
Compatibility Checking for Asynchronously

Communicating Software

Meriem Ouederni, Gwen Salaün, Tevfik Bultan

To cite this version:

Meriem Ouederni, Gwen Salaün, Tevfik Bultan. Compatibility Checking for Asynchronously
Communicating Software. FACS 2013, Oct 2013, Nanchang, China. 2013. <hal-00913665>

HAL Id: hal-00913665

https://hal.inria.fr/hal-00913665

Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50537187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00913665

Compatibility Checking for Asynchronously

Communicating Software

Meriem Ouederni1, Gwen Salaün2, and Tevfik Bultan3

1 Toulouse INP, IRIT, France
meriem.ouederni@irit.fr

2 Grenoble INP, Inria, LIG, France
gwen.salaun@inria.fr

3 UCSB, USA
bultan@cs.ucsb.edu

Abstract. Compatibility is a crucial problem that is encountered while
constructing new software by reusing and composing existing compo-
nents. A set of software components is called compatible if their compo-
sition preserves certain properties, such as deadlock freedom. However,
checking compatibility for systems communicating asynchronously is an
undecidable problem, and asynchronous communication is a common
interaction mechanism used in building software systems. A typical ap-
proach in analyzing such systems is to bound the state space. In this
paper, we take a different approach and do not impose any bounds on
the number of participants or the sizes of the message buffers. Instead,
we present a sufficient condition for checking compatibility of a set of
asynchronously communicating components. Our approach relies on the
synchronizability property which identifies systems for which interac-
tion behavior remains the same when asynchronous communication is
replaced with synchronous communication. Using the synchronizability
property, we can check the compatibility of systems with unbounded
message buffers by analyzing only a finite part of their behavior. We
have implemented a prototype tool to automate our approach and we
have applied it to many examples.

1 Introduction

A widely accepted view in software development is that the software systems
should be built by reusing and composing existing pieces of code. Moreover,
recent trends in computing technology promote development of software appli-
cations that are intrinsically concurrent and distributed. For example, service-
oriented computing promotes development of Web-accessible software systems
that are composed of distributed services that interact with each other by ex-
changing messages over the Internet. Cyber-physical systems, on the other hand,
involve integration of physical and computational components that interact in a
variety of ways to implement a common functionality. Finally, pervasive systems
combine large numbers of sensors and computational elements integrated into
everyday environment and require their coordination in a dynamic setting. All

2 M. Ouederni, G. Salaün, and T. Bultan

these computing paradigms involve concurrent execution of distributed compo-
nents that are required to interact with each other to achieve a shared goal.

A central problem in composing distributed components is checking their
compatibility. Compatibility checking is used to identify if composed components
can interoperate without errors. This verification is crucial for ensuring correct
execution of a distributed system at runtime. Compatibility errors that are not
identified during the design phase can make a distributed system malfunction
or deadlock during its execution, which can result in delays, financial loss, and
even physical damage in the case of cyber-physical systems.

In this paper, we focus on the compatibility checking problem for closed sys-
tems involving composition of distributed components. We call the components
that participate in a composed system peers. A set of peers is compatible if, when
they are composed, they satisfy a certain property. We call such a property a
compatibility notion. It is worth observing that the compatibility problem de-
pends on several parameters: the behavioral model used to describe the peers (fi-
nite state machines, Petri nets, etc.), the communication model (synchronous vs.
asynchronous, pairwise vs. broadcast/multicast, ordered vs. unordered buffers,
lossy channels, etc.), and the compatibility notion. In this paper, we use Labeled
Transition Systems (LTSs) to describe peer behaviors. We focus on pairwise
asynchronous communication model (which corresponds to message-based com-
munication via FIFO buffers). Pairwise communication means that each indi-
vidual message is exchanged between two peers (no broadcast communication).
As for compatibility, there are several compatibility notions existing in the lit-
erature. Here, we focus on two widely used notions, namely deadlock-freedom
(DF) [15] and unspecified receptions (UR) [11, 34]. A set of peers is DF compat-
ible if their composition does not contain any deadlock, i.e., starting from their
initial states peers can either progress by following transitions in their respective
LTSs or terminate if they are in final states. A set of peers is UR compatible if
they do not deadlock and for each message that is sent there is a peer that can
receive that message.

Most results in the literature for verifying the compatibility of behavioral
models assume two interacting peers and synchronous communication, e.g., [34,
15, 13, 9]. However, asynchronous communication is more suitable than syn-
chronous communication in a distributed setting, since asynchronous commu-
nication is non-blocking. In asynchronous communication the sender does not
have to wait for the receiver when it needs to emit a message. Analyzing asyn-
chronously communicating systems is more complicated than synchronously
communicating systems since it is necessary to represent the contents of the
message buffers during analysis of a system that uses asynchronous communica-
tion. Moreover, asynchronous communication with unbounded message buffers
leads to infinite state spaces. This means that, in general, verification techniques
based on explicit state space exploration will not be sound for such systems.
Analysis of asynchronously communicating systems has been investigated ex-
tensively during the last 30 years, e.g., [11, 24, 26, 14, 31]. A common approach
used in analyzing asynchronously communicating systems is to bound the state

Compatibility Checking for Asynchronously Communicating Software 3

space by bounding the number of cycles, peers, or buffers. Bounding buffers to
an arbitrary size during its execution is not a satisfactory solution since, if at
some point buffers’ sizes change (due to changes in memory requirements for
example), it is not possible to know how the system would behave compared to
its former version and new unexpected errors can show up. This is the case for
instance of the simplified news server protocol shown in Figure 1. Transitions
are labeled with either emissions (exclamation marks) or receptions (question
marks). Initial states are marked with incoming half-arrow and final states have
no outgoing transitions. With buffer size 1, the system executes correctly (no
deadlock). However, if we increase the buffer size to 2, a deadlock appears when
the news server sends message sendnews! followed by stop!. In that situation, the
news server is in a final state, but the reader is not able to read the stop message
from its buffer and cannot interact properly with the news server.

Fig. 1. Motivating Example (1)

Figure 2 shows another simple example involving three peers: a client (cl), a
server (sv), and a database (db), which exchange three messages request, result,
and log. Peer sv receives a request, sends a result, and loops. Peer cl sends a
request, receives a result, sends a log message, and loops. Peer db receives log
messages. If we try to generate the LTS corresponding to the composition of
these three peers interacting asynchronously through unbounded buffers, this
results in an infinite state system. Indeed, the peers sv and cl can loop infinitely,
and the peer db can consume from its input buffer whenever it wants, meaning
that its buffer can grow arbitrarily large. Analyzing such system is therefore a
complicated task (undecidable in general [11]), and to the best of our knowledge,
existing approaches cannot analyze compatibility of such systems, because they
cannot handle systems that communicate with asynchronous communication via
unbounded buffers.

It was recently shown that it is decidable to check certain properties of dis-
tributed systems interacting asynchronously through unbounded buffers using
the synchronizability property [3, 4]. A set of peers is synchronizable if and only
if the system generates the same sequences of messages under synchronous and
unbounded asynchronous communication (considering only the ordering of the
send actions and ignoring the ordering of receive actions). It was shown that
synchronizability can be verified by checking the equivalence of synchronous
and 1-bounded asynchronous (where buffer sizes are bounded to be 1) versions

4 M. Ouederni, G. Salaün, and T. Bultan

Fig. 2. Motivating Example (2)

of the given system [3, 4]. Hence, synchronizability checking can be achieved
using equivalence checking techniques for finite state spaces, although the sys-
tem consisting of peers interacting asynchronously can result in infinite state
spaces. For example, the system described in Figure 2 is synchronizable because
the synchronous system consists of sequences of interactions on request, result,
and log, and this order is the same in the 1-bounded asynchronous system con-
sidering only send actions. Focusing only on send actions and ignoring receive
actions makes sense for checking synchronizability because: (i) send actions are
the actions that transfer messages to the network and are therefore observable,
(ii) receive actions correspond to local consumptions by peers from their buffers
and can therefore be considered to be local and private information.

In this paper, we propose a new approach for checking the compatibility of a
set of peers interacting asynchronously through unbounded FIFO buffers. Peers
are described using LTSs and exhibit their internal behaviors in these models
(e.g., replacing conditional constructs with non-deterministic choices of internal
actions). Compatibility checking relies on synchronizability, which ensures that
the synchronous system behaves like the asynchronous one for any buffer size.
Thus, we can check the compatibility on the synchronous version of the system
and the results hold for the asynchronous versions. We propose a branching
notion of synchronizability to take internal actions present in the peer models
into account. We also need to check that the system is well-formed, meaning
that every message sent to a buffer will be eventually consumed. We show that
our approach can be used to check DF and UR compatibility. Many systems
involving loops do respect the synchronizability property. Thus, these systems
can be analyzed using the approach proposed in this paper, whereas they could
not be analyzed using existing approaches. This is the case for the example given
in Figure 2. This set of peers is synchronizable and the synchronous system
is deadlock-free for instance. Therefore, we can conclude using our result that
the asynchronous version of this system is also deadlock-free compatible even if
buffers are unbounded.

Our approach is fully automated through an encoding of the peer model into
the process algebra LOTOS [23], one of the input languages of the CADP veri-
fication toolbox [19]. By doing so, we can reuse all CADP tools and particularly
state space exploration tools for generating synchronous and asynchronous sys-
tems, equivalence checking techniques for verifying synchronizability, and model
checking techniques for searching deadlocks. We have validated our approach on

Compatibility Checking for Asynchronously Communicating Software 5

many case studies, most of them borrowed from real-world scenarios found in
the literature. The evaluation shows that (i) most systems are synchronizable
and can be analyzed using our approach, and (ii) this check is achieved in a
reasonable time (seconds for examples involving up to ten peers, and minutes
for systems up to 18 peers).

Our contributions with respect to earlier results on formal analysis of behav-
ioral models for synchronizability and compatibility checking are the following:

– A general framework for verifying the compatibility of synchronizable sys-
tems interacting asynchronously through unbounded buffers;

– A generalization of synchronizability and well-formedness results to branch-
ing time equivalences for peer models involving internal actions;

– A fully automated tool support that implements the presented approach for
checking asynchronous compatibility.

The organization of the rest of this paper is as follows. Section 2 defines
our models for peers and their composition. Section 3 presents a branching
notion of synchronizability. In Section 4, we present our solution for checking
asynchronous compatibility. Section 5 illustrates our approach on a case study.
Section 6 describes our tool support and experiments we carried out to evaluate
our approach. Finally, Section 7 reviews related work and Section 8 concludes.

2 Behavioral Models

2.1 Peer Model

We use Labeled Transition Systems (LTSs) for modeling peers. This behavioral
model defines the order in which a peer executes the send and receive actions.

Definition 1 (Peer). A peer is an LTS P = (S, s0, Σ, T) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S ×Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ (tau in figures) for representing internal activities.
A transition is represented as (s, l, s′) ∈ T where l ∈ Σ.

Finally, we assume that peers are deterministic on observable messages mean-
ing that if there are several transitions going out from one peer state, and if all
the transition labels are observable, then they are all different from one an-
other. However, nondeterminism can result from internal actions when several
transitions (at least two) outgoing from a same state are labeled with τ .

It is crucial to represent internal activities in the peer model using τ actions,
particularly when we reason in terms of synchronous communication. These
internal actions are used to model internal choices, that is, if/while constructs
in programming languages for instance. Figure 3 shows a simple example where
we see that two peers p1 and p2 are deadlock-free if we do not explicitly show
the internal actions. If we consider an abstraction closer to reality by modeling
the internal actions, we observe that the peers (p1’ and p2) actually deadlock.

6 M. Ouederni, G. Salaün, and T. Bultan

Fig. 3. p1 and p2 are Deadlock-free; p1’ and p2 Deadlock

2.2 Synchronous Composition

The synchronous composition of a set of peers corresponds to the system in which
the peer LTSs communicate using synchronous communication. In this context,
a communication between two peers occurs if both agree on a synchronization
label, i.e., if one peer is in a state in which a message can be sent, then the other
peer must be in a state in which that message can be received. One peer can
evolve independently from the others through an internal action.

Definition 2 (Synchronous Composition). Given a set of peers
{P1, . . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti), the synchronous composition

(P1 | . . . | Pn) is the labeled transition system LTSs = (Ss, s
0
s, Σs, Ts)

where:

– Ss = S1 × . . .× Sn

– s0s ∈ Ss such that s0s = (s01, . . . , s
0
n)

– Σs = ∪iΣi

– Ts ⊆ Ss ×Σs × Ss, and for s = (s1, . . . , sn) ∈ Ss and s′ = (s′1, . . . , s
′

n) ∈ Ss

(interact) s
m−→ s′ ∈ Ts if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩ Σ?
j where ∃

si
m!−−→ s′i ∈ Ti, and sj

m?−−→ s′j ∈ Tj such that ∀k ∈ {1, . . . , n}, k 6= i∧ k 6=
j ⇒ s′k = sk

(internal) s
τ−→ s′ ∈ Ts if ∃i ∈ {1, . . . , n}, ∃ si

τ−→ s′i ∈ Ti such that ∀k ∈
{1, . . . , n}, k 6= i⇒ s′k = sk

2.3 Asynchronous Composition

In the asynchronous composition, the peers communicate with each other asyn-
chronously through FIFO buffers. Each peer Pi is equipped with an unbounded
message buffer Qi. A peer can either send a message m ∈ Σ! to the tail of the
receiver buffer Qj at any state where this send message is available, read a mes-
sage m ∈ Σ? from its buffer Qi if the message is available at the buffer head, or
evolve independently through an internal action. Since reading from the buffer
is not considered as an observable action, it is encoded as an internal action in
the asynchronous system.

Compatibility Checking for Asynchronously Communicating Software 7

Definition 3 (Asynchronous Composition). Given a set of peers
{P1, . . . ,Pn} with Pi = (Si, s

0
i , Σi, Ti), and Qi being its associated buffer, the

asynchronous composition ((P1, Q1) || . . . || (Pn, Qn)) is the labeled transition
system LTSa = (Sa, s

0
a, Σa, Ta) where:

– Sa ⊆ S1 ×Q1 × . . .× Sn ×Qn where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i)∗

– s0a ∈ Sa such that s0a = (s01, ǫ, . . . , s
0
n, ǫ) (where ǫ denotes an empty buffer)

– Σa = ∪iΣi

– Ta ⊆ Sa × Σa × Sa, and for s = (s1, Q1, . . . , sn, Qn) ∈ Sa and s′ =
(s′1, Q

′

1, . . . s
′

n, Q
′

n) ∈ Sa

(send) s
m!−−→ s′ ∈ Ta if ∃i, j ∈ {1, . . . , n} where i 6= j : m ∈ Σ!

i ∩Σ?
j , (i) si

m!−−→
s′i ∈ Ti, (ii) Q′

j = Qjm, (iii) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′

k = Qk, and
(iv) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

(consume) s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′

i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} :
k 6= i⇒ s′k = sk

(internal) s
τ−→ s′ ∈ Ta if ∃i ∈ {1, . . . , n}, (i) si

τ−→ s′i ∈ Ti, (ii) ∀k ∈ {1, . . . , n} :
Q′

k = Qk, and (iii) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

We use LTSk
a to define the bounded asynchronous composition, where each

message buffer is bounded to size k. The definition of LTSk
a can be obtained from

Def. 3 by allowing send transitions only if the message buffer that the message
is being written to has less than k messages in it.

3 Branching Synchronizability and Well-Formedness

Although peers are represented with finite models, their parallel execution could
be an infinite state system due to the communication over unbounded buffers.
This makes the exhaustive analysis of all executed communication traces impos-
sible and most verification tasks in this setting are undecidable [11]. However,
this issue can be avoided for systems that are synchronizable, i.e., if the se-
quences of send actions generated by the peer composition remains the same
under synchronous and asynchronous communication semantics. Thus, the syn-
chronizability condition [4] enables us to analyze asynchronous systems, even
those generating an infinite state space, using the synchronous version of the
given system (which has a finite state space). The results presented below show
that synchronizability can be checked by bounding buffers to k = 1 and com-
paring interactions in the synchronous system with the interactions in the asyn-
chronous system.

In this paper, the peer model and corresponding compositions take inter-
nal behaviors into account. Therefore, we need to extend synchronizability to
branching time semantics [32]4. This is crucial for considering models closer to

4 We assume that the reader is familiar with branching time bisimulations, refer to [32]
otherwise.

8 M. Ouederni, G. Salaün, and T. Bultan

reality (see Fig. 3) and for analyzing the internal structure to detect possible
issues at this level. In this paper, we refer to branching equivalence as ≡br.

Definition 4 (Branching Synchronizability). Given a set of peers
{P1, . . . ,Pn}, their synchronous composition LTSs = (Ss, s

0
s, Ls, Ts), and their

asynchronous composition LTSa = (Sa, s
0
a, La, Ta), we say that LTSa is branch-

ing synchronizable, SYNCbr(LTSa), if and only if LTSs ≡br LTSa.

Theorem 1. A LTSa defined over a set of peers {P1, . . . ,Pn} is branching syn-
chronizable if and only if LTSs ≡br LTS

1
a. In other words: LTSs ≡br LTS

1
a ⇔

LTSs ≡br LTSa

Proofs of the theorems from this section are available on the first author
Webpage.

Below we define the well-formedness property and present two theorems re-
lated to well-formedness.

Definition 5. An asynchronous system is well-formed if and only if every mes-
sage that is sent is eventually consumed.

Given a labeled transition system LTSa defined over a set of peers
{P1, . . . ,Pn}, we use WF(LTSa) to denote that LTSa is well-formed.

Theorem 2. A synchronizable system LTSa is well-formed if and only if LTS1
a

is well-formed, i.e., WF(LTS1
a) ⇔ WF(LTSa).

Theorem 3. Every asynchronous system LTSa that is branching synchronizable
and composed of observationally deterministic peers is always well-formed.

4 Compatibility

In this section, we present how to check the compatibility of a set of peers com-
municating asynchronously over unbounded FIFO buffers. This problem is unde-
cidable in the general case [11] since unbounded buffers may lead to infinite state
spaces. We present the compatibility checking for synchronous communication,
and then show how we extend these results to asynchronous communication. We
first focus on DF and UR compatibility notions. We use DF to detect blocking
behaviors where system remains infinitely in a pending state with no further ex-
ecution. We use UR to detect cases where some emissions are never received. As
a second step, we show how other compatibility notions can also be considered
such as bidirectional complementarity and goal oriented compatibility (BC and
GOC for short, respectively). BC requires that every emission must be received
and every message that is expected to be received must be sent during peer com-
munication. GOC describes a temporal logic-based compatibility (expressed in
Linear Time Logic for example), that must be respected by the peers. It is worth
noting that here we focus on checking properties related to ordering of message
exchanges among peers, leaving properties such as state reachability out of the
scope of this paper.

Compatibility Checking for Asynchronously Communicating Software 9

4.1 Synchronous Compatibility

Given n communicating peers described using LTSs (Si, s
0
i , Σi, Ti), we define a

global state as a tuple of states (s1, . . . , sn) where si is the current state of LTS i.
We refer to a label l as a message in Σ together with its direction (d ∈ {!, ?}),
i.e., l = m!|m?. Two labels l1 = m1d1 and l2 = m2d2 are considered compatible,
lab-comp(l1, l2), if and only if m1 = m2 and d1 = d2 where ! =? and ? =!.

Compatibility checking requires to verify the interaction at every global state
reachable during system execution. Reachability returns the set of global states
that n interoperating peers can reach from a current global state (s1, . . . , sn)
through independent evolutions (internal behaviors) or synchronizations.

The DF compatibility is defined as follows. Given a set of peers, we call them
DF compatible if and only if, starting from their initial global state, they can
always evolve until reaching a global state where every peer state has no outgoing
transition (correct termination).

The UR compatibility is defined as follows. Given a set of peers, we call them
UR compatible if, when one peer can send a message at a reachable state, there
is another peer which must eventually receive that emission, and the system is
deadlock-free. A set of peers can be compatible even if one peer is able to receive
a message that cannot be sent by any of the other peers, i.e., there might be
additional receptions. It is also possible that one peer holds an emission that
will not be received by its partners as long as the state from which this emission
goes out is unreachable when those peers interact together.

More details about these compatibility notions (DF and UR but also BC and
GOC) as well as their formal definitions can be found in [17].

4.2 Asynchronous Compatibility

In this section we present sufficient conditions for checking asynchronous compat-
ibility. The behaviors of synchronizable systems remain identical for any buffer
size, therefore, we can check compatibility of synchronizable systems using exist-
ing techniques for checking synchronous compatibility. A set of communicating
peers {P1, . . . , Pn} is asynchronous compatible if the following conditions hold:

– Synchronizability. Peer composition LTSs are branching synchronizable
(Theorem 1).

– Well-formedness. Every message sent to a buffer is eventually consumed
(Theorems 2 and 3).

– Compatibility. The set of peers is compatible under synchronous commu-
nication semantics (Section 4.1).

In the rest of this section, we define the asynchronous DF and UR compati-
bility (DFa and URa for short, resp.) and we finally show how our asynchronous
checking can be generalized to check other notions, e.g., BCa and OGCa.

Deadlock-Freedom. An asynchronous system LTSa defined over a set of peers
{P1, . . . , Pn}, is DFa compatible if SYNCbr(LTSa) and WF(LTSa), and the
corresponding LTSs is DF (referred to as DF(LTSs)).

10 M. Ouederni, G. Salaün, and T. Bultan

Theorem 4. (SYNC(LTSa) ∧WF(LTSa) ∧ DF(LTSs)) ⇒ DFa(LTSa)

Proof. LTSs ≡br LTSa follows from SYNC(LTSa) (Theorem 1). Then, we have
DF(LTSs) ⇒ DFa(LTSa). �

Unspecified Receptions. Although both DF and UR compatibility are dif-
ferent under the synchronous communication semantics, in the asynchronous
setting, they can be checked similarly. Recall that UR compatibility requires
us to check that (i) every reachable sent message must be received (i.e., con-
sumed from the buffer where it has been stored), and (ii) the system must be
deadlock-free.

Theorem 5. (SYNC(LTSa) ∧WF(LTSa) ∧ DF(LTSs)) ⇒ URa(LTSa)

Proof. Condition (i) for UR compatibility is ensured by well-formedness. Thus,
this claim follows directly from UR compatibility definition and Theorem 1. �

Property 1. Our condition for checking DFa and URa is not a necessary condi-
tion.

Proof. Let us consider the example given in Figure 4. The asynchronous system
starts with an interleaving of both emissions that can be executed in peer 1 and
peer 2, whereas no synchronization is possible under synchronous communica-
tion. Thus, this example is not synchronizable and we cannot conclude anything
about its compatibility. Yet the asynchronous version of this system is deadlock-
free compatible. As a result, our condition for asynchronous compatibility is
sufficient but not necessary. �

Fig. 4. Asynchronous but not Synchronous DF Compatible Example

Note that finding a necessary and sufficient condition for asynchronous com-
patibility of behavioral peers is still an open problem.

Generalization. The former results can be generalized to define a sufficient
condition for verifying any notion of compatibility CNa on synchronizable sys-
tems. Examples of other notions that can be derived are BCa and OGCa. For
instance, OGCa can be formalized in terms of liveness and safety properties,
e.g., G(φ⇒ Fψ) and G(¬φ) in LTL, resp.

Compatibility Checking for Asynchronously Communicating Software 11

Theorem 6. (SYNC(LTSa) ∧WF(LTSa) ∧ CN(LTSs)) ⇒ CNa(LTSa)

Proof. The claim follows from Theorems 1 and 3. �

Complexity. The complexity of our asynchronous compatibility checking lies
on the cost of checking the synchronizability and the compatibility on the syn-
chronous composition. Branching bisimulation complexity is O(S′ × T ′) [20]
where S′ and T ′ are the total number of states and transitions in LTSs

and LTS1
a. As for compatibility checking, given n LTSs (S, s0, Σ, T), S =∏n

i=1
|Si| represents an upper bound of the number of possible global states,

and T =
∑n

i=1
|Ti| represents an upper bound for the number of transitions

available from any particular global state. S and T are greater than or equal to
the number of states reachable from (I1, . . . , In). Both URa and DFa compati-
bilities have a time complexity of O(S × T) and BCa has a time complexity of
O(S2 × T 2).

5 Illustrative Example

We consider a simplified version of a Web application involving four peers: a
client, a Web interface, a Web server, and a database. Figure 5 shows the peer
LTSs. The client starts with a request (request!), and expects an acknowledg-
ment (ack?). Then, the client either interacts with the Web server as long as it
needs (access!), or decides to terminate its processing (terminate!). This internal
choice is modeled using a branching of internal actions. Finally, the client waits
for an invoice (invoice?). The server first receives a setup request (setup?). Then,
the server is accessed by the client (access?) and it expects to either be released
(free?) or receive an alarm if an error occurs (alarm?). Finally, the server submits
information to be stored (log!), e.g., start/end time and used resources. Every
time a client request is received (request?), the interface triggers a setup request
(setup!) and sends back an acknowledgment (ack!) to the client. Then, if a ter-
mination message is received (terminate?), the interface asks the Web server to
be freed (free!). If an error occurs (error?), the interface sends an alarm message
(alarm!). Finally, the database waits for some information to be stored (log?).

Synchronizability. LTSs and LTS1
a are branching equivalent and therefore

SYNCbr(LTSa). Figure 6 (left) shows LTSs, where transitions are labeled with
the messages on which the peers can synchronize as presented in Definition 2.
Well-formedness. The set of peers are observationally deterministic and
SYNCbr(LTSa), hence WF(LTSa).

Synchronous Compatibility. This system cannot be compatible wrt. DF, UR,
and BC notions since the peers deadlock at the last state in Figure 6 (left). In
that situation, all peers are in their initial states and may continue interacting
with each other, except the client, which is expecting an invoice that is not
provided by any of the partners.

Asynchronous Compatibility. Since LTSa is branching synchronizable and
well-formed, we can use results for synchronous compatibility for this system.

12 M. Ouederni, G. Salaün, and T. Bultan

Fig. 5. Peer LTSs

Fig. 6. Synchronous Peer Composition, V1 (left), Web Server Peer, V2 (right)

The system is not DFa and URa compatible because there is a deadlock in LTSs.
We can fix this issue by, e.g., adding the missing invoice! message to the server
peer (Fig. 6, right). Thus, the new system is branching synchronizable (see the
resulting synchronous composition in Fig. 7), well-formed, and LTSs is deadlock-
free, so it is DFa and URa compatible. However, LTSa is still not compatible
wrt. BCa, because there are still messages, e.g., error? in the interface peer, that
have no counterpart in any other peer. This issue could also be detected using
GOC compatibility and checking the following LTL formula: LTSs |= ♦�error.

Fig. 7. Synchronous Peer Composition, V2

Note that the second version of our example with peers communicating over
unbounded buffers has an infinite state space since the client, the server, and
the interface peers can loop arbitrary many times while the database peer does

Compatibility Checking for Asynchronously Communicating Software 13

never consume the log? messages from its buffer. Although this is not a finite
state system, we can analyze it using the techniques we propose in this paper.

6 Tool Support and Evaluation

Our approach for checking the asynchronous compatibility is fully automated.
This is achieved by a translation we implemented from peer models to the LO-
TOS process algebra. The CADP verification toolbox [19] accepts LOTOS as in-
put and provides efficient tools for generating LTSs from LOTOS specifications
and for analyzing these LTSs using equivalence and model checking techniques,
which enable us to check all the notions of compatibility presented in this paper.

6.1 LOTOS Encoding

LOTOS [23] is an abstract formal language for specifying concurrent processes,
communicating via messages. We chose LOTOS because (i) it provides expres-
sive operators for encoding LTSs and generating their compositions, and (ii) it is
supported by state-of-the-art verification tools (CADP) that can be used for an-
alyzing LOTOS specifications. With regards to compatibility checking, we first
encode peer LTSs into LOTOS processes following the state machine pattern
(one process is generated per state in the LTS). Each peer comes with an input
buffer. Buffers are processes, which interact with the peers and store/handle mes-
sages using classic structures (lists) and operations on them (add, remove, etc.).
Finally, we use the LOTOS parallel composition for specifying the synchronous
and asynchronous composition of peers.

Based on this encoding, we first use state space exploration tools to generate
LTSs corresponding to the LOTOS specification, in particular for synchronous
and 1-bounded asynchronous system. Then, we check the synchronizability con-
dition using branching equivalence checking, and finally we check compatibility
conditions using the deadlock-freedom check or model checking of properties
written in MCL [29], which subsumes both LTL and CTL.

6.2 Experiments

We carried out experiments on a Mac OS machine running on a 2.53 GHz Intel
dual core processor with 4 GB of RAM. Our database of examples includes 160
examples of communicating systems: 10 case studies taken from the literature
(Web services, cloud computing, e-commerce, etc.), 86 examples of Singularity
channel contracts [1], which is a contract notation for Microsoft’s Singularity
operating system, and 64 hand-crafted examples. We emphasize that out of the
96 real-world examples, only 5 are not branching synchronizable and well-formed.
Thus, 91 examples out of 96 can be analyzed using our approach.

Tables 1, 2, and 3 present experiments for some examples from our database.
Each table considers DFa compatibility for illustration purposes, but we recall
that DFa is equivalent to URa for asynchronous systems. Each table shows, for

14 M. Ouederni, G. Salaün, and T. Bultan

each example, the number of peers, the total number of transitions and states
involved in these peers, the size of the synchronous system, the size of the 1-
bounded asynchronous system, the compatibility result (“

√
” denotes that the

system is compatible, “×” denotes that the system is not compatible, and “-
” denotes that the system does not satisfy the sufficient condition, i.e., it is
not synchronizable), the successive time for computing the synchronous and 1-
bounded asynchronous system, and for checking synchronizability and deadlock-
freedom, respectively.

We can see that analyzing the examples given in Tables 1 and 2 only takes
a few seconds. This is due to systems involving a reasonable number of peers
(up to 6 in Table 1), which results in quite small LTSs, even for the 1-bounded
asynchronous composition (up to 100 states and 200 transitions in Table 1).

Table 3 presents a few examples with more than 10 peers. The number of
interacting peers is the main factor of state space explosion, because it induces
more parallelism in the corresponding composition. The cost in terms of compu-
tation time mainly lies on the generation of the 1-bounded asynchronous system,
that is compiling LOTOS code into LTSs by enumerating all the possible be-
haviors (interleavings of concurrent emissions/receptions) and minimizing the
resulting LTS using CADP tools. In particular, reducing LTSs with respect to
a branching relation needs a certain amount of time (see examples 0115, 0153,
and 0159). In contrast, checking synchronizability and deadlock-freedom using
equivalence and model checking techniques takes only few seconds because LTSs
obtained after reduction are much smaller.

We have also made a few experiments, increasing the buffer size (k=5, k=10,
etc.). We have observed that the resulting, reduced LTS remains the same due to
the synchronizability property, but the generation time increases because there
are more possibilities of adding/removing messages from buffers. Consequently,
computation time for our solution is much lower than approaches using arbitrary
bounds for buffers.

Table 1. Case Studies From the Literature

Example |peers| |T |/|S| LTSs LTS1

a
DF Analysis Time

|T |/|S| |T |/|S| Comp. Gen. Sync. DF

Supply Chain Management Application [7] 6 20/25 20/17 216/97 × 5.05s 0.35s 0.15s
Health System [12] 6 21/20 10/11 22/21 × 4.48s 1.99s 2.26s
Cloud System [21] 4 19/15 10/9 29/22 × 4.65s 2.25s 1.88s

Cloud System (V2) [21] 4 20/16 12/10 78/43
√

4.44s 1.96s 1.60s
Sanitary Agency [30] 4 37/27 26/21 159/100 - 4.76s 2.28s -
E-Marketplace [18] 3 8/11 6/7 15/14

√
4.35s 1.96s 1.49s

Filter Collaboration [34] 2 10/11 10/10 14/14
√

4.18s 2.22s 1.51s
Car Rental [8] 4 17/17 9/9 59/44 - 4.99s 2.04s -

Client/Server [11] 2 10/6 9/6 19/14 - 4.68s 2.09s -
Airline Ticket Reservation [33] 2 9/9 7/7 15/13 × 4.30s 2.01s 1.49s

Compatibility Checking for Asynchronously Communicating Software 15

Table 2. Singularity Channels Contracts [1]

Example |peers| |T |/|S| LTSs LTS1

a
DF Analysis Time

|T |/|S| |T |/|S| Comp. Gen. Sync. DF

Smb Client Manager 2 40/18 21/10 41/30
√

6,83s 3.30s 2.53s
Calculator 2 12/10 7/6 13/12

√
6.89s 2.40s 2.51s

File System Controller 2 16/10 9/6 17/14
√

6,87s 2.21s 2.30s
Tcp Contract 2 8/8 5/5 9/9

√
6.61 2.55s 2.26s

Pipe Multiplex Control 2 4/4 2/2 5/5
√

6.44s 2.10s 2.27s
Udp Connection Contract 2 134/60 69/32 136/99

√
7.26s 2.52s 2.14s

IP Contract 2 64/28 33/15 65/47
√

7.07 2.30s 2.23s
Routing Contract 2 44/20 23/11 45/33

√
6.65s 2.10s 2.27s

Reservation Session 2 16/12 9/7 23/19 - 6.66s 2.37s -
Tpm Contract 2 38/24 20/13 44/35 - 6.80 2.36s -

Table 3. Hand-Crafted Examples

Example |peers| |T |/|S| LTSs LTS1

a
LTSa red. DF Analysis Time

|T |/|S| |T |/|S| |T |/|S| Comp. Gen. Red. Sync. DF

0097 9 19/19 103/27 1,543/387 98/26
√

4.59s 2.2s 2.45s 1.43s
0101 14 42/29 4,277/649 334,379/54,433 3,402/486

√
1m15s 4m2s 2.46s 1.80s

0115 16 48/41 14,754/1,945 2,332,812/326,593 11,664/1,458
√

3m34s 11m33s 2.44s 1.45s
0153 18 38/38 4,616/577 1,179,656/147,457 4,608/576

√
7.51s 18m52s 2.60s 1.43s

0159 20 45/43 15,561/1,729 7,962,633/884,737 15,552/1,728
√

24.28s 5h58m 2.62s 1.64s

7 Related Work

One of the first approaches on compatibility checking is proposed by Brand
and Zafiropulo [11]. It defines the unspecified receptions compatibility notion
for interaction protocols described using Communicating Finite State Machines
(CFSMs). This work focuses on the compatibility of n interacting processes ex-
ecuted in parallel and exchanging messages via FIFO buffers. When considering
unbounded buffers, the authors show that the resulting state spaces may be
infinite, and the problem becomes undecidable.

The approaches used in [15, 6] deal with two kinds of processes compatibility,
namely optimistic and pessimistic notions. De Alfaro and Henzinger [15] argue
for the use of the optimistic notion that considers two processes P1 and P2 (I/O
automata) as compatible if there is an environment that can properly communi-
cate with their composite process. Note that an environment is also composed
of one or more processes. A proper communication holds if the composition of
the interface product P1 ⊗ P2 with its environment is deadlock-free. The ap-
proach introduced in [6] addresses the pessimistic notion which states that two
processes P1 and P2 are compatible if no deadlock occurs between P1 and P2, in
any environment of P1⊗P2. [5] defines an asynchronous compatibility for modal
I/O transition systems. The authors do not propose any decision criterion but
they claim that this verification is undecidable in the general case due to the
buffering mechanism which may lead to infinite state spaces.

[22] treats different compatibility problems for non-ordered buffers and for
open systems using Petri nets. [28, 31, 25, 27] rely on an extension of Petri nets,

16 M. Ouederni, G. Salaün, and T. Bultan

namely open nets to model and verify behavioral interfaces of processes described
as workflows, assuming asynchronous communication over message buffers. This
model provides a graphical representation, and can be computed from existing
programming languages. [28] rely on the usability concept to analyze the com-
patibility of processes represented as workflows. This compatibility notion is an
environment-aware compatibility where two processes A and B are considered
compatible if there is an environment E, which uses the composed system A⊗B.
In such a case, A ⊗ B is considered usable, meaning that its composition with
E is deadlock-free. The condition, yet necessary, is not sufficient in the case
of n processes. A similar compatibility definition used in the literature is that
of controllability [31, 25, 27]. A process A is controllable if it has a compatible
partner B in the sense that the composite process A ⊗ B is deadlock-free. As
far as asynchronous semantics is considered, controllability has proven to be
undecidable for unbounded open nets. For implementing controllability, the au-
thors require that open nets are bounded and satisfy k-limited communication,
for some given k. Consequently, using a Petri net-based model requires a much
higher computational and space complexity than our approach.

Darondeau and colleagues [14] identify a decidable class of systems consist-
ing of non-deterministic communicating processes that can be scheduled while
ensuring boundedness of buffers. Abdulla et al. [2] propose some verification
techniques for CFSMs. They present a method for performing symbolic forward
analysis of unbounded lossy channel systems. Jeron and Jard [24] propose a
sufficient condition for testing unboundedness, which can be used as a decision
procedure for checking reachability for CFSMs. In [26], the authors present an
incomplete boundedness test for communication channels in Promela and UML
RT models. They also provide a method to derive upper bound estimates for
the maximal occupancy of each individual message buffer. More recently, [16]
proposed a causal chain analysis to determine upper bounds on buffer sizes for
multi-party sessions with asynchronous communication. Recently, Bouajjani and
Emmi [10] consider a bounded analysis for message-passing programs, which does
not limit the number of communicating processes nor the buffers’ size. However,
they limit the number of communication cycles. They propose a decision pro-
cedure for reachability analysis when programs can be sequentialized. By doing
so, program analysis can easily scale while previous related techniques quickly
explode.

8 Conclusion

In this paper, we have presented results that go beyond all existing works on
checking the compatibility of systems communicating asynchronously by mes-
sage exchange over unbounded buffers. In our approach, we do not have any
restrictions on the number of participants, on the presence of communication
cycles in behavioral models, or on the buffer sizes. Instead, we focus on the class
of synchronizable systems and propose a sufficient condition for analyzing asyn-
chronous compatibility. This results in a generic framework for verifying whether

Compatibility Checking for Asynchronously Communicating Software 17

a set of peers respect some property such as deadlock-freedom or unspecified
receptions. In order to obtain these results for peer models involving internal be-
haviors, we have extended synchronizability results to branching time. Finally,
we have implemented a prototype tool which enables us to automatically check
the asynchronous compatibility using the CADP toolbox, and we have conducted
experiments on many examples. In the future we plan to develop techniques for
enforcing the asynchronous compatibility of a set of peers when the compati-
bility check fails, by automatically generating a set of distributed controllers as
advocated in [21] for enforcing choreography realizability.

References

1. Singularity Design Note 5: Channel Contracts. Singularity RDK Documentation
(v1.1). http://www.codeplex.com/singularity, 2004.

2. P. A. Abdulla, A. Bouajjani, and B. Jonsson. On-the-Fly Analysis of Systems with
Unbounded, Lossy FIFO Channels. In Proc. CAV’98, volume 1427 of LNCS, pages
305–318. Springer, 1998.

3. S. Basu and T. Bultan. Choreography Conformance via Synchronizability. In Proc.
of WWW’11, pages 795–804. ACM Press, 2011.

4. S. Basu, T. Bultan, and M. Ouederni. Deciding Choreography Realizability. In
Proc. of POPL’12, pages 191–202. ACM, 2012.

5. S. S. Bauer, R. Hennicker, and S. Janisch. Interface Theories for (A)synchronously
Communicating Modal I/O-Transition Systems. In Proc. of FIT’10, volume 46 of
EPTCS, pages 1–8, 2010.

6. S. S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On Weak Modal Compat-
ibility, Refinement, and the MIO Workbench. In Proc. of TACAS’10, volume 6015
of LNCS, pages 175–189. Springer, 2010.

7. D. Beyer, A. Chakrabarti, and T. Henzinger. Web Service interfaces. In Proc. of
WWW’05, pages 148–159. ACM, 2005.

8. D. Bianculli, D. Giannakopoulou, and C. S. Pasareanu. Interface Decomposition
for Service Compositions. In Proc. of ICSE’11, pages 501–510. ACM, 2011.

9. L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services
Compatible? In Proc. of TES’04, volume 3324 of LNCS, pages 15–28. Springer,
2004.

10. A. Bouajjani and M. Emmi. Bounded Phase Analysis of Message-Passing Pro-
grams. In Proc. of TACAS’12, volume 7214 of LNCS, pages 451–465. Springer,
2012.

11. D. Brand and P. Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983.

12. A. Bucchiarone, H. Melgratti, and F. Severoni. Testing Service Composition. In
Proc. of ASSE’07, 2007.

13. C. Canal, E. Pimentel, and J. M. Troya. Compatibility and Inheritance in Software
Architectures. Science of Computer Programming, 41(2):105–138, 2001.

14. P. Darondeau, B. Genest, P. S. Thiagarajan, and S. Yang. Quasi-Static Scheduling
of Communicating Tasks. In Proc. CONCUR’08, volume 5201 of LNCS, pages
310–324. Springer, 2008.

15. L. de Alfaro and T. Henzinger. Interface Automata. In Proc. of ESEC/FSE’01,
pages 109–120. ACM Press, 2001.

18 M. Ouederni, G. Salaün, and T. Bultan

16. P.-M. Deniélou and N. Yoshida. Buffered Communication Analysis in Distributed
Multiparty Sessions. In Proc. CONCUR’10, volume 6269 of LNCS, pages 343–357.
Springer, 2010.

17. F. Durán, M. Ouederni, and G. Salaün. A Generic Framework for N-Protocol Com-
patibility Checking. Science of Computer Programming, 77(7-8):870–886, 2012.

18. H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility Verification for Web
Service Choreography. In Proc. of ICWS’04. IEEE Computer Society, 2004.

19. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In Proc. of TACAS’11,
volume 6605 of LNCS, pages 372–387. Springer, 2011.

20. J. F. Groote and F. W. Vaandrager. An Efficient Algorithm for Branching Bisim-
ulation and Stuttering Equivalence. In Proc. of ICALP’90, volume 443 of LNCS,
pages 626–638. Springer, 1990.

21. M. Güdemann, G. Salaün, and M. Ouederni. Counterexample Guided Synthesis
of Monitors for Realizability Enforcement. In Proc. of ATVA’12, volume 7561 of
LNCS, pages 238–253. Springer, 2012.

22. S. Haddad, R. Hennicker, and M. H. Møller. Channel Properties of Asynchronously
Composed Petri Nets. In Proc. of Petri Nets 2013, volume 7927 of LNCS, pages
369–388. Springer, 2013.

23. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, ISO, 1989.

24. T. Jéron and C. Jard. Testing for Unboundedness of FIFO Channels. Theor.
Comput. Sci., 113(1):93–117, 1993.

25. K. Kaschner and K. Wolf. Set Algebra for Service Behavior: Applications and Con-
structions. In Proc. of BPM’09, volume 5701 of LNCS, pages 193–210. Springer,
2009.

26. S. Leue, R. Mayr, and W. Wei. A Scalable Incomplete Test for Message Buffer
Overflow in Promela Models. In Proc. SPIN’04, volume 2989 of LNCS, pages
216–233. Springer, 2004.

27. N. Lohmann. Why Does My Service Have No Partners? In Proc. of WS-FM’08,
volume 5387 of LNCS, pages 191–206. Springer, 2008.

28. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Compatibility of
BPEL Processes. In Proc. of AICT/ICIW’06, pages 147–156. IEEE Computer
Society, 2006.

29. R. Mateescu and D. Thivolle. A Model Checking Language for Concurrent Value-
Passing Systems. In Proc. of FM’08, volume 5014 of LNCS. Springer, 2008.

30. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. International Journal on Business Process and Inte-
gration Management, 1(2):116–128, 2006.

31. W. M. P. van der Aalst, A. J. Mooij, C. Stahl, and K. Wolf. Service Interaction:
Patterns, Formalization, and Analysis. In Proc. of SFM’09, volume 5569 of LNCS,
pages 42–88. Springer, 2009.

32. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. J. ACM, 43(3):555–600, 1996.

33. P. Wong and J. Gibbons. Verifying Business Process Compatibility. In Proc. of
QSIC’08, pages 126–131. IEEE Computer Society, 2008.

34. D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

