14,344 research outputs found

    Automata-Based Stream Processing

    Get PDF
    We propose an automata-theoretic framework for modularly expressing computations on streams of data. With weighted automata as a starting point, we identify three key features that are useful for an automaton model for stream processing: expressing the regular decomposition of streams whose data items are elements of a complex type (e.g., tuple of values), allowing the hierarchical nesting of several different kinds of aggregations, and specifying modularly the parallel execution and combination of various subcomputations. The combination of these features leads to subtle efficiency considerations that concern the interaction between nondeterminism, hierarchical nesting, and parallelism. We identify a syntactic restriction where the nondeterminism is unambiguous and parallel subcomputations synchronize their outputs. For automata satisfying these restrictions, we show that there is a space- and time-efficient streaming evaluation algorithm. We also prove that when these restrictions are relaxed, the evaluation problem becomes inherently computationally expensive

    TypEx : a type based approach to XML stream querying

    Get PDF
    We consider the topic of query evaluation over semistructured information streams, and XML data streams in particular. Streaming evaluation methods are necessarily eventdriven, which is in tension with high-level query models; in general, the more expressive the query language, the harder it is to translate queries into an event-based implementation with finite resource bounds

    Performance Evaluation of Components Using a Granularity-based Interface Between Real-Time Calculus and Timed Automata

    Get PDF
    To analyze complex and heterogeneous real-time embedded systems, recent works have proposed interface techniques between real-time calculus (RTC) and timed automata (TA), in order to take advantage of the strengths of each technique for analyzing various components. But the time to analyze a state-based component modeled by TA may be prohibitively high, due to the state space explosion problem. In this paper, we propose a framework of granularity-based interfacing to speed up the analysis of a TA modeled component. First, we abstract fine models to work with event streams at coarse granularity. We perform analysis of the component at multiple coarse granularities and then based on RTC theory, we derive lower and upper bounds on arrival patterns of the fine output streams using the causality closure algorithm. Our framework can help to achieve tradeoffs between precision and analysis time.Comment: QAPL 201

    DEBS Grand Challenge: Glasgow Automata Illustrated

    Get PDF
    The challenge is solved using Glasgow automata, concise complex event processing engines executable in the context of a topic-based publish/subscribe cache of event streams and relations. The imperative programming style of the Glasgow Automaton Programming Language (GAPL) enables multiple, efficient realisations of the two challenge queries
    corecore