5,222 research outputs found

    Model-Based Adaptation of Software Communicating via FIFO Buffers

    Get PDF
    Software Adaptation is a non-intrusive solution for composing black-box components or services (peers) whose individual functionality is as required for the new system, but that present interface mismatch, which leads to deadlock or other undesirable behaviour when combined. Adaptation techniques aim at automatically generating new components called adapters. All the interactions among peers pass through the adapter, which acts as an orchestrator and makes the involved peers work correctly together by compensating for mismatch. Most of the existing solutions in this field assume that peers interact synchronously using rendezvous communication. However, many application areas rely on asynchronous communication models where peers interact exchanging messages via buffers. Generating adapters in this context becomes a difficult problem because peers may exhibit cyclic behaviour, and their composition often results in infinite systems. In this paper, we present a method for automatically generating adapters in asynchronous environments where peers interact using FIFO buffers.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Stability of Asynchronously Communicating Systems

    Get PDF
    Recent software is mostly constructed by reusing and composing existing components. Software components are usually stateful and therefore described using behavioral models such as finite state machines. Asynchronous communication is a classic interaction mechanism used for such software systems. However, analysing communicating systems interacting asynchronously via reliable FIFO buffers is an undecidable problem. A typical approach is to check whether the system is bounded, and if not, the corresponding state space can be made finite by limiting the presence of communication cycles in behavioral models or by fixing buffer sizes. In this paper, we focus on infinite systems and we do not restrict the system by imposing any arbitrary bounds. We introduce a notion of stability and prove that once the system is stable for a specific buffer bound, it remains stable whatever larger bounds are chosen for buffers. This enables us to check certain properties on the system for that bound and to ensure that the system will preserve them whatever larger bounds are used for buffers. We also prove that computing this bound is undecidable but show how we succeed in computing these bounds for many typical examples using heuristics and equivalence checking

    Adaptation of Asynchronously Communicating Software

    No full text
    International audienceSoftware adaptation techniques aim at generating new components called adapters, which make a set of services work correctly together by compensating for existing mismatch. Most approaches assume that services interact synchronously using rendez-vous communication. In this paper, we focus on asynchronous communication, where services interact exchanging messages via buffers. We overview a method for automatically generating adapters in such asynchronous environments

    Holistic engineering design : a combined synchronous and asynchronous approach

    Get PDF
    To aid the creation and through-life support of large, complex engineering products, organizations are placing a greater emphasis on constructing complete and accurate records of design activities. Current documentary approaches are not sufficient to capture activities and decisions in their entirety and can lead to organizations revisiting and in some cases reworking design decisions in order to understand previous design episodes. Design activities are undertaken in a variety of modes; many of which are dichotomous, and thus each require separate documentary mechanisms to capture information in an efficient manner. It is possible to identify the modes of learning and transaction to describe whether an activity is aimed at increasing a level of understanding or whether it involves manipulating information to achieve a tangible task. The dichotomy of interest in this paper is that of synchronous and asynchronous working, where engineers may work alternately as part of a group or as individuals and where different forms of record are necessary to adequately capture the processes and rationale employed in each mode. This paper introduces complimentary approaches to achieving richer representations of design activities performed synchronously and asynchronously, and through the undertaking of a design based case study, highlights the benefit of each approach. The resulting records serve to provide a more complete depiction of activities undertaken, and provide positive direction for future co-development of the approaches

    Compatibility Checking for Asynchronously Communicating Software

    Get PDF
    International audienceCompatibility is a crucial problem that is encountered while constructing new software by reusing and composing existing components. A set of software components is called compatible if their composition preserves certain properties, such as deadlock freedom. However, checking compatibility for systems communicating asynchronously is an undecidable problem, and asynchronous communication is a common interaction mechanism used in building software systems. A typical approach in analyzing such systems is to bound the state space. In this paper, we take a different approach and do not impose any bounds on the number of participants or the sizes of the message buffers. Instead, we present a sufficient condition for checking compatibility of a set of asynchronously communicating components. Our approach relies on the synchronizability property which identifies systems for which interaction behavior remains the same when asynchronous communication is replaced with synchronous communication. Using the synchronizability property, we can check the compatibility of systems with unbounded message buffers by analyzing only a finite part of their behavior. We have implemented a prototype tool to automate our approach and we have applied it to many examples

    The OMII Software – Demonstrations and Comparisons between two different deployments for Client-Server Distributed Systems

    No full text
    This paper describes the key elements of the OMII software and the scenarios which OMII software can be deployed to achieve distributed computing in the UK e-Science Community, where two different deployments for Client-Server distributed systems are demonstrated. Scenarios and experiments for each deployment have been described, with its advantages and disadvantages compared and analyzed. We conclude that our first deployment is more relevant for system administrators or developers, and the second deployment is more suitable for users’ perspective which they can send and check job status for hundred job submissions

    Automated verification of automata communicating via FIFO and bag buffers

    Get PDF
    International audienceThis article presents new results for the automated verification of automata communicating asynchronously via FIFO or bag buffers. The analysis of such systems is possible by comparing bounded asynchronous compositions using equivalence checking. When the composition exhibits the same behavior for a specific buffer bound, the behavior remains the same for larger bounds. This enables one to check temporal properties on the system for that bound and this ensures that the system will preserve them whatever larger bounds are used for buffers. In this article, we present several decidability results and a semi-algorithm for this problem considering FIFO and bag buffers, respectively, as communication model. We also study various equivalence notions used for comparing the bounded asynchronous systems

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    GRL: A Specification Language for Globally Asynchronous Locally Synchronous Systems

    Get PDF
    International audienceA GALS (Globally Asynchronous, Locally Synchronous) system consists of several synchronous subsystems that evolve concurrently and interact with each other asynchronously. Most formalisms and design tools support either the synchronous paradigm or the asynchronous paradigm but rarely combine both, which requires an intricate modeling of GALS systems. In this paper, we present a new language, called GRL (GALS Representation Language) designed to model GALS systems in an abstract and versatile manner for the purpose of formal verification. GRL has formal semantics combining the synchronous reactive model underlying dataflow languages and the asynchronous concurrent model underlying process algebras. We present the basic concepts and the main constructs of the language, together with an illustrative example
    • 

    corecore