + 4 + 10).  As a reminder, signup entries are removed every 24 

hours to prevent uncontrolled growth of these tables. 
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Figure 113 Computer-in-the-Loop Scenario Peak Resource Table Usage 
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Next, the peak resource table usage is examined in Figure 113.  The usage caps at 

339 bytes as the number of TASK events grow.  This happens for different reasons than 

the signup table previously presented.  The resource table has a smaller sized hash key 

and uses a one-byte score to lookup data.  As the scenarios grow larger, once there are 

more than 256 resource providers, the scores will definitely overlap.  The resource table 

is optimized to aggregate and count the number of devices with a particular score rather 

than to list individual resource providers.  Also in this case, the simulation is greedy in 

discovering resources.  Because resources are discovered in a greedy fashion, the table 

size does not grow very large because resources are consumed very quickly.  Again the 

worst case tables size could be estimated by considering 25,000 resource IP addresses 

with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of 

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1). 
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Figure 114 Computer-in-the-Loop Scenario Peak Blacklist Table Usage 
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The final results examined for the computer-in-the-loop scenarios are the blacklist 

tables.  Since the blacklist tables are populated when the SIGNUP event is sent and 

unpopulated with the ACCEPT event is sent, the tables are much smaller than the others 

because the SIGNUP and ACCEPT events happen very close to each other in time.  As 

shown in Figure 114, the memory usage caps at a value similarly to the other tables; this 

time at value of 95 bytes.  Doing the math, the BLACKLIST TABLE contains a four-

byte IP address and a one-byte count totaling 5 bytes.  Dividing 95 by 5 means that each 

router kept no more than 19 entries in its BLACKLIST TABLE at a given time.  The 

worst case blacklist size can be calculated as well by multiplying 25,000 resource 

providers times 5 bytes totaling 125KB.  This would imply that all 25,000 resource 

providers send their SIGNUP events at the same time through the same router. 

Large-Scale Data Analysis 

The large-scale data analysis simulation results are presented in this section.  The 

event distribution diagrammed in Figure 115 shows that the distribution of traffic 

between each of the VOs is roughly the same.  The VO hosts and resource providers are 

distributed throughout the network and the average number of hops is around 14.43 as 

shown in Figure 116, and the discovery event hops are presented for each scenario in 

Figure 117 thru Figure 121.  A hop is considered movement from one network device to 

another. 
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Figure 115 Large-Scale Scenario Event Distribution 
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Figure 116 Large-Scale Scenario Average Number of Hops 
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Figure 117 Large-Scale Scenario Number of Hops for 25 Event Scenario 
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Figure 118 Large-Scale Scenario Number of Hops for 250 Event Scenario 
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Figure 119 Large-Scale Scenario Number of Hops for 2500 Event Scenario 
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Figure 120 Large-Scale Scenario Number of Hops for 10000 Event Scenario 
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Figure 121 Large-Scale Scenario Number of Hops for 25000 Event Scenario 
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Figure 122 Large-Scale Scenario Successful TASK Events  

 
One important metric measures how successful the discovery approach was at 

finding a resource.  Figure 122 shows the success rates of the TASK events finding an 

available resource.  The values range between 99.6%-100% successful discoveries or 0-

93 dropped packets.  In the case of the unsuccessful TASK event not finding a resource, 
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in the real world the VO host would simply try until it finds a resource.  But, the 

simulator does not model this for the purposes of finding the success rates. 

One new statistic provided in this research has to do with tracking how scores 

deviate from a perfect score.   A perfect score does not deviate from the score of the 

resource, that score deviation value would be zero.  With the case of the large-scale 

scenario, the CPU, memory, and bandwidth fields are “don’t cares.”  This means that the 

8 bit score composed of CPU, memory, hard drive, and bandwidth would have a mask of 

0x0C.  This yields scores in the set of {0-3, 16-19, 32-35, …, 240-243} with a deviation 

of zero.  Considering the bit positions, one would expect scores to deviate around spots of 

the don’t cares. 
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Figure 123 Large-Scale Scenario Score Deviation for the 25,000 Event Scenario 

Looking at Figure 123, the scores tend to deviate in that fashion.  This figure 

represents the score deviations in the 25,000 event scenario.  Approximately 89.9% of the 

scores have a deviation of zero from the intended score.  When numbers deviate from the 

desired score, they deviate by an average of 125.42.   
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Figure 124 Large-Scale Scenario Peak Signup Table Usage 

The signup table peak memory usage is shown in Figure 124.  As the number of 

events is increased, the memory usage caps at about 4300 bytes.  This happens because 

devices are un-subscribing from the network as time is advancing which reduces the size 

of the signup table usage.  By default, the resource providers unsubscribe from the VO in 

200 simulation seconds after the CONFIRM DELIVERY event is sent.  The signup table 

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent.  Since there are 

25,000 events (worst case) from 25,000 different resource providers with a 4 byte 

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP 

TABLE ENTRY, then the worst case peak memory consumption for any particular router 

is 450 KB or 25KB * (4 + 4 + 10).  As a reminder, signup entries are removed every 24 

hours to prevent uncontrolled growth of these tables. 
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Figure 125 Large-Scale Scenario Peak Resource Table Usage 

 
Next, the peak resource table usage is examined in Figure 125.  The usage caps at 

213 bytes as the number of TASK events grow.  This happens for different reasons than 

the signup table previously presented.  The resource table has a smaller sized hash key 

and uses a one-byte score to lookup data.  As the scenarios grow larger, once there are 

more than 256 resource providers, the scores will definitely overlap.  The resource table 

is optimized to aggregate and count the number of devices with a particular score rather 

than to list individual resource providers.  Also in this case, the simulation is greedy in 

discovering resources.  Because resources are discovered in a greedy fashion, the table 

size does not grow very large because resources are consumed very quickly.  Again the 

worst case tables size could be estimated by considering 25,000 resource IP addresses 
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with 2 byte hash key, the score of one byte, the next hop IP of 4 bytes, and the count of 

one byte totaling 200KB or 25KB * (2 + 1 + 4 + 1). 

Large-Scale Scenario Peak Blacklist Table Usage (Bytes)
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Figure 126 Large-Scale Scenario Peak Blacklist Table Usage 

The final results examined for the large-scale scenarios are the blacklist tables.  

Since the blacklist tables are populated when the SIGNUP event is sent and unpopulated 

with the ACCEPT event is sent, the tables are much smaller than the others because the 

SIGNUP and ACCEPT events happen very close to each other in time.  As shown in 

Figure 126, the memory usage caps at a value similarly to the other tables; this time at 

value of 75 bytes.  Doing the math, the BLACKLIST TABLE contains a four-byte IP 

address and a one-byte count totaling 5 bytes.  Dividing 75 by 5 means that each router 

kept no more than 15 entries in its BLACKLIST TABLE at a given time.  The worst case 

blacklist size can be calculated as well by multiplying 25,000 resource providers times 5 
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bytes totaling 125KB.  This would imply that all 25,000 resource providers send their 

SIGNUP events at the same time through the same router. 

Collaborative Work 

The collaborative work simulation results are presented in this section.  The event 

distribution diagrammed in Figure 127 shows that the distribution of traffic between each 

of the VOs is roughly the same.  The VO hosts and resource providers are distributed 

throughout the network and the average number of hops is around 15 as shown in Figure 

128, and the discovery event hops are presented for each scenario in Figure 129 thru 

Figure 133.  A hop is considered movement from one network device to another. 
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Figure 127 Collaborative Work Scenario Event Distribution 
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Collaborative Scenario TASK Event Average Number of Hops
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Figure 128 Collaborative Work Scenario Average Number of Hops 

0

1

2

3

4

Fr
eq

ue
nc

y

8 10 12 13 14 15 16 17 18 19 23 24

Number of Hops

Collaborative Scenario 25 Task Event Hops Tracked

 
 

Figure 129 Collaborative Work Scenario Number of Hops for 25 Event Scenario 
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Figure 130 Collaborative Work Scenario Number of Hops for 250 Event Scenario 
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Figure 131 Collaborative Work Scenario Number of Hops for 2500 Event Scenario 
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Figure 132 Collaborative Work Scenario Number of Hops for 10000 Event Scenario 
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Figure 133 Collaborative Work Scenario Number of Hops for 25000 Event Scenario 
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Collaborative Scenario TASK Event Performance
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Figure 134 Collaborative Work Scenario Successful TASK Events  

 
One important metric measures how successful the discovery approach was at 

finding a resource.  Figure 134 shows the success rates of the TASK events finding an 

available resource.  The values range between 98.88%-100% successful discoveries or 0-

88 dropped packets.  In the case of the unsuccessful TASK event not finding a resource, 

in the real world the VO host would simply try until it finds a resource.  But, the 

simulator does not model this for the purposes of finding the success rates. 

One new statistic provided in this research has to do with tracking how scores 

deviate from a perfect score.   A perfect score does not deviate from the score of the 

resource, that score deviation value would be zero.  With the case of collaborative work, 

the memory field is a “don’t care.”  This means that the 8 bit score composed of CPU, 

memory, hard drive, and bandwidth would have a mask of 0xCF.  This yields scores in 

the ranges of {0-15, 64-79, 128-143, 192-207} with a deviation of zero.  Thus, since 
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there are gaps of 48 between the score values, most of the score deviations should be 

between 0 and 48.  Also considering the bit positions, one would expect scores to deviate 

around 0, 16, 32, and 48 depending when the resource score has a 0 or 1 in the spot of the 

don’t care. 
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Figure 135 Collaborative Work Score Deviation for the 25,000 Event Scenario 

Looking at Figure 135, the scores tend to deviate in that fashion.  This figure 

represents the score deviations in the 25,000 event scenario.  Approximately 63% of the 

scores fall exactly on 0, 16, 32, and 48 with the other scores tending to be very close to 

those numbers.  When numbers deviate from the desired score, they deviate by an 

average of 24.11.  Also, approximately 31% of the scores were less than 16 which 

explains why the 0 value is larger than the other three spikes. 
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Collaborative Peak Signup Table Usage (Bytes)
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Figure 136 Collaborative Work Scenario Peak Signup Table Usage 

The signup table peak memory usage is shown in Figure 136.  As the number of 

events is increased, the memory usage caps at about 5500 bytes.  This happens because 

devices are un-subscribing from the network as time is advancing which reduces the size 

of the signup table usage.  By default, the resource providers unsubscribe from the VO in 

200 simulation seconds after the CONFIRM DELIVERY event is sent.  The signup table 

worst-case peak usage can be estimated if UNSUBSCRIBE are not sent.  Since there are 

25,000 events (worst case) from 25,000 different resource providers with a 4 byte 

address, 10 VOs with each with a 4 byte VO Host IP address, and 10 bytes per SIGNUP 

TABLE ENTRY, then the worst case peak memory consumption for any particular router 

is 450 KB or 25KB * (4 + 4 + 10).  As a reminder, signup entries are removed every 24 

hours to prevent uncontrolled growth of these tables. 
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Collaborative Peak Resource Table Usage (Bytes)
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Figure 137 Collaborative Work Scenario Peak Resource Table Usage 

 
Next, the peak resource table usage is examined in Figure 137.  Notice that the 

usage caps at 245 bytes as the number of TASK events grows.  This happens for different 

reasons than the signup table previously presented.  The main reason is that the resource 

table has a smaller sized hash key and uses a one-byte score to lookup data.  As the 

scenarios grow larger, once there are more than 256 resource providers, the scores will 

definitely overlap.  The resource table is optimized to aggregate and count the number of 

devices with a particular score rather than to list individual resource providers.  Also in 

this case, the simulation is greedy in discovering resources.  Because resources are 

discovered in a greedy fashion, the table size does not grow very large because resources 

are consumed very quickly.  Again the worst case tables size could be estimated by 
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considering 25,000 resource IP addresses with 2 byte hash key, the score of one byte, the 

next hop IP of 4 bytes, and the count of one byte totaling 200KB or 25KB * (2 + 1 + 4 + 

1). 
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Figure 138 Collaborative Work Scenario Peak Blacklist Table Usage 

The final results examined for the collaborative work scenarios are the blacklist 

tables.  Since the blacklist tables are populated when the SIGNUP event is sent and 

unpopulated with the ACCEPT event is sent, the tables are much smaller than the others 

because the SIGNUP and ACCEPT events happen very close to each other in time.  As 

shown in Figure 138, the memory usage caps at a value similarly to the other tables; this 

time around a value of 85 bytes.  Doing the math, the BLACKLIST TABLE contains a 

four-byte IP address and a one-byte count totaling 5 bytes.  Dividing 85 by 5 means that 

each router kept no more than 17 entries in its BLACKLIST TABLE at a given time.  
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The worst case blacklist size can be calculated as well by multiplying 25,000 resource 

providers times 5 bytes totaling 125KB.  This would imply that all 25,000 resource 

providers send their SIGNUP events at the same time through the same router. 

Deployment Environment Summary 
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Figure 139 Memory Used Normalized 

 

Five different deployment environments were modeled with 25, 250, 2500, 

10,000, and 25,000 TASK messages sent from 10 VOs to many resource providers.  

Figure 139 shows the amount of memory used in each table for each of the five scenarios.  

The science portal scenario uses the most amount of memory per router where the large-

scale scenario uses the least.  Memory usage depends on the timing of the messages being 

sent, the length of time each task takes to process, and the overall size of the network.  As 
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evident in Figure 140, the science portal scenario had the least amount of computers 

where the large-scale analysis had the most.  Since the each of the deployment scenarios 

was allowed to expand to the same maximum number of hops (network tree depth), this 

meant that the science portal had the thinnest tree (network tree width) whereas the large-

scale data analysis had the widest tree.  The wider the tree, the less of a chance that a 

router will have to store data in its tables.  Note that the memory usage does not appear to 

be impacted by the average number of hops as shown in Figure 141. 
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Figure 140 Number of Computers 
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Figure 141 Average Number of Hops 
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Figure 142 Table Memory Consumption Normalized 
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Clearly, the signup table consumes the most amount of memory in the simulation 

Figure 142.  This happens because the signup table has more persistent entries lasting 

longer in the table than the other tables.  The resource table is reduced quickly because 

VO hosts are aggressive when finding resource providers.  The blacklist table is small 

because the entry size is much smaller than the other tables and the blacklist table is 

cleared quickly as well.     
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Figure 143 Average Successful TASK Event Transmissions 

 
The averaged percentage of successful TASK (discovery) event transmissions is 

shown in Figure 143.  The best performing scenario is the science portal (99.92%) where 

as the worst performing scenario is the computer-in-the-loop scenario (99.46%).  The 

scoring does not appear to impact the performance of the discovery algorithm.  This is 

suspected because the distributed computing scenarios are designed not to have a score 

deviation; and the distributed computing scenario ranks in the middle of the range.  This 

is shown in Figure 144 because the distributed computing scenario’s score deviation 
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barely registers in the chart.  The values do not correspond to the number of computers 

(Figure 140), the average number of hops (Figure 141), or the memory usage statistics 

(Figure 142) either.  This means that the differences lie with the simulation, the scenario 

generation process, the timing of the messages relative to each other, and the distribution 

of the messages.  Thus, the discovery process does not appear to be impacted by the 

network size, memory consumption, score deviation, or number of hops each message 

travels.  The results indicate that the grid resource discovery algorithm will produce 

satisfactory results when deployed. 
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Figure 144 25000 Event Score Deviations Summary 

HLA/RTI Evaluation 

The final purpose of this work is to make the simulation engine perform basic 

HLA operations.  By making the simulator HLA compatible, the workload can be divided 

between different federates to model the grid resource discovery protocol.  All tests 
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performed in this section had two federates: one federate managed the network traffic for 

one ISP (ATDN), the other federate managed the network traffic for the other ISP 

(GBLX).  If an event needed to travel from one ISP to the other, it had to go through the 

RTI.  This section summarizes the work done and how the results were verified. 

RTI and Experimentation Hardware Information 

There are several RTI implementations available on the market.  The 

experimentation done for this work used RTI-NG Pro Version 3.0.2.3 available from 

Raytheon VTC.  This version of the RTI implements HLA Version 1.3.  The license 

management and configuration of the laptop used only allows operations from a 2 GHz 

single core laptop computer with 512 MB of memory.  Under normal circumstances, the 

license server can be accessed from any remote machine.  However this particular laptop 

configuration locked down the ability to do that. 

Due to the limitations of the laptop hardware, large simulation executions could 

not be performed on this platform since a minimum of four processes were needed to 

include the RTIExec, two federates, and the license manager.  Though the license 

manager and RTIExec are lightweight processes, the federate software is not.  The 

execution time on this platform was slower than if the work could be distributed either on 

a multi-core machine or between different computers.  Also, there were memory 

constraints as the scenario and network size grew larger.  This limited the ability to test 

large and complex scenarios; thus the RTI experiments provide a proof of principle 

instead. 
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Results 

Basic Federation and Federate Operation 

The most important and basic operations for participating in an HLA federation 

are creating a federation, joining a federate to the federation, resigning the federate from 

the federation, and destroying the federation executable.  The results of these actions can 

be verified by looking at the RTIExec screen which prints this basic information to the 

screen.  In Figure 145, the federation name was “UCF” and the two federates were named 

“GPS_1” and “GPS_2”.  The federation is created and the FOM format is verified when 

UCF was finished initializing about half way through the output screen.  Next GPS_1 and 

GPS_2 have joined the federation.  Time stepping is not shown on the display.  When the 

federates were done modeling, they resigned from the federation.  Finally, the federation 

was destroyed when the fedex was shutdown. 

Event Management 

There are several aspects of the simulation that have to do with event 

management.  The first is declaring the ability to publish and subscribe to events.  While 

doing this process, the software caches the event and parameter RTI handles needed for 

sending the events later.  This functionality cannot be verified on the RTIExec console 

window.  The RTI usually uses negative acknowledgements to let the user know 

something has gone wrong (rather than indicating something has gone right).  The RTI 

does this by throwing exceptions.  By examining the log outputs, there are no errors 

related to publications or subscriptions or for invalid FOM class name lookups.   
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Figure 145 RTIExec Output Window 

 

Another aspect of event management is actually publishing or receiving an RTI 

event.  This is verified by examining the output of the simulation on the GUI screen and 

in the log files.  The GUI screen shows that event counts are incrementing.  The log files 
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indicate that some messages have been dropped on the local machine and transferred to 

the other federate.  This can be traced by looking up the event id for that event.  The 

event converted to text on the sending federate must match the event on the receiving 

federate when converted to text.  10 events out of 100 were manually checked to cross 

from one federate to the other and no problems were found.  Also, since both federates 

are sending and receiving events, this also helps verify the publication and subscription 

task. 

Synchronization Points 

The grid protocol simulator uses two different synchronization points: a start 

synch point and a stop synch point.  The start synch point is used to hold federates from 

starting the clock until the last federate joins.  This is achieved by having the final 

federate register a synchronization point with the RTI, then having each of the federates 

accept the synch point announcement.  Once the two federates accept the synch points, 

the RTI notifies the federates that the federation is synchronized.  Upon receipt of this 

notification, the simulation clock is officially started.   

Thus, the start synch point was verified in two ways.  The first was the first 

federate to join the RTI sat and did not advance the clock until the second federate joined.  

The federate is actually sitting on a mutex that does not release until the federation is 

synchronized.  The second verification came when the second federate joined, but 

federate clocks began advancing (as was evident on the GUI screen). 

The stop synch point has a similar implementation, but for a different purpose.  

Even through the two federates are running concurrently, it is important that each 

federate stays in the federation until federation execution is complete.  Thus, the federate 
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will keep advancing time until the synch point stop is received.  Once received, the 

federate resigns from the federation.  This is verified by seeing that both federates resign 

from the federation at approximately the same time.  If one federate resigns when its 

event queue is empty, this will be premature.  In that case, one federate will resign and 

the other will continue to advance its clock until its event queue is emptied.  During 

validation, both federates resigned at the same time. 

Time Management 

As mentioned above, time was advancing when the start and stop synch points 

were achieved.  There is another way to verify proper time management.  This simulation 

is time constrained and time regulating.  It was hypothesized and observed that the 

federates try to catch up to each other’s clocks.  Thus, by watching the clocks on the two 

federates GUI screens, the racing was observed and verified. 
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Figure 146 Two Federates Running a Scenario with the RTI 
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CHAPTER FIVE: CONCLUSIONS 

K-Array N-Cube Design Conclusion 

An event-driven, custom-designed interconnect simulation environment was 

created to evaluate the performance of off-chip k-array n-cube interconnect architectures 

for line cards.  The interconnects were examined using the network simulator in order to 

find which of the interconnects can provide the highest performance and memory 

bandwidth to replace the existing shared-bus systems.   

The simulator provides the user with a flexible and robust tool that can emulate 

multiple interconnect architectures under non-uniform traffic patterns. The simulator 

offers the user with extensive control over network parameters, performance enhancing 

features and simulation time frames that make the platform as close as possible to the 

physical line card features.  

Performance results show that k-array n-cube topologies can sustain higher traffic 

load than the currently used interconnects.  Flow control mechanisms such as virtual 

channels (VC) and sub-channeling (SC) have an important impact on the interconnect 

performance.  VC and SC mechanisms, together, reduce the transmission failure rate 

significantly by 75% and increase the interconnect bandwidth utilization in the range of 

15–25% depending on the topology. A variation of 2-array 3-cube, called 3D-mesh, was 

introduced that provides a better processor-memory distribution under non-uniform 

traffic.  The combination of the 3D-mesh interconnect and the adaptive routing algorithm 

facilitate to reach the highest throughput of 452 Gbps; this is better than twice the 

throughput of the leading solution in the marketplace.  3D-mesh meets both the stringent 
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performance requirements and the physical constraints on the line card while enabling 

future scalability to adopt higher line rates. 

CLL Algorithm Conclusion 

A new cluster leader election algorithm called the cluster leader logic (CLL) 

algorithm was proposed and simulated.  GPS-QHRA is based on the presence of a GPS 

device with the networking node.  The cluster leaders react to data flow patterns of the 

network by providing better load balancing throughout the wireless GPS-based ad-hoc 

network by sharing their load.  Based on the geographical direction of the net traffic flow, 

the clusterheads are selected in such a manner that there are more clusterheads at 

locations where there is more traffic activity.   

Thus the clusterheads are able to share the load for forwarding packets. 

At locations of lower or no traffic flow, there are less numbers of clusterheads since 

clusterhead overloading is not a problem.  The clusterheads can filter data sent based on 

the ground and perceived truth knowledge of the network and by introducing a new 

concept called cell fanning.  Cell fanning allows a clusterhead to split into two 

clusterheads preventing the original clusterhead from becoming overloaded and the new 

clusterhead becoming starved for data transmissions.   

Extensive simulation experiments were conducted to demonstrate that the system 

performance is enhanced when the proposed algorithm chooses clusterheads.  The 

simulator was built on top of the simulation infrastructure used in the k-array n-cube 

simulator.  The results show up to 45% power savings and up to 25% improvement in 

queuing delays when CLL is compared to GPS-QHRA. 
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Grid Resource Protocol Conclusion 

The Grid Protocol Simulator, the third simulator in this work, simulated five 

different deployment environments with 25, 250, 2500, 10,000, and 25,000 TASK 

messages sent from 10 VOs to many resource providers.  The five different environments 

varied the application of the scoring mechanism used to route the TASK messages 

through the network.  Hop counts, memory usage, message distribution, discovery 

message successes, and score deviation statistics were collected and presented in this 

work. 

The science portal scenario uses the most amount of memory per router where the 

large-scale scenario uses the least.  Memory usage depends on the timing of the messages 

being sent, the length of time each task takes to process, and the overall size of the 

network.  The science portal scenario had the least amount of computers where the large-

scale analysis had the most.   

The signup table consumes the most amount of memory in the simulation.  This 

happens because the signup table has more persistent entries lasting longer in the table 

than the other tables.  The resource table is reduced quickly because VO hosts are 

aggressive when finding resource providers.  The blacklist table is small because the 

entry size is much smaller than the other tables and the blacklist table is cleared quickly 

as well.  Also, worst-case memory consumption was calculated in the results section.  

The signup table worst-case memory consumption per router is 450KB, the resource table 

is 200KB, and the blacklist is 125KB totaling 775 KB per router for 25,000 resource 

providers mapped to 10 VO Hosts.   
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The best performing scenario with respect to successful discovery message 

transmissions is the science portal scenario (99.96%) where as the worst performing 

scenario is the computer-in-the-loop scenario (99.43%).  The scoring does not impact the 

performance of the discovery algorithm.  The discovery process does not appear to be 

impacted by the network size, memory consumption, score deviation, or number of hops 

each message travels. 

Simulation Engine Conclusion 

 
The main purpose of this work is to model and simulate networking architectures 

and protocols by developing a common underlying simulation infrastructure.  All three 

simulators kept the same overall architecture: creating scenarios, feeding them into an 

event-driven simulation, and getting results at the end.  The scenario generation process 

evolved into the generation of XML-based text files to represent networks and event.  

The simulator evolved to support HLA/RTI which is a primary simulation architecture in 

the present time.  The results generation has evolved into the software automatically 

producing multi-worksheet spreadsheets with sorted and formatted data, formulas, charts, 

and graphs.  In conclusion, the simulation engine supplies reusable modules at a 

minimum if not an entire infrastructure that can be built from or expanded. 

The sim engine allows the developer to perform basic HLA functions such as 

time-constrained time-regulating time management, the creation, sending, and receiving 

of RTI events, and synch point management.  The simulation engine is configured 

through the use of a GUI control form and the results are stored in the RtiManager class.  
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The developer can create and join a federation, subscribe to interactions, and designate 

which FED FOM file to use. 

In addition to performing those functions with the RTI, the sim engine supports a 

mode where the RTI is not present.  This is configurable at run time rather than compile 

time thus allowing the developer to support one executable software delivery.  The 

developer inherits base classes to perform the duties required.  The sim engine also 

allows the developer to reuse the capability to represent a network by reading in XML 

scenario files.  The sim engine also provides auxiliary functionalities such as logging and 

error reporting, an IP V4 address container, and random number generator.  The sim 

engine also provides graphical interfaces for asking the user questions or displaying an 

error message GUI. 

Future Directions for this Work 

Even though a considerable amount of work was done to conclude this work, 

there are still enhancements and improvements that can be made which are beyond the 

scope of this work.  For the k-array n-cube wormhole routing protocol, a good 

continuation would be to attempt to emulate the protocol in hardware.  Results can be 

gathered to compare the simulated results to the emulated results.   

For the CLL algorithm, it would be beneficial to find more scenarios to simulate; 

similar to researching and representing the five grid deployment environments done for 

the grid discovery protocol.  Possible places to look for deployment environments are 

military live training ranges such as 29 Palms [110].  Once these ad-hoc wireless 

deployments are identified, scenarios can be generated to represent the terrain, situation, 

and node characteristics and then simulated. 
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As for the grid discovery protocol, a very useful experiment would be to 

implement the algorithm either in programmable routers (such as [111]), hardware, or 

computers simulating routers by directing network traffic like the protocol would.  A lab 

would be needed with enough devices to represent a reasonably sized network to test on.  

A different continuation of work would be to study the GLOBUS architecture 

[65][79][80] to see how the grid discovery protocol can fit into it.  This would require a 

possible replacement of the GLOBUS broker services, GIS, MDS, GRAM, and 

scheduler.   

The simulation engine can be evolved further to increase the HLA capabilities.  

One improvement would be for the simulation engine to support any type of time 

management (various combinations of time regulating and time constraining).  The event 

interface can be cleaned up to encapsulate the ability for directly calling the RTI 

functions.  For instance, the Event class requires the developer to create RTI handle value 

pairs and call the sendInteraction() function.  A more elegant design would be for the 

developer to serialize the data in FOM order into memory and hand the block of memory 

to a class that would perform the responsibilities of converting the memory into RTI data 

and function calls.  Another goal would be to implement HLA objects and save/restore 

functionality.  The grid protocol simulator does not own any objects and the functionality 

to create them or to have a save/restore capability was never needed or developed. 
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