27 research outputs found

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Embedding Non-Ground Logic Programs into Autoepistemic Logic for Knowledge Base Combination

    Full text link
    In the context of the Semantic Web, several approaches to the combination of ontologies, given in terms of theories of classical first-order logic and rule bases, have been proposed. They either cast rules into classical logic or limit the interaction between rules and ontologies. Autoepistemic logic (AEL) is an attractive formalism which allows to overcome these limitations, by serving as a uniform host language to embed ontologies and nonmonotonic logic programs into it. For the latter, so far only the propositional setting has been considered. In this paper, we present three embeddings of normal and three embeddings of disjunctive non-ground logic programs under the stable model semantics into first-order AEL. While the embeddings all correspond with respect to objective ground atoms, differences arise when considering non-atomic formulas and combinations with first-order theories. We compare the embeddings with respect to stable expansions and autoepistemic consequences, considering the embeddings by themselves, as well as combinations with classical theories. Our results reveal differences and correspondences of the embeddings and provide useful guidance in the choice of a particular embedding for knowledge combination.Comment: 52 pages, submitte

    Epistemic Reasoning in OWL 2 DL

    Get PDF
    We extend the description logic SROIQ (OWL 2 DL) with the epistemic operator K and argue that unintended effects occur when imposing the semantics traditionally employed. Consequently, we identify the most expressive DL for which the traditional approach can still be adapted. For the epistemic extension of SROIQ and alike expressive DLs, we suggest a revised semantics that behaves more intuitively in these cases and coincides with the traditional semantics on less expressive DLs

    New Models for Expert System Design

    Get PDF
    This thesis presents new work on the analysis of human lung sound. Experimental studies investigated the relationship between the condition of the lungs and the power spectrum of lung sound detected at the chest wall. The conclusion drawn from two clinical studies was that the median frequency of the lung sound power spectrum increases with a decrease in airway calibre. The technique for the analysis of lung sound presented in this thesis is a non-invasive method which may be capable of assessing differences in airway calibre between different lobes of the lung. An expert system for the analysis of lung sound data and pulmonary function data was designed. The expert knowledge was expressed in a belief logic, a system of logic which is more expressive than first order logic. New automated theorem proving methods were developed for the belief logic. The new methods were implemented to form the 'inference engine' of the expert system. The new expert system compared favourably with systems which perform a similar task. The use of belief logic allows introspective reasoning to be carried out. Plausible reasoning, a type of introspective reasoning which allows conclusions to be drawn when the database is incomplete, was proposed and tested. The author concludes that the use of a belief logic in expert system design has significant advantages over conventional approaches. The experimental results of the lung sound research were incorporated into the expert system rule base: the medical and expert system research were complementary

    The Complexity of Reasoning for Fragments of Default Logic

    Get PDF
    Default logic was introduced by Reiter in 1980. In 1992, Gottlob classified the complexity of the extension existence problem for propositional default logic as \SigmaPtwo-complete, and the complexity of the credulous and skeptical reasoning problem as SigmaP2-complete, resp. PiP2-complete. Additionally, he investigated restrictions on the default rules, i.e., semi-normal default rules. Selman made in 1992 a similar approach with disjunction-free and unary default rules. In this paper we systematically restrict the set of allowed propositional connectives. We give a complete complexity classification for all sets of Boolean functions in the meaning of Post's lattice for all three common decision problems for propositional default logic. We show that the complexity is a hexachotomy (SigmaP2-, DeltaP2-, NP-, P-, NL-complete, trivial) for the extension existence problem, while for the credulous and skeptical reasoning problem we obtain similar classifications without trivial cases.Comment: Corrected versio

    Nonmonotonic reasoning in multivalued logics

    Get PDF
    corecore