325 research outputs found

    How Facial Features Convey Attention in Stationary Environments

    Full text link
    Awareness detection technologies have been gaining traction in a variety of enterprises; most often used for driver fatigue detection, recent research has shifted towards using computer vision technologies to analyze user attention in environments such as online classrooms. This paper aims to extend previous research on distraction detection by analyzing which visual features contribute most to predicting awareness and fatigue. We utilized the open-source facial analysis toolkit OpenFace in order to analyze visual data of subjects at varying levels of attentiveness. Then, using a Support-Vector Machine (SVM) we created several prediction models for user attention and identified the Histogram of Oriented Gradients (HOG) and Action Units to be the greatest predictors of the features we tested. We also compared the performance of this SVM to deep learning approaches that utilize Convolutional and/or Recurrent neural networks (CNNs and CRNNs). Interestingly, CRNNs did not appear to perform significantly better than their CNN counterparts. While deep learning methods achieved greater prediction accuracy, SVMs utilized less resources and, using certain parameters, were able to approach the performance of deep learning methods

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account driversโ€™ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Humanโ€“Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Emotion Recognition from Facial Expressions using Images with Pose, Illumination and Age Variation for Human-Computer/Robot Interaction

    Get PDF
    A technique for emotion recognition from facial expressions in images with simultaneous pose, illumination and age variation in real time is proposed in this paper. The basic emotions considered are anger, disgust, happy, surprise, and neutral. Feature vectors that were formed from images from the CMU-MultiPIE database for pose and illumination were used for training the classifier. For real-time implementation, Raspberry Pi II was used, which can be placed on a robot to recognize emotions in interactive real-time applications. The proposed method includes face detection using Viola Jones Haar cascade, Active Shape Model (ASM) for feature extraction, and AdaBoost for classification in real- time. Performance of the proposed method was validated in real time by testing with subjects from different age groups expressing basic emotions with varying pose and illumination. 96% recognition accuracy at an average time of 120ย ms was obtained. The results are encouraging, as the proposed method gives better accuracy with higher speed compared to existing methods from the literature. The major contribution and strength of the proposed method lie in marking suitable feature points on the face, its speed and invariance to pose, illumination and age in real time

    Towards Real-time Speech Emotion Recognition for Affective E-Learning

    Get PDF
    The original article is available as an open access file on the Springer website in the following link: http://link.springer.com/article/10.1007/s10639-015-9388-2This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learnerโ€™s vocal intonations and facial expressions in order to foster their learning. Whereas the facial emotion recognition part has been successfully tested in a previous study, the here presented study describes the development and testing of FILTWAM's vocal emotion recognition software artefact. The main goal of this study was to show the valid use of computer microphone data for real-time and adequate interpretation of vocal intonations into extracted emotional states. The software that was developed was tested in a study with twelve participants. All participants individually received the same computer-based tasks in which they were requested eighty times to mimic specific vocal expressions (960 occurrences in total). Each individual session was recorded on video. For the validation of the voice emotion recognition software artefact, two experts annotated and rated participants' recorded behaviours. Expert findings were then compared with the software recognition results and showed an overall accuracy of Kappa of 0.743. The overall accuracy of the voice emotion recognition software artefact is 67% based on the requested emotions and the recognized emotions. Our FILTWAM-software allows to continually and unobtrusively observing learnersโ€™ behaviours and transforms these behaviours into emotional states. This paves the way for unobtrusive and real-time capturing of learners' emotional states for enhancing adaptive e-learning approaches.The Netherlands Laboratory for Lifelong Learning (NELLL) of the Open University Netherland

    A Framework for Students Profile Detection

    Get PDF
    Some of the biggest problems tackling Higher Education Institutions are studentsโ€™ drop-out and academic disengagement. Physical or psychological disabilities, social-economic or academic marginalization, and emotional and affective problems, are some of the factors that can lead to it. This problematic is worsened by the shortage of educational resources, that can bridge the communication gap between the faculty staff and the affective needs of these students. This dissertation focus in the development of a framework, capable of collecting analytic data, from an array of emotions, affects and behaviours, acquired either by human observations, like a teacher in a classroom or a psychologist, or by electronic sensors and automatic analysis software, such as eye tracking devices, emotion detection through facial expression recognition software, automatic gait and posture detection, and others. The framework establishes the guidance to compile the gathered data in an ontology, to enable the extraction of patterns outliers via machine learning, which assist the profiling of students in critical situations, like disengagement, attention deficit, drop-out, and other sociological issues. Consequently, it is possible to set real-time alerts when these profiles conditions are detected, so that appropriate experts could verify the situation and employ effective procedures. The goal is that, by providing insightful real-time cognitive data and facilitating the profiling of the studentsโ€™ problems, a faster personalized response to help the student is enabled, allowing academic performance improvements

    ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ์ค‘๊ตญ ๊ต์‚ฌ์˜ ์ธ์‹

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ๊ต์œกํ•™๊ณผ, 2021. 2. ์กฐ์˜ํ™˜.์ตœ๊ทผ ๊ต์œก ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ๋„์ž…์ด ํฐ ๊ด€์‹ฌ์„ ๋Œ๊ณ  ์žˆ๋‹ค. ํŠนํžˆ AI ๊ธฐ์ˆ ๊ณผ ํ•™์Šต ๋ถ„์„์ด ๊ฒฐํ•ฉํ•œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ์ง€๊ธˆ๊ป ์‹คํ˜„๋˜๊ธฐ ์–ด๋ ค์› ๋˜ ๋งž์ถคํ˜• ํ•™์Šต(personalized learning)๊ณผ ์ ์‘์  ํ•™์Šต(adaptive learning)์— ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋„๋ก ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ(AI-based education platform)์€ ํ•™์Šต์ž์˜ ํ–‰๋™ ์ถ”์  ๋“ฑ์„ ํ†ตํ•ด ์ด๋“ค์˜ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ์ง„๋‹จ์„ ์ œ๊ณตํ•œ ๋’ค ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ํ•™์Šต์ž์—๊ฒŒ ์ธ์ง€ ์ˆ˜์ค€์— ๋งž๋Š” ๋งž์ถคํ˜• ํ•™์Šต์ž์›๊ณผ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•œ๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์€ ๊ต์‚ฌ์™€ ํ•™์ƒ์—๊ฒŒ ์‹ค์‹œ๊ฐ„ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ถ„์„ ๊ฒฐ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์–ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋งž์ถคํ˜• ํ•™์Šต์— ๊ธ์ •์ ์ธ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค๋Š” ์„ ํ–‰ ์—ฐ๊ตฌ๋„ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ธฐ์กด ์—ฐ๊ตฌ๋Š” ๋ชจ๋ธ ๊ฐœ๋ฐœ์˜ ์ฐจ์›์—์„œ๋‚˜ ์—„๋ฐ€ํ•œ ์‹คํ—˜์‹ค ํ™˜๊ฒฝ์—์„œ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ํšจ๊ณผ๋ฅผ ์—ฐ๊ตฌํ•ด์™”์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ๊ต์‚ฌ์˜ ์ธ์‹๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ์—ˆ๋‹ค. ๊ต์‚ฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ์‚ฌ์šฉ์ž์ด๊ธฐ ๋•Œ๋ฌธ์— ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์˜ ๊ต์œก ๋„์ž…์— ์žˆ์–ด ๊ต์‚ฌ๋“ค์˜ ์ธ์‹๊ณผ ์˜๊ฒฌ์€ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์— ๋Œ€ํ•œ ๊ต์‚ฌ๋“ค์˜ ์ธ์‹์„ ํƒ๊ตฌํ•˜์˜€๋‹ค. ์•„๋ž˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•ด ์งˆ์  ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ์ค‘ํ•™๊ต ๊ต์œก์— ํ™œ์šฉ ์žˆ์–ด ์–ด๋– ํ•œ ์žฅ์ ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋‘˜์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ๊ณผ ์ค‘ํ•™๊ต ๊ต์ˆ˜ ํ™œ๋™ ์š”์†Œ ๊ฐ„ ์–ด๋– ํ•œ ๋ชจ์ˆœ์ด ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ์…‹์งธ, ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ค‘ํ•™๊ต ๊ต์œก์— ๋„์ž…ํ•  ๋•Œ ๋ฌด์—‡์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์˜จ๋ผ์ธ ์‹ฌ์ธต ๋ฉด๋‹ด์„ ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ ๋ฆฌ๋ทฐ๋ฅผ ํ†ตํ•ด ๋ฉด๋‹ด ์งˆ๋ฌธ์ง€๋ฅผ ์„ค๊ณ„ํ•˜๋˜ ๋ˆˆ๋ฉ์ดํ‘œ์ง‘๋ฒ• (snowball sampling)์„ ํ†ตํ•ด ์ค‘๊ตญ ์ค‘ํ•™๊ต ๊ต์‚ฌ 14๋ช…์„ ์—ฐ๊ตฌ์ฐธ์—ฌ์ž๋กœ ์„ ์ •ํ•˜์˜€๋‹ค. ์„ ์ •๋œ ๊ต์‚ฌ๋“ค์€ ๋ชจ๋‘ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ ๊ฒฝํ—˜์ด ์žˆ์œผ๋ฉฐ ๊ฐ ๊ต์‚ฌ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์•ฝ 1์‹œ๊ฐ„ ์ •๋„ ๋ฉด๋‹ด์„ ์ง„ํ–‰ํ•˜๊ณ  ๋…น์Œํ•˜์˜€๋‹ค. ๋ฉด๋‹ด์ด ๋๋‚œ ํ›„ ๋…น์Œ ๋‚ด์šฉ์„ ์ „์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ฃผ์ œ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฉด๋‹ด ๋‚ด์šฉ์„ ์ดˆ๊ธฐ ์ฝ”๋“œ ์ƒ์„ฑํ•˜๊ณ  ๋ฉด๋‹ด ์ž๋ฃŒ ์†์—์„œ ์ฃผ์ œ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ํŠนํžˆ ์—ฐ๊ตฌ ๋ฌธ์ œ 2๋ฒˆ์˜ ๊ฒฝ์šฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ํ™œ์šฉ๊ณผ ๊ต์ˆ˜ ํ•™์Šตํ™œ๋™ ๋‚ด ์—ฌ๋Ÿฌ ์š”์†Œ ๊ฐ„์˜ ๋ชจ์ˆœ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํ™œ๋™์ด๋ก ์„ ์—ฐ๊ตฌ์˜ ํ‹€๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์—ฐ๊ตฌ๋ฌธ์ œ 1์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 2์— ๋Œ€ํ•œ ์ฃผ์ œ 6๊ฐœ, ์—ฐ๊ตฌ๋ฌธ์ œ 3์— ๋Œ€ํ•œ ์ฃผ์ œ 4๊ฐœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์žฅ์ ์— ๋Œ€ํ•ด ์ฆ‰๊ฐ์ ์ธ ํ”ผ๋“œ๋ฐฑ ์ œ๊ณต, ๊ต์ˆ˜ํ•™์Šต ์ง€์›, ๊ต์‚ฌ์˜ ์—…๋ฌด๋Ÿ‰ ๊ฐ์†Œ ๋“ฑ์œผ๋กœ ์ธ์‹ํ•˜์˜€๊ณ , ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ๊ต์ˆ˜ํ•™์Šต ์ž์›์„ ํ†ตํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์•„์šธ๋Ÿฌ ๊ต์‚ฌ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์‚ฌ์šฉ์— ์žˆ์–ด ๊ธฐ์กด์˜ ๊ต์ˆ˜ํ•™์Šต ํ™œ๋™๊ณผ ์ƒ์ถฉ๋œ ๋ถ€๋ถ„์ด ์žˆ๋‹ค๋Š” ์ ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์˜ ์ถ”์ฒœ ๋ชจ๋ธ์ด ์ฐจ๋ณ„ํ™”๋œ ํ•™์ƒ๋“ค์—๊ฒŒ ์ž˜ ์ ์šฉ๋˜์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ฒƒ์„ ์ธ์‹ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๋‹ค์–‘ํ•œ ํ•™์Šต ์ž์›์„ ์ž˜ ๋ถ„๋ฅ˜๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ต์‚ฌ๋“ค์ด ์‚ฌ์šฉํ•˜๊ธฐ ๋ถˆํŽธํ•˜๋‹ค. ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์ด์šฉํ•  ๋•Œ ๊ต์‚ฌ์˜ ์ง€์ ์žฌ์‚ฐ๊ถŒ์„ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•œ ๋ช…ํ™•ํ•œ ๊ทœ์ œ๊ฐ€ ๋ถ€์กฑํ•˜๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ์ด์™€ ํ•จ๊ป˜ ํ•™๋ถ€๋ชจ๋“ค์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ํ•™์Šต์ž์˜ ์ธํ„ฐ๋„ท ๋‚จ์šฉ๊ณผ ์‹œ๋ ฅ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ์šฐ๋ คํ•˜์˜€๋‹ค. ๋˜ ์ค‘๊ตญ์˜ ์‚ฌํšŒ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ๊ณผ ๊ต์œก ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์„ ํ™œ์šฉํ•˜๋Š” ๋ฐ ํ•™์ƒ๋“ค์˜ ๊ธ€์”จ ์“ฐ๊ธฐ ๋Šฅ๋ ฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ํ•™๊ต ๋‚ด ์ „์ž๊ธฐ๊ธฐ ์‚ฌ์šฉ ์ œํ•œ๋„ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘์˜ ์ง€์†์„ฑ๊ณผ ํšจ์œจ์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๊ต์‚ฌ๋“ค์€ ์œ„์˜ ๋ฌธ์ œ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ํ”Œ๋žซํผ ์‚ฌ์šฉ์— ๋Œ€ํ•œ ๊ทœ์น™ ๋งˆ๋ จ๊ณผ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์™„ํ™”๋  ์ˆ˜ ์žˆ๋‹ค๊ณ  ์ธ์‹ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ต์‚ฌ์˜ ์‹ค์ œ ์š”๊ตฌ์— ๋งž๊ฒŒ ๊ฐœ๋ฐœ๋  ์ˆ˜ ์žˆ๋„๋ก ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๊ฐœ๋ฐœ ๊ณผ์ •์— ๊ต์œก ์ „๋ฌธ๊ฐ€์™€ ๊ต์‚ฌ๊ฐ€ ์ฐธ์—ฌํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ค‘๊ตญ ๊ต์‚ฌ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์— ๋Œ€ํ•œ ์ธ์‹์„ ํƒ์ƒ‰ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์ˆ˜ํ•™์Šต์—์„œ์˜ ์žฅ์ ๊ณผ ๋ฌธ์ œ์ ์„ ๋ฐํ˜”๋‹ค. ์•„์šธ๋Ÿฌ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ์ด ๊ต์œก ๋ถ„์•ผ์— ๋Œ€๊ทœ๋ชจ๋กœ ๋„์ž…๋  ์ˆ˜ ์žˆ๋„๋ก ๊ทœ์น™, ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ , ๊ทธ๋ฆฌ๊ณ  ๊ต์œก ๊ณตํ•™์˜ ์ฐจ์›์—์„œ ์‚ฌ์šฉ ๊ทœ๋ฒ”๊ณผ ๊ธฐ์ˆ  ๊ฐœ์„ ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ํƒ์ƒ‰ํ•œ ๋‚ด์šฉ์ด ํ–ฅํ›„ ๊ต์œก ๋ถ„์•ผ์˜ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๊ต์œก ํ”Œ๋žซํผ ๋„์ž…์— ํ™œ์šฉ๋œ๋‹ค๋ฉด ์ธ๊ณต์ง€๋Šฅ ๊ต์œก ๊ธฐ์ˆ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ๋ฐœ์ „์—๋„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.In recent years, the introduction of artificial intelligence (AI) in education has attracted widespread attention. In particular, the AI-based education platform based on the combination of AI technology and learning analysis brings new light to the long-standing difficulties in personalized learning and adaptive learning. The AI-based education platform analyzes learners' characteristics by collecting their data and tracking their learning behavior. It then generates cognitive diagnosis for learners and provides them with personalized learning resources and adaptive feedback that match their cognitive level based on systematic analysis. With the help of the AI-based education platform, teachers and students can get real-time educational data and analysis result๏ผŒas well as the feedback and treatment corresponding to the results. Previous studies have already demonstrated and proved its positive significance to personalized learning. However, these studies mostly start from a model development perspective or in a rigorous laboratory environment. There has been little research on teachers' perceptions of AI-based education platform. As a direct user of AI educational technologies, teachers' perceptions and suggestions are vital for introducing AIEd in education. In this study, the researcher explored teachers' perceptions of using AI-based education platform in teaching. The study conducted qualitative research to address the following research questions: 1) How do Chinese teachers perceive the advantages of AI-based education platforms for teaching and learning in secondary school? 2) How do Chinese teachers perceive the contradictions between AI-based education platforms and the secondary school system? 3๏ผ‰How do Chinese teachers suggest applying AI-based education platforms in secondary school? And it referred to the in-depth online interview with Chinese teachers who had experience with AI-based education platform. Interview questions were constructed through the literature review, and 14 secondary school teachers were selected by the snowball sampling method. The interviews lasted for an average of one hour per teacher and were transcribed from the audio recordings to text documents when finished. Afterward, the data were analyzed using thematic analysis, including generating initial codes, searching and reviewing the categories, and deriving the themes finally. Notably, for research question two, the researcher used the activity theory framework to analyze the contradictions among the use of the AI-based education platform and the various elements of the teaching and learning activities. Finally, four themes for research question 1, six themes for research question 2, and four themes for research question 3 were derived. As for the advantages, teachers believe that AI-based education platforms can provide instant feedback, targeted and systematic teaching support, and reduce teachers' workload. At the same time, AI-based education platforms can also integrate teaching resources in different areas. Teachers also recognized that the AI-based education platforms might trigger contradictions in existing teaching activities. They are aware of the situation that the recommended model of the AI-based education platform is not suitable for all levels of students; that a large number of learning resources are not classified properly enough to meet the needs of teachers, and that there lack clear rules and regulations to protect teachers' intellectual property rights when using the platform. Besides, parents are also concerned about the potential risk of internet addiction and vision problems using AI-based education platforms. Moreover, the use of the AI-based education platform may also affect students' ability to write Chinese characters due to the socio-historical background and educational characteristics in China. Furthermore, the restricted use of electronic devices on campus may also impact the consistent and effective education data collection. Teachers believe that these problems can be solved by improving rules and AI technology. Moreover, to make the platform more in line with the actual teaching requirements, teachers and education experts can also be involved in the development process of AI-based education platform. This study explored how Chinese teachers perceive the AI-based education platform and found that the AI-based education platform was conducive to personalized teaching and learning. At the same time, this study put forward some suggestions from the perspective of rules, AI technology, and educational technology, hoping to provide a good value for the future large-scale introduction of AI-based education platforms in education.CHAPTER 1. INTRODUCTION 1 1.1. Problem Statement 1 1.2. Purpose of Research 7 1.3. Definition of Terms 8 CHAPTER 2. LITERATURE REVIEW 10 2.1. AI in Education 10 2.1.1 AI for Learning and Teaching 10 2.1.2 AI-based Education Platform 14 2.1.3 Teachers' Perception on AI-based Education Platform 18 2.2. Activity Theory 20 CHAPTER 3. RESEARCH METHOD 23 3.1. Research Design 23 3.2. Participants 25 3.3. Instrumentation 26 3.3.1 Potential Value of AI System in Education 26 3.4. Data Collection 33 3.5. Data Analysis 34 CHAPTER 4. FINDINGS 36 4.1. Advantages of Using AI-based Education Platform 36 4.1.1 Instant Feedback 37 4.1.2 Targeted and Systematic Teaching Support 42 4.1.3 Educational Resources Sharing 46 4.1.4 Reducing Workload 49 4.2. Tensions of Using AI-based Education Platform 51 4.2.1 Inadequately Meet the Needs of Teachers 52 4.2.2 Failure to Satisfy Low and High Achievers 54 4.2.3 Intellectual Property Violation 56 4.2.4 Guardian's Concern 57 4.2.5 School Rules about the Use of Electronic Devices 58 4.2.6 Implication for Chinese Character Education 59 4.3. Suggestion of Using AI-based Education Platform 61 4.3.1 Improving Rules of Using the AI-based Education Platform 61 4.3.2 Improving Rules of Protecting Teachers Right 62 4.3.3 Improving AI Technology 64 4.3.4 Participatory Design 66 CHAPTER 5. DISCUSSION AND CONCLUSION 68 5.1. Discussion 68 5.2. Conclusion 72 REFERENCE 75 APPENDIX 1 98 APPENDIX 2 100 ๊ตญ๋ฌธ์ดˆ๋ก 112Maste

    Subtle interactions for distress regulation: efficiency of a haptic wearable according to personality

    Full text link
    The incorporation of empathic systems in everyday life draws a lot of attention from society. Specifically, the use of wearables to perform stress regulation is a growing field of research. Among techniques explored, the haptic emulation of lowered physiological signals has been suggested to be promising. However, some discrepancies remain in empirical research focusing on such biofeedback (BF) regarding their efficacy, and the mechanisms underlying the effects of these wearables remains unclear. Moreover, the influence of individual traits on the efficiency of BF has been marginally studied, while it has been shown that personality could impact both stress and its regulation. The aim of this study is to investigate the outcome of interactions with these technologies from a psycho-physiological standpoint, but also to explore whether personality may influence its efficiency when other interaction devices are present. Participants had to play a challenging game while a lowered haptic BF of their heart rate was induced on their wrist. Results showed variable efficiency of the wearable among the participants: a subjective relaxation was evident for the participants exhibiting the highest neurotic and extraverted traits score. Our results highlight the plurality of the modes of action of these techniques, depending on the individual and on the level of stress to regulate. This study also suggests that tailoring these regulation methods to individual characteristics, such as personality traits, is important to consider, and proposes perspectives regarding the investigation of stress and regulation systems embedded in wearables
    • โ€ฆ
    corecore