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Abstract This article presents new results for the automated verification of
automata communicating asynchronously via FIFO or bag buffers. The anal-
ysis of such systems is possible by comparing bounded asynchronous compo-
sitions using equivalence checking. When the composition exhibits the same
behavior for a specific buffer bound, the behavior remains the same for larger
bounds. This enables one to check temporal properties on the system for that
bound and this ensures that the system will preserve them whatever larger
bounds are used for buffers. In this article, we present several decidability re-
sults and a semi-algorithm for this problem considering FIFO and bag buffers,
respectively, as communication model. We also study various equivalence no-
tions used for comparing the bounded asynchronous systems.

Keywords Labeled Transition Systems · Asynchronous Communication ·
Equivalence Checking

1 Introduction

Most software systems are now constructed by reusing and composing existing
components or peers. This is the case in many areas such as component-based
systems, cloud applications, Web services, or cyber-physical systems. We par-
ticularly focus on software entities that are described using behavioral models
and exchange messages using asynchronous communication semantics. One of
the main problems in this context is to check whether a new system consist-
ing of a set of interacting peers respects certain properties. Verifying asyn-
chronously communicating software has been studied extensively in the last
30 years and is known to be undecidable for FIFO buffers communication in
general [1]. A common approach to circumvent this issue is to bound the state
space by restricting the cyclic behaviors or by assigning an arbitrary bound
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on buffers. In this article, we do not want to restrict the system by imposing
any bound on cyclic behaviors or buffers. Bounding buffers to an arbitrary size
during the execution is not a satisfactory solution, because, if at some point
buffers’ sizes vary (due to changes in memory requirements for example), it
is not possible to know how the system would behave compared to its former
version and new unexpected errors can show up.

A recent approach [2,3] shows that, when considering FIFO buffers as com-
munication model, in some cases, asynchronous compositions exhibit the same
observable behavior from some buffer bound. This property, called stability,
can be verified in practice using equivalence checking techniques on finite state
spaces by comparing bounded asynchronous compositions, although the sys-
tem consisting of peers interacting asynchronously via unbounded buffers can
result in infinite state spaces. This enables one to check temporal properties on
the system for that bound (using model checking techniques) and ensures that
the system will preserve them whatever larger bounds are used for buffers.

Figure 1 gives an example where peers are modeled using Labeled Transi-
tion Systems (LTSs). Transitions are labeled with either send messages (excla-
mation marks) or receive messages (question marks). Initial states are marked
with incoming half-arrows. In the asynchronous composition, each peer is
equipped with one input buffer. We can use this approach to detect that when
each peer is equipped with a buffer bound fixed to 2, the observable behavior
of the system depicted in Figure 1 is stable. This means that we can check
properties, such as the absence of deadlocks, on the 2-bounded asynchronous
version of the system and the results hold for any asynchronous version of the
system where buffer bounds are greater or equal to 2.

Fig. 1 Motivating example

This approach is very promising yet suffers a few limitations in its current
version because: (i) it does not consider receive messages in the peer behavioral
model but only focuses on send messages, (ii) it reasons on a unique communi-
cation model where each peer is equipped with one input FIFO buffer, (iii) it
relies on specific behavioral semantics when comparing asynchronous compo-
sitions, namely trace equivalence in [2] and branching bisimulation in [3].

In this article, we extend these early results in several directions. First, we
consider both send and receive messages in models and model comparisons.
This is particularly interesting for allowing one to specify and verify prop-
erties not only on send messages but also on receive messages. An example
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of property of interest is to check whether all requests submitted by a client
are actually handled by the server as tackled in [4]. Second, we assume that
peers can communicate either via FIFO buffers or via bag buffers. Bag buffers
are particularly meaningful when the communication network cannot assume
proper ordering of messages (a message sent after another one can arrive be-
fore). In that case, storing messages in a certain order does not make sense,
and bag buffers are an appropriate communication model. For this reason,
many works have been dedicated to the study of systems communicating via
bag buffers, see, e.g., [5–8]. Third, we study the stability results varying the
equivalence semantics used for asynchronous composition comparison. Each
equivalence notion preserves a different temporal logic fragment and enables
us to specify temporal properties using those logics. We focus in this paper on
the most common classes of equivalence, namely strong, branching, weak, and
trace equivalence [9,10].

More precisely, we present in this article how peers can be modeled using
LTSs and how they interact via FIFO or bag buffers, assuming the communi-
cation model is reliable (no message loss). We prove that the stability property
is undecidable for all considered classes of equivalence when assuming FIFO
buffers as communication model. We also prove that the stability property is
decidable for strong equivalence, undecidable for weak equivalence, and unde-
cidable for trace equivalence when considering bag buffers as communication
model. We propose a semi-algorithm for testing stability for branching and
strong equivalence when peers communicate via FIFO or bag buffers. We have
implemented our semi-algorithm using Python scripts, process algebra encod-
ings, and the equivalence checker available in the CADP toolbox [11]. We
applied our tool support to more than 300 examples of communicating sys-
tems, many of them taken from the literature on this topic. These experiments
show that a large number of these examples are stable and can therefore be
formally analyzed using our approach.

The present article extends an early version of this work published in [3]
as follows:

– the formal model used to describe peer composition and model comparison
consider send messages as well as receive messages;

– we do not focus only on FIFO buffers as asynchronous communication
model but also on bag buffers;

– we study and compare asynchronous peer composition varying the equiv-
alence semantics, namely strong, branching, weak, and trace equivalence;

– we carried out new experiments assuming the aforementioned extensions
in models, communication and comparison semantics.

The organization of the rest of this article is as follows. Section 2 defines
our models for peers and their compositions. Section 3 presents our results on
stable systems varying the communication model and the equivalence notion
used for comparing asynchronous compositions. Section 4 describes our tool
support and experiments we carried out to evaluate our approach. Finally,
Section 5 reviews related work and Section 6 concludes.
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2 Communicating Systems

We present in this section our model of peers and our definitions of asyn-
chronous compositions considering FIFO and bag buffers, respectively, as com-
munication semantics.

2.1 Peer Model

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral
model defines the order in which a peer executes the send and receive messages.

Definition 1 A peer is an LTS P = (S, s0, Σ, T ) where S is a finite set of
states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, a set of receive messages, and the
internal action, and T ⊆ S ×Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ for representing internal activities. A transition

is represented as s
l−→ s′ ∈ T where l ∈ Σ. This can be directly extended to

s
σ−→ s′, σ ∈ Σ∗, where σ = l1, . . . , ln, s

l1−→ s1, . . . , si
li+1−−→ si+1, . . . , sn−1

ln−→
s′ ∈ T . In the following, for the sake of simplicity, we will denote this by
s
σ−→ s′ ∈ T ∗.

Given a set of peers {P1, . . . ,Pn}, we assume that each message has a
unique sender and a unique receiver: ∀i, j ∈ 1..n, i 6= j, Σ!

i ∩ Σ!
j = ∅ and

Σ?
i ∩ Σ?

j = ∅. Furthermore, each message is exchanged between two different

peers: Σ!
i ∩ Σ?

i = ∅ for all i. We also assume that each send message has
a receive message counterpart in another peer (closed systems): ∀i ∈ 1..n,
∀m ∈ Σ!

i =⇒ ∃j ∈ 1..n, i 6= j, m ∈ Σ?
j .

2.2 Asynchronous Composition with FIFO Buffers

The asynchronous composition of a set of peers corresponds to the system
where the peers communicate with each other asynchronously via FIFO buffers.
Each peer Pi is equipped with an unbounded input message buffer Qi. A peer
can either send a message m ∈ Σ! to the tail of the receiver buffer Qj at any
state where this send message is available, read a message m ∈ Σ? from its
buffer Qi if the message is available at the buffer head, or evolve independently
through an internal transition.

Definition 2 (FIFO Buffers) A FIFO buffer is a list of messages (repetition
is allowed), where a new message is added at the end of the list and the next
message to be consumed is taken from the head of the list.
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Definition 3 (Asynchronous Composition with FIFO Buffers) Given
a set of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), and Qi being its associ-

ated FIFO buffer, the asynchronous composition (P1|Q1)| . . . |(Pn|Qn) is the
labeled transition system LTSa = (Sa, s

0
a, Σa, Ta) where:

– Sa ⊆ S1 ×Q1 × . . .× Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i )∗

– s0a ∈ Sa such that s0a = (s01, ε, . . . , s
0
n, ε) (where ε denotes an empty buffer)

– Σa = tiΣi
– Ta ⊆ Sa × Σa × Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ =

(s′1, Q
′
1, . . . s

′
n, Q

′
n) ∈ Sa

(send) s
m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩Σ?
j , (i) si

m!−−→
s′i ∈ Ti, (ii) Q′j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′k = Qk, and
(iv) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

(consume) s
m?−−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′i =

Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ Q′k = Qk, and (iv) ∀k ∈ {1, . . . , n} :
k 6= i⇒ s′k = sk

(internal) s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :
Q′k = Qk, and (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

2.3 Asynchronous Composition with Bag Buffers

When the peers communicate asynchronously with each other via bag buffers
(one input buffer per peer), the difference with respect to FIFO buffers lies
in the semantics of receive messages. A peer can read a message m iff it is in
a state with an outgoing transition labeled with m? and its buffer contains a
message m in the set of awaiting messages (no constraint on the order of the
receive messages).

Definition 4 (Bag Buffers) A bag buffer for a peer P = (S, s0, Σ, T ) is a
mapping from the set of messages in Σ? to N.

Given a set of messages {a, b}, we write equivalently a bag B=(a, b, a) or
B(a) = 2 and B(b) = 1.

Definition 5 (Asynchronous Composition with Bag Buffers) Given a
set of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), and Bi being its associated

bag buffer, the asynchronous composition (P1|B1)| . . . |(Pn|Bn) is the labeled
transition system LTSa = (Sa, s

0
a, Σa, Ta) where:

– Sa ⊆ S1 ×B1 × . . .× Sn ×Bn where ∀i ∈ {1, . . . , n}, Bi ⊆ (Σ?
i )∗

– s0a ∈ Sa such that s0a = (s01, ε, . . . , s
0
n, ε) (where ε denotes an empty buffer)

– Σa = tiΣi
– Ta ⊆ Sa × Σa × Sa, and for s = (s1, B1, . . . , sn, Bn) ∈ Sa and s′ =

(s′1, B
′
1, . . . s

′
n, B

′
n) ∈ Sa

(send) s
m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩Σ?
j , (i) si

m!−−→
s′i ∈ Ti, (ii) B′j = Bj ∪ {m}, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ B′k = Bk,
and (iv) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk
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(consume) s
m?−−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) m ∈

Bi, (iii) B′i = Bi − {m}, (iv) ∀k ∈ {1, . . . , n} : k 6= i ⇒ B′k = Bk, and
(v) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

(internal) s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :
B′k = Bk, and (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

We use LTSka = (Ska , s
0
a, Σ

k
a , T

k
a ) to define the bounded asynchronous com-

position, where each message buffer is bounded to size k. The definition of
LTSka can be obtained from Def. 3 and 5 by allowing send transitions only if
the message buffer of the receiving peer has less than k messages in it. Oth-
erwise, the sender is blocked, i.e., we assume reliable communication without
message loss.

The k-bounded asynchronous composition can be noted (P1|Qk1)| . . . |(Pn|Qkn)
or (P1|(Q1

1| . . . |Q1
1))| . . . |(Pn|(Q1

n| . . . |Q1
n)), where each peer is in parallel

with k buffers bounded to 1. This pattern can be used for encoding bag buffers,
where there is no order among messages, but also for encoding ordered FIFO
buffers as originally proposed by R. Milner in [9] (see Sections 1.2 and 3.3 of
this book for details).

3 Stability for FIFO and Bag Buffers

The class of systems that are stable corresponds to systems whose asyn-
chronous compositions remain the same from some buffer bound k, i.e., the
asynchronous composition of the system with buffer bounds greater than k is
equivalent (≡) to the asynchronous system with buffers bounded to k. We will
introduce in this section the notions of equivalence we consider in this paper.

Definition 6 (Stability) Given a set of peers {P1, . . . ,Pn}, we say that this
system is stable if and only if ∃k such that LTSka ≡ LTSqa (∀q > k).

Since stable systems produce the same behavior from a specific bound k,
they can be analyzed for that bound to detect for instance the presence of
deadlocks or to check whether they satisfy any kind of temporal property.
Stability ensures that these properties are preserved when buffer bounds are
increased.

Proposition 1 Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSka ≡ LTSqa
(∀q > k), and for some property P , LTSka |= P , then LTSqa |= P (∀q > k).

In this section, we study the stability property following two dimensions:
the model of communication and the equivalence semantics used for comparing
asynchronous compositions (≡ in Def. 6). We study the stability for the most
common classes of equivalence, namely strong, branching, weak, and trace
equivalence, denoted ≡st, ≡br, ≡we, and ≡tr, respectively. It is worth observing
that the temporal properties that can be verified on a stable system depend
on the equivalence semantics used for checking the stability property. As an
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example, if we use branching bisimulation for analyzing asynchronous systems,
one can specify temporal formulas using the ACTL\X logic, because branching
bisimulation preserves properties written in ACTL\X [12].

As for communication models, we focus on FIFO and bag buffers, respec-
tively. We focus first on FIFO buffers, which is a classic model of commu-
nication in distributed systems. Since this model is Turing powerful, testing
stability turns out to be undecidable for all considered classes of equivalence,
even for the coarsest (i.e., strong bisimulation). Therefore, in a second step,
we study the stability property for a more permissive model of communication
where peers interact via bag buffers. Systems communicating via bag buffers
can be encoded as labeled Petri nets, hence decidability results existing for
labeled Petri nets, and particularly those presented in [13], can be applied to
our context. When considering bag buffers as communication model, we prove
that the stability property is decidable for strong equivalence, and undecidable
for weak and trace equivalence. Table 1 summarizes the decidability results
presented in this section.

Strong Branching Weak Trace

FIFO buffers Undecidable
Bag buffers Decidable ? Undecidable

Table 1 Summary of decidability results

As far as computability is concerned, we also propose at the end of this
section a semi-algorithm for computing the smallest k satisfying the stability
property. So far, we are able to analyze systems communicating via FIFO and
bag buffers for strong and branching bisimulation. The corresponding tool
support is presented with more details in Section 4.

Let us recall the formal definitions of the classes of equivalences we consider
in this work. These definitions are taken from [9,10].

Definition 7 (Strong Bisimulation) Two LTSs LTS1 and LTS2 are strongly
bisimilar, denoted by LTS1 ≡st LTS2, if there exists a symmetric relation R
(called a strong bisimulation) between the states of LTS1 and LTS2 satisfying
the following two conditions:

– The initial states are related by R;
– If R(r, s) and r

a−→ r′, then there exists a transition s
a−→ s′, such that

R(r′, s′).

Definition 8 (Branching Bisimulation) Two LTSs LTS1 and LTS2 are
branching bisimilar, denoted by LTS1 ≡br LTS2, if there exists a symmetric
relation R (called a branching bisimulation) between the states of LTS1 and
LTS2 satisfying the following two conditions:

– The initial states are related by R;
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– If R(r, s) and r
δ−→ r′, then either δ = τ and R(r′, s), or there exists a path

s
τ∗−→ s1

δ−→ s′, such that R(r, s1) and R(r′, s′).

Definition 9 (Weak Bisimulation) Two LTSs LTS1 and LTS2 are weakly
bisimilar, denoted by LTS1 ≡we LTS2, if there exists a symmetric relation R
(called a weak bisimulation) between the states of LTS1 and LTS2 satisfying
the following two conditions:

– The initial states are related by R;

– If R(r, s) and r
δ−→ r′, then either δ = τ and R(r′, s), or δ = a and there

exists a path s
τ∗−→ s1

a−→ s2
τ∗−→ s′, such that R(r′, s′).

Definition 10 (Trace Equivalence) Given the asynchronous composition
LTSa of a set of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), the set of

traces of the asynchronous composition, denoted T (LTSa), is the set of action
sequences starting from s0a. Two asynchronous compositions LTSa and LTS

′

a

are trace equivalent, denoted LTSa ≡tr LTS
′

a, iff T (LTSa) = T (LTS
′

a).

3.1 Systems Communicating via FIFO Buffers

We start our study with systems communicating via FIFO buffers. We prove
in this section that the stability property is undecidable for all classes of equiv-
alence considered.

Theorem 1 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
via FIFO buffers, it is undecidable whether the corresponding asynchronous
system is stable for all classes of equivalence.

To prove that testing the stability is an undecidable problem, we reduce
the halting problem of a Turing machine to the test of stability of a set of
peers communicating asynchronously. We prove this undecidability result for
strong bisimulation. Since strong bisimulation is a particular case of branching
and weak bisimulation (two transition systems without silent transitions are
strongly bisimilar iff they are branching and weakly bisimilar), testing stabil-
ity is undecidable for branching and weak bisimulation. Our reduction uses a
deterministic Turing machine and the corresponding asynchronous system is
deterministic. Since two deterministic transition systems are strongly equiva-
lent iff they are trace equivalent, then testing stability is undecidable for trace
equivalence too.

We start the proof with some preliminaries and notation, then we give an
overview of the proof. Afterwards, we detail the construction of a system of two
peers simulating the Turing machine and finally we prove the undecidability
result.

Proof Preliminaries and Notation. The Turing machine used is a deter-
ministic one-way-infinite single tape model. A Turing machine is defined as
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M = (QM , ΣM , ΓM , q0, qhalt, B, δM ) where QM is the set of states, ΣM is the
input alphabet, ΓM is the tape alphabet, q0 ∈ QM is the initial state and qhalt
is the accepting state. B ∈ ΓM is the blank symbol and δM : QM × ΓM →
QM × ΓM × {left, right} is the transition function. The machine M accepts
an input word w= a1, . . . , am iff M halts on w. If M does not halt on w and
the word is not accepted at a state q, then M initiates a loop. This loop reads
any symbol and moves to the right. Hence, if the word w is not accepted,
then the machine executes an infinite loop by reading symbols and moving to
the right. This looping behavior is not usual in classic Turing machines and
acceptance semantics, but this simplifies the reduction without modifying the
expressiveness of the Turing machine as shown in [14]. A configuration of the
Turing machine M is a word uqv# where uv is a word from the tape alphabet,
q is a state of M (meaning that M is in the state q and the head pointing
on the first symbol of v), and # is a fixed symbol that is not in ΓM (used to
indicate the end of the word on the tape).

Overview. Starting from a Turing machine M and an input word w, we
construct a pair of peers P1 and P2, such that the machine M halts on w if
and only if the corresponding system {P1, P2} is stable, i.e., there exists a k
such that LTSka ≡st LTSa, where LTSa is the asynchronous composition of
the system {P1, P2}.

Construction. The peer P1 simulates the execution of the machine M on
w while P2 is used to receive and re-send messages to P1. A configuration of
M of the form uqv# is encoded in the buffer of P1 with the content uheadv#.
The peer P1 is defined as (SP1

, sq0 , ΣP1
, TP1

) where SP1
is the set of states,

sq0 is the initial state where q0 is the initial state of M . The alphabet ΣP1
=

Σ!
P1
∪ Σ?

P1
is defined as follows:

– Σ!
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages sent from P1 to P2

are indexed with 2 (e.g., P1 sends B2 instead of sending the blank symbol,
inversely P2 sends B1 instead of sending B to P1).

– Σ?
P1

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P2 are
indexed with 1.

Now we present how each action of the machine M is encoded.

1. For each transition of M of the form δM (q, a) = (q′, a′, right) we have the

following transitions in TP1 : sq
head1?−−−−→ s1

a1?−−→ s2
a′2!−−→ s3

head2!−−−−→ sq′ .
If the peer is in the state q and the buffer starts with head1a1 then the
two messages are read and the peer P1 sends the next configuration to P2

as depicted in Figure 2(a). si’s are fresh intermediary states.
2. For each transition of M of the form δM (q, a) = (q′, a′, left) and for each
x ∈ ΓM we have the following transitions in TP1 :

sq
x1?−−→ s1

head1?−−−−→ s2
a1?−−→ s3

head2!−−−−→ s4
x2!−−→ s5

a′2!−−→ sq′ . P1 starts by
reading the letter before head, then it reads head, the next letter, and
sends the new configuration to P2 as depicted in Figure 2(b).
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3. For each state sq where q is a state of M we have the following cycle in

TP1
: sq

head1?−−−−→ s1
#1?−−→ s2

head2!−−−−→ s3
B2!−−→ s4

#2!−−→ sq.
As depicted in Figure 2(c), the configuration of M is extended to the right
with a blank symbol. P1 starts by reading the current configuration of the
machine, then sends the next configuration of M to P2 (P1 adds a blank
symbol before #).

4. For each letter x ∈ ΓM ∪{#} and each sq where q is a state of M , we have

the following cycle: sq
x1?−−→ s1

x2!−−→ sq where P1 reads x indexed with 1,
then sends x indexed with 2.

Note that at a state sq representing a state q of the machine M , there is only
one outgoing transition labeled with head1?. The same remark applies for the
first transition of actions of type 2 and 4, hence P1 is deterministic.

Fig. 2 Mapping the instructions of the machine M to transitions of the peer P1

The peer P2 is defined as (SP2 , sinit, ΣP2 , TP2) where SP2 is the set of states
and sinit the initial state. P2 starts by sending the initial configuration of M to
P1, then reaches the state suniv, which contains a set of cycles used to receive
any message from P1 and re-send them. ΣP2

=Σ!
P2
∪ Σ?

P2
is defined as follows:

– Σ!
P2

= ΣM ∪ΓM ∪{head}∪{#} where all messages sent from P2 to P1 are
indexed with 1.

– Σ?
P2

= ΣM ∪ ΓM ∪ {head} ∪ {#} where all messages received from P1 are
indexed with 2.

P2 contains the following transitions:

– sinit
head1!−−−−→ s1

a11!−−→ . . .
a1n!−−→ sn

#1!−−→ suniv ∈ TP2 where w = a1a2 . . . an.

– suniv
x2?−−→ s1

x1!−−→ suniv ∈ TP2
where x is any symbol in Σ?

P2
.

Now we will prove that, given a Turing machine M with an input word w
and the corresponding communicating system {P1, P2} contructed as above, M
halts on w iff {P1, P2} is stable. Suppose that M halts on w. Then, the number
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of configurations of the machine is finite. Hence, from our construction, the
asynchronous composition of {P1, P2} is finite, so there exists a k such that
LTSka ≡st LTSa.

Now suppose the machine does not halt on w. Then, the corresponding
communicating system executes infinitely two cycles: (1) one adding a blank
symbol, (2) another reading blank symbols and moving to the right. Hence, for
a given bound k, the behavior of the system resulting from the execution of one
of the two cycles in LTSk+1

a may not be reproduced in LTSka , due to the buffer
bound, then LTSka 6≡st LTSk+1

a . We will prove that, with our construction,
∀k, LTSka 6≡st LTSk+1

a (hence, the system is not stable) when the machine
M does not halt on w. First, we need to define a border state. A border state
sk in LTSka is a state where at least one buffer contains k messages and there
is an outgoing transition from sk labeled with a send message that reaches a
state in LTSk+1

a . Now we will detail the proof for cycles of type (1), the cycles
of type (2) do not increase the buffers size. Suppose M does not halt. Lets sk

be the configuration of LTSka that represents the configuration of the machine
when the infinite loop starts. At sk the system can execute the first cycle
adding a blank symbol. In sk the buffer of P1 is full (size equal to k) and the
buffer of P2 is empty. More precisely, the buffer of P1 contains the following
word: head1#1a1 . . . am, where m = k−2. At sk, the system executes the cycle

that adds a blank symbol: sk
head1?−−−−→ s1

#1?−−→ s2
head2!−−−−→ s3

B2!−−→ s4
#2!−−→ sk

′
.

At sk
′

the buffer of P1 contains k−2 messages and the buffer of P2 contains
three messages. The sum of the two buffers is k + 1 messages, due to the
addition of the blank symbol, but sk

′
is still in LTSka . From our construction,

at the configuration sk
′
, P1 sends a1,. . . , am−1: sk

′ a21!−−→ s1
a22!−−→ . . .

a2m−1!−−−−→ sk
′′
.

sk
′′

is a border state for LTSka , where, the buffer of P2 contains k messages
and the buffer of P1 contains one message. At sk

′′
, P1 can send the message

am, then the system reaches a configuration sk+1, which is in LTSk+1
a but not

in LTSka .

Since the system {P1, P2} is deterministic, the sequence of messages be-
longing to the path starting at the initial state to sk

′′
is unique and the same

in LTSk+1
a and LTSka . Hence, LTSk+1

a and LTSka are strongly bisimilar only if
sk
′′

in LTSk+1
a is strongly bisimilar to sk

′′
in LTSka . In LTSk+1

a , at state sk
′′
,

P1 can send the message am. But in LTSka , P1 cannot send the message am at
sk
′′
, because the buffer of P2 contains k messages. Hence, LTSka 6≡st LTSk+1

a .
When the Turing machine M does not halt on w and executes infinitely a cycle
that adds a blank symbol, then the corresponding communicating system in-
creases the size of the buffers by one. We have proved that LTSka 6≡st LTSk+1

a

for an arbitrary k, hence, ∀k, LTSka 6≡st LTSk+1
a , then there is no k where

LTSka ≡st LTSa.

With this reduction we prove that the machine M halts on w iff ∃k such
that LTSka ≡st LTSa, and this shows that checking the stability is undecidable
for FIFO buffers and strong bisimulation. �
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In [1], the authors study the boundedness of communicating systems where
each pair of peers communicates through a full-duplex FIFO channel, which
means that each peer has a specific FIFO buffer for each partner peer. For
example, if the system consists of three peers, then each peer has two buffers.
The FIFO model that we consider in this section is a particular case of the
communication model used in [1]. Therefore, as a side effect of Theorem 1, we
can conclude that testing stability for the model proposed in [1] is undecidable
as well.

Corollary 1 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
via FIFO buffers, where each pair of peers communicates through full-duplex
FIFO channels [1], it is undecidable whether the corresponding asynchronous
system is stable for all classes of equivalence.

3.2 Systems Communicating via Bag Buffers

A bag buffer can be seen as a set of messages, and a peer can read from a buffer
if the message is in the bag. When the peers communicate asynchronously with
each other via bag buffers, it is known that the communicating system can be
encoded as a labeled Petri net, where each bag is modeled as a set of places,
one place for each message type [8]. In that case, we prove that the stability
problem is decidable for strong bisimulation by reusing equivalence results
from [13].

Theorem 2 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
via bag buffers, it is decidable whether the corresponding asynchronous system
is stable for strong bisimulation.

Proof In [13] (Theorem 4.8), the authors prove that checking if a labeled Petri
net is strongly bisimilar to some unspecified finite automaton is a decidable
problem. A communicating system with bag buffers can be encoded as a la-
beled Petri net, where each message type is represented with a special place
in the labeled Petri net. When a peer of the communicating system reads a
message m, the corresponding labeled Petri net removes a token from the place
representing the message m. Inversely, when the communicating system sends
a message m, this action is encoded by incrementing the place of m, with one
token. Hence, we can reduce the test of stability to the test of existence of a
finite automaton, which is strongly bisimilar to a labeled Petri net such that
if there exists a finite state machine strongly bisimilar to the Petri net, then
there exists a bounded asynchronous composition strongly bisimilar to the un-
bounded asynchronous composition. On the other hand, if there is no finite
state machine bisimilar to the Petri net, there is no bounded asynchronous
composition bisimilar to the unbounded asynchronous system. Hence, testing
whether a system communicating via bag buffers is stable with respect to
strong bisimulation is decidable. �
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Typed channels is another communication model used in communicating
systems, where each channel stores messages of a specific type only. Typed
channels can be encoded using a bag buffer (one bag can represent several
typed channels since order does not matter). Therefrom, as a direct conse-
quence of Theorem 2, we can conclude that checking stability for systems
with typed channels is also decidable.

Corollary 2 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
via typed buffers, it is decidable whether the corresponding asynchronous sys-
tem is stable for strong bisimulation.

When considering weaker equivalences (weak and trace), the stability prob-
lem becomes undecidable.

Theorem 3 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
with bag buffers, it is undecidable whether the corresponding asynchronous
system is stable for weak bisimulation and trace equivalence.

Proof In [13] (Theorem 4.12), the authors prove that checking if a labeled
Petri net is weakly bisimilar to some unspecified finite automaton is an unde-
cidable problem. We can construct a system communicating via bag buffers
from a labeled Petri net. Each place of the Petri net is encoded with a peer
(a transition system) and its associated bag buffer. When the Petri net is in
a place p and can fire a transition (there is at least one token in p), in the
corresponding communicating system, the bag buffer of the peer p contains at
least one message. Firing a transition (removing a token from the place p and
adding a token in the output place p′) is encoded by reading a message from
the buffer of the peer p and sending a message to the buffer of the peer p′.
If there exists a finite state machine weakly bisimilar to a labeled Petri net,
then the corresponding communicating system is stable for weak bisimulation.
If there is no finite state machine weakly bisimilar to a Petri net, then the
corresponding system is not stable. Suppose that testing stability with bags
buffers and weak bisimulation is decidable. Hence, since we can encode a la-
beled Petri net with a communicating system, testing if there exists a finite
state automaton weakly bisimilar to a labeled Petri net is decidable. This is
a contradiction. Hence, testing if a communicating system with bag buffers is
stable with weak bisimulation is undecidable. The same argument is used for
trace equivalence, because we can encode a labeled Petri net with a commu-
nicating system with bag buffers as shown before, and in [13] (Theorem 3.5),
the authors prove that it is undecidable to check whether a labeled Petri net
is trace equivalent to some unspecified finite state automaton. �

As typed channels can be encoded using a bag, this undecidability result
also stands when we consider typed channels as communication model.

Corollary 3 Given a set of peers {P1, . . . ,Pn} communicating asynchronously
via typed buffers, it is undecidable whether the corresponding asynchronous
system is stable for weak bisimulation and trace equivalence.
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3.3 Semi-algorithm for Testing Stability

We present in this subsection a semi-algorithm for testing the stability prop-
erty for systems communicating via FIFO or bag buffers with strong and
branching bisimulation. The sufficient condition ensuring stability is checked
as follows: if there exists a bound k such that the k-bounded and the (k + 1)-
bounded asynchronous systems are equivalent, then we prove that the system
remains stable, meaning that the observable behavior is always the same for
any bound greater than k. In the rest of this section we use ≡ for both strong
or branching bisimulation.

Theorem 4 Given a set of peers {P1, . . . ,Pn} communicating via FIFO or
bags buffers, if ∃k ∈ N, such that LTSka ≡ LTSk+1

a , then we have LTSka ≡
LTSqa,∀q > k for strong and branching bisimulation.

Proof We will prove the theorem by induction for bag buffers, starting with
the following base case: If LTSka ≡ LTSk+1

a then LTSka ≡ LTSk+2
a . Let

us recall that the strong and branching bisimulations are congruences with
respect to the operators of process algebras [15], that is, if P and P ′ are
strongly/branching bisimilar, then for every Q the processes P |Q and P ′|Q
are strongly/branching bisimilar too.

Suppose that ∃k ∈ N, such that LTSka ≡ LTSk+1
a , then:

(P1|Bk1 )| . . . |(Pn|Bkn) ≡ (P1|Bk+1
1 )| . . . |(Pn|Bk+1

n ) (1)

A bag buffer of size k can be written as a parallel composition of k buffers of
size 1, hence:

(P1|Bk+2
1 )| . . . |(Pn|Bk+2

n ) ≡ (P1|Bk+1
1 |B1

1)| . . . |(Pn|Bk+1
n |B1

n) (2)

Then, by congruence and using equation (1) we have:

(P1|Bk+2
1 )| . . . |(Pn|Bk+2

n ) ≡ (P1|Bk1 |B1
1)| . . . |(Pn|Bkn|B1

n) (3)

(P1|Bk+2
1 )| . . . |(Pn|Bk+2

n ) ≡ (P1|Bk+1
1 )| . . . |(Pn|Bk+1

n ) (4)

(P1|Bk+2
1 )| . . . |(Pn|Bk+2

n ) ≡ (P1|Bk1 )| . . . |(Pn|Bkn) (5)

The same argument can be used to prove the induction case, i.e., we sup-
pose that LTSka ≡ LTSk+ia and we demonstrate that LTSka ≡ LTSk+i+1

a . This
proves that if LTSka ≡ LTSk+1

a , then we have LTSka ≡ LTSqa,∀q > k. �

The same reasoning can be used for proving that this theorem holds with
other communication models, e.g., FIFO buffers. The only difference is in the
buffer encoding, but for all these variants, one buffer of size k can be modeled
using a parallel composition of k buffers of size 1. This is described in [9]
(Sections 1.2 and 3.3) for FIFO buffers for instance. As far as typed channels
are concerned, they can be encoded using bag buffers in a straightforward way.

It is worth emphasizing that Theorem 4 does not hold for weak bisimulation
and trace equivalence, because these relations are not congruences for the
process algebra operators and in particular for the parallel composition.
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4 Tool Support

We have implemented the approach presented beforehand in this article and
our tool is available online1 (source code, dataset of examples). It is easily
usable provided that the user installs Python 2.7.x and the CADP toolbox [11].
Our tool implements the semi-algorithm presented in Section 3.3 and works
as follows. Given a set of peer LTSs, we compute an initial bound k. For that
bound, we verify whether the k-bounded asynchronous system is equivalent
to the (k + 1)-bounded system. If this is the case, the system is stable for
bound k, and properties can be analyzed using that bound. If the equivalence
check returns false, we modify k and apply the check again. We repeat the
process up to a certain arbitrary bound kmax that makes the approach abort
inconclusively if attained. All these checks are achieved automatically using
compilers, exploration tools, and equivalence checking tools available in CADP.

Several heuristics and search algorithms can be used for computing an
initial bound k and the next bound to attempt, resp. In this section, the initial
k is computed as the maximum between the longest sequence of send messages
in all peers and the highest number of send messages destinated to a same peer.
The intuition behind the longest sequence of send messages is that all peers
can at least send all their messages even if no peer consumes any message
from its buffer. The second part of the maximum function corresponds to the
case in which the buffer size prevents some peer to send messages because
that buffer is already full. Next values of k are computed by decrementing /
incrementing the bound till reaching kmax or the smallest k satisfying stability.
Other heuristics and search algorithms have been implemented (e.g., binary
search) but turned out to be less efficient.

Experimental Results. We used a Mac OS laptop running on a 2.3 GHz
Intel Core i7 processor with 16 GB of memory. Our database of examples
contains more than 300 examples on which we carried out these experiments.
Many of these examples come from the literature on the subject. Table 2
presents some of these examples, where we use bag buffers as communication
model and strong bisimulation as comparison notion when computing stability.
During our experiments, we used a bound kmax arbitrarily fixed to 10.

We first comment on the results presented in Table 2. Most of these exam-
ples are stable (23 out of 29) and can thus be analyzed using the verification
approach proposed in this article. It does not take long (a few minutes) to
check the stability property for most examples and the corresponding state
spaces are quite small (but for examples where kmax is reached or when the
number of peers is higher). Computation times increase mainly due to the
number of peers (see, e.g., examples 28 and 29) and due to the size of buffer
bounds, which induces the computation of larger intermediate state spaces
(see, e.g., examples 18 and 28). Note that the strategy we use for these exper-
iments can be quite costly in time if the initial computed k is high: this is the
case of example 18, which starts computing compositions for k=6 and k=7,

1 http://convecs.inria.fr/people/Gwen.Salaun/Tools/stabc.zip
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Id Description |P | |S|/|T | k
LTSk

a Time
|S|/|T | (in sec)

(1) Estelle specification [16] 2 7/9 kmax 47,818/106,474 198
(2) News server [17] 2 9/9 3 21/34 55
(3) Client/server [1] 2 6/10 1 7/8 35
(4) CFSM system [16] 2 6/7 kmax 5,299/10,959 190
(5) Promela program (1) [18] 2 6/6 2 8/12 54
(6) Promela program (2) [19] 2 8/8 kmax 726/1,585 207
(8) Web services [20] 3 13/12 2 22/33 99
(9) Trade system [21] 3 12/12 1 13/15 48
(10) Online stock broker [22] 3 13/16 kmax 3,823/8,214 >1h
(11) FTP transfer [23] 3 20/17 4 51/90 73
(12) Client/server [24] 3 14/13 2 16/17 72
(13) Mars explorer [25] 3 34/34 3 52/74 78
(14) Online computer sale [26] 3 26/26 2 21/23 73
(15) E-museum [27] 3 33/40 3 94/183 138
(16) Client/supplier [28] 3 31/33 2 37/47 100
(17) Restaurant service [29] 3 15/16 2 25/37 73
(18) Travel agency [30] 3 32/38 4 60/99 >1h
(19) Vending machine [31] 3 15/14 2 17/19 73
(20) Travel agency [32] 3 42/57 3 82/143 74
(21) Train station [33] 4 18/18 2 39/66 124
(22) Factory job manager [34] 4 20/20 2 30/45 92
(23) Bug report repository [35] 4 12/12 kmax 124/254 >1h
(24) Cloud application [36] 4 8/10 kmax 47,916/211,750 321
(25) Sanitary agency [37] 4 35/41 3 154/310 92
(26) SQL server [38] 4 32/38 3 49/74 94
(27) SSH protocol [39] 4 26/28 2 28/30 123
(28) Booking system [40] 5 45/53 2 62/85 >1h
(29) Hand-crafted example 10 63/58 2 243,540/1,448,577 602

Table 2 Experimental results

resulting in large intermediate state spaces, whereas the actual k respecting
stability is smaller.

Now, beyond Table 2, let us comment on experiments we achieved on all
the examples of our dataset. More than half of the examples are stable and
can be analyzed using our approach. It is worth noting that the numbers
increase to about 70% when only send messages (instead of both send and
receive messages) are considered in models and model comparisons. These ex-
periments also confirm that more examples satisfy stability when considering a
weaker then more permissive equivalence, i.e., branching bisimulation instead
of strong bisimulation. The number of stable systems is slightly higher when
using FIFO buffers, which is a more restrictive model than bag buffers. When
using bag buffers, the corresponding asynchronous compositions are larger in
terms of number of states and transitions, which induces more possible causes
of violating the equivalence notions on which relies the stability analysis.

5 Related Work

Brand and Zafiropulo show in [1] that the verification problem for FSMs
interacting via (unbounded) FIFO buffers is undecidable. Gouda et al. [41]
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present sufficient conditions to compute a bound k from which two finite
state machines communicating through 1-directional buffers are guaranteed
to progress indefinitely. Jeron and Jard [16] propose a sufficient condition for
testing unboundedness, which can be used as a decision procedure in order
to check reachability for CFSMs. Abdulla et al. [42] propose some verification
techniques for CFSMs. They present a method for performing symbolic for-
ward analysis of unbounded lossy buffers systems. In [18], the authors present
an incomplete boundedness test for communication buffers in Promela and
UML RT models. They also provide a method to derive upper bound esti-
mates for the maximal occupancy of each individual message buffer. Cécé and
Finkel [43] focus on the analysis of infinite half-duplex systems and present
several (un)decidability results. For instance, they prove that a symbolic rep-
resentation of the reachability set is computable in polynomial time and show
how to use this result to solve several verification problems.

A notion of existential-boundedness was introduced in [44] for communicat-
ing automata. The idea is to assume unbounded buffers, but to consider only
executions that can be rescheduled on bounded ones. Darondeau et al. [45]
identify a decidable class of systems consisting of non-deterministic communi-
cating processes that can be scheduled while ensuring boundedness of buffers.
[46] proposed a causal chain analysis to determine upper bounds on buffer
sizes for multi-party sessions with asynchronous communication. Bouajjani
and Emmi [47] consider a bounded analysis for message-passing programs,
which does not limit the number of communicating processes nor the buffers’
size. However, they limit the number of communication cycles. They propose
a decision procedure for reachability analysis when programs can be sequen-
tialized. By doing so, program analysis can easily scale while previous related
techniques quickly explode.

Compared to all these results, we do not impose any bound on the num-
ber of peers, cycles, or buffer bounds. Another main difference is that we do
not want to ensure or check (universal) boundedness of the systems under
analysis. Contrarily, we are particularly interested in unbounded (yet possibly
stable) systems. Existential boundedness in turn assumes structural hypothe-
sis on models, e.g., at most one sending transition and no mix of send/receive
messages outgoing from a same state in [44,45], whereas we do not impose any
restriction on our LTS models.

The stability property was originally introduced in [2,3,48], but these early
results only focus on send messages when comparing asynchronous composi-
tions using equivalence checking. Moreover, both papers rely on FIFO buffers
as communication model and assume specific equivalence notions as compari-
son criterion (trace equivalence in [2] and branching bisimulation in [3]). The
current article goes much further by keeping send and receive messages when
checking stability, by considering several equivalence notions when comparing
asynchronous compositions, and by studying other communication models.
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6 Conclusion

We have presented in this article a framework for formally analyzing systems
communicating via FIFO or bag buffers. This work focuses on cyclic systems
modeled using finite state machines. We have studied the stability property,
which shows that the asynchronous composition of a set of peers may exhibit
the same observational behavior (send and receive messages) from a specific
bound. In this article, we have varied the communication model (FIFO buffers,
bag buffers) as well as the equivalence relations used for comparing the asyn-
chronous compositions (strong, branching, weak, and trace equivalences). We
have presented several decidability results and a semi-algorithm for determin-
ing the smallest k satisfying the stability property for stable systems. In such
a case, model checking techniques can then be used on the asynchronous ver-
sion of the system with FIFO/bag buffers bound to the smallest k satisfying
stability. If a stable system satisfies a specific property for that k, the prop-
erty will be satisfied too if buffer bounds are increased. We implemented the
semi-algorithm presented in this article for automatically checking the stabil-
ity property. Our experiments have showed that many examples satisfy the
stability property and this can be computed in a reasonable time.

As far as future works are concerned, a first open issue is to determine
whether the stability problem is decidable or not for systems communicating
via bag buffers and compared using branching bisimulation. Algorithms for
checking the stability property in practice also deserve to be studied more
thoroughly. So far, we have proposed a semi-algorithm for asynchronous sys-
tems analyzed with strong and branching bisimulation for both FIFO and bag
buffers. Algorithms or semi-algorithms for weak and trace equivalences are
still to be defined.
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