
HAL Id: hal-01020777
https://hal.inria.fr/hal-01020777v2

Submitted on 20 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of Asynchronously Communicating Systems
Gwen Salaün, Lina Ye

To cite this version:
Gwen Salaün, Lina Ye. Stability of Asynchronously Communicating Systems. [Research Report]
RR-8561, INRIA. 2014. �hal-01020777v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49586807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01020777v2
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
5

6
1

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8561
July 2014

Project-Teams Convecs

Stability of

Asynchronously

Communicating Systems

Gwen Salaün, Lina Ye

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Stability of Asynchronously Communicating

Systems

Gwen Salaün∗, Lina Ye†

Project-Teams Convecs

Research Report n° 8561 — version 2 — initial version July 2014 —
revised version October 2014 — 26 pages

Abstract: Recent software is mostly constructed by reusing and composing existing components.
Software components are usually stateful and therefore described using behavioral models such as
finite state machines. Asynchronous communication is a classic interaction mechanism used for
such software systems. However, analyzing communicating systems interacting asynchronously via
reliable FIFO buffers is an undecidable problem. A typical approach is to check whether the system
is bounded, and if not, the corresponding state space can be made finite by limiting the presence
of communication cycles in behavioral models or by fixing buffer sizes.
In this paper, our focus is on systems that are likely to be unbounded and therefore result in
infinite systems. We do not want to restrict the system by imposing any arbitrary bounds. We
introduce a notion of stability and prove that once the system is stable for a specific buffer bound,
it remains stable whatever larger bounds are chosen for buffers. This enables us to check certain
properties on the system for that bound and to ensure that the system will preserve them whatever
larger bounds are used for buffers. We also prove that computing this bound is undecidable but
we show how we succeed in computing these bounds for many typical examples using heuristics
and equivalence checking.

Key-words: Communicating Systems, Labelled Transition Systems, Unbounded Buffers, Auto-
mated Verification

∗ Grenoble INP, Inria, France
† Inria

Stabilité des systèmes communicants de façon asynchrone

Résumé : Le logiciel moderne est principalement construit par réutilisation et composition
de composants existants. Les composants logiciels sont souvent décrits par des modèles com-
portementaux tels que des machines à états. La communication asynchrone est un mécanisme de
communication classique pour les systèmes logiciels. Cependant, analyser des systèmes commu-
nicants intergaissant de façon asynchrone au travers de buffers FIFO est un problème indécidable.
Une approche habituelle est de vérifier si le système est borné, et s’il ne l’est pas, l’espace d’états
correspondant peut être rendu fini en limitant la présence de cycles de communication dans les
modèles ou en fixant une taille arbitraire aux buffers.

Dans ce rapport, nous nous focalisons sur des systèmes non-bornés et donc infinis. Nous
ne voulons pas imposer de restriction arbitraire au système. Nous introduisons une notion de
stabilité et prouvons que lorsque le système est stable pour une borne spécifique, il reste stable
pour des bornes plus élevées. Cela permet de vérifier que certaines propriétés sont satisfaites
par le système pour cette borne, et assure que ces propriétés seront préservées pour des tailles
supérieures de buffers. Nous avons aussi prouvé que calculer cette borne n’est pas décidable mais
nous somme capables en pratique de trouver cette borne pour de nombreux exemples en utilisant
des heuristiques et la vérification d’équivalence.

Mots-clés : Systèmes communicants, systèmes de transitions étiquetées, buffers non bornés,
vérification automatique

Stability of Asynchronously Communicating Systems 3

1 Introduction

Most software systems are now constructed by reusing and composing existing components or
peers. This is the case in many different areas such as component-based systems, cloud applica-
tions, Web services, or cyber-physical systems. Software entities are often stateful and therefore
described using behavioral models. Moreover, asynchronous communication via FIFO buffers
is a classic communication model used for such distributed, communicating systems. A crucial
problem in this context is to check whether a new system consisting of a set of interacting peers
respects certain properties. Analyzing asynchronously communicating software has been studied
extensively in the last 30 years and is known to be undecidable in general [10]. A common
approach to circumvent this issue is to bound the state space by restricting the cyclic behaviors
or imposing an arbitrary bound on buffers. Bounding buffers to an arbitrary size during the
execution is not a satisfactory solution: if at some point buffers’ sizes change (due to changes
in memory requirements for example), it is not possible to know how the system would behave
compared to its former version and new unexpected errors can show up.

In this paper, we do not want to impose any arbitrary bounds for buffer sizes. Hence, our focus
is on systems that are likely to be unbounded and therefore result in infinite state spaces. It was
shown recently that certain properties of distributed systems interacting asynchronously through
unbounded buffers can be checked using the synchronizability property. [4] relies on this property
to check whether a choreography is realizable and [39] uses it for verifying the compatibility of
communicating systems. A set of peers is synchronizable if and only if the system generates the
same sequences of messages under synchronous and unbounded asynchronous communication,
considering only the ordering of the send actions and ignoring the ordering of receive actions.
Focusing only on send actions makes sense for verification purposes because: (i) send actions are
the actions that transfer messages to the network and are therefore observable, (ii) receive actions
correspond to local consumptions by peers from their buffers and can therefore be considered to
be local and private information. Synchronizability can be verified by checking the equivalence
of the synchronous and 1-bounded asynchronous compositions of the given system. In the 1-
bounded asynchronous composition, each peer is equipped with one input buffer bounded to
size 1. Thus, this property can be verified using equivalence checking techniques on finite state
spaces, although the system consisting of peers interacting asynchronously via unbounded buffers
can result in infinite state spaces.

Figure 1 gives an example where peers are modelled using Labelled Transition Systems (LTSs).
Transitions are labeled with either emissions (exclamation marks) or receptions (question marks).
Initial states are marked with incoming half-arrows. This simple system is synchronizable because
the synchronous system consists of sequences of interactions request, result, and ack, and this
order is the same in the 1-bounded asynchronous system considering only send actions.

Figure 1: Motivating Example (1)

Let us now focus on a sligthly extended version of this example where in addition the server

RR n° 8561

4 Salaün & Ye

stores every request answered in a database (log) as depicted in Figure 2. This system is not
synchronizable because the client can submit a second request in the 1-bounded asynchronous
system before the server sends the log message to the database, and this behavior is not possible
in the synchronous composition. Synchronizability is rather strong and many communicating
systems do not satisfy this property. So what can we do for non-synchronizable systems? This
second example is typically unbounded, because the database peer has no obligation to consume
from its buffer which can infinitely receive log messages. So far, and to the best of our knowledge,
existing approaches cannot analyze such infinite-state systems.

Figure 2: Motivating Example (2)

In this paper, we propose a new approach for analyzing a set of peers described using LTSs,
communicating asynchronously via reliable (no loss of messages) and possibly unbounded FIFO
buffers. We do not want to restrict the system by imposing any arbitrary bounds on cyclic be-
haviors or buffers. We introduce a notion of stability for the asynchronous versions of the system.
A system is stable if asynchronous compositions exhibit the same observable behavior from some
buffer bound. We prove that once the system is stable for a specific buffer bound, it remains sta-
ble whatever larger bounds are chosen for buffers. This enables one to check temporal properties
on the system for that bound (using model checking techniques for instance) and ensures that
the system will preserve them whatever larger bounds are used for buffers. Practically speaking,
this allows any developer to check that his/her system satisfies some property for the minimal
k satisfying stability, and then (s)he can choose any bound from that k as actual parameter for
his/her system. This choice may be guided by memory constraints or performance issues for
instance. We also prove that computing this bound is undecidable, but we show how we succeed
in computing such bounds in practice for many examples.

Going back to the former example (Fig. 2), we can use our approach to detect that when
each peer is equipped with a buffer bound fixed to 2, the observable behavior of this system
is stable. This means that we can check properties, such as the absence of deadlocks, on the
2-bounded asynchronous version of the system and the results hold for any asynchronous version
of the system where buffer bounds are greater or equal to 2.

We implemented our approach in a tool that first encodes the peer LTSs and their composi-
tions into process algebra, and then uses heuristics, search algorithms, and equivalence checking
techniques for verifying whether the system satisfies the stability property. If this is the case, we
return the smallest bound respecting this property. Otherwise, when we reach a certain maximal
bound, our check returns an inconclusive result. Heuristics and search algorithms aim at guid-
ing the approach towards the smallest bound satisfying stability whereas equivalence checking
techniques is used for checking the stability property given a specific bound k. All the steps
of our approach are fully automated (no human intervention). We applied our tool support to
more than 300 examples of communicating systems, many of them taken from the literature on
this topic. These experiments show that a large number of these examples are stable and can
therefore be formally analyzed using our approach.

Inria

Stability of Asynchronously Communicating Systems 5

Our contributions with respect to existing results on formal verification of asynchronously
communicating systems are the following:

• A general framework for verifying systems interacting asynchronously via reliable FIFO
buffers;

• The introduction of the stability property for such systems and a proof showing that sta-
bility once acquired for a specific bound k is preserved for upper bounds;

• A proof demonstrating that computing this bound k is undecidable;

• A fully automated tool support that implements the presented approach and was applied
to many examples for evaluation purposes.

The organization of the rest of this paper is as follows. Section 2 defines our models for peers
and their synchronous/asynchronous compositions. Section 3 presents the stability property and
our results on stable systems. Section 4 describes our tool support and experiments we carried
out to evaluate our approach. Finally, Section 5 reviews related work and Section 6 concludes.

2 Communicating Systems

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral model defines
the order in which a peer executes the send and receive actions.

Definition 1 A peer is an LTS P = (S, s0,Σ, T) where S is a finite set of states, s0 ∈ S is the
initial state, Σ = Σ! ∪Σ? ∪ {τ} is a finite alphabet partitioned into a set of send messages, a set
of receive messages, and the internal action, and T ⊆ S × Σ× S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message m ∈ Σ?. We use the

symbol τ for representing internal activities. A transition is represented as s
l
−→ s′ ∈ T where

l ∈ Σ. This can be directly extended to s
σ
−→ s′, σ ∈ Σ∗, where σ = l1, ..., ln, s

l1−→ s1, . . . , si
li+1
−−→

si+1, . . . , sn−1
ln−→ s′ ∈ T . In the following, for the sake of simplicity, we will denote this by

s
σ
−→ s′ ∈ T ∗.

We assume that peers are deterministic on observable messages meaning that if there are
several transitions going out from one peer state, and if all the transition labels are observable,
then they are all different from one another. Observable determinism can be easily obtained
in peers using standard determinization algorithms [31]. Nondeterminism can also result from
internal choices when several transitions (at least two) outgoing from a same state are labeled
with τ . It is worth observing that these internal transitions are important when checking the
synchronizability property [4, 39], which partly relies on synchronous communication. In such a
case, internal transitions outgoing from a same state express an internal choice whereas transi-
tions labeled with observable messages outgoing from a same state stand for an external choice
semantics.

Given a set of peers {P1, . . . ,Pn}, we assume that each message has a unique sender and a
unique receiver: ∀i, j ∈ 1..n, i 6= j, Σ!

i ∩ Σ!
j = ∅ and Σ?

i ∩ Σ?
j = ∅. Furthermore, each message is

exchanged between two different peers: Σ!
i ∩Σ?

i = ∅ for all i. We also assume that each emission
has a reception counterpart in another peer (closed systems): ∀i ∈ 1..n, ∀m ∈ Σ!

i =⇒ ∃j ∈ 1..n,
i 6= j, m ∈ Σ?

j .

The synchronous composition of a set of peers corresponds to the system where a commu-
nication occurs when one peer can send a message and another peer is in a state in which that
message can be received.

RR n° 8561

6 Salaün & Ye

Definition 2 (Synchronous Composition) Given a set of peers {P1, . . ., Pn} with Pi =
(Si, s

0
i ,Σi, Ti), the synchronous composition is the labeled transition system LTSs = (Ss, s

0
s,Σs, Ts)

where:

• Ss = S1 × . . .× Sn

• s0s ∈ Ss such that s0s = (s01, . . . , s
0
n)

• Σs = ∪iΣi

• Ts ⊆ Ss × Σs × Ss, and for s = (s1, . . . , sn) ∈ Ss and s′ = (s′1, . . . , s
′

n) ∈ Ss

(interact) s
m
−→ s′ ∈ Ts if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩ Σ?
j where ∃ si

m!
−−→ s′i ∈ Ti,

and sj
m?
−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n}, k 6= i ∧ k 6= j ⇒ s′k = sk

(internal) s
τ
−→ s′ ∈ Ts if ∃i ∈ {1, . . . , n}, ∃ si

τ
−→ s′i ∈ Ti such that ∀k ∈ {1, . . . , n}, k 6= i ⇒

s′k = sk

In the asynchronous composition, the peers communicate with each other asynchronously via
FIFO buffers. Each peer Pi is equipped with an unbounded input message buffer Qi. A peer can
either send a message m ∈ Σ! to the tail of the receiver buffer Qj at any state where this send
message is available, read a message m ∈ Σ? from its buffer Qi if the message is available at the
buffer head, or evolve independently through an internal transition. We recall that we focus on
send actions in this paper. We consider that reading from the buffer is private non-observable
information, which is encoded as an internal transition in the asynchronous system.

Definition 3 (Asynchronous Composition) Given a set of peers {P1, . . ., Pn} with Pi =
(Si, s

0
i ,Σi, Ti), and Qi being its associated buffer, the asynchronous composition is the labeled

transition system LTSa = (Sa, s
0
a,Σa, Ta) where:

• Sa ⊆ S1 ×Q1 × . . .× Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

• s0a ∈ Sa such that s0a = (s01, ǫ, . . . , s
0
n, ǫ) (where ǫ denotes an empty buffer)

• Σa = ∪iΣi

• Ta ⊆ Sa ×Σa ×Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ = (s′1, Q
′

1, . . . s
′

n, Q
′

n) ∈ Sa

(send) s
m!
−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩ Σ?
j , (i) si

m!
−−→ s′i ∈ Ti,

(ii) Q′

j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} :
k 6= i ⇒ s′k = sk

(consume) s
τ
−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?
−−→ s′i ∈ Ti, (ii) mQ′

i = Qi,
(iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} : k 6= i ⇒ s′k = sk

(internal) s
τ
−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ
−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} : Q′

k = Qk, and
(iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ s′k = sk

We use LTSa for the same asynchronous composition where the receptions (consume rule in

Def. 3) are kept in the resulting LTS (s
m?
−−→ s′ ∈ Ta) instead of being encoded as τ . Furthermore,

we use LTSk
a = (Sk

a , s
0
a,Σ

k
a, T

k
a) to define the bounded asynchronous composition, where each

message buffer is bounded to size k. The definition of LTSk
a can be obtained from Def. 3 by

Inria

Stability of Asynchronously Communicating Systems 7

allowing send transitions only if the message buffer of the receiving peer has less than k messages
in it. Otherwise, the sender is blocked, i.e., we assume reliable communication without message
losses. As it is well-known for asynchronously communicating systems, ∀LTSk

a (LTSk
a), we have

LTSk
a ⊆ LTSq

a (∀q ≥ k) (LTSk
a ⊆ LTSq

a (∀q ≥ k)).

3 Stability

In this section, we introduce successively the synchronizability property, the stability property,
the proof of undecidability for the stability property, and several other results on stable systems.

3.1 Synchronizability

The composition of finite peer LTSs can result into an infinite state system if these peers commu-
nicate asynchronously over unbounded buffers. This makes the exhaustive analysis of all executed
communication traces impossible and verification tasks in this setting are undecidable [10]. This
issue can be avoided for systems that are synchronizable [4]. The synchronizability property
checks whether the sequences of send actions generated by the peer composition remain the
same under synchronous and asynchronous communication semantics. This enables one to ana-
lyze asynchronous systems, even those generating an infinite state space, using the synchronous
version of the given system (which has a finite state space). This property was used recently
for analyzing properties on communicating systems [39] and is checked using branching equiva-
lence [47], which is the finest equivalence notion in presence of internal behaviors.

Definition 4 (Branching Bisimulation) Given two LTSs LTS1 and LTS2, they are branch-
ing bisimilar, denoted by LTS1 ≡br LTS2, if there exists a symmetric relation R (called a
branching bisimulation) between the states of LTS1 and LTS2 satisfying the following two con-
ditions:

• The initial states are related by R;

• If R(r, s) and r
δ
−→ r′, then either δ = τ and R(r′, s), or there exists a path s

τ∗

−→ s1
δ
−→ s′,

such that R(r, s1) and R(r′, s′).

For the sake of simplicity and consistency, the relation R is replaced by ≡br in the rest of this
paper, i.e.,, R(r, s) is noted r ≡br s.

Definition 5 (Branching Synchronizability) A set of peers {P1, . . . ,Pn} is branching syn-
chronizable if ∀k ≥ 1, LTSs ≡br LTSk

a , where ≡br in that particular case compares synchro-
nizations in the synchronous composition with emissions from peers to peer buffers in the asyn-
chronous composition.

It was proved that LTSs ≡br LTS1
a is a sufficient and necessary condition for branching

synchronizability [39].

The synchronizability property is quite strong and there are many non-synchronizable sys-
tems, see e.g., Fig. 2. If the set of peers is not synchronizable, there is no standard approach
for formally analyzing those systems. The stability notion we introduce in the next section is a
solution to this problem.

RR n° 8561

8 Salaün & Ye

3.2 Stability

In this section, we show that systems consisting of a finite set of peers involving cyclic behav-
iors and communicating over FIFO buffers may stabilize from a specific buffer bound k. We
call this property stability and we say that the corresponding systems are stable. The class of
systems which are stable corresponds to systems whose asynchronous compositions remain the
same from some buffer bound when we observe send actions only (we ignore receive actions and
buffer contents). Stability results do not hold if we consider that receptions are also observable.
Focusing only on send actions makes sense for verification purposes because: (i) send actions are
the actions that transfer messages to the network and are therefore observable, (ii) receive actions
correspond to local consumptions by peers from their buffers and can therefore be considered to
be local and private information.

Since stable systems produce the same behavior from a specific bound k, they can be analyzed
for that bound to detect for instance the presence of deadlocks or to check whether they satisfy
any kind of temporal properties. Stability ensures that these properties will be also satisfied
for larger bounds. The stability definition relies on branching equivalence checking, and this
equivalence preserves properties written with ACTL\X logic [38].

Contrarily, some systems are not stable. Unstability is due to some particular cycle depen-
dency in the peer behaviors that makes the asynchronous composition exhibit new behaviors
every time the buffer bound is increased. In the rest of this section, we will first define the
stability property. We will show how stability is established and what can be deduced for such
systems. We will also present other results such as the undecidability of the stability problem.

Definition 6 (Stability) Given a set of peers {P1, . . . ,Pn}, we say that this system is stable if
and only if ∃k such that LTSk

a ≡br LTSq
a (∀q > k).

Before presenting our main results, we first introduce a few definitions that will be used in the
following deduction. First, we define a special state of LTSk

a as a border state that is considered
as a boundary between LTSk

a and LTSk+1
a if the latter has more behaviors than the former due

to larger buffers. Precisely, a border state of LTSk
a should satisfy a condition stating that it has

a successor state in LTSk+1
a that is not reachable in LTSk

a due to limited buffer size. Then the
new behavior, which leads to a state whose buffers contain k+1 messages that are not contained
in LTSk

a , must begin after this border state.

Definition 7 (Border State) Given a set of peers {P1, . . . ,Pn}, given a state sk = (sk1 , Q
k
1 , ..., s

k
n,

Qk
n) ∈ Sk

a , if it satisfies the following condition, we call it a k-border state, simply a border state
if there is no ambiguity:

• ∃sk
m!
−−→ s′′k ∈ T k+1

a , where s′′k has one peer whose buffer contains k + 1 messages.

A single k-message state is a state where only one buffer contains k messages. Note that such
a state cannot be reachable in LTSk−1

a and we must have such a state as a successor state for
a (k − 1)-border state in LTSk

a according to the condition of Definition 7. Characterizing such
states is a key step for demonstrating some of our results, i.e., Lemma 1 and Theorem 1.

Definition 8 (Single k-message State (SG(sk))) Given a set of peers {P1, . . . ,Pn} and a
state sk = (sk1 , Q

k
1 , ..., s

k
n, Q

k
n) ∈ Sk

a , if ∃i ∈ {1, ..., n}, |Qk
i | = k, ∀j ∈ {1, ..., n}, j 6= i, |Qk

j | < k,

and there exists a border state sk−1 such that sk−1 m!
−−→ sk ∈ T k

a ,m? ∈ Σk
i , then sk is a single

k-message state, denoted by SG(sk).

Inria

Stability of Asynchronously Communicating Systems 9

Figure 3: A single k-message state (left part) and a loose k-message state (right part).

In the left part of Figure 3, the small ellipsis represents LTSk−1
a and the bigger one is LTSk

a .
Here, sk ∈ Sk

a is a single k-message state and sk−1 ∈ Sk−1
a is the corresponding border state.

Next we define a special state sk in LTSk
a such that it contains only one buffer with k

messages, whose precedent state is a border state, denoted by sb. Furthermore, from sb, there
are two outgoing transitions. One can reach sk with one emission. The other can reach another
state sk−1 through a reception followed by the same emission such that sk−1 contains at most
k − 1 messages in its buffers. Then we will show sk ≡br sk−1 by demonstrating that these two
traces diverging from sb will converge in the future, i.e., there will form a confluent diamond.

Definition 9 (Loose k-message State (LS(sk))) Given a set of peers {P1, . . . ,Pn} and a

state sk such that SG(sk), i.e., ∃sk−1
m

m!
−−→ sk ∈ T k

a , m? ∈ Σ?
i , i ∈ {1, ..., n}, where sk−1

m is
a border state, then sk is called a loose k-message state, denoted by LS(sk), if the following
conditions are satisfied

• ∃m′? ∈ Σ?
i , such that sk−1

m
m′?
−−→ sk−1

n
m!
−−→ s′k−1, where sk−1

m
m′?
−−→ sk−1

n , sk−1
n

m!
−−→ s′k−1 ∈

T k
a ;

• for sk and s′k−1, we have sk ≡br s′k−1

In the right part of Figure 3, sk ∈ Sk
a is a loose k-message state which is a single k-message

state satisfying the above condition. Next we will show that for a given single k-message state,
it has a corresponding branching equivalent state in LTSk−1

a iff it is a loose k-message state.
The proof is based on the fact that branching equivalence between two states sk ∈ Sk

a and
sk+1 ∈ Sk+1

a ∧ sk+1 /∈ Sk
a implies a confluent diamond for them in LTSk+1

a .

Lemma 1 Given a set of peers {P1, . . . ,Pn}, the following holds for each single k-message state
sk ∈ Sk

a .

LS(sk) ⇔ ∃sk−1 ∈ Sk−1
a such that sk−1 ≡br sk

Proof .
⇒ Suppose that for a single k-message state sk = (sk1 , Q

k
1 ,...,s

k
n, Qk

n) ∈ Sk
a , |Q

k
i | = k, i ∈ {1, ..., n},

LS(sk) holds. Then in LTSk
a , ∃m? ∈ Σ?

i , such that sk0
σ
−→ skm

m!
−−→ sk, where sk0

σ
−→ skm ∈

T k∗
a , skm

m!
−−→ sk ∈ T k

a . From Definition 9, we know that skm is a border state and that ∃m′? ∈ Σ?
i ,

sk0
σ
−→ skm

m′?
−−→ skn

m!
−−→ s′k, where skm

m′?
−−→ skn, s

k
n

m!
−−→ s′k ∈ T k

a . This implies that there must

be a corresponding part in LTSk−1
a : sk−1

0

σ
−→ sk−1

m
m′?
−−→ sk−1

n
m!
−−→ s′k−1, where sk−1

0

σ
−→ sk−1

m ∈

T k−1∗
a , sk−1

m
m′?
−−→ sk−1

n , sk−1
n

m!
−−→ s′k−1 ∈ T k−1

a , s′k−1 = (s′k−1
1 , Q′k−1

1 , ..., s′k−1
n , Q′k−1

n), |Q′k−1
j | <

RR n° 8561

10 Salaün & Ye

k, ∀j ∈ {1, ..., n}. The reason is that the maximum number of messages in all states between
sk−1
0 and s′k−1 is smaller than k. Now from the second condition of Definition 9, we know that

beginning from the state sk in LTSk
a and from s′k−1 in LTSk−1

a , we have exactly the same
branching structure. This implies sk ≡br s′k−1.
⇐ Now suppose that in LTSk

a , we have a single k-message state sk = (sk1 , Q
k
1 , ..., s

k
n, Q

k
n) ∈

Sk
a , |Q

k
i | = k, i ∈ {1, ..., n}, such that LS(sk) does not hold. From Definition 9, we show that the

violation of each one of the two conditions implies ∄sk−1 ∈ Sk−1
a , such that sk ≡br sk−1.

1. If the first condition is not satisfied, i.e., ∄m′? ∈ Σ?
i , such that skm

m′?
−−→ skn

m!
−−→ s′k, where

skm
m′?
−−→ skn, s

k
n

m!
−−→ s′k ∈ T k

a . This implies that the reception of m′ that is contained in the
buffer Qk

i cannot be executed between the border state skm and the state juste before m!.
If m′? is executed after m! preceding the border state, then there is no equivalent state
in LTSk−1

a with respect to sk since the part after the border state cannot be reached in

LTSk−1
a . Otherwise, if m′? is before the border state, e.g., suppose skh

l!/?
−−→ skm

m!
−−→ sk,

where skh
l!/?
−−→ skm, skm

m!
−−→ sk ∈ T k

a , we have skh
m′?
−−→ skp

l!/?
−−→ skq

m!
−−→ skr , where skh

m′?
−−→

skp, s
k
p

l!/?
−−→ skq , s

k
q

m!
−−→ skr ∈ T k

a . In this case, we can deduce that m′? should execute before

l!/?. In other words, ∄sk
m′?
−−→ s ∈ T k

a . This means that we cannot reach skr from sk, i.e.,
there is no confluent diamond. Thus, there is no branching equivalent state in LTSk−1

a for
sk.

2. ∃m′? ∈ Σ?
g, s

k
m

m′?
−−→ skn

m!
−−→ s′k, where skm

m′?
−−→ skn, s

k
n

m!
−−→ s′k ∈ T k

a , sk 6≡br s′k. It is clear

that we have also sk 6≡br skn since m! is before sk but after skn. Thus, there is no branching
equivalent state in LTSk−1

a for the state sk.

From above, if a single k-message state is not a loose one, then ∄sk−1 ∈ Sk−1
a such that sk−1 ≡br

sk.
Thus, we have proved this lemma for both directions.

�

Here is one of the main results of this paper. If we are able to find a bound k such that the
k-bounded and the (k + 1)-bounded asynchronous systems are branching equivalent, then we
prove that the system remains stable, meaning that the observable behavior is always the same
for any bound greater than k. The main interest of the stability property is that the k-bounded
version of the system can be analyzed using existing model checking tools and this result ensures
that these properties are preserved when buffer bounds are increased or if buffers are unbounded.

Theorem 1 Given a set of peers {P1, . . . ,Pn}, if ∃k ∈ N, such that LTSk
a ≡br LTSk+1

a , then
we have LTSk

a ≡br LTSq
a, ∀q > k.

Proof .
We prove this theorem by induction. The idea is to show LTSk

a ≡br LTSq
a, ∀q > k from LTSk

a ≡br

LTSk+1
a . We rewrite q > k by q = k + m,m ≥ 1. Now the base case m = 1 is true from the

hypothesis, i.e., LTSk
a ≡br LTSk+1

a . To prove that this is also true for ∀m > 1, we suppose
LTSk

a ≡br LTSk+1
a ≡br ... ≡br LTSk+m

a ,m ≥ 1 and we show LTSk
a ≡br LTSk+m+1

a . To do this,
we consider two cases according to whether the maximum number of messages in all buffers is
smaller than k +m+ 1 or not in the asynchronous composition, which are formally represented
as follows:

1. In LTSk+m+1
a , ∀sk+m+1 = (sk+m+1

1 , Qk+m+1
1 , ..., sk+m+1

n , Qk+m+1
n) ∈ Sk+m+1

a , we have
∀i ∈ {1, ..., n}, |Qk+m+1

i | ≤ k +m;

Inria

Stability of Asynchronously Communicating Systems 11

2. In LTSk+m+1
a , ∃sk+m+1 = (sk+m+1

1 , Qk+m+1
1 , ..., sk+m+1

n , Qk+m+1
n) ∈ Sk+m+1

a , such that
∃i ∈ {1, ..., n}, |Qk+m+1

i | = k +m+ 1.

Now we show that in each of the two cases, we can deduce LTSk
a ≡br LTSk+m+1

a .

• The first case implies that in the asynchronous composition of this set of peers LTSa, the
buffer of any peer contains at most k+m messages in all states of LTSa. Hence, LTSk+m+1

a

is exactly the same LTS as LTSk+m
a . This implies LTSk+m+1

a ≡br LTSk+m
a . From the

inductive hypothesis LTSk
a ≡br LTSk+m

a , we have LTSk
a ≡br LTSk+m+1

a .

• In the second case, since there exists a buffer containing k + m + 1 messages, there are
new states in LTSk+m+1

a that are not in LTSk+m
a . Now from the inductive hypothesis, we

have LTSk+m−1
a ≡br LTSk+m

a . Then from Lemma 1, we can deduce that for each single
(k + m)-message state sk+m in LTSk+m

a , we have LS(sk+m), i.e., ∃sk+m−1 ∈ Sk+m−1
a ,

such that sk+m−1 ≡br sk+m. From Definition 9, we know that the only difference between
the path from s0a to sk+m−1 and that from s0a to sk+m is that the former has one more
reception that has however no impact on the execution after sk+m−1 since sk+m−1 ≡br

sk+m. This implies that we have exactly the same structure with respect to emissions from
the states sk+m−1 and sk+m. Now suppose that LTSk+m

a 6≡br LTSk+m+1
a , i.e., ∃sk+m+1 ∈

Sk+m+1
a , for which ∄sk+m ∈ Sk+m

a , such that sk+m+1 ≡br sk+m. In other words, we have
SG(sk+m+1) and ¬LS(sk+m+1). Now let sk+m be the border state for sk+m+1, we can
deduce that if ¬LS(sk+m+1), for its border state sk+m, ∄sk+m−1 ∈ Sk+m−1

a , such that
sk+m ≡br sk+m−1. In other words, ¬LS(sk+m+1) implies ¬LS(sk+m). It follows that
LTSk+m−1

a 6≡br LTSk+m
a , which contradicts our inductive hypothesis. Thus we must have

LTSk+m
a ≡br LTSk+m+1

a . From above, based on LTSk
a ≡br ... ≡br LTSk+m, we prove

LTSk+m
a ≡br LTSk+m+1

a .

This proves the theorem.
�

Given this result, one can check on the minimal k-bounded system satisfying stability, any
temporal property written with ACTL\X logic involving emissions, and this property will hold
for any system with larger bounds.

Proposition 1 Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSk
a ≡br LTSq

a (∀q > k), and for
some property P , LTSk

a |= P , then LTSq
a |= P (∀q > k).

Proof .
This trivially follows from Theorem 1.

�

3.3 Undecidability

Before showing the undecidability of checking the stability of a system, we first present a sufficient
and necessary condition for a system that is stable.

Lemma 2 Given a set of peers {P1, . . . ,Pn}, this system is stable iff the following condition is
satisfied, denoted by C:

∃k ∈ N, ∀sk ∈ Sk
a .[¬SG(sk) ∨ LS(sk)].

RR n° 8561

12 Salaün & Ye

Proof .
⇒ Suppose that the given set of peers is stable. Next we show that the stability of the set of
peers implies that the condition C is satisfied. Since this set of peers is stable, from Theorem 1,
we deduce ∃k ∈ N, such that LTSk

a ≡br LTSk−1
a . There are two cases for this:

1. LTSk
a = (Sk

a , s
0
a,Σ

k
a, T

k
a) and LTSk−1

a = (Sk−1
a , s0a,Σ

k−1
a , T k−1

a) have exactly the same
structure, i.e., Sk

a = Sk−1
a ,Σk

a = Σk−1
a , T k

a = T k−1
a ;

2. LTSk
a and LTSk−1

a do not have the same structure but are branching equivalent, i.e.,
Sk
a 6= Sk−1

a and T k
a 6= T k−1

a .

We demonstrate that any one of the two cases must satisfy the condition C.

• In the first case, we can deduce that in LTSk
a , for each peer, its buffer contains at most

k − 1 messages in all states, i.e., ∀sk = (sk1 , Q
k
1 , ..., s

k
n, Q

k
n) ∈ Sk

a , ∀i ∈ {1, ..., n}, |Qk
i | < k.

This implies that there is no single k-message state in LTSk
a , i.e., ∀sk ∈ Sk

a ,¬SG(sk).
Hence, the condition C is satisfied.

• Now consider the second case, where LTSk
a and LTSk−1

a are not exactly the same one.
Hence, we can deduce ∃sk = (sk1 , Q

k
1 , ..., s

k
n, Q

k
n) ∈ Sk

a , ∃i ∈ {1, ..., n}, |Qk
i | = k in LTSk

a . In
other words, there exists at least one single k-message state. Furthermore, since LTSk

a ≡br

LTSk−1
a , for all states in LTSk

a , there must be a corresponding branching equivalent state
in LTSk−1

a , including all single k-message states. Thus, from Lemma 1, we can deduce that
∀sk ∈ Sk

a , we have either ¬SG(sk) or LS(sk). This means that the condition C is satisfied.

So if the set of peers is stable, then the condition C must be satisfied.
⇒ Now suppose that the condition C is satisfied. Thus, we consider three cases: all states are
not single k-message states, formally described by the first case in the following; all states are
loose k-message states, which is not possible since the initial state has no message in all buffers;
some of the states are single k-messages states that should be loose ones, formally presented by
the second case below:

1. ∃k ∈ N, ∀sk ∈ Sk
a , we have ¬SG(sk);

2. ∃k ∈ N, ∀sk ∈ Sk
a such that SG(sk), we have LS(sk).

Now we show that any one of these two conditions implies that the system is stable.

• The first condition means that in LTSk
a , there is no single k-message state, i.e., the maxi-

mum number of messages in buffers is smaller than k for any state. It can thus be deduced
that LTSk

a and LTSk−1
a have exactly the same structure, which implies LTSk

a ≡br LTSk−1
a .

From Theorem 1, this is a stable set of peers.

• The second condition means that all single k-message state in LTSk
a are loose ones. From

Lemma 1, it can be deduced that ∀sk ∈ Sk
a , there is a corresponding state sk−1 ∈ Sk−1

a ,
such that sk ≡br sk−1. It is clear that ∀sk ∈ Sk−1

a , we have at least one corresponding
branching equivalent state in LTSk

a . This implies that LTSk
a ≡br LTSk−1

a . Hence, this set
of peers is stable from Theorem 1.

Hence, if the condition C is satisfied, then the system is stable.
�

Next we show that checking the stability of the system is undecidable by showing that veri-
fying the condition C is an undecidable problem. Yet there are many cases in which stability is
satisfied and the corresponding bound can be computed in those cases using heuristics, search
algorithms, and equivalence checking (see Section 4).

Inria

Stability of Asynchronously Communicating Systems 13

Theorem 2 Given a set of peers {P1, . . . ,Pn}, it is undecidable whether the corresponding asyn-
chronous system is stable.

Proof .
From Lemma 2, we know that C is a sufficient and necessary condition to check that a system
is stable. We show that the problem of checking this condition is undecidable. The idea is to
demonstrate that the boundedness problem [10] is its subproblem. The communication of a set
of peers with FIFO buffers is said to be bounded iff ∃k ∈ N such that for any reachable state
s = (s1, Q1, ..., sn, Qn) ∈ Sa, we have ∀i ∈ {1, ..., n}, |Qi| < k. Now recall that to check whether
the condition C is violated, the following two conditions should be both checked one after another:

• ∀k ∈ N, ∃sk ∈ Sk
a , such that SG(sk);

• ¬LS(sk).

Now we show that the first condition is equivalent to the boundedness problem. If this condition
is satisfied, it can be deduced that ∄k ∈ N, such that ∀s = (s1, Q1, ..., sn, Qn) ∈ Sa, we have
∀i ∈ {1, ..., n}, |Qi| < k. So this system is not bounded. On the other hand, if the condition is
not satisfied, i.e., ∃k ∈ N, there does not exist a reachable state such that it is a single k-message
state. This means that ∀sk = (sk1 , Q

k
1 , ..., s

k
n, Q

k
n) ∈ Sk

a , we have ¬SG(sk). From Definition 8,
to have ¬SG(sk), consider three cases for sk: 1) at least two buffers contain k messages, i.e.,
∃i1, ..., im ∈ {1, ..., n}, |Qk

ij
| = k, j ∈ {1, ...,m},m ≥ 2; 2) no buffer contains k messages, i.e.,

∀i ∈ {1, ..., n}, |Qk
i | < k; 3) there does not exist a border state sk−1 such that sk−1 m!

−−→ sk ∈ T k
a ,

where SG(sk). For the first case, if this is true, there must be at least one sk such that SG(sk)
since to reach a state where more than one buffer has k messages, we have to first reach such a
state sk, SG(sk). This implies that the first case is not possible with the assumption without
single k-message states. Then the second case means that the maximum number of messages in
buffers is smaller than k. And for the third case, even in sk, there exists a buffer containing k
messages, this state cannot be reached in LTSk

a since there is no border state before it. From
above, we analyze all three cases for a state sk such that ¬SG(sk). We can see that ¬SG(sk)
implies that sk is bounded by k. This implies that if ∀sk ∈ Sk

a , we have ¬SG(sk), then the
system is bounded. So we have shown that this first condition is equivalent to the boundedness
problem, which is thus a subproblem of checking C: consequently, if the former is undecidable,
which was proved in [10], then so is the latter.

�

3.4 Other Results

In the rest of this section, we present several additional results on the stability of communicating
systems.

Proposition 2 A set of peers {P1, . . . ,Pn} is stable if it is synchronizable.

Proof .
From Definition 5, a system is synchronizable meaning that all its asynchronous compositions
are branching equivalent whatever is the bound for buffers. This means that ∀k, q ∈ N, we have
LTSk

a ≡br LTSq
a. Now from Definition 6, it follows that this system is stable.

�

The opposite is false because stability ensures branching equivalence of the asynchronous sys-
tems from a specific bound k, which means that systems for lower bounds and for its synchronous
version behave differently.

The next result concerns computability of the smallest buffer bound for stable systems.

RR n° 8561

14 Salaün & Ye

Proposition 3 Given a stable set of peers {P1, . . . ,Pn}, the minimal bound k satisfying the
stability property is computable.

Proof .
Since this set of peers is stable, from Theorem 1, we know that ∃k ∈ N, LTSk

a ≡br LTSk+1
a . Since

k is finite, the construction of LTSk
a , LTSk+1

a and their equivalence checking is computable.
Hence, the minimal bound k for the stability property is also computable.

�

The computability of the stability property will be illustrated on real-world examples in
Section 4 by using heuristics, search algorithms, and equivalence checking.

Beyond these results on stability, a common approach is to identify classes of systems where
stability is guaranteed. Synchronizable systems (Prop. 3) and finite systems lie in this category.
By finite systems, we mean systems where peers interact over unbounded FIFO buffers and whose
asynchronous compositions are finite. This is the case for instance for acyclic peers, for systems
with a single cyclic peer where cycles do not involve only emissions, or for systems with peers
exhibiting independent cycles, i.e., cycles that are not included one from another [34]. Apart
from these simple cases, two candidates are (i) systems where peers exhibit cycles of emissions,
and (ii) well-formed systems (Definition 10).

Let us start with systems where peers can infinitely send messages. We establish that the
existence of a cycle of emissions in one peer does not determine whether whether the system is
stable or not, which is however a sufficient condition for unboundedness [10].

Proposition 4 Given a set of peers {P1, . . . ,Pn}, if a peer Pi ∈ {P1, . . . ,Pn} exhibits a cycle

of emissions φ = ski
m1!−−→ sk+1

i ...
mn!−−→ ski , this does not imply that the system is unstable.

Proof .
We prove this result by demonstrating that a system with a cycle of emissions in one peer that
is able to infinitely send messages may be stable or not. Suppose first that for this system,

in LTSa, ∀σ ∈ Σ∗

a, s
0
a

σ
−→ sn−1 mi!−−→ sn, s0a

σ
−→ sn−1 ∈ T ∗

a , s
n−1 mi!−−→ sn ∈ Ta, where mi! is

one send message in φ, then ∃σ′ ∈ Σ∗

a, s
0
a

σ′
−→ sm−1 mi!−−→ sm

mi?−−→ sm+1, s0a
σ′
−→ sm−1 ∈ T ∗

a ,

sm−1 mi!−−→ sm, sm
mi?−−→ sm+1 ∈ Ta, where P!(σ) = P!(σ′). Here we denote the projection of σ

on send messages by P!(σ). This means that whenever a message in this cycle is emitted, there
exists at least one execution with the same sequence of emissions, where the corresponding peer
is ready to receive it. In this case, the system may be stable.

Now suppose that in this system, ∃σ ∈ Σ∗

a, s
0
a

σ
−→ sn−1 mi!−−→ sn, s0a

σ
−→ sn−1 ∈ T ∗

a , s
n−1 mi!−−→ sn ∈

Ta, where mi! is one send message in φ, for which ∄σ′ ∈ Σ∗

a, s
0
a

σ′
−→ sm−1 mi!−−→ sm

mi?−−→ sm+1,

such that s0a
σ′
−→ sm−1 ∈ T ∗

a , s
m−1 mi!−−→ sm, sm

mi?−−→ sm+1 ∈ Ta, where P!(σ) = P!(σ′). This

means that ∃σ′′ ∈ Σ∗

a, s
0
a

σ′
−→ sm−1 mi!−−→ sm

σ′′
−−→ st

mi?−−→ st+1, where s0a
σ′
−→ sm−1, sm

σ′′
−−→ st ∈ T ∗

a

and sm−1 mi!−−→ sm, st
mi?−−→ st+1 ∈ Ta. Next we show that there is at least one send message in

the sequence σ′′. This can be proved by assuming that all messages in σ′′ are receive messages,

which in turn implies ∃s0a
σ′
−→ sm

mi!−−→ sn
mi?−−→ sn+1 and thus a contradiction. So it is clear

that in σ′′, we must have at least one send message. This implies that ∀k ∈ N, in LTSk+1
a ,

∃s0
σ
−→ sm

mi!−−→ sn
m(i+1) mod n!

−−−−−−−−−→ sn+1...
m(i+j) mod n!

−−−−−−−−−→ sn+j , whose corresponding part in LTSk
a is

s0
σ
−→ sm

mi!−−→ sn
m(i+1) mod n!

−−−−−−−−−→ sn+1...
m(i+j−1) mod n!

−−−−−−−−−−−→ sn+j−1. This implies LTSk
a 6≡br LTSk+1

a

and the system is thus not stable.
�

Inria

Stability of Asynchronously Communicating Systems 15

The example shown in Figure 4 has a cycle of emissions. In its synchronous composition, before
entering this cycle, d! should be synchronized with d? only after c! while c! can only be synchro-
nized with c? after d!, which leads to a deadlock. It follows that this system is not synchronizable
due to this deadlock, which is however not the case for its asynchronous composition. This means
that there is no branching equivalence between the synchronous and asynchronous compositions.
However, it is stable from bound 1, i.e., LTS1

a ≡br LTSk
a , k > 1.

Figure 4: A Stable System Exhibiting a Cycle of Emissions

Figure 5 depicts another example with a cycle of emissions that is not stable. For this
example, if we first execute a! and b! before c!, then to read the receive message from the buffer
of peer 2, we have to wait for c!. Hence, consider the execution where c is still not sent. We have
that ∀k, LTSk+1

a always exhibits a new observable behavior compared to LTSk
a . The reason is

that the cycle of emissions in peer 1 can infinitely send a and b, which is only constrained by the
size of buffer in peer 2. This implies that this system is not stable.

Another result concerns well-formed systems [4]. A system consisting of a set of peers is
well-formed iff whenever the size of the buffer, Qi, of the i-th peer is non-empty, the system can
move to a state where Qi is empty. In other words, well-formedness concerns the ability of a
system to eventually consume all messages in any of its buffers. In order to check this property,
we have to keep receive messages and thus analyze it on LTSa instead of LTSa .

Definition 10 (Well-formed System) Given a set of peers {P1, . . . , Pn}, it is well-formed,

denoted by WF (LTSa), if ∀s = (s1, Q1, ..., sn, Qn) ∈ Sa, ∀Qi, such that |Qi| > 0, then ∃s
σ
−→ s′ ∈

Ta
∗

, where s′ = (s1′, Q1′, ..., sn′, Qn′) ∈ Sa, |Qi′| = 0.

Proposition 5 The well-formedness of a set of peers {P1, . . . , Pn} can be checked with the
following CTL temporal formula on its asynchronous composition LTSa:

AG(|Qi| > 0) ⇒ EF (|Qi| = 0)

This formula means that whenever the size of any buffer is non-empty, i.e., AG(|Qi| > 0),
then there is at least one execution in the system to move to a state where Qi is empty, i.e.,
EF (|Qi| = 0). We show that a well-formed system is not mandatorily stable, i.e., well-formedness
is not a sufficient condition for stability.

Proposition 6 Given a set of peers {P1, . . . ,Pn}, its well-formedness does not imply that this
set of peers is stable.

Proof .
This can be proved by demonstrating that a well-formed system can be unstable. We illustrate
this through the example depicted in Figure 5. Suppose that one peer in the system contains a
cycle φ = ski

σ
−→ ski , where σ ∈ Σ+

a and σ contains at least one send message. In this example, one

RR n° 8561

16 Salaün & Ye

such cycle is σ = a!.b! in peer 1. Furthermore, there is at least one receive message corresponding
to one send message in φ, denoted by mk?, in another peer with a preceding send message mt!,
such as a? or b? in peer 2, that is the reception of the emission a! or b! in peer 1, with a preceding
emission c!. Suppose further that the execution of the cycle φ is totally independent of the send
message mt!, i.e., φ can continue to execute regardless of the emission of mt, and that there is
no constraint on mt!, i.e., mt can be emitted at any moment. This is the case for our example,
where the cycle a!.b! is independent of c! whose execution is however possible at any moment.
For such a system, we can deduce that it is not stable due to the cycle of emissions in peer 1 that
can infinitely send messages, which generates new observable behaviors in LTSk+1

a compared to
LTSk

a , ∀k ∈ N, when c! is still not executed. Furthermore, this system is well-formed because
the execution of c! is possible at any moment in peer 2, then all messages in its buffer can be
eventually read (cycle of receptions) until the buffer is empty.

�

Although well-formedness does not imply stability, one can check whether a stable system
is well-formed for the smallest k satisfying stability for instance. Then, we show below that if
a system is both stable and well-formed for some k, it remains well-formed for larger bound q
greater than k.

Figure 5: A Well-formed yet Unstable System

Theorem 3 Given a set of peers {P1, . . . ,Pn}, if ∃k s.t. LTSk
a ≡br LTSq

a (∀q > k) and

WF (LTSk
a), then we have WF (LTSq

a) (∀q > k).

Proof .
Suppose that for the given system, we have LTSk

a ≡br LTSk+1
a ∧WF (LTSk

a). Its stability ensures
that ∀sk ∈ Sk

a , ∃s
k+1 ∈ Sk+1

a such that sk ≡br sk+1, and the inverse is also true. Furthermore,

the well-formedness of LTSk
a means that ∀sk ∈ Sk

a , ∀Qk
i ∈ sk, |Qk

i | > 0, there must exist another

state s′k reachable from sk in LTSk
a such that all messages in this buffer are consumed, i.e.,

Qk
i ′ ∈ s′k, |Qk

i ′| = 0. Now there are two possible cases for ∀sk+1 ∈ Sk+1
a : 1) ∄Qk+1

i ∈ sk+1,
|Qk+1

i | = k + 1; 2) ∃Qk+1
i ∈ sk+1, |Qk+1

i | = k + 1. For the first case, sk+1 must also exist

in LTSk
a . Hence, from WF (LTSk

a), for each non-empty buffer in sk+1, there must be another
reachable state where this buffer becomes empty. Consider the second case, where we have at
least one buffer containing k + 1 messages. Since LTSk

a ≡br LTSk+1
a , then ∃sk ∈ Sk

a , such that
sk ≡br sk+1. From Lemma 1, we have LS(sk+1), i.e., it satisfies the two conditions described
in Definition 9. From the first condition meaning the existence of a confluent diamond, it can
be deduced that from such a sk+1, we can reach a state that is also contained in LTSk

a . Hence,

with WF (LTSk
a), it follows that for sk+1 in the second case, for each non-empty buffer, we can

find another reachable state where this buffer is empty. Thus, we have WF (LTSk+1
a). Now

from LTSk
a ≡br LTSq

a (∀q > k), we have LTSk+1
a ≡br LTSk+2

a . Furthermore, we have proved

WF (LTSk+1
a). Thus, similarly, we can prove WF (LTSk+2

a) and also WF (LTSq
a), (∀q > k).

�

Inria

Stability of Asynchronously Communicating Systems 17

Finally, we show that the stability results cannot be used for checking properties involving
not only emissions but also receptions.

Proposition 7 Given a set of peers {P1, . . . ,Pn}, if this system is stable, i.e., ∃k s.t. LTSk
a ≡br

LTSq
a (∀q > k), and for some property P , LTSk

a |= P , then we do not have necessarily LTSq
a |= P

(∀q > k).

Proof .
Consider the example in Figure 2. As explained in Section 1, this system is stable from k = 2.
Suppose now that the property under consideration is that it is forbidden to have three successive
receptions of log. This property is verified on LTS2

a but not on LTS3
a, because to have three

successive receptions of log, this peer requires a buffer with size at least three. Therefore, the
property is satisfied for LTS2

a, but is violated for LTS3
a.

�

4 Tool Support

In this section, we first present our method for checking whether a set of LTSs is stable. Our
approach relies on an encoding into process algebra on the one hand, which is used for computing
peer synchronous and asynchronous compositions, and on heuristics and search algorithms for
computing the smallest bound satisfying the stability property on the other hand. These different
aspects will be introduced in this section as well. Finally, we will comment on experiments we
made either on real-world examples taken from the literature or on hand-crafted examples to see
how our approach scales.

4.1 Method

First of all, we introduce some methodological aspects that put in practice the results on systems
stability we have presented in the former section. Figure 6 overviews the main steps of the
overall approach. Given a set of peer LTSs, we first check whether this system is branching
synchronizable [39]. If this is the case, it means that the observable behavior for the synchronous
and asynchronous composition always remains the same whatever buffer size is chosen. Therefore,
in such a case, the synchronous product can be used for analysis purposes.

If the set of peers is not synchronizable, we compute an initial bound k using one of the
heuristics we will introduce below (Section 4.3). For that bound, we verify whether the k-
bounded asynchronous system is branching equivalent to the (k + 1)-bounded system. If it is
the case, the system is stable for bound k. Then, we decrement k for searching the smallest
k satisfying the stability property. Thus, we can analyze properties of interest for that system
(buffers bounded to the smallest k) and, if they are satisfied, we proved that these properties are
preserved for any upper bound.

If for a specific k, the equivalence check between the k-bounded asynchronous system and
the (k+1)-bounded system returns false, we modify k (using, e.g., binary search or incremental
update of the former bound) and apply the check again. We repeat the process up to a certain
arbitrary bound kmax that makes the approach abort if attained. If we reach that bound, the
test is inconclusive. The only solution in that situation is to bound arbitrarily the system and
analyze the system for that specific bound.

RR n° 8561

18 Salaün & Ye

Figure 6: Methodological Aspects

4.2 Process Algebra Encoding

In order to automate these different checks, we use an encoding into process algebra and equiva-
lence checking. In particular, we encode the set of peer LTSs into the LNT process algebra [18],
one of the input languages of the CADP toolbox [26]. Each peer LTS is represented in LNT
using several processes. Each state in the peer LTS is encoded by one process, whose body cor-
responds to a choice between all the possible transitions outgoing from that state. Each branch
of this choice first executes the action labelling the corresponding transition (message emission
or reception, or internal action) followed by a call to the process encoding the target state of
that transition. We also define in LNT FIFO buffers and classic operations to manipulate them.
Finally, synchronous and bounded asynchronous compositions are generated using parallel com-
position and hiding operators. More precisely, in the asynchronous composition case, all peers
and buffers are composed in parallel. Each peer reads from its buffer and sends messages to other
peer buffers. Receptions corresponding to message consumptions for peers from their buffers are
hidden.

In a second step, from this encoding, we use CADP compilers and exploration tools to generate
synchronous and asynchronous composition LTSs. These LTSs are finally compared with CADP
equivalence checking tools [7] for checking the stability property. The whole process is fully
automated thanks to some Python scripts we wrote and SVL verification scripts [25] that are
automatically generated. Python scripts are particularly used for generating the LNT code and
for searching the smallest bound k satisfying stability. SVL scripts automate the compilation
from LNT to LTSs and call the equivalence checking tools.

4.3 Heuristics and Search Algorithms

In our experimental results, we use five strategies for searching the smallest bound k from which
the set of peers interacting asynchronously become stable. Since the calculation of this bound
is undecidable, all computations are bound by an arbitrary upper bound kmax. Each strategy
consists of the computation of an initial bound k and an algorithm calculating the next bound
to attempt.

• Our first strategy (#1) is brute force, i.e., we start from bound k equal to one and we
increment it by one until obtaining a positive result for the equivalence check or reaching

Inria

Stability of Asynchronously Communicating Systems 19

kmax.

• A second strategy (#2) computes the longest sequence of emissions in all peer LTSs, then
starts from this number and uses a binary search algorithm. For example, if the stability
check for the first k is true (false, resp.), the next k to explore is midway between 1 and k
(between k and kmax, resp.).

The intuition behind the longest sequence of emissions is that in that case all peers can
at least send all their messages even if no peer consumes any message from its buffer.
Experiments show that in most cases, the searched bound k is greater than or equal to this
computed size.

• A third strategy (#3) uses again the longest sequence of emissions for the initial k, but then
progresses by incrementing or decrementing the bound till reaching kmax or the smallest k
satisfying stability. Precisely, if the stability check for the first k is true (false, resp.), the
next bound to explore is k − 1 (k + 1, resp.).

The problem of the longest sequence of emissions is when several peers have the same
partner as recipient of their messages. In such a case, the partner buffer can get full even
if the sending peers still want to emit other messages to it.

• A fourth strategy (#4) computes the maximum between the longest sequence of emissions
in all peers and the highest number of emissions destinated to a same peer, and then uses
the binary search algorithm (as for #2) for computing the next bounds. The second part of
the maximum function corresponds to the case in which the buffer size prevents some peers
to send messages because that buffer is already full. This case is somehow the counterpart
of the longest sequence of emissions but from the receiver point of view.

• A fifth strategy (#5) uses the same initial k computation as presented for strategy #4, and
then increments or decrements the bound till completion of the process as in strategy #3.

In the rest of this section, for the sake of evaluation of our approach, we will present experi-
mental results and use them for comparing the strategies introduced above.

4.4 Experimental Results

We used a Mac OS laptop running on a 2.3 GHz Intel Core i7 processor with 16 GB of Memory and
carried out experiments on more than 300 examples of communicating systems. Table 1 presents
experimental results for some real-world examples. We also present at the end of the table a few
hand-crafted examples for showing how our approach scales (the examples from the literature
are quite small). The table gives for each example the number of peers (P), the total number of
states (S) and transitions (T) involved in these peers, the bound k if the system is stable (0 if the
system is synchronizable and kmax if this upper bound is reached during the analysis process),
the size of the k-bounded asynchronous system (minimized modulo branching reduction), and
the time for applying the whole process for each strategy introduced beforehand. In the LTSk

a

column, we give the size of the 1-bounded asynchronous composition for synchronizable systems
and the size of the kmax-bounded asynchronous composition for non-stable systems. During our
experiments, we used a bound kmax arbitrarily fixed to 10, which enabled us to keep computation
times within a few hours during our experiments.

All the examples included in the table involve cyclic behaviors. The examples from the
literature correspond to quite simple systems (up to 5 peers). 10 examples are synchronizable,
13 examples are stable, and 4 examples are not stable. To sum up, out of the 27 real-world

RR n° 8561

20 Salaün & Ye

Id Description |P| |S|/|T | k
LTSk

a Time (in seconds)
|S|/|T | #1 #2 #3 #4 #5

(1) Estelle specification [32] 2 7/9 5 28/54 126 216 149 209 120
(2) News server [39] 2 9/9 3 14/22 89 180 65 173 85
(3) Client/server [10] 2 6/10 0 3/4 34
(4) CFSM system [32] 2 6/7 kmax 393/802 222 107 213 103 212
(5) Promela program (1) [33] 2 6/6 1 3/4 52 71 67 68 66
(6) Promela program (2) [34] 2 8/8 kmax 275/616 219 107 231 103 228
(7) Web Services [23] 3 13/12 0 7/7 44
(8) Trade system [22] 3 12/12 0 30/46 44
(9) Online stock broker [24] 3 13/16 kmax 197/452 >1h 222 >1h 223 >1h
(10) FTP Transfer [9] 3 20/17 2 15/19 91 224 155 215 155
(11) Client/Server [15] 3 14/13 0 8/7 44
(12) Mars Explorer [12] 3 34/34 2 21/25 93 176 142 170 140
(13) Online Computer Sale [19] 3 26/26 0 11/12 69
(14) E-museum [16] 3 33/40 3 27/46 146 >1h 138 243 182
(15) Client/Supplier [14] 3 31/33 0 17/19 44
(16) Restaurant Service [46] 3 15/16 1 10/12 68
(17) Travel Agency [44] 3 32/38 0 18/21 44
(18) Vending Machine [27] 3 15/14 0 8/8 44
(19) Travel Agency [5] 3 42/57 3 29/42 118 >1h 113 >1h 112
(20) Train station [43] 4 18/18 2 19/26 114 195 137 197 165
(21) Factory job manager [13] 4 20/20 0 12/15 54
(22) Bug report repository [28] 4 12/12 1 7/8 85 221 137 227 136
(23) Cloud application [30] 4 8/10 kmax 26,754/83,200 352 208 339 208 337
(24) Sanitary agency [42] 4 35/41 3 44/71 144 196 137 196 137
(25) SQL Server [41] 4 32/38 2 22/31 165 195 137 199 170
(26) SSH Protocol [36] 4 26/28 0 16/18 97
(27) Booking system [37] 5 45/53 1 27/35 179 285 165 >1h >1h

(28) Hand-crafted example 5 396/801 4 17,376/86,345 227 >1h 184 313 189
(29) —— 6 16/18 5 202/559 278 641 188 641 188
(30) —— 7 38/38 6 1,716/6,468 363 763 391 767 393
(31) —— 10 48/47 8 14,904/57,600 624 800 294 804 294
(32) —— 14 85/80 4 19,840/113,520 506 1,449 483 1,442 485
(33) —— 16 106/102 3 22,400/132,400 478 1,620 454 1,621 453
(34) —— 20 128/116 4 80,640/522,480 728 2,194 698 2,183 699

Table 1: Experimental results

examples presented in the top part of the table, 23 can be now analyzed using existing verification
techniques thanks to the approach proposed in this report. For these real-world examples, LTSs
are quite small and computation times reasonable (up to a few minutes). Computation times
may be less satisfactory for non-stable systems whose intermediate state spaces grow gradually
with the size of the buffer bounds, until we stop once kmax is reached, see online stock broker for
instance (9), which takes time because intermediate state spaces for certain couples (peer,buffer)
contains millions of states and transitions. However, in other cases the computation time remains
reasonable, see, e.g., CFSM system (4), Promela program (6), or cloud application (23). It is
worth observing that some examples that are presented as unbounded and then impossible to
analyze in the literature are actually stable, see, e.g., Estelle specification (1), which means that
they can be analyzed for the minimal k satisfying stability and these properties still hold for
larger buffer bounds.

As far as hand-crafted examples are concerned, we observe that the LTS sizes and computation
times increase mainly with the size of the peer LTSs, the number of peers, and the size of buffer
bounds. Yet we are able to check stable systems involving a large number of peers in a reasonable

Inria

Stability of Asynchronously Communicating Systems 21

time (slightly more than 10 minutes for the last example with 20 peers using #1, #3, or #5).
This time remains quite low for peers exhibiting many states and transitions (about 3 minutes
for the first hand-crafted example (28) using #1, #3, or #5).

Now let us compare the five strategies we used in our experiments. It turns out that strategy
#2 and #4 are not very efficient in terms of performance for two main reasons. First, if the
equivalence check for the initial k returns false, the binary search algorithm computes a second
value for k, which can be quite high. This results in calculating asynchronous systems with large
buffer bounds, which requires more computation time than for lower k values as computed with
the other strategies. Second, in some cases, binary search takes time before converging to the
result, and this causes additional equivalence computations. The advantage of binary search is
that for non-stable systems, k increases quite fast and quickly reaches kmax, see CFSM system
(4) for instance.

Strategies #3 and #5 are much better than strategies #2 and #4 but also better in most
cases than strategy #1. This gain is not clear for small examples and examples requiring a small
buffer bound, but it becomes obvious for examples involving more peers and for those requiring
larger buffer bounds. These two strategies (#3 and #5) are particularly satisfactory when the
initial k finely approximates the expected result. In such cases, we can have up to a factor 2
gain in terms of computation time, see the fourth hand crafted example (31) for illustration
purposes.

5 Related Work

One of the first results on analyzing communicating state machines was proposed by Brand
and Zafiropulo [10]. They defined the unspecified receptions compatibility notion for interaction
protocols described using Communicating Finite State Machines (CFSMs). This work focuses
on the verification of n interacting processes executed in parallel and exchanging messages via
FIFO buffers. When considering unbounded buffers, the authors showed that the resulting state
spaces may be infinite, and the problem becomes undecidable. Gouda et al. [29] presents sufficient
conditions to compute a bound k from which two finite state machines communicating through
1-directional channels are guaranteed to progress indefinitely. Jeron and Jard [32] propose a
sufficient condition for testing unboundedness, which can be used as a decision procedure in
order to check reachability for CFSMs.

Abdulla et al. [1] propose some verification techniques for CFSMs. They present a method for
performing symbolic forward analysis of unbounded lossy channel systems. In [33], the authors
present an incomplete boundedness test for communication channels in Promela and UML RT
models. They also provide a method to derive upper bound estimates for the maximal occupancy
of each individual message buffer. Cécé and Finkel [17] focus on the analysis of infinite half-duplex
systems and present several (un)decidability results. For instance, they prove that a symbolic
representation of the reachability set is computable in polynomial time and show how to use this
result to solve several verification problems. Recently, Beohar and Cuijpers [6] studied sufficient
and necessary conditions for desynchronizability modulo branching bisimulation. This property
ensures that the asynchronous version of the system where processes interact via half-duplex
buffers do not introduce spurious interleavings compared to its synchronous version. Poizat
et al. [40] propose the notions of bounded analysis and bounded decomposition for Symbolic
Transition Systems, which can be used to test boundedness of systems and to generate finite
simulations for them so that standard model-checking techniques may be applied for verification
purposes.

Darondeau et al. [20] identify a decidable class of systems consisting of non-deterministic

RR n° 8561

22 Salaün & Ye

communicating processes that can be scheduled while ensuring boundedness of buffers. [21] pro-
posed a causal chain analysis to determine upper bounds on buffer sizes for multi-party sessions
with asynchronous communication. Bouajjani and Emmi [8] consider a bounded analysis for
message-passing programs, which does not limit the number of communicating processes nor the
buffers’ size. However, they limit the number of communication cycles. They propose a decision
procedure for reachability analysis when programs can be sequentialized. By doing so, program
analysis can easily scale while previous related techniques quickly explode. Recently, Ouederni
et al. [39] presented a sufficient condition for checking compatibility of a set of asynchronously
communicating components with unbounded message buffers. They exploit the synchronizability
property introduced in [4], but if systems are non-synchronizable, they cannot be analyzed with
this approach.

Communicating systems have been intensively studied in the context of choreographies and
realizability/conformance checking in the last 10 years. In [11], the authors tackle the choreog-
raphy conformance issue from a theoretical point of view, and propose notions of contract re-
finement and choreography conformance for services that communicate through message queues.
[28] proposes techniques to check whether a set of peers interacting asynchronously can realize
a choreography with finite buffers, and if so, for what buffer sizes. [35] studies several notions of
realizability and investigates decidability results for choreographies involving services interacting
via buffers, which do not assume that messages arrive in the same order in which they have been
sent. As mentioned earlier in this paper, Basu et al. proposed to check choreography confor-
mance and realizability verifying the synchronizability property [4]. The realizability problem
for Message Sequence Charts (MSCs) has also been studied, see, e.g., [45, 2]. [2] for instance
presents some decidability results on bounded MSC graphs, which are graphs obtained from
MSCs using bounded buffers.

Compared to all these results, we do not impose any bound on the number of peers, cycles, or
buffer bounds. Another main difference is that we do not want to ensure or check boundedness
of the systems under analysis. Contrarily, we are particularly interested in unbounded (yet
possibly stable) systems. We also go one step farther than synchronizable systems, since we
propose verification techniques for systems that do not satisfy this property.

In [3], the authors work on a similar problem and propose an algorithm for identifying if
the interactions of a given system with unbounded queues can be mimicked by the same system
where queues are bounded. This paper assumes that determining the existence of a k verifying
this property is computable, whereas we proved in this paper that this problem is undecidable.
Moreover, [3] relies on trace equivalence and LTL logic. Trace equivalence is not adequate for
analyzing communicating systems since this equivalence does not preserve important properties
such as deadlock-freeness. We consider a finest notion of equivalence in this paper (branching),
which allows one to check properties written with ACTL\X logic [38]. Last, the tool support
provided in [3] does not provide any result (infinite loop, inconclusive result, or error) for more
than half of the examples presented in Table 1.

6 Conclusion

We have presented in this paper a framework for formally analyzing systems communicating via
(possibly unbounded) FIFO buffers. This work focuses on cyclic systems modelled using finite
state machines. We have introduced the stability property, which shows that several systems
become stable from a specific buffer bound k when focusing on send messages. The stability
problem is undecidable in the general case, but for many systems we can determine whether
those systems are stable using heuristics, search algorithms, and branching equivalence checking.

Inria

Stability of Asynchronously Communicating Systems 23

Experiments showed that many real-world examples satisfy this stability property and this can be
identified in a reasonable time. Model checking techniques can then be used on the asynchronous
version of the system with buffers bound to the smallest k satisfying stability. If a stable system
satisfies a specific property for that k, the property will be satisfied too if buffer bounds are
increased or if buffers are unbounded.

Acknowledgements. This work has been supported by the OpenCloudware project (2012-
2015), which is funded by the French Fonds national pour la Société Numérique (FSN), and is
supported by Pôles Minalogic, Systematic, and SCS. We would like to thank Radu Mateescu for
his valuable suggestions to improve the paper.

References

[1] P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-Fly Analysis of Systems with Un-
bounded, Lossy FIFO Channels. In Proc. CAV’98, volume 1427 of LNCS, pages 305–318.
Springer, 1998.

[2] R. Alur, K. Etessami, and M. Yannakakis. Realizability and Verification of MSC Graphs.
Theoretical Computer Science, 331(1):97–114, 2005.

[3] S. Basu and T. Bultan. Automatic Verification of Interactions in Asynchronous Systems
with Unbounded Buffers. In Proc. of ASE’14, pages 743–754, 2014.

[4] S. Basu, T. Bultan, and M. Ouederni. Deciding Choreography Realizability. In Proc. of
POPL’12, pages 191–202. ACM, 2012.

[5] A. Bennaceur, C. Chilton, M. Isberner, and B. Jonsson. Automated Mediator Synthesis:
Combining Behavioural and Ontological Reasoning. In Proc. of SEFM’13, volume 8137 of
LNCS, pages 274–288. Springer, 2013.

[6] Harsh Beohar and Pieter J. L. Cuijpers. Avoiding Diamonds in Desynchronisation. Sci.
Comput. Program., 91:45–69, 2014.

[7] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR: A Modular
Tool for On-the-Fly Equivalence Checking. In Proc. of TACAS’05, volume 3440 of LNCS,
pages 581–585. Springer, 2005.

[8] A. Bouajjani and M. Emmi. Bounded Phase Analysis of Message-Passing Programs. In
Proc. of TACAS’12, volume 7214 of LNCS, pages 451–465. Springer, 2012.

[9] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation.
Journal of Software Systems, 74(1):45–54, 2005.

[10] D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM, 30(2):323–
342, 1983.

[11] M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance in the
Presence of Message Queues. In Proc. of WS-FM’08, LNCS, pages 37–54, 2009.

[12] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of ICSOC’06,
volume 4294 of LNCS, pages 27–39. Springer, 2006.

RR n° 8561

24 Salaün & Ye

[13] T. Bultan, C. Ferguson, and X. Fu. A Tool for Choreography Analysis Using Collaboration
Diagrams. In Proc. of ICWS’09, pages 856–863. IEEE, 2009.

[14] J. Cámara, J. Antonio Martín, G. Salaün, C. Canal, and E. Pimentel. Semi-Automatic
Specification of Behavioural Service Adaptation Contracts. Electr. Notes Theor. Comput.
Sci., 264(1):19–34, 2010.

[15] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Software
Composition. In Proc. of FMOODS’06, volume 4037 of LNCS, pages 63–77. Springer, 2006.

[16] C. Canal, P. Poizat, and G. Salaün. Model-Based Adaptation of Behavioural Mismatching
Components. IEEE Transactions on Software Engineering, 34(4):546–563, 2008.

[17] G. Cécé and A. Finkel. Verification of Programs with Half-duplex Communication. Inf.
Comput., 202(2):166–190, 2005.

[18] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe, and
G. Smeding. Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.4).
INRIA/VASY, 149 pages, 2011.

[19] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A Model-Based Approach to the
Verification and Adaptation of WF/.NET Components. In Proc. of FACS’07, volume 215
of ENTCS, pages 39–55. Elsevier, 2007.

[20] P. Darondeau, B. Genest, P. S. Thiagarajan, and S. Yang. Quasi-Static Scheduling of
Communicating Tasks. In Proc. of CONCUR’08, volume 5201 of LNCS, pages 310–324.
Springer, 2008.

[21] P.-M. Deniélou and N. Yoshida. Buffered Communication Analysis in Distributed Multiparty
Sessions. In Proc. CONCUR’10, volume 6269 of LNCS, pages 343–357. Springer, 2010.

[22] P.-M. Deniélou and N. Yoshida. Multiparty Session Types Meet Communicating Automata.
In Proc. of ESOP’12, volume 7211 of LNCS, pages 194–213. Springer, 2012.

[23] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of
WWW’04, pages 621–630. ACM Press, 2004.

[24] X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for Specification and
Verification of Reactive Electronic Services. Theoretical Computer Science, 328(1-2):19–37,
2004.

[25] H. Garavel and F. Lang. Svl: A Scripting Language for Compositional Verification. In
Proc. FORTE’01, pages 377–394. Kluwer, 2001.

[26] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for the Construc-
tion and Analysis of Distributed Processes. In Proc. of TACAS’11, volume 6605 of LNCS,
pages 372–387. Springer, 2011.

[27] C. Gierds, A. J. Mooij, and K. Wolf. Reducing Adapter Synthesis to Controller Synthesis.
IEEE T. Services Computing, 5(1):72–85, 2012.

[28] G. Gössler and G. Salaün. Realizability of Choreographies for Services Interacting Asyn-
chronously. In Proc. of FACS’11, volume 7253 of LNCS, pages 151–167. Springer, 2011.

Inria

Stability of Asynchronously Communicating Systems 25

[29] M. G. Gouda, E. G. Manning, and Y.-T. Yu. On the Progress of Communications between
Two Finite State Machines. Information and Control, 63(3):200–216, 1984.

[30] M. Güdemann, G. Salaün, and M. Ouederni. Counterexample Guided Synthesis of Monitors
for Realizability Enforcement. In Proc. of ATVA’12, volume 7561 of LNCS, pages 238–253.
Springer, 2012.

[31] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley, 1979.

[32] T. Jéron and C. Jard. Testing for Unboundedness of FIFO Channels. Theor. Comput. Sci.,
113(1):93–117, 1993.

[33] S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for Message Buffer Overflow in
Promela Models. In Proc. SPIN’04, volume 2989 of LNCS, pages 216–233. Springer, 2004.

[34] S. Leue, A. Stefanescu, and W. Wei. Dependency Analysis for Control Flow Cycles in
Reactive Communicating Processes. In Proc. of SPIN’08, volume 5156 of LNCS, pages
176–195. Springer, 2008.

[35] N. Lohmann and K. Wolf. Decidability Results for Choreography Realization. In Proc. of
ICSOC’11, volume 7084 of LNCS, pages 92–107. Springer, 2011.

[36] J. A. Martín and E. Pimentel. Contracts for Security Adaptation. J. Log. Algebr. Program.,
80(3-5):154–179, 2011.

[37] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service Protocols Using Process
Algebra and On-the-Fly Reduction Techniques. In Proc. of ICSOC’08, volume 5364 of
LNCS, pages 84–99. Springer, 2008.

[38] R. De Nicola and F. W. Vaandrager. Action versus State Based Logics for Transition
Systems. In Semantics of Concurrency, volume 469 of LNCS, pages 407–419. Springer,
1990.

[39] M. Ouederni, G. Salaün, and T. Bultan. Compatibility Checking for Asynchronously Com-
municating Software. In Proc. of FACS’13, volume 8348 of LNCS, pages 310–328. Springer,
2013.

[40] P. Poizat, J.-C. Royer, and G. Salaün. Bounded Analysis and Decomposition for Behavioural
Descriptions of Components. In Proc. of FMOODS’06, volume 4037 of LNCS, pages 33–47.
Springer, 2006.

[41] P. Poizat and G. Salaün. Adaptation of Open Component-based Systems. In Proc. of
FMOODS’07, volume 4468 of LNCS, pages 141–156. Springer, 2007.

[42] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Services using
Process Algebra. In Proc. of ICWS’04, pages 43–50. IEEE Computer Society, 2004.

[43] G. Salaün, T. Bultan, and N. Roohi. Realizability of Choreographies Using Process Algebra
Encodings. IEEE Transactions on Services Computing, 5(3):290–304, 2012.

[44] R. Seguel, R. Eshuis, and P. W. P. J. Grefen. Generating Minimal Protocol Adaptors for
Loosely Coupled Services. In Proc. of ICWS’10, pages 417–424. IEEE Computer Society,
2010.

RR n° 8561

26 Salaün & Ye

[45] S. Uchitel, J. Kramer, and J. Magee. Incremental Elaboration of Scenario-based Speci-
fications and Behavior Models using Implied Scenarios. ACM Transactions on Software
Engineering and Methodology, 13(1):37–85, 2004.

[46] W. M. P. van der Aalst, A. J. Mooij, C. Stahl, and K. Wolf. Service Interaction: Patterns,
Formalization, and Analysis. In Proc. of SFM’09, volume 5569 of LNCS, pages 42–88.
Springer, 2009.

[47] R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. J. ACM, 43(3):555–600, 1996.

Inria

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Communicating Systems
	Stability
	Synchronizability
	Stability
	Undecidability
	Other Results

	Tool Support
	Method
	Process Algebra Encoding
	Heuristics and Search Algorithms
	Experimental Results

	Related Work
	Conclusion

