296 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Privacy-preserving artificial intelligence in healthcare: Techniques and applications

    Get PDF
    There has been an increasing interest in translating artificial intelligence (AI) research into clinically-validated applications to improve the performance, capacity, and efficacy of healthcare services. Despite substantial research worldwide, very few AI-based applications have successfully made it to clinics. Key barriers to the widespread adoption of clinically validated AI applications include non-standardized medical records, limited availability of curated datasets, and stringent legal/ethical requirements to preserve patients' privacy. Therefore, there is a pressing need to improvise new data-sharing methods in the age of AI that preserve patient privacy while developing AI-based healthcare applications. In the literature, significant attention has been devoted to developing privacy-preserving techniques and overcoming the issues hampering AI adoption in an actual clinical environment. To this end, this study summarizes the state-of-the-art approaches for preserving privacy in AI-based healthcare applications. Prominent privacy-preserving techniques such as Federated Learning and Hybrid Techniques are elaborated along with potential privacy attacks, security challenges, and future directions. [Abstract copyright: Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.

    Artificial Intelligence: Development and Applications in Neurosurgery

    Get PDF
    The last decade has witnessed a significant increase in the relevance of artificial intelligence (AI) in neuroscience. Gaining notoriety from its potential to revolutionize medical decision making, data analytics, and clinical workflows, AI is poised to be increasingly implemented into neurosurgical practice. However, certain considerations pose significant challenges to its immediate and widespread implementation. Hence, this chapter will explore current developments in AI as it pertains to the field of clinical neuroscience, with a primary focus on neurosurgery. Additionally included is a brief discussion of important economic and ethical considerations related to the feasibility and implementation of AI-based technologies in neurosciences, including future horizons such as the operational integrations of human and non-human capabilities

    Is attention all you need in medical image analysis? A review

    Full text link
    Medical imaging is a key component in clinical diagnosis, treatment planning and clinical trial design, accounting for almost 90% of all healthcare data. CNNs achieved performance gains in medical image analysis (MIA) over the last years. CNNs can efficiently model local pixel interactions and be trained on small-scale MI data. The main disadvantage of typical CNN models is that they ignore global pixel relationships within images, which limits their generalisation ability to understand out-of-distribution data with different 'global' information. The recent progress of Artificial Intelligence gave rise to Transformers, which can learn global relationships from data. However, full Transformer models need to be trained on large-scale data and involve tremendous computational complexity. Attention and Transformer compartments (Transf/Attention) which can well maintain properties for modelling global relationships, have been proposed as lighter alternatives of full Transformers. Recently, there is an increasing trend to co-pollinate complementary local-global properties from CNN and Transf/Attention architectures, which led to a new era of hybrid models. The past years have witnessed substantial growth in hybrid CNN-Transf/Attention models across diverse MIA problems. In this systematic review, we survey existing hybrid CNN-Transf/Attention models, review and unravel key architectural designs, analyse breakthroughs, and evaluate current and future opportunities as well as challenges. We also introduced a comprehensive analysis framework on generalisation opportunities of scientific and clinical impact, based on which new data-driven domain generalisation and adaptation methods can be stimulated

    Radiomics analyses for outcome prediction in patients with locally advanced rectal cancer and glioblastoma multiforme using multimodal imaging data

    Get PDF
    Personalized treatment strategies for oncological patient management can improve outcomes of patient populations with heterogeneous treatment response. The implementation of such a concept requires the identification of biomarkers that can precisely predict treatment outcome. In the context of this thesis, we develop and validate biomarkers from multimodal imaging data for the outcome prediction after treatment in patients with locally advanced rectal cancer (LARC) and in patients with newly diagnosed glioblastoma multiforme (GBM), using conventional feature-based radiomics and deep-learning (DL) based radiomics. For LARC patients, we identify promising radiomics signatures combining computed tomography (CT) and T2-weighted (T2-w) magnetic resonance imaging (MRI) with clinical parameters to predict tumour response to neoadjuvant chemoradiotherapy (nCRT). Further, the analyses of externally available radiomics models for LARC reveal a lack of reproducibility and the need for standardization of the radiomics process. For patients with GBM, we use postoperative [11C] methionine positron emission tomography (MET-PET) and gadolinium-enhanced T1-w MRI for the detection of the residual tumour status and to prognosticate time-to-recurrence (TTR) and overall survival (OS). We show that DL models built on MET-PET have an improved diagnostic and prognostic value as compared to MRI

    Characterising Shape Variation in the Human Right Ventricle Using Statistical Shape Analysis: Preliminary Outcomes and Potential for Predicting Hypertension in a Clinical Setting

    Get PDF
    Variations in the shape of the human right ventricle (RV) have previously been shown to be predictive of heart function and long term prognosis in Pulmonary Hypertension (PH), a deadly disease characterised by high blood pressure in the pulmonary arteries. The extent to which ventricular shape is also affected by non-pathological features such as sex, body mass index (BMI) and age is explored in this thesis. If fundamental differences in the shape of a structurally normal RV exist, these might also impact the success of a predictive model. This thesis evaluates the extent to which non-pathological features affect the shape of the RV and determines the best ways, in terms of procedure and analysis, to adapt the model to consistently predict PH. It also identifies areas where the statistical shape analysis procedure is robust, and considers the extent to which specific, non-pathological, characteristics impact the diagnostic potential of the statistical shape model. Finally, recommendations are made on next steps in the development of a classification procedure for PH. The dataset was composed of clinically-obtained, cardiovascular magnetic resonance images (CMR) from two independent sources; The University of Pittsburgh Medical Center and Newcastle University. Shape change is assessed using a 3D statistical shape analysis technique, which topologically maps heart meshes through an harmonic mapping approach to create a unique shape function for each shape. Proper Orthogonal Decomposition (POD) was applied to the complete set of shape functions in order to determine and rank a set of shape features (i.e. modes and corresponding coefficients from the decomposition). MRI scanning protocol produced the most significant difference in shape; a shape mode associated with detail at the RV apex and ventricular length from apex to base strongly correlated with the MRI sequence used to record each subject. Qualitatively, a protocol which skipped slices produced a shorter RV with less detail at the apex. Decomposition of sex, age and BMI also derives unique RV shape descriptors which correspond to anatomically meaningful features. The shape features are shown to be able to predict presence of PH. The predictive model can be improved by including BMI as a factor, but these improvements are mainly concentrated in identification of healthy subjects

    Advancing clinical evaluation and diagnostics with artificial intelligence technologies

    Get PDF
    Machine Learning (ML) is extensively used in diverse healthcare applications to aid physicians in diagnosing and identifying associations, sometimes hidden, between dif- ferent biomedical parameters. This PhD thesis investigates the interplay of medical images and biosignals to study the mechanisms of aging, knee cartilage degeneration, and Motion Sickness (MS). The first study shows the predictive power of soft tissue radiodensitometric parameters from mid-thigh CT scans. We used data from the AGES-Reykjavik study, correlating soft tissue numerical profiles from 3,000 subjects with cardiac pathophysiologies, hy- pertension, and diabetes. The results show the role of fat, muscle, and connective tissue in the evaluation of healthy aging. Moreover, we classify patients experiencing gait symptoms, neurological deficits, and a history of stroke in a Korean population, reveal- ing the significant impact of cognitive dual-gait analysis when coupled with single-gait. The second study establishes new paradigms for knee cartilage assessment, correlating 2D and 3D medical image features obtained from CT and MRI scans. In the frame of the EU-project RESTORE we were able to classify degenerative, traumatic, and healthy cartilages based on their bone and cartilage features, as well as we determine the basis for the development of a patient-specific cartilage profile. Finally, in the MS study, based on a virtual reality simulation synchronized with a moving platform and EEG, heart rate, and EMG, we extracted over 3,000 features and analyzed their importance in predicting MS symptoms, concussion in female ath- letes, and lifestyle influence. The MS features are extracted from the brain, muscle, heart, and from the movement of the center of pressure during the experiment and demonstrate their potential value to advance quantitative evaluation of postural con- trol response. This work demonstrates, through various studies, the importance of ML technologies in improving clinical evaluation and diagnosis contributing to advance our understanding of the mechanisms associated with pathological conditions.Tölvulærdómur (Machine Learning eða ML) er algjörlega viðurkennt og nýtt í ýmsum heilbrigðisþjónustuviðskiptum til að hjálpa læknunum við að greina og finna tengsl milli mismunandi líffærafræðilegra gilda, stundum dulinna. Þessi doktorsritgerð fjallar um samspil læknisfræðilegra mynda og lífsmerkja til að skoða eðli aldrunar, niðurbrot hnéhringjar og hreyfikerfissjúkdóms (Motion Sickness eða MS). Fyrsta rannsóknin sýnir spárkraft midjubeins-CT-skanna í því að fullyrða staðfest- ar meðalþyngdarlíkön, þar sem gögn úr AGES-Reykjavik-rannsókninni eru tengd við hjarta- og æðafræðilega sjúkdóma, blóðþrýstingsveikindi og sykursýki hjá 3.000 þátt- takendum. Niðurstöðurnar sýna hlutverk fitu, vöðva og tengikjarna í mati á heilbrigð- um öldrun. Þar að auki flokkum við sjúklinga sem upplifa gangvandamál, taugaein- kenni og sögu af heilablóðfalli í kóreanskri þjóð, þar sem einstök gangtaksskoðun er tengd saman við tvískoðun. Önnur rannsóknin setur upp ný tölfræðisfræðileg umhverfisviðmið til matar á hnéhringju með samhengi 2D og 3D mynda sem aflað er úr CT og MRI-skömmtum. Í rauninni höfum við getuð flokkað niðurbrots-, slys- og heilbrigðar hnéhringjur á grundvelli bein- og brjóskmerkja með raun að sækja niðurstöður í umfjöllun um sjúklingar eftir réttu einkasniði. Að lokum, í MS-rannsókninni, notum við myndræn tilraun samþættaða með hreyfan- legan grundvöll og EEG, hjartslátt, EMG þar sem yfir 3.000 aðgerðir eru útfránn og greindir til að átta sig á áhrifum MS, höfuðárás hjá konum sem eru íþróttamenn, lífs- stíl og fleira. Einkenni MS eru aflöguð úr heilanum, vöðvum, hjarta og frá hreyfingum þyngdupunktsins á meðan tilraunin stendur og sýna mög

    Computerized Clinical Decision Support Systems for decision support in patients with breast, lung, colorectal or prostate cancer

    Get PDF
    Sistemes electrònics; Càncer; Presa de decisionsSistemas electrónicos; Cáncer; Toma de decisionesElectronic systems; Cancer; Decision makingEl objetivo general de este informe de ETS es evaluar la seguridad, eficacia, efectividad y eficiencia de los sistemas electrónicos de apoyo a las decisiones clínicas (computerized Clinical Decision Support Systems o cCDSS), específicamente de los considerados de nivel medio (p. ej. calculadoras pronósticas o GPC automatizadas) y de nivel alto (aquellos que utilizan la IA para formular recomendaciones específicas para un paciente), para el apoyo a la toma de decisiones clínicas relativas al manejo terapéutico, seguimiento o pronóstico de pacientes con cáncer de mama, pulmón, colon-recto o próstata. También se propone evaluar el impacto de los cCDSS en cáncer a nivel organizativo, legal, ético y social/de pacientes.L'objectiu general d'aquest informe d'ETS és avaluar la seguretat, eficàcia, efectivitat i eficiència dels sistemes electrònics de suport a les decisions clíniques (computeritzed Clinical Decision Support Systems o cCDSS), específicament dels considerats de nivell mitjà (p. ex. calculadores pronòstiques o GPC automatitzades) i de nivell alt (aquells que utilitzen la IA per formular recomanacions específiques per a un pacient), per al suport a la presa de decisions clíniques relatives al maneig terapèutic, seguiment o pronòstic de pacients amb càncer de mama, pulmó, còlon-recte o pròstata. També es proposa avaluar l'impacte dels cCDSS en càncer a nivell organitzatiu, legal, ètic i social/de pacients.The overall objective of this HTA report is to evaluate the safety, efficacy, effectiveness, and efficiency of (computeritzed Clinical Decision Support Systems (cCDSS), specifically those considered medium level (e.g. prognostic calculators or automated CPGs) and high level (those that use AI to formulate patient-specific recommendations), for clinical decision support regarding the therapeutic management, follow-up, or prognosis of patients with breast, lung, colon-rectum or prostate cancer. It is also proposed to assess the impact of cCDSS in cancer at organizational, legal, ethical, and social/patient level

    Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly

    Get PDF
    Solitary pulmonary nodules (SPNs) are a diagnostic and therapeutic challenge for thoracic surgeons. Although such lesions are usually benign, the risk of malignancy remains significant, particularly in elderly patients, who represent a large segment of the affected population. Surgical treatment in this subset, which usually presents several comorbidities, requires careful evaluation, especially when pre-operative biopsy is not feasible and comorbidities may jeopardize the outcome. Radiomics and artificial intelligence (AI) are progressively being applied in predicting malignancy in suspicious nodules and assisting the decision-making process. In this study, we analyzed features of the radiomic images of 71 patients with SPN aged more than 75 years (median 79, IQR 76–81) who had undergone upfront pulmonary resection based on CT and PET-CT findings. Three different machine learning algorithms were applied—functional tree, Rep Tree and J48. Histology was malignant in 64.8% of nodules and the best predictive value was achieved by the J48 model (AUC 0.9). The use of AI analysis of radiomic features may be applied to the decision-making process in elderly frail patients with suspicious SPNs to minimize the false positive rate and reduce the incidence of unnecessary surgery
    corecore