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Summary

This thesis presents new work on the analysis of human lung sound.

Experimental studies investigated the relationship between the condition of the lungs 

and the power spectrum of lung sound detected at the chest wall. The conclusion 

drawn from two clinical studies was that the median frequency of the lung sound 

power spectrum increases with a decrease in airway calibre. The technique for the 

analysis of lung sound presented in this thesis is a non— invasive method which may 

be capable of assessing differences in airway calibre between different lobes of the 

lung.

An expert system for the analysis of lung sound data and pulmonary function 

data was designed. The expert knowledge was expressed in a belief logic, a system 

of logic which is more expressive than first order logic. New automated theorem 

proving methods were developed for the belief logic. The new methods were

implemented to form the 'inference engine' of the expert system. The new expert

system compared favourably with systems which perform a similar task. The use of

belief logic allows introspective reasoning to be carried out. Plausible reasoning, a 

type of introspective reasoning which allows conclusions to be drawn when the 

database is incomplete, was proposed and tested. The author concludes that the use 

of a belief logic in expert system design has significant advantages over conventional 

approaches.

The experimental results of the lung sound research were incorporated into the 

expert system rule base: the medical and expert system research were complementary.



Chapter 1 Introduction



Introduction

This thesis is a contribution to the study of human lung sound. The authors 

work builds on previous studies of lung sound carried out by researchers in the 

Department of Electronics and Electrical Engineering of Glasgow University. In 

common with Urquhart [1] and Luk [2] the author examined the power spectrum of 

lung sound. Features derived from the power spectrum were correlated with flow and 

volume measurements. The aim was to determine the relationship between the power 

spectrum of lung sound and the physiological condition of the lungs and more 

specifically, with the condition of the airways.

The use of an expert system to analyse the lung sound and pulmonary function

data was proposed. The expert knowledge required for the interpretation of this data 

is explicitly expressed as logical rules. The rules assess the degree to which the lung 

function of the patient in question is impaired. Expert systems are able to explain

their reasoning by showing how a fact has been deduced. Conventional programming

methods usually lack these features.

Any relationship between lung sound and airway condition found experimentally 

can be expressed as a set of logical rules and incorporated into the expert system 

rule base. Consequently the medical and expert systems research are complementary.

The range of concepts which can be represented and manipulated by an expert 

system is determined by the logical language in which the expert rules are expressed. 

Logics which include modal operators were studied, these logics being more expressive 

than first order logic. From these observations the author concluded that the 

implications of using a belief logic as the language for knowledge representation in 

an expert system should explored with the aim of improving expert system design

('belief' is a modal operator). In contrast with many approaches to expert system

design [3], the use of belief logic provides a well understood semantic theory (or 

model theory) and the inference procedure is an explicit component of the model 

theory. The expert rules are viewed as the beliefs of an expert agent and because

facts and rules are expressed as beliefs, introspective reasoning may be carried out.



Introspective reasoning requires an agent to examine what can be deduced from its 

beliefs and what cannot. The problem of making logical deductions when the 

knowledge about a problem is incomplete (known as the problem of reasoning with 

incomplete information) can be tackled by introspective reasoning.

The design of an expert system to interpret lung sound data which was based 

on an established technique would not represent an advance in expert system design. 

The use of belief logics in the design of an expert system represents the 

development of new models for expert system design.

A guide to this thesis.

The study of human lung sound is introduced in Chapter 2. This chapter begins 

with a review of literature which reports experimental results relating lung sound and 

clinical measurements in normal subjects. A detailed analysis of the published data is 

developed (Section 2.2). Experimental equipment for the detection and spectral 

analysis of lung sound was designed by the author (Section 2.3). This equipment was 

used in two clinical studies which are described in Sections 2.4 and 2.5. Some

general conclusions on the possible clinical uses of lung sound are presented in the 

final section of Chapter 2 (Section 2.6).

Chapter 3 presents the theory and background material on which the author's 

work on expert systems is based. Chapter 3 begins with an introduction to formal 

systems of logic and to the resolution theorem proving method (Section 3.2). The 

various systems of modal logic are described, as are the automated theorem proving 

methods for these logics (Section 3.3). The notions of knowledge and belief are

examined and several systems of logic which model belief are reviewed in Section

3.4. The 'deduction model of belief' is presented in greatest detail as the author's 

work is concerned with enhancing and applying this logic. The final section of

Chapter 3 is a review of literature on the problem of reasoning with incomplete

information (Section 3.5).

The authors original work on expert system design is presented in Chapter 4.
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New resolution theorem proving methods for the deduction model of belief are

presented in Section 4.2. The new resolution methods were implemented and

employed as the inference engine of the 'Inspire' expert system. The design of the 

expert system and the method of refining a set of expert rules for the interpretation 

of pulmonary function data are presented. The performance of the expert system and 

the role of the logical language are discussed (Section 4.3). A new theory for the

deduction of plausible beliefs when the database is incomplete is presented (Section 

4.4) and evaluated in practice (Section 4.5). The problems of reasoning with

uncertainty, plausible reasoning and the formulation of these problems in modal logic 

are discussed in Section 4.6. Some general conclusions on the use of belief logic and 

its applications are outlined in the final section of Chapter 4 (Section 4.7).

A general discussion of directions for future work on the study of human lung 

sound and the development of the Inspire expert system is presented in Chapter 5.
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Chapter 2 Lung Sound
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2.1 Introduction

The stethoscope was the first instrument capable of detecting lung sounds and 

from its use an impression of sound amplitude and pitch can be obtained. Sounds 

commonly associated with disease such as crackles and wheezing can be identified. 

Abnormal sounds can be used to diagnose the early stages of lung disorder. However, 

observations made using the stethoscope are sometimes difficult to quantify.

The development of sophisticated diagnostic techniques, including airflow and 

lung volume measurements, has superseded auscultation as the primary means of 

diagnosing lung disorder. Measurement of lung volume and the expiratory flow rates 

a patient can achieve are important in themselves. The results are quantifiable by 

standard procedures and may be compared to the predicted values obtained from 

studies of a normal population.

The stethoscope bell can be placed over any of the lobes of the lung to assess 

the regional ventilation of the right or left lung. In contrast the flow— volume 

measurements provide an assessment of the lungs as a whole. The potential exists for 

lung sound to be used to measure regional ventilation in the lung, complementing the 

flow— volume tests. To achieve this the relationship between lung sound as detected 

at the chest wall and the airflow, airway geometry and chest wall characteristics 

which generate and transmit the sound must be investigated.

This chapter begins by examining previous research relating lung sound to 

airflow and lung volume. In the first experiments sound was characterised by its 

amplitude or intensity only, but with the development of suitable technology the 

frequency spectrum of lung sound was later studied. The author has designed a 

computer based system for the logging and spectral analysis of lung sound. This 

equipment described and its use in two investigations are described in the later 

sections of this chapter. In the first study the airway calibre of asthmatic subjects 

was reduced by the administration of histamine and the effect on lung sound was 

observed. The second study assessed the effect on lung sound of a reduction in lung 

function caused by disease.
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2.2 Literature Review And Analysis

2.2.1 Introduction

This review examines recent research in the field of breath sounds and lung 

sounds. Breath sounds are those sounds audible at the mouth during the breath cycle, 

while lung sound is always detected at the chest wall. The latter may also be 

referred to as breath sound if no extraneous lung sounds are present. The 

experimental results and the theories developed in a selection of papers to explain 

the amplitude and frequency spectrum of lung sound are discussed. This requires 

study of the differences in regional ventilation and the relationship with lung sound. 

There is considerable disagreement amongst researchers about the origin of lung

sound, but the basic physiology of the lung and the mechanics of breathing are more 

established and are presented in the following section.

2.2.2 The Mechanics of Breathing

The main function of the lungs is the exchange of respiratory gases. There are 

four main components in this process: ventilation, gas transfer, pulmonary blood flow 

and blood gas transport [1]. The present study is concerned with factors affecting the 

ventilation of the lungs and their impact on inspiratory breath sounds.

In normal subjects, during quiet breathing, inspiration is produced by the action

of the diaphragm and the intercostal muscles. Expiration is produced by the elastic

recoil of the lung. The airway can be divided into upper and lower sections. The

upper respiratory tract warms and humidifies the inspired air and the lower

respiratory tract conducts air to and from the alveoli. The airway from the larynx to 

the bifurcation into left and right main bronchi is known as the trachea. The length

of the trachea and the angle of the bifurcation are not fixed but variable [2].

The main bronchus on the left side divides into left upper lobe and left lower 

lobe bronchi. These supply the upper and lower segments of the left lung. Further 

subdivisions occur and while the walls of the airways contain cartlige they are known 

as bronchi. Thereafter the conducting airways are known as bronchioles. The bronchi 

divide between eight and thirteen times, the smallest having a diameter of

6



approximately 1 mm. There are between three and four subdivisions of bronchioles 

before the terminal bronchiole is reached. The alveoli occur in the walls of these 

airways. At each branching of the airway the combined cross section of the branches 

is greater than that of the stem from which they arose.

The left lung is divided into two lobes, and the right lung into three lobes. 

Sketches of these divisions are shown in Figure 2.2.1. Each lobe is ventilated by a 

system of bronchi originating from the main bronchi. Pathological changes are often 

confined to a single lobe, indicating a degree of isolation between lobes [3]. Both 

lungs are surrounded by a fluid filled membrane called the pleura. The thoracic 

cavity is referred to as the chest.

It is necessary to examine the forces which act on the airways during the breath 

cycle. The mechanical properties of the lungs and the effect of gravity must be 

considered.

There are both static and dynamic forces which oppose inspiration. The lungs 

have elastic properties: their compliance can be defined as the increase in lung 

volume per unit increase in distending pressure. Compliance varies as a non— linear 

function of lung volume. The elastic properties of the lung as a whole are dependent 

on the compliance of the tissues, the structure of the lung and the surface tension of 

the liquid lining the alveoli. The surface tension of the air liquid interface accounts 

for approximately half of the elastic recoil.

The dynamic forces which oppose inspiration are flow dependent. For air to 

flow through the airways a pressure difference must exist between mouth and alveoli. 

As the cross sectional area of the airways decreases the greater the pressure 

difference must be to maintain the same flow rate hence the greater the resistance 

to flow. When flow is laminar the resistance to flow is constant but where airflow is 

turbulent resistance is increased. In the thorax and large upper airways flow is 

turbulent whereas in the peripheral airways flow is laminar [4]. It has been shown 

that airways with a diameter of less than 2 mm contribute little to airway resistance.

During quiet breathing, expiration is produced by the elastic recoil of the lung
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tissue. The recoil pressure of the expanded lung forces air through the respiratory 

passages. The lateral pressure on the walls of the airways plus the outward traction 

on the airway walls (due to the recoil pressure) is greater than the intra— thoracic 

pressure so that all airways remain open. During deep breathing the greater 

distension of the lung provides a greater elastic recoil. During forced expiration the 

lateral pressure falls due to the increased flow rate and the muscular effort required 

increases the intra— thoracic pressure. These effects can cause the dynamic 

compression of bronchi. Any increase in muscular effort and hence in intra— thoracic 

pressure tends to compress the peripheral airways further and does not increase the 

flow rate. The maximum flow rate is then effort independent [1]. As a consequence 

the flo w - volume measurements and FEV1 (the volume of air which can be expelled 

in 1 second) are also effort independent.

FEV1 is reduced when airway calibre is reduced. If the recoil pressure is 

reduced, as in emphysema, dynamic compression will be more pronounced and FEV1 

will be reduced.

Regional differences in ventilation within the lung can be caused by local 

mechanical factors. There is a vertical gradient in recoil pressure due to gravity. This 

pressure is greater at the apex than at the base in the upright position. Superior and 

inferior regions are the upper and lower regions with respect to the vertical axis. 

These regions may not correspond directly to segments of the lung.

2.2.3 The Distribution of Pulmonary Ventilation.

It is often assumed that lung sound intensity is a measure of ventilation of the 

underlying lung. There was no experimental research to support this view until the 

1970's. Examination of regional differences in lung sound is important as it provides 

evidence about the processes of sound generation and transmission in the lung and 

their relationship to lung physiology. Five papers which present data from normal 

subjects, by well known authors, are reviewed.

In a paper on the relation between lung sounds and the distribution of

9



pulmonary ventilation, Leblanc found that the maximum intensity of breath sound 

during inspiration was always found at low lung volumes over the superior regions of 

the lung [5]. The sound amplitude signal (after being rectified, filtered and 

integrated), airflow and volume were recorded simultaneously. Sound amplitude 

(Leblanc used the term 'intensity') was shown to increase with flow rate, and to vary 

with lung volume. Amplitude was plotted against lung volume for eight subjects 

inspiring from residual volume at a constant flow rate, in the upright position. 

Amplitude over the apex decreased between 10 and 70% of vital capacity (VC), 

while amplitude over the base increased from 10 to 40% VC and decreased 

thereafter, in all cases. Similar results were obtained when the microphone was 

positioned on the left apex and recordings were made with the subjects in the right 

lateral position and also in the left lateral position. In the right lateral position the 

microphone was over a superior part of the lung and the sound amplitude decreased 

as lung volume increased from 10 to 70% of VC. In the left lateral position the 

microphone was over an inferior region of the lung. In this case sound amplitude 

increased between 10 and 40% of VC and decreased thereafter. These changes were 

not due to changes in pitch of breath sound with lung volume.

Leblanc concluded that the amplitude of breath sounds is not uniform throughout

the lung but varies with lung volume, flow, body position and site of recording.

Studies by other researchers in the 1960's had used radioactive Xenon to show that

ventilation was uneven and gravity dependent. This was considered to be due to the 

gradient of pleural pressure. Leblanc argued that regional amplitude of breath sound 

varies in the same way as the regional distribution of ventilation, but did not show 

this quantitatively.

If the lung inflated uniformly then the relation between lung volume and sound 

amplitude would be the same for all regions of the lung. Leblanc's study shows there 

are regional differences. These are differences in the phase of the breath cycle at

which the ventilation of a segment reaches a peak. In this study lung volume refers 

to the total volume of air inspired at a particular instant. Lung sound at a particular
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location on the chest wall is not a function of volume directly. The volume, as the 

percentage of vital capacity, is a measure of the phase of the respiratory cycle. As 

the lung expands from residual volume to vital capacity the inspiratory airflow goes 

from zero through a peak value and back to zero. The peak flow into the superior 

segment occurs early in the breath cycle (VC<10% ), the peak flow into the inferior 

segment occurs later (VC=40% ). Leblanc considered lung sound to generated 

peripherally. If sound is generated centrally then there must be regional components 

to generation and transmission.

A  paper was published by Ploysongsang (1977) which attempted to show the 

relationship between breath sounds and regional ventilation in a quantitative way [6]. 

Breath sounds were measured by using the sound detected at the anterior apex of 

the right lung as a reference. The variation of breath sounds between apex and base 

was measured using an oscilloscope with the x and y channels connected to the 

reference and measurement signals respectively (the microphone outputs were 

rectified, filtered and integrated). The oscilloscope trace was approximately linear 

during inspiration, a phase difference between the two signals was observed. The 

slope of the trace was independent of chest volume, airflow was maintained between 

1 and 2 1/s. The differences in transmission paths between reference and

measurement sites was deduced by introducing white noise at the mouth and 

measuring the slope of the oscilloscope trace as before. From these gradients the 

breath sound index (lb) and transmission index (Tn) were calculated. By dividing lb 

by Tn the compensated breath sound index was obtained. This was intended to be a 

measure of the actual sound generated. The recording procedure was carried out at 

four sites on the chest wall for 15 normal subjects in upright and supine positions. 

For ten of these subjects ventilation at the four sites was calculated using a method 

whereby radioactive Xenon was inhaled. Breath sound indices were correlated with the 

ventilation at each site (relative to the reference site). The correlation between 

compensated breath sounds and regional ventilation was significant in upright and 

supine positions (r=0.54 , r=0.41). The correlation between uncompensated breath
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sound and ventilation was significant in the upright position only (r=0.56).

Ploysongsang concluded that uncompensated breath sounds cannot be used 

confidently in both upright and supine positions to assess regional ventilation. He

argued that sound was generated peripherally, in airways of less than 3mm in 

diameter. Ploysongsang's study confirms that ventilation of the lung is not uniform

and that lung sounds reflect this. The calculations of the compensated breath sound 

index confirm that sound is generated regionally and that the intensity of this 

component of breath sound varies between regions. The study does not show how 

much sound is generated centrally and hence detectable at both reference and 

measurement locations. Not accounting for centrally generated sound leads to an

under estimation of the breath sound indices. Ploysongsang comments that the use of 

a white noise source to calculate the transmision index has several limitations. 

Changes in transmission path length from mouth to chest wall, between apex and

base, and the possibility that sound is conducted through body tissue as well as 

through the airways are sources of error. If sound is generated over a series of 

airways and not at a point source then this method may not compensate correctly.

Measurements were made on the right anterior chest wall, so that the base of 

the lung was an inferior region when the patient was upright. When the patient 

moves to the supine position a section of the right lower lung (RLL) becomes an

inferior region, but the RLL extends to the anterior base, a superior region. The 

data presented by Ploysongsang shows that breath sounds increase less from apex to 

base when the subject moves to the supine position. This may be explained by

noting that the RLL is not simply an inferior segment in the supine position (due to 

the gradient in pleural pressure) and this may affect airway geometry and sound

generation.

The question of whether breath sounds can be correctly compensated by using a 

transmission index was studied by Kraman (1983). The method used was similar to

that of Ploysongsang [7]. Breath sounds were quantified by compensating the mean 

sound intensity calculated over a 25 ms period by the instantaneous flow rate at the
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mouth. Twelve of these values were taken during inspiration and averaged to obtain 

a single value. Breath sounds were recorded at 2 cm intervals from apex to base on 

both left and right sides of the anterior and posterior thorax. To calculate the 

transmission index white noise was introduced at the mouth. This index was defined 

by the ratio of the mean sound pressure at the study site to that at the reference

site. The index was calculated at FRC (Functional Residual Capacity, the volume of

air which remains in the lung after a normal expiration) at the same locations that 

breath sound was recorded from. In this way maps of breath sound amplitude and 

transmission were built up. A computer was used to store and analyse the data.

Kraman comments that the right anterior sound and transmission patterns are

similar to those reported by Ploysongsang. There was considerable variation in both 

measurements over small distances. The sound intensity detected at right and left 

posterior locations was similar, however the transmission index over the right lung 

was twice that over the left lung. If compensated sound intensity corresponds to 

ventilation then it must be concluded that ventilation of the left lung is twice that of 

the right lung. This is unlikely and casts doubt on the validity of compensating

breath sounds by the above method. Kraman explained this finding as being due to 

the direct transmission of sound to the right lung as the trachea is in contact with 

the right mediastinal pleural surface, whereas direct sound transmission to the left 

lung is impeded.

In Kraman's study breath sound intensity was compensated for variations in flow 

rate and the transmission index was measured at a fixed lung volume. In contrast 

Ploysongsang calculated both indices throughout inspiration, possibly a better method. 

The correlation between uncompensated breath sound and ventilation remains valid.

Both Leblanc and Ploysongsang assumed that breath sound was generated in the 

small airways of the lung but provided no conclusive evidence for this. From 

theoretical calculations of the Reynolds number in the small airways it is very likely 

that the flow is laminar and silent. Others conclude that breath sound is generated in 

the upper airways by turbulent flow [4].
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To try to discover the site of production of respiratory sounds a technique 

called subtraction phonopneumography was developed by Kraman (1980)[8]. This

involved recording breath sounds simultaneously at two sites a known distance apart.

Sound signals were recorded during inspiration and expiration for microphone 

distances between 0 and 10 cm laterally across the lower left lung. The aim was to 

find the site of sound generation by finding the degree to which reference and 

measurement signals were equal in frequency and phase characteristics. The 

cancellation index (SII) was defined as the ratio of the difference to the sum of the 

detected signals. A distant sound source would show the same phase/frequency 

relationship at two equidistant locations hence differences between the signals would 

tend to zero (as would SII), providing the amplitude spectra are also equal. The sum

of the reference and measurement signals was displayed on an oscilloscope and

defined by the peak to peak amplitude of the trace. The difference signal was 

similarly obtained by inverting the phase of the measurement signal before summing.

Measurements were made over the posterior left lower lung by incrementing the 

distance between microphones by 1 cm over the range 0 to 10 cm for five normal 

subjects. The cancellation index increased with increasing distance between 

microphones. This relationship was significant during both inspiration and expiration 

(using linear regression r=0.82, r=0.56). The rate of increase of SII with distance 

was greater during inspiration than during expiration. An increase in SII corresponds 

to a reduction in the degree to which the signals have common components. The 

curves flatten out at a cancellation index of 1.0. In different group of three 

subjects who had pleural friction rub the cancellation index was 1.00 with the 

microphones 2 cm apart.

Kraman concludes that the sounds produced during expiration are generated 

more centrally than those generated during inspiration. This claim is based on the 

evidence that the slope of the Sll/distance curve is smaller during expiration. That is, 

while the common components of reference and measurement signals decrease with 

distance in both expiration and inspiration, the rate of decrease is less during
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expiration indicating a more central source of generation. With the microphones 2 

cm apart the cancellation index was always less than 0.45 during inspiration in 

normal subjects. In comparison a value of 1.00 was obtained for sound generated at 

the pleura. This suggests that normal inspiratory sound is further from the chest wall 

than the pleura.

There are several limitations to subtraction phonopneumography. Kraman states 

that the variation in SII from breath to breath and the fact that the subtraction 

signal occasionally disappeared into baseline noise were problems. The method of 

estimating the peak to peak signal amplitude may also have been a source of error. 

Kraman used a balance control to equalise the amplitudes of the breath sound signals 

prior to addition and subtraction. This would not equalise the amplitude/frequency

spectrum as would be required for the cancellation index to be a measure of phase 

difference only (no compensation for transmission differences was made either). SII 

may be overestimated as a result.

Kraman states that these results are consistent with an intralobar source for 

inspiratory sound and an upper airway source for expiratory sound. Kraman's study 

comfirms the theory that sound is not generated at the periphery of the lung. 

Centrally generated components of the breath sound were detected at the chest wall 

but these did not dominate regionally generated components. The contribution of 

regional components varied across the small distances studied. It is not possible to

specify the generation(s) of bronchi where the centrally generated sound originates but 

it can be concluded that regionally generated sound must originate in later

generation(s) of bronchi. The results of this study are consistent with the theory 

developed previously that breath sounds detected at the chest wall are not the result 

of centrally generated sound alone, lung sounds reflect ventilation.

It has been shown that breath sound amplitude varies with the phase of the 

respiratory cycle. Peak air flow, and therefore peak ventilation and breath sound

occurs first in superior regions of the lung. Ploysongsang (1983) quantified the 

difference in phase between sound amplitude at the apex and the base for 19 normal
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subjects and 15 smokers [9]. The methods used were similar to those described 

earlier. The signals from reference and measurement microphones were displayed on 

the y and x channels of an oscilloscope screen, after being rectified and integrated. 

The microphones were located anteriorly at the apex and 15 cm below the apex, 

respectively. The phase difference between the signals was calculated from the 

oscilloscope trace.

Ploysongsang found that the mean phase angle for the non-sm okers was 3.3° 

which was significantly lower than that of the smokers of 8 .8°. The phase angle was 

shown to increase as the dynamic compliance decreased. This indicates that 

differences in phase of regional ventilation are due to dynamic compliance, a bulk 

property of the lung, as well to the gradient in pleural pressure.

The main findings of this section of the review can be summarised as follows. 

Sound intensity at the chest wall increases as airflow at the mouth increases. The 

actual flow rate into a region of the lung during inspiration is determined by pleural 

pressure, airway geometry and compliance. The gradient in pleural pressure ensures 

superior regions are ventilated ahead of inferior regions. As sound is generated by 

turbulent flow, breath sound amplitude correlates with regional ventilation. Lung 

sound is composed of centrally and regionally generated components. Sound is not 

generated from a point source or at the periphery of the lung. The connection 

between lung sound and lung physiology has been shown by the interpretation of 

experimental evidence.

2.2.4. Lung Volume, Airflow and Breath Sound.

Research into the relationship between the amplitude and frequency 

characteristics of breath sound, lung volume, airflow and FEV1 is reviewed.

In a paper published in 1971, Forgacs attempted to relate breath sound intensity 

to flow rate, both measured at the mouth [10]. The influence of bronchial calibre on 

FEV1 and inspiratory sound was also assessed. The subjects breathed through a 

pneumotachograph which had a microphone mounted 2 cm from the open end. The
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sound amplitude and flow rate signals were fed to the x and y channels of an 

oscilloscope. These signals were not rectified or integrated. The oscilloscope trace was 

recorded photographically during periods of steady flow. Peak sound amplitude 

increased linearly with flow rate in normal subjects. The ratio of the gradient to the 

average gradient for normal subjects defined a measure of 'intensity' (Is). Forgacs 

found Is correlated with FEV1 and peak expiratory flow rate in chronic bronchitis 

and in asthma (r values >  0.60).

Forgacs concludes that in chronic bronchitis inspiratory sounds are generated in 

intrathoracic airways. Breath sounds were silenced when helium was inhaled indicating 

that turbulent flow is the source (as turbulence is density dependent). The experiment 

demonstrates that sound intensity (Is) depends on the inspiratory calibre of the first 

two or three generations of bronchi, and Forgacs notes that there is no a priori 

reason why Is should show a good correlation with any of the usual tests of airway 

obstruction. The forced expiratory tests, which assess the degree of airway 

obstruction, depend on the flow rate and lung volume which cause the dynamic 

compression of the large airways. Forgacs' findings suggest that the narrowing of the 

central airways, detected by sound measurements does not stop at the central bronchi 

but also involve the more peripheral generations of airways as well i.e. those whose 

calibre is reduced during forced expiration.

The use of peak sound amplitude to calculate the gradient of the amplitude/flow 

curve takes no account of spurious peaks which may occur. No attempt was made to 

remove these by integration or numerical averaging. However in subjects with 

bronchitis Forgacs recorded gradients ten times greater than normal and such 

differences cannot be attributed to experimental error. There is no doubt that sound 

amplitude increases with flow rate, but it is difficult to assess whether this 

relationship is precisely linear due to the experimental method used.

The relationship between airflow, lung volume and mean sound intensity at the 

anterior chest wall was investigated by Leblanc as part of the study of regional 

ventilation [5] described in the previous section. Leblanc concludes that sound
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intensity increases linearly with flow rate when measured at a specific lung volume 

(at the same point on the respiratory cycle) during successive inspirations. When the 

flow rate is kept constant, lung sound amplitude varies throughout the respiratory 

cycle. In this experiment, all measurements were recorded throughout the breath 

cycle, and all data points were instantaneous values estimated at specific volumes or 

flow rates.

The relationship between total airflow at the mouth and breath sounds recorded 

at the chest was investigated by Shykoff and Ploysongsang in a paper published in 

1988 [11]. Their study made extensive use of a computer based measurement system. 

Airflow at the mouth was measured using a pneumotachograph, and the output signal 

was filtered before being digitised. When the patient was in the upright position one

microphone was fixed to the right anterior chest wall over the right upper lung. The

second microphone was fixed on the right posterior chest wall over the right lower 

lung. The microphone output signals were filtered prior to sampling by a bandpass 

filter (bandwidth 100Hz— 800Hz). All three signals were sampled at 2 kHz. Subjects 

attempted to maintain a specified constant flow rate for two seconds during 

inspiration and expiration. Data was recorded over a period of thirty seconds.

The average root mean squared (RMS) value of the sound signal over a 10 ms 

interval was calculated and correlated with the mean flow rate over the same period. 

Analysis showed sound amplitude to vary with the square of the flow rate. To 

confirm the exponential relationship, the slope of the regression of the logarithm of 

sound intensity and flow rate was calculated. In over 80% of the 54 subjects studied 

the slope of this curve did not differ significantly from 4. This appears to confirm 

that sound amplitude (the square root of sound intensity) is proportional to the 

square of flow rate.

Shykoff and Ploysongsang conclude that the amplitude of sound pressure during 

inspiration is highly correlated with the square of simultaneous flow. As kinetic 

energy is a function of the square of velocity, the proportionality may be between

kinetic energy and sound amplitude.
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Shykoff and Ploysongsang state that a quadratic curve could be fitted by eye to 

the data presented by Leblanc [5]. This claim cannot be substantiated for the 

published data. The conclusion that sound amplitude is proportional to the square of 

flow rate conflicts with the results of Leblanc and Forgacs [10] who found sound 

amplitude to be proportional to flow rate. The experimental method employed by 

Leblanc accounted for the fact that flow rate varies with the phase of the breath 

cycle. Leblanc measured sound amplitude at known points of the respiratory cycle. In 

contrast, Shykoff and Ploysongsang did not make any allowance for the variation of 

regional flow rate with respiratory phase (or lung volume). Consequently it is difficult 

to compare the results of these studies. It is possible that the quadratic relationship 

found by Shykoff and Ploysongsang could be approximated by a linear relationship 

over part of its range, in this way the conflict could be be resolved.

2.2.5 The Spectral Characteristics of Breath Sounds.

Three papers which study the spectral characteristics of normal breath sounds by 

the Fast Fourier Transform (FFT) method are reviewed. The first was published in 

1981 by Noam Gavriely [12]. Breath sounds were recorded from four sites on the 

chest wall, over right and left lower lungs on the posterior chest wall and over the 

right upper lung on the anterior and posterior chest wall, and also from the throat. 

At each location breath sounds were recorded onto magnetic tape for a period of 

thirty seconds. The microphone used in this study had a linear gain/frequency 

response. A high pass filter was used to attenuate signals below 75Hz. The recorded 

signal was digitized at 4000 samples per second.

Each sequence of 4096 samples was windowed in the time domain, using a 

cosine function, prior to transformation into the frequency domain by the FFT. A 

single inspiratory spectrum was obtained by averaging all of the sequences which 

contained inspiratory sounds only ( 4 - 6  sequences). A single expiratory spectrum was 

similarly obtained.

Power was found to decline exponentially with frequency. The frequency beyond 

which 'zero power' was detected was defined as the maximal frequency (fmax). Each
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power spectrum was defined by the slope of the log. amplitude/ log. frequency curve 

(A) and fmax, when this curve was shown to be linear by regression (non— linear 

spectra were rejected).

Gavriely found no significant change in gradient between inspiration and 

expiration. The difference in gradients between right and left lower lungs was 

minimal. There was a significant difference between gradients calculated for the right 

anterior site and those for the lower posterior sites. The measured power of the 

inspiratory segments was found to be significantly greater than that of the expiratory 

segments. Breath sounds detected over the trachea were found to have an

approximately flat power spectrum, extending from 75Hz to an average frequency of 

920Hz.

Gavriely concludes that these results are consistent with sound generation at the 

larynx, trachea or bronchial tree. It was assumed that the tracheal breath sound

represented the sounds produced by the generator and that the spectral characteristics 

of the sounds picked up over the chest wall represent the attenuation of this sound. 

As the spectral slopes of sounds picked up over a specific location did not vary

during the respiratory cycle, this implies that the transfer function is independent of 

the phase of respiration but is characteristic of the pickup location with its underlying 

tissues. Sound intensity over the trachea did not vary in the same way as intensity at 

the chest wall. This suggests that sound is generated in the bronchial tree and this

results in a greater input to the lung parenchyma. Gavriely states that fmax and A 

would be expected to alter under pathophysiological conditions and also that new 

sound generators may distort the exponential pattern.

There are a number of possible objections to Gavrielys' conclusions. It is now 

believed that the mechanisms responsible for inspiratory and expiratory lung sounds 

are different [13] which tends to undermine Gavrielys' analysis. Moreover if the 

broad band sound spectrum detected at the throat is taken to represent the sounds as 

generated then this spectrum appears to be independent of airflow and airway 

geometry, but there is no evidence for this independence in Gavrielys' study. The

20



method of characterising breath sound is not applicable to abnormal breath sounds as 

they would not be purely exponential hence the test for linearity would fail and the 

gradient could not be calculated.

The effects of lung volume and airflow on the frequency spectrum of lung 

sound was investigated by Kraman (1986) [14]. The amplified signals from two

microphones and the signal from a pneumotachograph were recorded onto magnetic 

tape. One microphone was located on the upper right anterior chest wall over the

right upper lung, the second was located over the right lower lobe on the posterior 

chest wall. Two inspiratory manoeuvres were studied, the first required the subject to 

inhale at a constant flow rate from residual volume to total lung capacity (the

variable volume manoeuvre). The second required a set peak inspiratory flow rate to 

be reached 1.0—2.3 1/s (the varaible airflow manoeuvre).

When the tape was replayed signals below 100Hz were attenuated. Sound spectra 

calculated by the FFT method from the variable volume recordings had a frequency 

resolution of 8Hz (frequency range 0— 1000Hz). The resolution for the variable 

airflow spectra was 20Hz (frequency range 0—2500Hz). In each case the spectra were 

quantified by calculating the quartile frequencies Q i —Q 3 . The median frequency (Q 2 ) 

defines the frequency below which 50% of the total energy lies. To analyse the

variable volume data the quartile frequencies were found from spectra calculated over 

six time intervals during inspiration. The time intervals were determined by the

points in time when the vital capacity had increased by one sixth. The variation of

each quartile frequency with volume was analysed at posterior and anterior sites. 

There was a significant decrease in Q 1 with volume at the right anterior site

(r= — 0.43, p < l% ), and no other significant changes were observed. The variable

airflow data was analysed by calculating the quartile frequencies when peak airflow 

was detected. The increase in Q 3 with airflow was significant at one site (r= -  0.285, 

p < l% ), no other significant trends were observed. When the data for each subject 

was examined individually, significant changes in quartile frequencies were found but 

they followed no overall trend. The log. power/ airflow relationships were linear.
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Kraman concludes that the frequency spectrum of lung sounds of healthy

subjects is minimally affected by submaximal variations in airflow or lung volume.

By dividing the power spectrum into quartiles Kraman identified a method which 

would reflect changes in the distribution of sound energy. Methods which rely on

detecting peak frequencies or changes in the amplitude of fixed frequency bands show 

these changes less well. No averaging of segments of transformed data was carried 

out so the variance of the estimated amplitude values was 100%. This may account 

for some of the large variation of quartile frequencies.

In both of these studies low frequency sounds were attenuated by filtering as

these sounds were presumed to be muscle sounds or heart sounds. Kraman (1983) 

attempted to distinguish lung sounds from sounds produced by muscular contraction

[15]. Four normal subjects were studied. Sound was initially recorded onto magnetic 

tape. On replaying, this signal was sampled at 2000Hz. Sound spectra were calculated 

by the FFT method with a frequency resolution of 8Hz. The power in four 

frequency bands centered at 50Hz,100Hz,200Hz and 300Hz was calculated throughout 

the breath cycle. The bands centered at 200Hz and 300Hz showed a marked increase 

in power during the inspiratory period. This increase was less apparent in the 100Hz

band, and absent in the 50Hz band. These results suggest that much of the sound

energy below 100Hz may be generated by muscular contraction but no quantified

measurements were presented.

Studies of the frequency spectrum of lung sound are inconclusive as to the 

factors which determine the shape of the sound spectrum heard at the chest wall. 

The spectrum appears to be independent of airflow and lung volume. It seems

probable that low frequency components are of muscular origin.
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2.3 Logging And Spectral Analysis Of Lung Sound

2.3.1. Introduction.

The study of lung sound at Glasgow University was begun under the supervision 

of Dr J.E.S. Macleod by Mr J. McGee, Dr R.B. Urquhart and was continued by Dr 

A. Luk. Both Luk and Urquhart recorded lung sound from the chest wail and used 

fast Fourier transform methods to calculate the frequency spectrum of the sound. 

Sound was detected using a hand held microphone designed by McGhee and stored 

on magnetic tape [1,2].

With the advent of cheaper, more powerful personal computers it was possible 

for the author to design and build a more reliable logging system based on an 

Amstrad PCI 512 computer. This computer was used for both data logging and 

analysis. The logging system and spectral analysis technique are now described.

2.3.2. Signal Logging.

For the sound signal to be recorded correctly the signal amplitude must be 

within the ±5V range of the 12 bit A/D converter and the signal bandwidth must be 

limited to avoid aliasing effects. From results obtained by Luk it was concluded that 

there is little information in the lung sound spectrum above 3kHz. On this 

assumption the system bandwidth was defined as 0Hz to 3kHz. To retain 

compatibility with Luk's work a sampling frequency of 9.6kHz was used. The Nyquist 

frequency was 4.8kHz. A low pass filter is required to attenuate signals above the 

Nyquist frequency in order to prevent aliasing. An attenuation of 20dB at the Nyquist 

frequency relative to the pass band (cuttoff frequency 3kHz) was judged to be 

adequate. This defines the specifications of the low pass filter.

These specifications can be met by a 4th order Chebychev transfer function 

(ripple =  0.5dB). This prototype was chosen because it has a faster cutoff rate than 

a Butterworth filter of the same order. The predicted attenuation at 4.8kHz is 

25.2dB. The pole positions were found from standard tables [3]. A fourth order low 

pass filter can be realised from two second order low pass sections in series. The 

circuit diagram is shown in Figure 2.3.1. The measured attenuation at the Nyquist
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frequency was 22dB.

The signal conditioning unit houses the filter and three amplifier circuits as is 

shown by the block diagram in Figure 2.3.2. The input amplifier is a.c. coupled and 

has a high input impedance. The output amplifier has a preset gain of one, 

alternatively a potentiometer may be switched into the feedback loop of this amplifier 

to allow the gain to be increased or reduced to allow for loud or quiet lung sounds. 

An amplifier is also required to drive a pair of headphones to allow the operator to 

listen to the sounds.

In addition to the signal conditioning unit the logging system includes a voltage 

converter unit which provides a logic "1" TTL level output signal when the hand 

held switch is pressed. This signal is monitored by the computer, and the sound 

signal can be monitored on the oscilloscope. The microphone is the same hand held 

model used by previous researchers. The logging system is shown in Figure 2.3.3.

A logging program was written in Turbo Pascal to monitor the TTL channel

and to take 16K samples of the sound signal when this channel goes to the high

state. Data is sampled at 9.6kHz over 1.7 seconds. A more detailed description of 

the operation of the A/D board can be found in an internal report by the author 

[4].

2.3.3. Spectral Analysis.

The methods used to calculate the power spectrum were developed from the

work of Luk. One window function was selected from the four types investigated by

Luk and used for all data analysis. In Luk's method the segments of data were

overlapped to reduce the variance of the estimate of spectral power, this was 

discontinued to reduce the number of Fourier transform calculations required.

The fast Fourier transform (FFT) algorithm of Cooley and Tukey requires

Nlog2 N multiplications, a great improvement on the multiplications which the 

calculation was previously believed to require (where N is the length of the

transform). Their algorithm relies on the fact that a discrete Fourier transform of 

length N may be rewritten as the sum of two transforms of length N/2. This
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procedure is applied recursively until the transform is of length 1. The FFT routine 

employed by the spectral analysis program uses this method.

The power spectral density was defined for 0 and discrete positive frequencies as 

follows. Letting T denote the time interval between samples and N the number of 

samples the Fourier transform is estimated for the discrete frequencies 

fn =  n/NT, n= — N/2, ...,N /2  

If H(fn) is the discrete transform, then the power spectral density is defined by 

the equation:

PH(fn) =  1/N2 ( I H(fn) 12 +  |H (— fn) 12)

A more detailed explanation of the discrete FFT can be found in the references 

[4,5,6].

Each estimate of power at a discrete frequency represents the power over a 

range of continuous frequencies. It is then an average of continuous power over a 

narrow window centered at that frequency. It can be shown that this window is wide 

enough for leakage to occur between discrete frequency intervals. This effect can be 

reduced by a technique known as windowing.

The discrete time signal transformed can be regarded as the result of multiplying 

an infinite number of samples by a window function in time. In the techniques first 

presented, this function is a 'rectangular window', having the value 1 during the

sampling period and 0 elsewhere. The spectrum which results is the convolution of

the transform of the data and the transform of the window function. Leakage can 

then be shown to be the result of the rapid change in the rectangular sampling

window from 0 to 1. Leakage can be reduced by using a window which changes

more gradually. Many such windows have been defined, one being the 4 term

Blackman Harris window chosen for this application.

The spectral analysis of lung sound begins by Blackman— Harris windowing a 

sequence of 2048 samples. The power spectrum is then calculated by squaring the

amplitude values output by the FFT routine. This is repeated for four consecutive

sequences of samples. The power at each discrete frequency is summed to give an
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estimate of the power spectrum over the whole time interval. This reduces the 

variance of the estimate, by a factor of four if the signal is considered to be 

stationary. The last step is the use of the Daniel window to smooth out any spurious 

peaks in the spectrum. This is achieved by weighting the estimate of spectral power 

at one frequency by its immediate neighbours. The frequency resolution is 4.69Hz.

The FFT algorithm was obtained from a library of numerical routines [5]. The 

windowing algorithms were translated into Pascal from Fortran programs written by 

Luk. Graphics routines were written to display plots of the spectra.

The microphone design incorporates a Tufnol diaphragm to improve the acoustic 

match between the microphone element and the chest wall. This has the effect of 

increasing the gain of the microphone at frequencies above 250Hz [4], Consequently 

the power spectrum of the microphone output signal is that of the sound source, 

modified by the microphone's characteristics. The energy in lung sound is small and 

it is an advantage to be able to detect sound above 250Hz. The sound spectra were 

characterised by their distribution of energy which must reflect the distribution of 

energy of the sound source, changes in this distribution from breath to breath and 

from subject to subject can then be compared.

The programs written by the author enable the Amstrad to function as a lung 

sound spectrum analyser, data being logged in real time and the power spectrum 

calculated after logging is complete. Data is stored in its original form as a time 

series, and the power spectrum is also stored and is available for further analysis.
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2.4. Histamine Challenge Study

2.4.1. Summary

Inspiratory breath sounds were recorded from the chest wall during histamine 

challenge in 5 subjects with mild asthma (baseline FEV1 >  60% of predicted

normal). The median frequency of the power spectrum of the breath sounds was 

found to correlate with the percentage change in FEV1 induced by histamine and 

with FEF50. The analysis suggests that for a decrease in FEV1 of 20% the median 

frequency of breath sound would increase by 80Hz. Variation in airway calibre 

produced a consistent alteration in the distribution of energy in inspiratory breath 

sound, in the absence of wheeze. Spectral analysis of breath sound may be a useful 

addition to conventional spirometry in identifying changes in airway diameter.

Note: This section is based on paper titled 'Variation Of Breath Sound And 

Airway Calibre' accepted for publication in the American Review Of Respiratory 

Disease. The co— authors were K.Anderson R.Carter F.Moran (Glasgow Royal 

Infirmary) and J.E.S.Macleod (Glasgow University).
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2.4.2. Introduction

Some of the first investigations into breath sounds used a measure of loudness 

(average amplitude or power) of the sound signal to quantify the sound spectrum. 

Later work has been concerned with the analysis of the power spectrum of the 

breath sound [Section 2.2]. Gavriely found that the breath sound 

amplitude(dB)/frequency curve was linear for normal subjects [1]. However this 

relation did not hold for asthmatic subjects [2], Kraman characterised the frequency 

spectrum by dividing it into quartiles [3]. Using this technique, a change in the 

distribution of energy within the spectrum will be reflected by a change in the 

quartile frequencies. The assumption that there is a linear relationship between 

amplitude(dB) and frequency is not made and consequently this method of 

characterisation is applicable to normal and abnormal cases alike.

The present study assesses whether the median frequency can be related to 

changes induced in the FEV1 and flow volume curve in mild asthmatic subjects 

during a histamine challenge, and hence to physical changes in the lung. Breath 

sound was recorded during inspiration because of the unpredictable and premature 

airway closure which may occur during expiration [4], hence inspiratory recording can 

produce measurements which are more repeatable.

2.4.3. Method

The patient was seated throughout the study period in a position between the 

breath sound recording equipment and the lung function measurement equipment. 

Four recordings were made of breath sound during inspiration from the lower right 

posterior chest wall 3— 5 cm below the inferior angle of the scapula. The patient was 

then asked to exhale into a spirometer (Compact Spirometer, Vitalograph, Kansas 

66215 USA) and an expiratory flow volume curve and FEV1 was obtained. These 

provided baseline measurements before the first dose of histamine was given, this 

dose was followed by measurement of lung function and the recording of two 

inspiratory breath sounds. This procedure was continued in a stepwise fashion 

throughout the histamine challenge. Collecting data in this way enabled comparison of
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breath sound and lung function data throughout each histamine challenge.

The histamine challenge was performed using a modification [5] of Cockrofts 

method [6]. Patients were instructed to breath slowly and deeply, each dose of 

histamine consisted of 10 deliveries by the dosimeter (volume in each dose =  0.095 

(SD 0.002)ml). The pulmonary function measurements were recorded 30 and 90 

seconds after each dose of histamine. The initial concentration of histamine used was

0.03g/l after saline, which served as the control, and this concentration was doubled 

every three minutes to a maximum of 16g/l or until there was a fall in FEV1 of 

more than 20%. Data were obtained from 5 mildly asthmatic subjects. Each lung 

function value is given with an estimate of the predicted normal appropriate for the 

method of measurement [7—9]. All subjects were non-sm okers.

The equipment for the logging and analysis of lung sound has been described 

previously [Section 2.3]. The power spectrum of each breath sound was calculated 

using the fast Fourier transform and was defined at 1024 discrete frequency points. 

The frequency resolution was 4.69Hz. A method was required to reduce the number 

of points characterising a spectrum down to one or two. This was developed by first 

calculating the total power in the range 100Hz to 1500Hz. The median power 

frequency was then obtained by finding the frequency below which 50% of the total 

energy lies, within the chosen range. This defines F50 for a breath sound spectrum. 

F85 was defined in a similar way (85% of the total energy lies below F85). These 

numbers then characterise the shape of each spectrum in terms of the distribution of 

energy, within the frequency range corresponding to that typical of breath sounds.

2.4.4. Results

Lung function at rest is shown in Table 2.4.1. versus age and gender. The 

differences in the power spectrum between baseline and last dose are shown in 

Figure 2.4.1. for two patients. This indicates that there is an increased amount of 

energy at frequencies above about 400Hz in the breath sound after the final dose. 

No wheeze was heard on auscultation or seen in the power spectrum of any patient 

at any stage during the histamine challenge.
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Patient Age
yrs

Gender FVC
1

FEV1
L/s

FEV1
/FVC

%

FEF50
1/s

KCO 
m m ol.m in.~ 1 
K P A _ 1 1 “ 1

1 22 M 4.63(79) 2.75(63) 60 1.95(35) 1.7(81)
2 31 M 4.97(89) 3.56(81) 72 3.49(63) 1.9(92)
3 43 M 4.32(85) 3.35(86) 76 3.23(63) 2.0(99)
4 24 F 3.16(86) 2.49(68) 78 2.66(56) 1.7(79)
5 37 M 6.02(104) 3.86(94) 64 3.09(70) 1.9(75)

Table 2.4.1. Baseline pulmonary function measurements for 
each subject, with age and gender (M =  male, F =  female). 
The values in parenthesis are a percentage of the predicted 
normal for each measurement.

Parameters
y, *

Correlation
r v:P< v

F50, FEV1 - 0 .0 1 1
F50, FEF50 - 0 .5 9 0.01
FEF50, FEV1 0.49 0.05
F50, %AFEV1 - 0 .7 0 0.01
F50, %AFEF50 - 0 .7 0 0.01

Table 2.4.2. Correlation of parameters.
y is the dependent variable.
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Patient 1
Power
(dB)

F50 last dose
0 -

Baseline / \

F50
baseline- 10 -

Last dose

0 100Hz 500Hz lKHz

Patient 3

F50 baseline
0 -

Baseline

- 10 -

Last dose F50 
last dose

0 lKHz500Hz100Hz
Frequency

Figure 2.4.1. Baseline and last dose lung sound spectra.
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The changes in FEV1 and F50 for Patient 2 during the challenge are shown in 

Figure 2.4.2. The results show that as the dose of histamine is increased FEV1 falls, 

as would be expected, and F50 increases. The relationship between F50 and the 

forced expiratory flowrate at 50% volume (FEF50) is shown by Figure 2.4.3. where 

data obtained throughout each of the five trials is plotted. The linear regression line 

is also drawn in this figure ( r =  — 0.59, p < 0 .0 1 ). There is also a significant 

relationship between FEF50 and FEV1 throughout each trial. The correlation between 

F50 and FEV1 is not significant. When F50 is correlated with the percentage changes 

in FEV1 and FEF50 from their baseline values, both relationships are significant. 

These results are summarised in Table 2.4.2. The changes in F50 from baseline 

measurement to last dose are statistically significant as is proved by a t—test where

the null hypothesis is that the means of the values of F50 before and after the trial

are the same. This hypothesis is rejected in all cases, at a 5% significance level.

Data obtained from two non— asthmatic subjects showed that while FEV1

remained constant during these trials there was no systematic change in F50.

It is possible to compare the energy distribution of several power spectra by 

plotting two features extracted from each as points in two dimensions. This could be 

done by plotting F85 against F50, but the two measures are clearly related in that as 

there can be no points such that F85 <  F50, half of the x,y plane will be unused. 

To overcome this problem R85 was defined as the ratio of the difference between

F85 and F50 to the total remaining frequency range above F50.

R85= (F 8 5 - F50)*100/(1500— F50)

Points defined by F50,R85 may lie anywhere in the first quadrant of a two

dimensional plane.

An example of this type of plot is given in Figure 2.4.4. The distribution of

energy in the power spectrum is seen to change as the challenge proceeds. It has

been shown in all cases that the increase in F50 is significant, however this is not 

true of F85. Examining the overall changes in F85 and F50 for all cases reveals 

that for Patient 1 the breath sound spectrum appears to have simply shifted up in
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Figure 2.4.2. F50 and FEV1 against dose of histamine.

Ijji

37



F 50 (Hz)

400"

300-

200-

100
1 3 42

FEF 50 (1/s)

Figure 2.4.3. F50 against FEF50 throughout all trials.
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frequency while for Patient 3 the spectrum appears to have changed shape, less low 

frequency energy being evident. This is shown in data— reduced form by Figure

2.4.5. The spectra of Figure 2.4.1. show the changes in sound spectrum for two 

individual breaths, one baseline recording and one last dose recording for both 

Patients 1 and 3. Both these spectra, and the data reduced plot of Figure 2.4.5., 

show that different degrees of change are produced in the breath sounds of these 

subjects as a result of inhaling histamine.
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2.4.5. Discussion

A relationship between F50 and FEF50 and change in FEV1 has been 

demonstrated. By the use of histamine to cause the bronchi to constrict, it has been 

possible to measure the changes in breath sound spectrum which accompany a 

decrease in diameter of the bronchi. These changes have been measured at the base 

of the lung confirming that during inspiration breath sound detected at this position 

is not generated peripherally but is conditioned by the generations of bronchi affected 

by histamine.

From the analysis of the power spectra it appears that different changes of 

spectrum with histamine, between patients, may be the result of differences in the

generations of bronchi which are affected or the degree to which they constrict. For

example, it may be possible that breath sounds can be used to distinguish the 

constriction of the upper bronchi from a general narrowing of many generations of 

bronchi, in response to a bronchoconstrictor. The altered spectra which we observed 

occurred in the absence of wheeze suggesting that the airway calibre was not reduced 

enough to induce the so— called reed— like mechanism suggested as the underlying

cause of asthmatic wheeze [10].

In an investigation into the effects of airflow and lung volume on the frequency 

spectrum of lung sound Kraman [3] concluded that these factors were only weakly 

related to the median frequency of the sound spectrum. The variation in airflow 

was achieved by the subjects varying effort during breathing. Kraman's experiments 

would not change the diameter of the bronchi to the same degree that histamine

challenge does, and consequently changes in spectrum of sound are correspondingly 

smaller. In our investigation the measures of airflow and percentage change in FEV1 

were a direct result of narrowing of the airways by the action of histamine.

The conclusion we draw from our study and from Kraman's is that the 

spectrum of breath sound during inspiration is a function of airway diameter. The 

diameter and geometery of the upper bronchi determine the pattern of turbulence 

that is set up during inspiration, and hence the spectrum of acoustic vibrations.
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It is generally believed that the spectrum of sound produced in the lung during 

inspiration may be dependent on airflow, airway geometery and lung volume, and 

consequently that a change in these parameters should result in a change in the 

sound spectrum produced. This study suggests that airway diameter is a major factor 

determining changes in breath sound spectra induced by histamine challenge. The 

consistent relationship between breath sound and airway calibre is of practical use 

clinically [11] but can be interrupted by factors which interrupt sound transmission 

[12].

Any analysis of breath sound where recordings are compared between groups of 

individuals must also account for the filtering effect of the chest wall on the sound 

detected. In this study the changes in breath sound were induced in the same patient 

with, we presume, similar chest wall characteristics throughout the study.

A further development of this method using breath sound analysis as an 

indicator of changes in airway calibre might be of interest during challenge with 

provocation techniques such as isocapnic hyperventilation, exercise, cold air or antigen 

challenge where the site of airway constriction is uncertain.
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2.5. Lung Sound And Respiratory Disorder

2.5.1 Introduction.

This study was conducted on 26 subjects with respiratory disorders resulting from 

various diseases. The aim was to assess the correlation between the spectrum of lung 

sound, the condition of the airways and the state of the lung tissue. The extent to 

which sound is filtered by the lung structure is difficult to characterise in normal

subjects and the changes in transmission produced by pathological changes in the lung

is unknown [1,2]. Factors determining the generation of lung sound, primarily airway 

geometery, and one component of the transmission of lung sound, the alveolar 

structure, are examined in this study. The influence of the pleural membrane and 

chest wall on transmission is unknown. In a previous study of a single subject it was 

shown that the transmission of lung sound is greatly altred by pleural effusion 

[Appendix 1]. No subject in this study had such a condition.

Abnormalities in lung structure can be seen by radiological examination but 

diffuse changes cannot be easily be quantified. For this reason x— ray examinations 

were not used in this study. A reduction in diffusing capacity is a feature of

fibrotic lung diseases (rheumatoid and asbestosis groups). Therefore diffusing capacity 

(DLCO) was used as an estimate of the extent to which the alveolar structure was 

damaged.

The increase in the median frequency of lung sound during inspiration with a 

reduction in FEV1 was demonstrated by the histamine challenge study [Section 2.4.]. 

The study now described confirms this result and seeks to account for any changes in 

sound spectrum resulting from changes in alveolar structure. Data was collected for 

present study and for the histamine challenge study over the same period of time. 

The results of the latter study were not known when the present study was being

designed.

2.5.2 Pathology

Several lung conditions are associated with rheumatoid disease. These include 

pleural thickening, pleural effusion and rheumatoid fibrosing alveolitis, a diffuse
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interstitial disease of the lung. The latter is considered to be a variant of diffuse 

fibrosing alveolitis which is characterised by diffuse inflammitory processes in the 

lung, beyond the terminal bronchioles. The alveolar walls thicken and show a 

tendency towards fibrosis, and abnormal cells are found within the alveolar spaces. 

The degree of fibrosis may progress from changes in alveolar walls only, through a 

blurring of the alveolar architecture to severe distortion of the normal lung structure. 

The changes in lung function which accompany the pathological changes are the 

restrictive defect, where vital capacity is reduced but the FEV1/FVC ratio is normal, 

and a reduction in diffusing capacity. Dyspnoea and crackles are common features of 

rheumatoid fibrosing aveolitis [3].

The cause of fibrosis in asbestosis is the inhalation of asbestos dust. Needle 

shaped asbestos particles, typically 50pirn in length and 0 .5 pim in diameter, are 

responsible for the harmful effects. These particles are too long to be distributed 

throughout the lung and they tend to follow the axial bronchi into the lower lobes. 

The small diameter of the particles increases their chances of penetrating far into the 

lung. When asbestos needles reach the alveoli they are coated by fibrous tissue. The 

aveoli are eventually obliterated by fibrosis. The first functional abnormality to occur 

is a reduction in diffusing capacity which often occurs before x— ray evidence can be 

identified. A progressive restrictive defect may develop. The early reduction in 

diffusing capacity is presumed to be caused by alveolar lesions before these have 

progressed to diffuse fibrosis. Crackles are common [3].

Sarcoidosis may also cause a restrictive defect, when diffusing capacity may be 

reduced. Pulmonary fibrosis may occur in the later stages of this disease [4],

2.5.3 Method.

Each subject underwent the routine dynamic ventilatory tests where FVC and 

FEV1 were measured. Diffusing capacity was measured at the same time. Lung 

sounds were recorded on the same day or within one week of pulmonary function 

testing.

Lung sound was recorded during early inspiration at three sites on the posterior
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chest wall. These were the left lower (2cm below the inferior angle of the left 

scapula), right lower (2 cm below the inferior angle of the right scapula) and right 

upper (at the level of the superior border of the right scapula) locations. The 

microphone, logging and spectral analysis were performed using the equipment 

described previously (Section 2.3.). A minimum of three recordings was made at each 

site, the quality of the sound and the presence of crackles or other extraneous 

sounds was noted for each recorded breath. The power spectrum of each recording 

was characterised by calculating the median frequency, F50, and F85 over the 

frequency range 100Hz to 1500Hz. The intensity (dB) of each breath sound recording 

was calculated over the range 100Hz to 500Hz as most normal inspiratory breath 

sound lies within this band. A figure for the noise floor of the microphone and 

recording system (including hand holding noise) was found. Power spectra whose 

intensity was within 3dB of this figure were rejected. Recordings where crackles or 

other extraneous sound occurred were also rejected. A single value of F50 was 

obtained for each recording site by averaging the F50 values of each breath sound 

recording made at that site. A single value of F50 for each subject was obtained by 

averaging all F50 values from all recording sites. The same method was used to find 

the average values of F85. In the following analysis all values of F50 and F85 are 

average values.

2.5.4. Results

The pulmonary function measurements of each patient are shown in Table 2.5.1. 

Three subjects had severe restrictive defects, three had severe obstructive defects and 

in ten cases the diffusing capacity was below the predicted normal range. The age 

range of the group as a whole is 20 to 75 years. This is partly due to the length 

of time the conditions being studied take to develop which determines the availability 

of suitable subjects. Eighteen of the twenty six subjects were in one of the following 

groups: asbestosis, rheumatiod, sarcoidosis, the remainder were having treatment for a 

range of pulmonary disorders. No single group is large enough for a statistical 

analysis of that group to be valid so the data set was analysed as a whole. This is
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Subject
Code

Age
yrs

Gender FVC
1

FEV1
1/s

DLCO 
mmol min— 
kPa— 1

Diagnosis
1

QA 6 8 M 2 . 2 2 0.67(24) 2.6(45) RHEUMATOID
PD 6 8 M 3.04 0.79(26) 7.2(114) RHEUMATOID
PF 64 F 2 . 1 0 1.05(56) 2.6(45) RHEUMATOID
RC 62 M 3.55 2.03(68) 6.5(96) RHEUMATOID
RA 27 F 2.60 2.30(71) 5.7(80) RHEUMATOID
QG 50 M 4.1 2.60(69) 8.1(99) RHEUMATOID
RB 70 M 2.40 0.70(25) 4.8(78) ASBESTOSIS
OD 63 M 2.55 1.90(58) 6.1(79) ASBESTOSIS
NB 67 M 2.83 2.19(88) 6.3(101) ASBESTOSIS
ND 57 M 3.05 2.25(68) 5.3(70) ASBESTOSIS
NE 56 M 3.45 2.45(76) 8.1(104) ASBESTOSIS
QE 60 M 3.55 2.60(75) 6.8(84) ASBESTOSIS
RD 58 M 4.70 3.00(73) 9.9(112) ASBESTOSIS
MF 39 F 2.40 1.95(66) 6.3(77) SARCOIDOSIS
PA 52 M 2.25 2.05(59) 5.6(69) SARCOIDOSIS
PB 40 M 2.60 2.15(56) 5.4(57) SARCOIDOSIS
SE 48 M 3.91 3.29(85) 7.4(82) SARCOIDOSIS
RG 42 M 5.45 3.85(92) 11.1(116) SARCOIDOSIS
PG 57 F 1.47 0.64(29) 5.8(98) BRONCHIOL.
SG 52 M 2.50 1.05(28) ASTHMA
ME 62 M 3.19 1.42(44) 4.2(68) EMPHYSEMA
OA 2 0 F 2 . 0 0 1.74(48) 3.6(39) P.B.D .
QF 48 M 3.85 3.19(77) 7.5(76) P.B.D.
QB 62 F 2.75 1.90(88) 4.8(73) P.B.C
NF 37 M 3.91 3.15(73) 7.0(64) PULMN.
MD 75 M 3.80 2.05(67) 7.8(99) P.T.

Table 2.5.1. Pulmonary function data for each subject 
with age and gender (M =  male, F =  female). The values 
in parenthesis are a percentage of the predicted normal 
for each measurement.
BRONCHIOL. =  bronchiolitis 
P.B.D . =  pigeon breeders disease 
PULMN. =  pulmonary fibrosis 
P.T. =  pleural thickening 
P.B.C. =  primary biliary cirrhosis
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justified by the common pathological changes expected.

The occurrance of crackles during inspiration can have a significant effect on

the distribution of sound energy. Two spectra obtained from the same subject are

shown in Figure 2 .5 .1 ., the value of F50 is greatly increased where crackles are

present.

There is a correlation between FVC and FEV1 in this group of subjects. 

Figure 2.5.2. shows that FVC reduces with a reduction in FEV1 (r= 0 .80 , p<0.01).

There is also a reduction in diffusing capacity accompanying a reduction in FEV1,

this relationship is shown in Figure 3.5.3. (r= 0 .72 , p < 0 .01 ). A reduction in FEV1 is

often but not necessarily accompanied by reductions in DLCO and FVC.

The relationship between F50, F85 and FEV1 at each recording site is shown in 

Table 2.5.2. where in 11 of 16 calculations there is a significant correlation between 

lung sound and FEV1 and this indicates that the average F50 or F85 value calculated 

over all sites correlates best with FEV1. F50 is plotted against FEV1 in Figure 

2.5 .4 ., F85 is plotted against FEV1 in Figure 2.5.5. and the linear regression

parameters are given in Table 3.5.3.

The correlation between F85 and FEV1 ,FVC and DLCO are examined in Table

2.5.4. The strongest relationship is with FEV1. The correlation of F85 with FVC and 

DLCO is through their relationship with FEV1. This view is reinforced by comparing 

the change in F50 with FEV1 in this experiment with the change observed in the 

histamine challenge study. The values are — 64.5Hz/l and — 51.3Hz/l respectively (the 

figure for the histamine challenge study was obtained by considering four subjects 

whose baseline FEV1 measurements were similar, resulting in a significant relationship 

between F50 and FEV1 (r= —0.47, p<0.05)).
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PARAMETERS LOCATION

Right Left Right All
Lower Lower Upper Sites

r P r P r P r P

F50.FEV1 - 0 .5 9  0.05 - 0 .0 8  — - 0 .4 3  —

00d1 0.05

F50,FEV1% -0 .7 1  0.01 0.09 — - 0 .4 8  0.05 - 0 .5 5 0 . 0 1

F85.FEV1 -0 .4 3  — - 0 .6 3  0.05 - 0 . 6 8  0 . 0 1 - 0 .6 7  0.01

F85,FEV1% - 0 .5 2  — - 0 .6 2  0.05 - 0 .5 5  0.05 - 0 . 6 8  0 . 0 1

Table 2.5.2. Linear regression coefficients.

PARAMETERS a b xo r P
y. x

F50.FEV1 282.7 -  64.5 2.04 - 0 .4 8 0.05

F85.FEV1 626.4 -1 8 1 .0  2.04 - 0 .6 7 0 . 0 1

Table 2.5.3. Linear regression parameters.

y =  a +  b(x— xo)

PARAMETERS r P

F85.FEV1

F85.FVC

F85,DLCO

-  0.67 0.01

-  0.51 0.01

-  0.52 0.05

Table 2.5.4. Linear regression coefficients.
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SPECTRAL ANALYSIS
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Figure 2.5.1. Lung sound spectra.
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Figure 2.5.5. F85 against FEV1.
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2.5.5 Discussion

The results show a significant relationship between the distribution of energy of 

inspiratory lung sound and FEV1. This confirms the result of the histamine challenge 

study. Damage to the alveolar structure or small airways does not appear to be the 

major factor determining the spectrum of lung sound.

If lung sound was generated in the peripheral airways, as is believed by some 

researchers, then a significant alteration in sound spectrum would accompany a 

distortion of the structure of the small airways. The results of this study contradict 

this theory.

It is likely that sound is conducted through the airway walls of the periphery of 

the lung and this transmission is not significantly dependent on the structure of the 

tissue but on its density and elastic properties. In this study transmission and 

generation effects are not separable. Airway calibre is the main factor determining 

the sound spectrum and it is difficult to estimate the contribution of secondary effects 

due to transmission. Future work should measure the transmission properties and the 

elastic properties of the lung to determine the relationship between them and their 

influence on sound spectrum.

One consequence of proving a general relationship between airway calibre, 

through FEV1, and F50 is the possibility of assessing regional airway calibre by 

comparing the spectrum of lung sound recorded at one region to that recorded at 

another. Transmission factors would also have to be estimated. This would be a 

non— invasive technique for the assessment of regional airway diameter.
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2.6. Conclusions

The major conclusion of this chapter is that the frequency spectrum of 

inspiratory lung sound is dependent on airway calibre. A decrease in airway calibre, 

brought about by histamine or through disease, is associated with an increase in the 

median frequency of the inspiratory lung sound. These results have not previously 

been reported.

The method of analysing lung sound by examining the inspiratory part of the 

breath cycle, calculating the Fourier transform and then the median frequency, is

shown to be valid by the statistical significance of the results obtained. The author

believes that the method could be improved by the use of a microphone with a 

linear amplitude/frequency response in any future work.

There is no generally accepted method of assessing the transmission 

characteristics of the chest wall. Differences in sound transmission between various 

sites on the chest wall of an individual can be estimated, however the results suggest 

the method to be unreliable. The results of Section 2.5. suggest that differences in 

chest wall thickness are not a major factor in determining the frequency spectrum of 

lung sound. It is probable that if the inspiratory sound spectrum could be 

compensated by a reliable estimate of the transmission characteristic then the 

relationship between median frequency and airway calibre could be determined with 

greater accuracy.

Spectral analysis has been used to quantify the inspiratory lung sound detectable

at the chest wall. Experimental results indicate that the distribution of sound energy

is related to airway calibre. Consequently differences in the distribution of sound 

energy between different sites on the chest wall may indicate differences in the 

underlying lung structure, primarily, differences in airway calibre. Conventional 

methods of flow volume analysis cannot assess such differences.

55



Chapter 3 Logic. Resolution And Belief:

Literature Review And Theoretical Background
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3.1. Introduction

Chapter 3 presents the principles and techniques of automated theorem proving 

that are employed in the expert system developed by the author. The expert system 

is presented in Chapter 4. First order logic is the logic system most commonly used 

to express knowledge and is the system for which automated deduction techniques are 

most advanced. This chapter begins by developing the syntax (structure) and 

semantics (interpretation or meaning) of propositional and first order logic. An 

efficient theorem proving technique for first order logic, known as the resolution

principle, is briefly described.

A major theme of this thesis is that while many problems can be expressed in 

first order logic, this logic cannot clearly express many important concepts such as 

belief or time. Both of these notions can be analysed in terms of worlds models, 

where for example, a sentence may be true in a world representing the beliefs of an 

agent but false in a world representing the real world. The semantics of modal logic 

can be explained in terms of worlds models and logics of knowledge and belief are 

often based on one of the modal systems. Much of the analysis of the problem of 

combining the quantifiers of first order logic and modal operators also applies to

logics of belief. Modal logic provides sound systems on which logics of belief can be 

based, consequently a short study of modal logic precedes the study of belief logics 

in this chapter.

The deduction model of belief logic developed by Kurt Konolige is the system 

which is presented in most detail as much of the authors work is based on that 

system 1 The authors work (presented in Chapter 4) is concerned with the derivation

of new resolution methods for the deduction model of belief. The use of belief logic

to express knowledge in an expert system is explored: the practical implementation of 

this system relies on the new resolution methods.

The use of belief logic allows an agent to reason about the beliefs of other 

agents and to reason about its own beliefs. Through introspective reasoning an agent 

can discover what it does and does not know and can deduce facts which are
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possibly true when there is not enough information to make a sound deduction. This 

chapter concludes with a review of logic systems which allow deduction to be made 

when the available information is incomplete. Several of these logics use modal 

operators but the systems do not correspond to classical modal systems. A new 

method of reasoning with incomplete information is presented in Chapter 4.
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3.2. Logic and Resolution

3.2.1. Introduction

This section presents the definition of the logical language that will be used

throughout this thesis. The theory of the resolution principle as a rule of inference is 

introduced. The resolution principle is designed to be suitable for automatic

computation. Resolution has only one inference rule, in contrast to the ten rules of 

derivation which are available in propositional logic [1], Consequently the proof

algorithm need only apply this one rule rather than select from several [2]. The role 

of logical and Herbrand models is emphasised in this work. Resolution is a purely 

syntactic method for proving a set of logical sentences to be inconsistent. The

method can be made more efficient if the semantic nature of the sentences to be 

analysed is taken into account.

3.2.2. Polish Notation

The Polish notation for propositional logic differs from the standard notation in 

that the truth functional operators are written before the formulae on which they 

operate and not between them [3]. Propositional sentences in Polish notation contain 

no brackets as the syntax of the notation ensures that there is no ambiguity in 

deciding which operators apply to which formulae (brackets are often used 

inconsistently in standard form). These features make the notation useful where the 

logical sentences are to be manipulated by the computer language Prolog.

The truth functional operators are:

A Alternation (or) Example: A P Q P V Q
K Conjunction (and) Example: K R S R A S
C Conditional (if then) Example: C Q R Q => R
N Negation (not) Example: N R -R

Definition 3.2.1. The propositional language I is composed of the following symbols.

1. A set of statement letters eg. P ,Q ,R ,S...

2. A set of truth functional operators A,K,C,N.

A statement letter is an atomic formula, by definition.

Definition 3.2.2. A well formed formula (wff) of I is defined by the formation rules.

FR1. An atomic formula is well formed.
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FR2. If a  and (3 are well formed formulae, then

A a  K a  (3; C a  |3; N a  are well formed.

FR3. A formula is well formed only if it can be constructed by the 

above rules.

The following formulae are well formed:

A P Q :P or Q

C K P Q R :if P and Q then R

A A R S T :R or S or T (equivalently ((R or S)or T) :

(R or (S or T)) etc)

The statement letters are propositions which have truth values true or false. 

Propositions may be combined and the truth value of the resulting well formed 

formula calculated from truth tables. The truth tables for the four truth functional 

operators A,K,C and N are given in Figure 3.2.1. A formula may be tested for 

validity by the truth table method by calculating the truth value of the whole 

formula from those of its components for all possible truth value assignments of the 

components [4].

A 0

a
1 K 0

a
1

0  0 0 1 0  o 0 0

1 1 1 1 0 1

C 0
a

1 N
0 0 1 0 a 0 1

1 1 1 1 0

Figure 3.2.1. Truth Tables for the formulae

A a0, Ka|3, C a0  and Na

Formulae may also be proved to be valid by using inference rules, for example the

rule MP (Modus Ponens)[l] is the rule of derivation which allows Q to be deduced

from P and C P Q. A further type of proof method is known as analytic tableau

[5]. These are mechanical methods useful for demonstrating proofs but not suitable
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for automation. The cancellation technique developed by Snyder is an example of a

tableau method where only one inference rule can be selected at each step in the

proof [3]. However the proof may split and if it does so n times then 2 n sequences 

of atomic formulae are generated, each of which must be tested against certain 

criteria. The number of sequences becomes unacceptably large for long or complex 

formulae.

In propositional logic the internal structure of the proposition or statement 

cannot be analysed. This structure may be examined by expressing the proposition as 

the relationship of a property to an object [6 ]. For example 'snow is white' may be 

considered as a whole to be a proposition or to be the property 'white' defined on 

an object 'snow', written 'white ( snow )'. Objects (or individuals) may be constants 

or variables. The sentence 'everything has property P' is written khc P(x) where U is 

the universal quantifier. For this sentence to be meaningful some individuals (or 

objects) must exist and all must have the property P for the sentence to be true. It 

is clear that universally quantified formulae must be true generalisations of actual 

predicate— constant relations. The universal quantifier cannot be interpreted as 'most'

or 'some' which are more common notions in natural language.

Defininion 3.2.3. The predicate language IP is composed from the following 

symbols.

1 . A  set of predicates of degree n written Pn .

2 . A  set of individual variables x ,y ,...

3. A set of individual constants a ,b ,...

4. A set of functions of degree n written f11

5. A set of truth functional operators A,K,C,N.

6 . The quantifier symbols y, 3.

7. The symbols ( and ).

Before defining the construction of well formed formulae we define terms and atomic 

formula. A predicate is of degree n if it has n argument terms, P (x i,...,x n ) where 

x i...x n  are terms. If a variable, x, occurs in a formula where it is not defined to



be universally or existentially quantified, then x is said to be a free variable.

Definition 3.2.4. Terms are defined as follows.

1. A constant is a term.

2. A  variable is a term.

3. If f  is a function of degree n and t i . . . tn  are terms 

then f(ti...tn ) is a term.

Definition 3.2.5. Atomic formulae (atoms) are defined as follows.

If P is an n place predicate symbol and t i . . .tn  are terms then 

P (t i...tn ) is an atom.

Definition 3.2.6. A well formed formula of IP is defined by the formation rules. 

FR1. An atom is a well formed formula.

FR2. If a  and |3 are wff

then A a  /3; K a  0; C a  0; N a  are well formed.

FR3. If a  is a formula and x is free in a  then tfx a  and

3x a  are well formed.

FR4. A formula is well formed only if it can be constructed by the 

above rules.

The following formulae are well formed.

Ux C P(x) Q(x) For all x, if x has P then x has Q.

C Ux P(x) 3y P(y) If all x have P then there exists a y such that y

has P.

There is no ambiguity over the scope of the quantified variables in Polish notation. 

The existential and universal quantifiers are interdefinable:

3x a  =  N Ux N a  [4]

Semantics

Propositional formulae may be tested for validity by assigning truth values to the 

atomic formulae, however, in predicate logic individual variables cannot be assigned 

truth values. To test the validity of sentences in IP a model must exist. An IP
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model consists of a non-em pty  set D of individuals {u i...u i...}  together with a value 

assignment V and is written <  D ,V > . V assigns members of D to each individual 

variable, that V assigns u to x is written V(x)= u. For predicates of degree n V 

assigns sets of n members of D (n— tuples). For each predicate <£, V(4>) is some set 

of ordered n—tuples:

{ < Uj, ,...,u jn>  , < u j7 ,...,u jn>  ,...}  of members of D.

3> is said to be an n— adic variable.

Given V(xj) and V(4 >) for each individual variable xj and each predicate 4>, all 

formulae are evaluated as follows.

Definition 3.2.7. Validity in IP.

1. For an atomic formula, that is, one consisting of an n—adic 

variable $  followed by n individual variables x i .. .x n  (n > 0 )

V ($(xi ,...,xn ))=  1 iff <  V (x i) , . . . ,V(xn)> e V($)

otherwise V(<$(xi ,...,xn )=  0. The formula has the value 0 or 1 

according to the n— tuples of those assigned by V to <f>.

2. For the truth functional operators the truth values 0 and 1

are assigned according to the truth table definitions as in the logic I. 

eg. V(A a  0 )= 1  if V (a )= l or V (0 )= 1 , else V(A a  0)=O.

3. If a  is a wff and x is an invidual variable then

V(yx a ) = l  if for every IP assignment V' which gives to all variables 

except x the same values as V gives to them V'(oi)= 1 otherwise 

V'(q;)=o. This expresses the idea that if a  is true irrespective of the 

value assigned to x, then V(b*x a ) = l .

In this logical model a set of individuals is defined and these individuals (as 

n— tuples of individuals) are assigned to each predicate. Formulae are tested for 

validity by verifying that the value assignment for the individual variables of a 

predicate correspond to the values assigned by the set of n— tuples for that predicate. 

If a variable xj is universally quantified the model must define n— tuples such that 

each member of D appears at the position of Xj in the n— tuple, in at least one
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n— tuple, for the formula to be true ( otherwise there would be an individual which 

may be assigned to xj for which there would be no n— tuple).

3.2.3. Normal Forms

A sentence or formula in a logical language is equivalent to infinitely many 

other sentences. It is useful to be able to express all sentences in an equivalent 

standard form. Prenex normal form is one such form. It has the following syntactic 

structure:

Q 1 X1 Q 2X2 ...Qnxn M

Where Q i...Q n  are quantifier symbols, x i.. .x n  are variables and M is called the 

matrix and contains no quantifiers. All sentences in IP can be expressed in this

format. The matrix is a combination of atomic formulae which may be standardised

further by converting it to conjunctive normal form (c.n .f.) or disjunctive normal

form (d.n .f.). In c.n.f. the matrix is expressed as a conjunction of disjunctions of 

atoms. Any formula may be converted into conjunctive normal form by the standard 

logical equivalences, and will then have the structure:

Q ix i...Q n x n  K A cn A 012 ...A  cm— 1 cm

K A |3i A @ 2  ...A  |3n— 1 |3n

A 7 1  A 7 2  ...A  ym— 1 yn (1)

The remaining step is to eliminate the existential quantifiers from the prefix and to 

replace the corresponding variables by skolem functions. This can be done by 

considering variables such as y in the sentence Ux3y P(x,y) to be dependent on the 

choice of x, that is, y can be considered to be a function of x. The skolem 

transform of b<x3y P(x,y) is Ux P(x,f(x)) where f(x) is a skolem function which is 

new to the entire set of sentences under consideration. An important property of the 

skolem transform is that if a set of sentences is unsatisfiable then the skolem 

transform of this set will also be unsatisfiable [7,8].

A sentence is in clausal form if all variables in the prenex form are universally
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quantified and the matrix is in conjunctive normal form. The resolution principle 

makes use of the clausal form of sentences in attempting to prove a theorem. As 

sentences in clausal form have a standard structure the A and K operators need not 

be written and all variables may be assumed to be universally quantified. Thus 

equation ( 1 ) may be rewritten:

({a 1 . . .om},{|31 . . . |3n},.. .{7 1 .. .-yn}) 

where each clause is a disjunction of atoms enclosed by brackets {} and the set () is 

the conjunction of the member clauses.

3.2.4. The Herbrand Model and Herbrand's Theorem.

Earlier the validity of logical formulae was shown by referring to a logical 

model (which could be constructed in theory at least). In a similar way Herbrand 

models are used in studying the semantics of a set of clauses. The Herbrand universe 

of a set of clauses S is defined as follows.

Definition 3.2.8. The Herbrand universe. Let Ho be the set of constants appearing in

S. If no constant appears in S then Ho is to consist of a single constant, Ho={a}. 

For i= 0 , l ,2 . . .  let Hj+  \ be the union of Hj and the set of all terms of the form 

f^ t i .- .tn )  for all n place functions fn occuring in S, where tj, j = l ,2 . . .n  are 

members of the set Hj. Each Hj is called the i level constant set of S and H 

(H = Hoo) is called the Herbrand universe of S.

For example: Let S =  ((P(a)},{NP(x),P(f(x))})

H 0 =  {a}

H i =  {a,f(a)}

H 2 ={a,f(a),f(f(a))}

Hoo={a,f(a),f(f(a)),...}

The Herbrand universe is the set of ground terms (variable free terms) of the atomic 

formulae occuring in a set of clauses. The Herbrand universe may be infinite as in 

the example above [8 ].

The Herbrand model of a set of clauses is the set of all atomic formulae
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obtained by replacing the variables in each clause by members of the Herbrand 

universe. The Herbrand model is a set of ground atomic formulae (or ground

literals).

For example: The set of clauses S =  ((P(x)},{Q(a),Q(b),Q(c)}) 

has the Herbrand universe H =  {a,b,c}

and the Herbrand model M =  {P(a),P(b),P(c),Q(a),Q(b),Q(c)}

The truth of a sequence of formulae in clausal form (clausal sequent) can be 

established by showing that the corresponding set of clauses is unsatisfiable. The 

assignment of truth values to the ground literals in a model M determines whether M 

satisfies a given clausal sequent. This assignment is known as the Herbrand map. 

This is analagous to the method of proving the validity of predicate formulae by 

defining a logical model and verifying that the n— tuples of constants assigned by the 

model to each predicate correspond to those constants which may be assigned to

variables in a formula (according to the definition of the quantifier of each variable). 

Truth values can be assigned to to the members of M and a tree diagram 

constructed (map tree) to cover all possible truth assignments. If a node of the map 

tree assigns a truth value to a literal which contradicts that assigned by the sequent 

then the tree need not be expanded from that node. Otherwise the tree grows by 

selecting a ground literal from M and drawing two branches from the original node, 

assigning the values true and false for this literal to the left and right branches 

respectively.

For example: The sequent H(a),yx C H(x) M(x) = >  M(a) 

is true when S =  ({H(a)},{NH(x),M(x)},{NM(a)}) is unsatisfiable.

In this case M =  (H(a),M(a)} and the Herbrand map tree for S is shown in Figure

3.2.2. In this diagram each node which contradicts a clause in S is labelled with that 

clause. For the sequent under consideration the map tree is finite and the tip of 

each branch is labelled with a member of S (the tree is said to be closed).

Therefore the tree cannot be expanded further and there is no truth assignment 

which satisfies S. This procedure shows that NM(a) is not consistent with H(a) and
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M(a) (t,t) (t,f)
(NM(a)} (NH(x),M(x)}

Figure 3.2.2. A Herbrand map tree.

Ux C H(x) M(x) and therefore that the original sequent is true [7].

In this method the truth of a sequent is established by the fact that no

Herbrand model satisfies the set of clauses S derived from that sequent. This proof 

procedure makes use of Herbrands theorem which can be stated in two forms. 

Herbrands Theorem

1. A set S of clauses is unsatisfiable if and only if there is a finite unsatisfiable 

set S' of ground instances of clauses of S.

2. A  set S of clauses is unsatisfiable if and only if there is a finite closed 

Herbrand map tree for S.

The Herbrand map tree will be finite for a true sequent whether the Herbrand base 

is finite or infinite, this is known as the compactness phenomena (when the

Herbrand base is finite the Herbrand map tree is finite for a false sequent).

3.2.5. Resolution

The resolution principle is a method for combining two clauses from a set of

clauses S and deriving a resultant clause R. It can be shown that if S is unsatisfiable 

then SUR is also unsatisfiable, consequently resolution is a sound inference principle. 

The resolution principle is a generalisation of ground resolution which can be defined 

in the following way.

Definition 3.2.9. Ground resolution. If C and D are two clauses and L£C, M£D are



two ground literals which form a complementary pair then the ground clause 

{C— L}U{D— M} is called a ground resolvant of C and D. The set consisting of S 

together with all ground resolvents of all pairs of members of S is known as the 

ground resolution of S. If S contains the empty clause then S is unsatisfiable [2].

The connection between resolution and the map tree proof procedure (based on 

Herbrands theorem) is illustrated by the following example.

Consider the sequent H(a),C H(a)M(a) = >  M(a), which is true when 

S o= ({H(a)},{NH(a),M(a)},{NM(a)}) 

a set of ground clauses, is unsatisfiable. The Herbrand map tree for So is shown in 

Figure 3.2.3. The ground resolvant of the second and third clauses in So is {NH(a)} 

( M(a), NM(a) are the complementary pair equivalent to L and M in Definition 

3.2.9). A  new set of clauses S i=  ((H(a)},{NH(a),M(a)},{NM(a)},{NH(a)}) may be 

constructed by adding (NH(a)} to So, the map tree for this set is shown in Figure

3.2.4. The map tree for Si is smaller than that for So and this is typical where an

unsatisfiable set of clauses is expanded by adding a resolvant clause [7]. The first 

and last clauses of S 1 may be resolved to give the empty clause □ and the set 

S 2=  ({H(a)},{NH(a),M(a)},{NM(a)},{M(a)},n) may be constructed with the map tree 

shown in Figure 3.2.5. The empty clause has been derived by two steps of ground

resolution. By the resolution principle the sets S 2 , Si and So are unsatisfiable and

therefore the original sequent is true.

The above example shows how resolution proceeds when ground literals which 

form a complementary pair can be identified. Where the literals in a clause contain 

variables a method for correctly substituting terms for variables must be found. Two 

complementary literals must have the same predicates but opposite truth values and 

the terms on which the predicates are defined must be made equivalent under some 

substitution of terms (which may be a combination of constants, variables or 

functions). The following example shows how this can be achieved.
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H(a)

M(a) (t,t) 
{NM(a)}

0

(t,f)
{NH(a),M(a)}

Figure 3.2.3 Herbrand map tree for So.

H(a) (t)
(NH(a)}

(f)
{H(a)}

Figure 3.2.4. Herbrand map tree for S i.

0

I□

Figure 3.2.5. Herbrand map tree for S 2 .

Consider two clauses A= (P(x),Q(x)}

B={NP(f(x)),R(x)}

There is no literal (atomic formula) in A which is immediately complementary to one 

in B, however if f(x) is substituted for x in A then

A'= A a=  (P(f(x)),Q(f(x))} 

where {f(x)/x} is the substitution that is applied to A. The resolvant of A' and B 

is C= (Q(f(x)),R(x)}. The most general substitution which unifies two literals can be 

found by the unification algorithm (described in detail in Robinson [7]). In this 

example a  is the most general unifier of A and B, Acr is called a factor of A.

69



The resolution principle can now be stated for first order predicate logic.

Definition 3.2.10. The resolution principle. Let C and D be two clauses with no 

variables in common and L£C, M£D (L and M are two literals in C and D). If L 

and M have a most general unifier <j then the clause

{Co— Lo}U{Do— Mo}

is called a binary resolvant of C and D. The literals L and M are called the literals

resolved upon. This rule is known as the binary resolution rule.

The completeness of the resolution principle (i.e. the fact that it can prove all sets 

of unsatisfactory sets of clauses to be so) can be shown by a theorem based on the 

Herbrand map tree diagrams [7].

Hyperresolution.

The binary resolution rule shows how two clauses may be combined to derive a

third, where if C and D are the parent clauses with m and n literals respectively

then the new clause will contain m+ n— 2 literals. The binary resolution rule may be

restated as follows.

{C 1 a . . .C io\. .Cmo)
{Did...Pier...Dn<r>______
{C i a . . .C j_  i  i  a . . .Cmcr.D 1 a . . .D j_i 0 -,Dj+ j a . . .Dno)

where a  unifies Ci and Dj 

The rule can be used directly to generate new clauses by attempting to match each 

literal in each clause with every literal in every other clause. Where the literals are 

found to be complementary and the variables unifiable the new clause is added to

the clause set. This method will be referred to as scheme I. In this procedure the

number of matching operations is proportional to the square of the total number of 

literals. This search procedure is inefficient in two ways. Firstly, many clauses will be 

generated from which the empty clause cannot be derived, consuming computing time 

and resources. Secondly the meaning (or semantic content) of the original logical 

formulae is lost by regarding each clause simply as a list of literals, although from 

the syntactic viewpoint developed earlier the method of derivation is valid.

One method for reducing the search space of binary resolution is to order the
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set of predicates and to always begin by evaluating the predicate of greatest weight. 

A similar method is to evaluate the literals in a clause in a standard order, for 

example left to right. The advantages of ordering the literals is demonstrated in the 

next example.

Consider the set of clauses S= ({Li ,L 2 },{NLi},{NL2 }). In scheme I the binary

resolution rule can be applied four times:

1.{L i ,L 2} 2.{L i ,L 2} 3 .{Li} 4.{L2}
(N L il (NL 2I IN Lil INL2>
{L2} {Li} □ □

If the order requirement is in force then the resolution rule may only be applied

twice, steps 1. and 4. above. This method will be referred to as scheme II. The

inference map for scheme II is considerably smaller than that for scheme I as is

shown in Figure 3.2.6. The order requirement reduces the duplication of effort which

occurs in scheme I while the resolution method remains complete [1].

□

Scheme I Scheme II

Figure 3.2.6. The inference maps for resolution schemes I and II.

Where 1={L i,L 2} 2={N L i} 3={NL2} 4= {L2 } 5=  {Li}

The search space may be reduced further by restricting one of the parent clauses to

the set of unit clauses (clauses containing a single literal) and making the resultant

clause a unit clause also. This gives the hyperresolution rule:

Definition 3.2.11. Hyperresolution.

{L 1 a . . .Lmcr,Lncr}
{NLicr}

{NLmo4
{Lno}
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where Licr and NLio- for i= 1 to m are complementary literals under the most

general unifier a. Intermediate steps of the form

{Li 7 .. .Lm'y.Ln'y}
(NLi7>
{L-H-17- • •Lm'y.Ln-y}

are buried in order to see the operation as a whole. The inference map generated 

by this rule for the clauses in the previous example is shown in Figure 3.2.7. The 

empty clause is deduced in one step of hyperresolution.

□

Figure 3.2.7. The inference map for hyperresolution.

The literals L i...L m  in the rule clause are evaluated from left to right as in 

scheme II. If the logical rules are restricted to having a single atomic formula ot as 

the conclusion then the literal corresponding to a  will always be the right most 

literal and the only candidate for the resultant unit clause Ln. Such clauses are 

known as Horn clauses. In this way a semantic restriction (one based on the meaning 

of the logical rule) is written into the resolution method in such a way that the 

search space is reduced.

In hyperresolution the conditions of the rule are examined, in order, and if all 

can be satisfied the conclusion can be derived. The rules are viewed as deduction 

rules. From a syntactic viewpoint the order of the literals is of no consequence for 

the validity of binary or hyperresolution methods. In Definition 3.2.11 Li could be 

swapped for Ln, Li becoming the resultant clause and definition would remain true, 

however the search space would be increased if each literal could be considered as a 

candidate for Ln (removing the semantic restriction increases the search space).

The importance of considering only unit clauses for resolution with literals in 

the rule clause is shown by contrasting hyperresolution, a forward chaining strategy 

with the backward chaining search strategy.
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3.2.6. Forward and Backward Chaining.

A backward chaining strategy utilising Horn clauses attempts to match the left 

most literal in the goal clause with the right most literal in a rule clause or a unit 

clause. The resolvant becomes the new goal clause. If the empty clause can be 

deduced then the set of clauses is inconsistent, usually as the result of introducing 

the original goal clause [9], It is often necessary to begin a search from a given 

goal. This backwards chaining method adds a semantic restriction to binary resolution 

and can be stated formally.

Definition 3.2.12. Backwards resolution.

Clause 1 {G 1 cr.. .Gicr}
Clause 2 (Li(r...Lm(r.Ln(r}________

{L1 a .. .Lmo\G 2 cr.. .Gi<r}

where G kj and Ln<j are complementary literals 

The differences between hyperresolution and backwards chaining are explored in the

following discussion.

As proof depends on the derivation of the empty clause, this requires rule

clauses (or goal clauses) to be resolved with unit clauses otherwise the number of

clauses in the resolvant will not decrease. The concrete search space can be defined

as the original set of clauses linked to the unit clauses which may be derived from

them. The proof of a theorem will be found within this search space but this space 

does not correspond to an optimum or minimal search space. The search space of

hyperresolution is exactly the concrete search space.

During backward chaining the set of clauses that is generated is very different 

from those generated by hyperresolution. This is a problem when attempting to 

compare the size of the search spaces. The problem may be overcome by

representing an application of the backwards resolution rule by a point in a

'transformed' search space, labelled by the right most literal in Clause 2 (Definition

3.2.12.). Taking the clauses in Definition 3.2.12. as an example, {Lno} would be 

added to the search space. If one of the literals Li cr...Lm<r cannot be resolved away 

the backwards chaining algorithm will backtrack and attempt to find another clause to
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resolve with Clause 1. In this case {Lncr} remains part of the search space but as the 

conditions on which it depends cannot be satisfied this clause is not in the concrete

search space. This shows that the search space of this backwards chaining method 

may be greater than that of hyperresolution, however in practice the characteristics 

of the logical rules in question (i.e. whether they are recursive or not) is an 

important consideration in selecting the most appropriate search strategy.

3.2.7. Theory resolution.

Theory resolution enables the axioms of a theory to be built directly into the 

resolution procedure. The axioms themselves need not be directly resolved upon 

which can reduce the length of proof and size of the search space. The theory is a 

method for determining whether a set of literals is unsatisfiable, often using a 

non—syntactic method [10]. The ground case of a version of theory resolution can 

be defined:

Definition 3.2.13. Total narrow theory resolution. Let C i...C m  be a set of 

non— empty clauses. Let each Ci be decomposed as LillKi where Ki is a unit clause. 

Let R i...R n  be unit clauses.

Li UKi

LnUKm_____
Li UL2 U...Lm

where Ki ...Km ,Ri ...Rn is unsatisfiable

The theory, defined by R i...R n , determines whether the set K i...K m  is unsatisfiable.

For example theory resolution may be used to show the literal less— than(c,a) is

unsatisfiable under the theory T 1 , where T 1 defines the ordering of constants by

their position in the alphabet. By total narrow theory resolution:

(less— thanfc.al. greater— thanff.eH 
(greater— than(f,e)}
where less— than(c,a) is unsatisfiable in T 1

(K i=  less—than(c,a),R i= N less—than(c,a) in Definition
3.2.13.)

In theory resolution the resolvant of a set of clauses is not found by making literals
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syntactically identical but rather the unsatisfiability of a set of literals is determined 

by a theory and consequently there are semantic conditions on the resolution process.

3.2.8. Conclusions

The logical language IP and the logical model which determines the validity of 

sentences in this logic have been developed. From a discussion of normal forms and 

Herbrands theorem a mechanical theorem proving method is derived which can be 

shown to be complete. The parallels between the role of n— tuples of individuals or 

atomic formula in logical or Herbrand models respectively, are evident. In the

implementation of resolution on a computer reducing the size of the search space is 

important in finding solutions to problems. Hyperresolution, where inferences are

made from atomic formula, is shown to have a smaller search space than backward

chaining methods where the same semantic restrictions are used. The role of

semantics in reducing the search space of resolution and of theory resolution is 

important.

Both hyperresolution and total narrow theory resolution are used in the inference 

program which forms part of expert system described in the following chapter.
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3.3. Modal Logic

3.3.1. Introduction

This section presents a sketch of the semantics of modal logic and of the 

axioms which specify the various systems of modal logic. Of necessity, much detail is 

omitted and no proofs are presented. All of this material can be found in the 

references [1—7]. Modal logic allows the distinction between what is necessarily true 

and what is possibly true to be made. Modal notions, including knowledge and belief 

and concepts related to time, can be given a formal analysis using modal operators 

which correspond to the necessity and possibility operators of modal logic.

3.3.2. Semantics

The formal definition of the semantics of modal logic is given in terms of a set 

of worlds U and an accessibility relation R. For each world, R defines which worlds 

are accessible, wiRwj states that wj is accessible from wi. Initially no conditions are 

imposed on R.

A world system is written W =  <  U ,R > . To define truth and validity for

sentences in modal logic the truth value of each atomic sentence at each world u e 

U must be stated. For the case of propositional systems the set of worlds Si £ U at 

which the proposition Pi is true is specified. A modal structure n gives the truth 

values of atomic sentences in all worlds: rr =  <  U,R,S o . . .S n .. .> . A  world system 

may have many corresponding modal structures, n is said to be a modal structure on 

W or conversely W is the world system corresponding to rr. To state that P is true 

at a world u in a modal structure n we write UunP.

The symbols L and M represent the necessity and possibility operators 

respectively. The truth definitions are given in terms of validity (U).

1) UunLP iff tt(uRt  ̂ UtnP)

LP is true at u iff P is true at all accessible worlds

2) Uy^M P iff 3t(uRt A UtnP)

MP is true at u iff P is true at one or more accessible worlds [1,2]

The modal operators may be combined, in particular, sentences such as L...LP may
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be written as LnP. For LnP to be true at a world u P must be true at all worlds 

n— accessible from u. The n— accessible worlds are those which may be reached by n 

steps of the accessibility relation. A more detailed account of validity may be found 

in Lemmon [2].

Having defined the truth of modal sentences in terms of modal structures we 

now characterise the set of valid sentences syntactically. The propositional modal 

system K is specified by the axioms of propositional calculus A1, the rule of

inference MP, modal axiom A2 and the rule of necessitation RN.

A1 a) C P  CQP [ P=>(CPP) ]

b) C C P CQR C CPQ CPR

[ (P o fC P R ^ tP iJ Q ^ P D R ))  ]

c) C C CPI 1  P [ ((P^1)31) dP ]

MP P, CPQ derive Q [ P ,P3Q derive Q ]

A2 C LC P Q C LP LQ [ L(P^Q)3(LP3LQ) ]

RN from P derive LP where P is an axiom

(sentences in Polish form are written to emphasise their structure, the equivalent

sentences in standard form are enclosed by [])

The completeness theorem can be proven for K.

Theorem 3.3.1. Completeness of K. hĵ P if and only if UP. The set of sentences 

which may be derived by the axioms ( hKp) is exactly the set of valid sentences

(UP).

By imposing conditions on the accessibility relation we derive different logical 

systems based on K, these are known as extensions of K. This is achieved by adding 

one or more of the following axioms to A1 and A2.

T: C LP P
4: C LP LLP
B: C MLP P
D: C LP MP
5: C MP LMP
G: C MLP LMP

LP^P ] 
LP^LLP ] 
MLP=>P ] 
LP^MP ] 
MP^LMP ] 
MLP^LMP ]

T states that R is reflexive i.e. that all worlds are accessible from themselves wiRwi. 

4 states that R is transitive, if W1 RW2 and W2RW3 then W 1 R W 3 . In addition R may
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be a serial or symmetric relation or have a combination of these properties [3,6].

Quantification.

By associating a domain of individuals with each world a quantificational modal 

structure can be defined [4]. For each u e U a function tp defines the set of

individuals existing at u, t/{u). Symbols for predicates and individual variables are 

added to the logical language. In each world each n— adic predicate symbol has a set 

of n— tuples assigned to it which defines its extension in that world. To specify that 

in world h the predicate P(x) is true of some individuals in and false of others

we write </?(P(x),/i) =  T or F respectively. The set of individuals of which P is true

is called the extension of P in h. By convention P(x) is false if x y  With

these semantics neither the Barcan formula (CUxLP(x) UdxP(x)) nor its converse need 

be theorems of the logic.

The quantified modal logic M is specified by adding the axioms A3 to A2 and

A l.

A3 a) CP MxP where x is not free in P [ P^blxP ]

b) C UxCPQ C UxP UxQ [ Ux(P=>Q)3(UxP:>MxQ)]

c) UyC yxP(x) P(y) [ Uy(WxP(x)3P(y) ]

Axioms may be added to obtain extensions of M as was done for K.

3.3.3 Mechanical techniques for modal theorem proving.

Human logicians often use tableau methods to prove theorems in modal logic

[8,9]. These methods were not designed to have efficient computer implementations

but efficient proof methods can be constructed using similar principles, for example 

the matrix proof method [9,10]. This method is capable of proving theorems in many 

modal systems. A formula is written as a tree structure and each subformula is 

labelled according to the world it exists in. Only formulae which exist in the same 

world can be compared. This method does not require formulae to be translated into 

a clausal form. A similar non—clausal proof method has been proposed [12,13]. In 

this system rules determine which pairs of formulae can be resolved. These rules are 

derived from the accessibility relation of the logic system under consideration.

79



Proof methods based on the resolution principle have been implemented by 

several researchers [14—18]. In the most recent work the syntax of a modal formula 

is modified by the addition of an index which identifies the world a formula exists in 

[17,18]. The correspondence between the quantifiers y, 3 and the modal operators L, 

M can be exploited. A formula prefixed by the necessity operator is true in all 

worlds, a formula prefixed by yx is true for all values of x. The modal operators 

can be eliminated in favour of a variable or a skolem function as is done for 

ordinary variables. The resolution procedure must unify the variables/skolem functions 

which indicate which world a literal exists in, in addition to matching the literals 

themselves [18].
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3.4 Belief Logic

3.4.1 The Semantics of Knowledge and Belief.

The formal system characterising knowledge and belief proposed by J.Hintikka 

[1] has been influential in much of the theoretical and computational work on belief 

systems. Hintikka provided a basic semantic definition of knowledge in terms of a 

modal operator and distinguished it from the concept of belief. He also gave an 

account of nested belief, introspection and the problem of combining quantifiers and 

belief operators. Subsequent study of the latter problems has shown certain 

weaknesses in his formulations. Hintikka's work provides a valuable starting point for 

a formal analysis of belief.

To establish criteria to judge the consistency of statements such as 'a knows 

that p', four epistemic operators were defined:

Ka 'a knows that '

Ba 'a believes that'

Pa 'it is possible, for all a knows that'

Ca 'it is compatible with everything a believes that'

The truth functional operators were defined in the usual way. The distinction between 

knowledge and belief is that a known sentence is true of the world, whereas this 

need not be the case for beliefs. Formally, a consistent set of sentences X where 

KaP e X, remains consistent when P is added to X. The operators Ka and Pa are 

dual: definitions HI and H2 give the relationship.

HI) If X is consistent and if -JCaP e X then X+{Pa-^P} is consistent.

H2) If X is consistent and if -PaP e X then X+ {Ka-^P} is consistent.

The sentence PaP is true in a state of affairs fx if there is an alternative state of 

affairs /x* where P is true ( /a*  is an alternative to /x with respect to a). The 

consistency of Ka and Pa is determined by examining the alternative states of affairs, 

H3 and H4 give the definitions.

H3) If KaP e fx, and n* is an alternative to ix (with respect to a) 

then P e [i*.

83



H4) If PaP e fx, then there is at least one alternative to ft (with

respect to a), /x* such that P e jx*

Definition HI connects negative belief with the truth value of a sentence in an

alternative world. A method of proof by contradiction can be developed. If Pa—P and

KaP are true in /x then by H4 there is a state /x* such that —P e fx* but as /x* is

an alternative to /x, P e n* by applying H3 to KaP. The inconsistency of /x* proves

the inconsistency of Pa^P and KaP in fx. This form of proof can be used to show

KaKbP  ̂ KaP i.e. knowledge is transmissable and that the corresponding formula for 

belief is not true. Hintikka accepts the following theorem:

H5) If KaP e /x then KaP e fx*, where [x* is an alternative to /x

with respect to a.

In this theorem the alternativeness of the states of affairs is not well defined. The 

sentence Ba(P A —BaP) is shown to be false by making the implicit assumption that

BaP implies BaBaP, which is a statement about intropsection. By accepting H5, BaP

and BaBaP become equivalent, the introspective step in the derivation process is not 

made explicit. The first four definitions remain correct when Hintikkas' alternative 

states of affairs are replaced by the worlds or possible worlds models of modal logic.

3.4.2. Formal Models of Belief.

Many of the models of belief that have been proposed in recent years have

been based on the worlds model [2—6]. An alternative approach is to add a 

predicate such as KNOWS() to first order logic. World models may be translated into 

an equivalent first order system, however the semantics for the worlds models are

clearer and the syntax less complex.

The correspondence between a set of axioms for a modal logic of knowledge 

and the worlds model (based on Kripe semantics, see Section 3.3) has been 

demonstrated [2]. By imposing conditions on which worlds are accessible from which, 

belief may be distinguished from knowledge and types of introspection may be 

defined (sentences in a world representing known sentences must be true of the real
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world as before). This can be achieved by adding axioms to the logical system, the 

systems remaining sound and complete. The axioms include:

1. All tautologies of propositional calculus.

2. (KiP A Ki(P 3 Q)) 3 KiQ where i refers to the knower or agent

Axiom 3 states that what is known is true:

3. KiP  ̂ P

Axiom 4 defines positive introspection:

4. KiP  ̂ KiKiP

Axiom 5 defines negative introspection:

5. —KiP 3 Ki-KiP

Axiom 3— 5 may be combined with 1 and 2 to give different logical systems 

corresponding to different models of knowledge, and are equivalent to the axioms of 

modal logic. It is implicit in these systems that all consequences of the agents beliefs 

are believed: the agent is said to be omniscient. This does not model human 

knowledge and more importantly it is not practical to compute all the consequences 

of a set of sentences.

One solution to this problem is to distinguish between implicit and explicit 

belief. All logical consequences of the explicit beliefs are included in the set of 

implicit beliefs. A logic of awareness can be derived from this approach where a

sentence is believed, Bi\p, if it can be derived from sentences which the agent is 

aware of, Aia [3]. In contrast implicit belief, Li<̂ , includes all consequences of

believed sentences with no restrictions. Omniscience is prevented by defining which 

sentences the agent is aware of at a given time. The authors do not show how this

method could be implemented on a computer.

A first order logic for knowledge representation based on relevance logic has 

been proposed [5]. This logic has the property of being decidable. The logic does 

not include the implication operator and is weaker than standard first order logic 

(which is sem i-decidable). The advantage of this logic is that the conclusions which 

can be drawn from a database can be made by fast computational methods and
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omniscience is avoided.

A worlds model was used by Moore [6 ] to formulate a theory combining

knowledge and action. Knowledge and action interact, events change what is known,

and knowledge is required before action is taken or planned. The worlds that are 

compatible with what an agent knows change after the (known) occurrence of an

event. An event or action may produce new information, and an agent may require

to reason about such situations. Moore based the semantics of his theory on a worlds 

model and then translated it into first order logic.

In summary, models of belief derived from modal logics provide the clearest 

semantics. A belief logic which is equivalent to a modal logic has the property of 

omniscience. Quantification into the context of belief is a problem which will now be 

examined.

3.4.3. The Quantifying— In Problem.

It has been argued that in certain contexts names referring to individuals do not 

occur referentially, that is a different name for the same individual cannot be 

substituted and the sentence remain true. These contexts, which include belief, are 

known as opaque. The conclusion is drawn that it is never correct to substitute or 

quantify into opaque contexts [7]. Two examples are often quoted: 

la) Philip believes that Tegucigalpa is in Nicaragua,

lb) Tegucigalpa =  the capital of Honduras

2) Ralph believes that someone is a spy.

In la) if Tegucigalpa is replaced by 'the capital of Honduras' we get 'Philip

believes that the capital of Honduras is in Nicaragua'. This is an example of a 

non—referential context. The derived sentence is true if Philip believes lb ), otherwise

the substitution cannot be made. The problem is solved if the names given to objects

that an agent believes to exist are defined as part of the agents beliefs. The names 

need not correspond to those of the real world.

The second example may be re-stated formally in two ways.

Let Br =  Ralph believes, S be the property of being a spy
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3a) 3x Br S(x) There is someone whom Ralph believes to be a spy

3b) Br 3x S(x) Ralph believes there are spies.

The interpretation of these sentences is quite different. When belief operators are 

combined with quantifers the order in which they appear determines the interpretation 

of the sentence. If 3a) is true then 3b) is also true, but not conversly.

Hintikka proposed that 3x Br S(x) may be derived from Br S(b) and 3x Br

(b= x) but not from Br S(b) alone. The sentence 3x Br (b= x) means that Ralph

knows who b is.

The following sentences are consistent,

4) Watson knows that Mr Hyde is a murderer.

5) Watson does not know that Dr Jekyll is a murderer.

when in fact Mr Hyde =  Dr Jekyll but Watson does not know this. Hintikka rejects 

the Barcan formula (Ux Ka p(x) => Ka Mx p(x)) but accepts its converse as being 

necessarily true (agents can only 'know' about actually existing individuals). Another 

solution to the quantifying— in problem is to define the relationship between the 

names of objects in the real world and in an agent's beliefs by a naming function,

this solution is adopted in the deduction model.

3.4.4. The Deduction Model

The model of belief adopted in the design of the expert system (Sections 4.2,

4.3) is based on the deduction model of belief. This model, its logic and proof

theory have been developed by Konolige in a series of papers [8—11]. The model is

described in detail in this section. The tableaux and resolution proof procedures are

presented to illustrate how deductions in a belief system can be carried out and 

automated. The correspondence between the deduction model and the systems of

modal logic is discussed in section 4.2.

Typically a belief system will be composed of a base set of sentences, a set of 

inference rules and a control strategy. In order to answer a query deductions are

made by applying the inference rules to the base set. How this is done in practice is
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determined by the control strategy. The relationship between the three components is 

shown in Figure 3.4.1.

Query 
-» Response

Figure 3.4.1. The belief system.

In this model belief is interpreted as follows:

tp e bel( Ralph ) 'Ralph believes <p'

-y> e bel( Ralph ) 'Ralph believes -y>%

<p /  bel( Ralph ) 'Ralph does not believe <p'

The language in which Ralph's beliefs are expressed in is called his internal language 

L. (p is an expression in L. A belief system may have partial information about the 

world, for example if neither y  nor —7  is a member. The belief set is contradictory 

if both y  and - y  are members. To avoid having to formalise a complex inference 

process in order to predict its behaviour it is assumed that the inference rules are

deduction rules and the control strategy applies these rules to the base set to

generate all consequences. No distinction is drawn between a base sentence and a 

derived sentence: both may participate in further deductions. The belief set is said to 

be closed under deduction. Which inferences are actually made is determined by the 

deduction rules, therefore not all logically true sentences are inferred (the deduction 

rules will usually be logically incomplete). As a result the deduction model does not 

have the property of omniscience. The deduction rules must have fixed and finite 

premises which are effectively computable. That the control strategy applies the

deduction rules exhaustively can be stated formally as the deductive closure property:

B is the base set of beliefs of an agent 

If B hrv7 and B^Hri/- then B hri/-

where B Hr«^ means that there is a proof of <p from the premises B using rules R.

Base Beliefs
Control
Strategy

Deduction Rules



The deduction structure is the formal mathematical model of the belief system, 

written < B ,R > . The set B is a set of sentences, the base set of beliefs, in a logical 

language L, the language of belief. R is the set of deduction rules. 

bel( < B ,R >  ) =  by definition {^| B i-r ^}

The Language LB

To maintain a consistent notation throughout this thesis Konolige's language 

LB will be expressed in Polish notation. A modal construct [S]y? is introduced to 

represent belief. The sentence <p is expressed in the internal language and S denotes 

the agent.

Definition 3.4.1. The formal definition of LB. Let {S o ,S i...}  be a countable set of 

agents and L the internal language of the agent under consideration. A sentence of 

LB, based on L, is defined by the rules:

1) LB includes the sentences and formation rules of first order logic.

2) If <p is a sentence of L then [Si]<p is a sentence of LB.

If L is a first order language [Si]3x P(x) is a sentence of LB. To allow beliefs to be 

nested the internal language L must be replaced by LB. Both the internal language 

and the deduction rules are fixed and become parameters in the interpretation of LB. 

The interpretation is called a B(L,p)— model where p(i) defines the deduction rules 

for the agent Si. The base set of sentences for Si and p(i) make up the deduction 

structure di= <  B,p(i)> .

To connect derivations in the internal language with the truth value of sentences 

in the external language the attachment lemma is required. Definition 3.4.2. states 

the lemma, a proof can be found in Konolige [8 ].

Definition 3.4.2. The attachment lemma. The denumerable set {[Si]r, N[Si]A} is 

B(L,p) unsatisfiable if and only if for some cr e A, rhp(i)0 \

For example let p(i)= {C P(a) Q(a)} if G o= (N[Si]Q(a), [Si]P(a)> then Q(a) e A and 

(P(a)}|-p(j)Q(a) so Q(a) is not believed but may be derived so Go is unsatisfiable.
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Quantifying— in and the deduction model.

The model of the first order language IP was defined by a set of individuals D 

and a value assignment V, written < D ,V > . To allow for quantification in the 

context of belief this model structure is modified. The formation rules of definitions 

3.2.4—3.2.6  (Section 3.2.2) are retained. The components of the new model are 

defined:

Let U be a universe of individuals

<p is a mapping from constants to individuals in U

v o is an assignment of truth values to all ground atoms containing only 

elements of U.

Definition 3.4.3. Let m= <  <p,v o,U> be a model structure. By UmP we mean that m 

assigns the sentence P the value true. By PV we mean the sentence P with all of its 

constants replaced by the corresponding elements of U. U satisfies the rules:

1. If P is a ground atom UmP iff v o(PV9)=  true

2. UmK P Q iff U mP and

UjnA P Q iff UmP or

UjnC P Q iff UmP or

UmNP iff J4 P

3. Um^x P iff for some k e U, U ^ k *

(every x in P is replaced by k)

4. ^n*^ ^ ^  ôr k e U, UmPk*-

This definition of a quantified logic does not assume that names and individuals are 

equivalent. Before examining the quantifying-in problem the functions <p and rj are 

set up.

Letting <p be the denotation function, rj the naming function, they have the following 

relationship:
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^(mayor(NYC)) =  David Dinkins :the individual

rj( David Dinkins) =  David-Dinkins :the name

* mayor(NYC)

we have <^7ji(k)) =  k the denotation of a name (in the belief system of i)

is the individual

but rji((f(a.)) ^ a

For 3x [S] P(x) to be equivalent to [S] P(c) (a sentence where the existential

quantifier has been eliminated) the constant c must refer to the same individual that 

x does. Such constants are called id constants. If the quantifed sentence refers to k 

e U then [S] P(k) is true and [S] P(c) is true when c =  i7s(k)> ^ at when c is

the name in the belief system of [S] of the individual k.

The quantified language of belief LBQ can now be formally specified by

Definition 3.4.1. with the addition of the bullet operator . to the language: *x is a

term if x is a term. This operator is applied to constants substituted into the context

of belief.

3x [S] P(x) has the skolem analog [S] P( .a)

[S]3x P(x) has the skolem analog [S] P(a)

•a is equivalent to an id constant c,

c = i7sMa)) = VSM *

The naming function 77 must be defined for each agent. It then becomes a parameter 

of the model.This method allows sentences in BLQ to be skolemized correctly. The

quantified B(L,p) model is specified by the tuple <  p,v  o,U ,D ,t/> . The first three

elements of this tuple define the first order model structure (Definition 3 .4.3.), D is 

the set of deduction structures D= (d o ,d i,...}  where di= < B ,p (i)>  and

7̂ = { 7 7 0 , 7 7 1 The deduction structure (the set of base beliefs, B, deduction rules,

p(i), in language L) and the naming map, 17̂ , is defined for each agent.

*The naming function is used to solve the quantifying-in problem by associating a
name in the beliefs of an agent with an individual in the real world.
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Analytic Tableaux

Analytic tableaux are useful for demonstrating proof techniques. The following 

example is typical of their use. The rules which define correct inferences in the 

tableau will be introduced as required. A tableau proof of the sentence C [S] C P Q 

C [S]P [S]Q can be constructed as follows, where T and F stand for true and false. 

In the external language,

1) F C[S]C P Q C[S]P [S]Q) Negate the initial sentence.
2) T[S]C P Q 1) Apply the Ca|3 reduction rule
3) F C [S]P [S]Q 1) to get 2) and 3) from 1).
4) T[S]P 3) Apply the CajS reduction rule
5) F[S]Q 3) to get 4) and 5) from 3).

P, C P Q f-R Q 2),4),5)

Q can be deduced in [S]'s beliefs, that is, [S]Q is true, this contradicts line 5) 

therefore the tableau closes.

As the tableau closes the negation of the initial sentence must be false, hence the 

initial sentence must be true. This example uses the tableau rule that the sentence F 

Ca|3 may be replaced by Ta and F/3, this rule is derived from truth tables. If the 

sentence Co/3 is true then the tableau splits and Fa, T|3 head the branches.

A contradiction has been derived within [S]'s beliefs, namely Q and NQ. The 

tableau method can also be used to represent the deduction of Q in the belief 

system. This is done by replacing the final line of the above proof by the following

tableau which represents [S]'s view of the world.

6) FQ 5) A negative belief sentence.

7 ) TP 4) Add positive belief sentences.

81 T C P O__________ ________________ 2). Apply the T Ca(3 rule, the

9) FP 8) 10) TQ 8) tableau splits into two.

* * Both branches close.

This tableau was constructed by adding TP when T[S]P is a formula in the main

tableau. The tableau begins with a negative belief sentence as by the attachment rule

when F[S]Q is added to a branch of the main tableau we know that the branch will

close if Q can be shown to be a belief of [S]. The lines 6 ) -1 0 )  above are a proof

of T[S]Q by refutation and such a tableau is called a 'view' for agent S.
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The splitting which occurs in analytic tableau becomes a problem when such 

proofs are automated. It is now shown that this problem can be overcome by a

resolution method. With the concept of attachment and the use of views for agents, 

a resolution rule for belief sentences can be derived.

B— Resolution

The resolution scheme proposed by Konolige adds the B— resolution rule to the 

binary resolution rule. Sentences in LBQ must be converted into clause form. The

conversion process is the same as for first order logic with the addition that the

bullet operator must precede quantified— in variables. Sentences in the scope of belief 

remain in Polish form. It can be proved that a set of sentences in LBQ is

unsatisfiable when its skolem transform is unsatisfiable. Herbrands theorem holds for 

LBQ, that is, a set of sentences in LBQ in skolem normal form is unsatisfiable if 

and only if a finite set of its ground instances is unsatisfiable. The B— resolution rule 

is an instance of the total narrow theory resolution rule (Section 3.2.7).

The B— resolution rule

[Si] n i,A i
[Si] n 2,A 2

[Si] Hn,An 
 NfSil \L.A

A 0 ,A i© ,...A n 0  when ITi,  ITri #

This rule uses the attachment lemma as it links unsatisfiability in the internal and 

external languages. To allow for free variables in the derivation process the bullet 

transform is replaced by a schematic function, g(r) replaces *t . The derivation 

operator may be replaced by a resolution based refutation proof as was done for the 

tableaux method. Both binary and B— resolution rules are used in the following 

example.
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1) {[R]P(a)>
2) (NP(b)}
3) (Q(x), P(x), [R]P( »x)}
4) {N[R]K P(a) P( *y), Q(y)}
5) (NQ(b)}

the following clauses may be deduced

6) (Q(b), [R]P( .b)} resolve 2) and 3)

as 4) contains a negative belief literal, open a view in an attempt to resolve it 

View R Remainder Q(y)

a) (NP(a), NP(g(y))} from 4) (see below)
b) {P(a)} add 1)
c) (NP(g(y))} resolve a) and b)
d) {P(g(b))> add 6) add Q(b) to the

remainder list
e) □ resolve c) and d)

7) {Q(b)} add the remainder of the view,
under the substitution {y/b}

8) □ resolve 5) and 7)

Views may be opened by a negative belief literal, positive beliefs may be added and

resolutions may be performed in a view. The example shows the procedure for

resolution in the quantified language of belief. The decision to open up a view 

appears at an arbitary point in the proof, if there are several negative beliefs several 

views may be opened. Konolige envisages that the activity of the system be

interspersed among many different refutations. This problem has been termed 

non—effectiveness [12] and is a problem with the practical implementation of

B— resolution. A solution is presented in section 4.2.
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3.5 Reasoning With Incomplete Information

3.5.1. Introduction.

All deductions that can be made from a set of sentences in standard first order 

logic using the inference rule MP are valid. The inference procedure is sound. The 

consequences of a set of sentences So remain true when the set So is expanded by 

the addition of new sentences. Deduced sentences may not be retracted upon learning 

new information. This property is known as monotonicity.

If our knowledge is incomplete then conclusions must be drawn from incomplete 

information else nothing can be concluded. This is not an unusual situation in human 

reasoning but one in which sound, mo no tonic deductions cannot be made. Logic 

systems which formalise reasoning with incomplete information do so by making 

assumptions to fill the gaps in the information. The assumption may be about what 

is usually true of the world or about what is or is not known: these patterns of 

reasoning are known as default and autoepistemic reasoning respectively. The 

approaches are interdependent and in many logic systems they are combined.

Monotonicity may be defined in the following way, where S o and S i are sets of 

sentences in a logical language:

If So £ S i  then {W| S o h W } c ( W |  S 1 h W }

Logics where this condition is not met are called nonmonotonic [1]. Such logics are 

required in making inferences from incomplete information, as an assumed sentence 

Wi, and its consequences Wj,Wk may be withdrawn on learning NWi.

The most common example of nonmonotonic reasoning is the use of the closed 

world assumption. Prolog uses this principle to derive NP when every possible proof 

of P fails. Further facts can be added to a Prolog program which may enable P to 

be derived. The first nonmonotonic logics addressed the problem of using default 

information, these were Default Logic [2] Circumscription [3,4] and Non Monotonic 

Logic [5]. Autoepistemic logic [6—8] was an improvement of Non Monotonic Logic 

and several related logics have been developed [9,10]. The following problems are 

typical of those addressed in the literature.
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Problem 1. If most birds can fly and Tweety is a bird deduce that Tweety can

fly, unless Tweety is a penguin or an ostrich.

Problem 2. Consider the sentences MC  ̂ ND, MD  ̂ NC where M is a modal 

operator interpreted as consistency. There are two distinct models for these sentences, 

one where D is false and C is true and a second where C is false and D is true. A

model may be defined by associating truth values with propositions to give what is

known as a set of fixed points. In this problem there are two distinct sets of fixed 

points. Two problems arise, the first is to expand the set of fixed points and retain 

consistency, the second is how to choose between the competing models.

In the following survey of nonmonotonic logics we present an outline of several 

important logics and discuss the issue of automation.

3.5.2. Closed World Reasoning.

Under the closed world assumption (CWA) negative information need not be

explicitly represented. The amount of negative information increases geometically with 

the size of the Herbrand universe [1] so it is impratical to represent all negative 

literals in a knowledge base. The CWA can be formally stated:

If K B ^ P  then infer NP 

This is a meta rule which states that NP may be inferred when P cannot be inferred 

from a knowledge base KB. The meta rule is applied uniformly to all predicates. 

The closed world assumption is realised by determining the naive closure of KB 

defined as follows: first the negative extension of KB is defined:

EKB =  (NP(a) I P is an n— ary predicate

a  is an n— tuple of ground terms

and KB / P ( a ) }

The naive closure of KB is KB U EKB: the knowledge base is extended by adding a

set of ground literals. In practice the derivation of NP is often shown by the ’failure

to derive' P strategy.

Predicate circumscription is a means of closing off the world for a particular 

predicate. The n— tuples which satisfy a predicate are assumed to be the only ones
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which do so, on the basis of the currently known facts. This method allows explicit 

completeness assumptions to be conjectured. McCarthy describes circumscription as a 

formalised rule of conjecture that can be used along with the rules of inference of 

first order logic [3].

McCarthy has presented a new version of his theory, named formula 

circumscription [4], This method can be viewed as minimising the number of 

abnormal facts through performing circumscription. In problem 1 above the abnormal 

case would be where Tweety could not fly. For a more complex version of this 

problem, formula circumscription gives the following completeness result: Wx flies(x) = 

K bird(x) N ostrich(x) (everything which flies is a bird and not an ostrich). Which 

predicates are abnormal is explicitly defined in first order logic. The method is 

unintuitive and its implementation required a second order theorem proving program.

3.5.3. Non Standard Logics.

The motivation for the Default Logic of Reiter [2] is the need to make default 

assumptions about incompletely specified worlds. The operator M is defined as 'it is 

consistent to assume' but does not have the status of a modal operator. The 

following default rule states that birds can fly if it is consistent to assume so.

bird(x): M flvfxl 
fly(x)

The closed world default rule for the predicate R can be defined:

:M NRfxI
NR(x)

The aim is to extend a first order theory by adding new literals, the result is a set 

of fixed points (or extension) which characterises the extended theory. There may be 

several or no sets of fixed points for a set of sentences which include default rules.

Reiter presents a resolution inference procedure which maintains a consistent set 

of clauses during backwards chaining. The procedure works within one extension of 

the theory in an attempt to prove a goal sentence. The advantages of this method 

are use of explicit default rules which have clear semantics and the existence of an 

automated inference procedure.
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Default reasoning provides plausible grounds for certain beliefs, in contrast 

Autoepistemic Logic makes valid inferences from sentences which may refer to 

everything an agent believes. The operator L is added to propositional logic. The

sentence LP is true if P is in the set of beliefs. Sentences such LP and NLP are 

context sensitive or 'indexical' because they refer to the entire set of beliefs [6—8] 

(in the belief logic of Konolige the belief operator does not have this interpretation). 

Autoepistemic reasoning is a theory of introspection and as such may be used to

make default deductions (eg. the sentence C K P LQ Q). There may be several

extensions of an autoepistemic theory as is the case for default theories. The 

extensions can be found by enumeration but this is inefficient [8]. No first order 

version of this logic has been presented.

3.5.4. Discussion.

The semantics of nonmonotonic logic are nonconstructive [6], that is, the 

conditions of a sentence may refer to the whole of what is and is not believed and 

are not simply a composition of conditions which once satisfied remain true. In 

Autoepistemic Logic, because what is provable is dependent on what is and is not 

provable there is a degree of circularity about autoepistemic sentences. The 

nonconstructive nature of nonmonotonic inference gives rise to difficulties in finding 

efficient theorem proving methods. The proof procedure has been shown not even to 

be semi decidable (first order logic is semi decidable)[ll].

Nonconstructive semantics capture an important part of commonsense reasoning,

where default or introspective reasoning may be used to reach tentative conclusions.

When these inference patterns are defined in a formal logic the existence of multiple

models and difficulties in automation follow.

The use of a belief operator is important as it is then possible to refer to what 

is or is not believed whereas such statements cannot be made in first order logic.

Where no belief operator is explicitly defined, a theory of what is derivable or

believed is often implicit in the default theory.
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To enable an expert system to make use of default reasoning the rule base 

would have to be redesigned and expressed in Default Logic. A major consideration 

would be to correctly specify the default inferences. The use of Autoepistemic Logic 

would require a similar approach (assuming a first order version of this theory could 

be defined). An alternative theory of introspection which makes use of the belief 

logic of Konolige and may be applied to an expert system rule base is presented in 

Section 4.4.
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Chapter 4 New Models For Expert System Design



4.1 Introduction

Expert systems are computer programs which apply the knowledge of a human 

expert to solve problems in a specific field. The knowledge they contain is usually 

expressed in symbols, in contrast with the more conventional programming methods 

designed to carry out numerical calculations.

Expert knowledge is often expressed as rules (production rules or rules in first 

order logic) in the format IF (condition) THEN (action). Expert rules may be used 

to prove a specific goal. For example the Mycin system, designed to diagnose a 

certain class of blood disorders, develops a line of reasoning by the backward

chaining of rules [1,2]. Expert knowledge may also be used in conjunction with other

programming methods. The Dendral system which was designed to identify the

structure of complex molecules employed a specialised routine to generate a set of 

plausible candidate molecular structures [3,4]. The molecular structure which most

closely fitted the mass spectrogram data was found by a set of expert rules. This 

technique is known as 'generate and test'. Expert knowledge was applied in both the 

generation and assessment of molecular structures in the Dendral system.

Rules may be used directly to derive conclusions, to guide the inference 

procedure or as part of a problem solving strategy. A probability or a certainty 

factor is often associated with a rule. Certainty factors are propagated through the

inference net. These techniques allow inexact reasoning to be carried out.

It is common for expert systems to be able to explain their reasoning by

demonstrating how a conclusion was deduced. A natural language interface can

improve communication between the user and the computer. These features can help 

with the acceptance of expert systems by those unfamiliar with A.I. programming. 

Expert system shells can provide a range of facilities which allow the user to 

concentrate on the task of acquiring and formalising the relevant knowledge.

The application of expert knowledge is central to the success of expert systems. 

The representation and manipulation of expert knowledge is important in the design 

of expert systems. The use of first order logic has been proposed because of its well

103



understood model theory and proof methods [5]. Semantic nets [6], frames and

production rules have been used to express knowledge, however the semantics and

proof theory of these systems relies heavily on intuition.

The improvement of expert system design requires an improved representation of 

the expert knowledge. First order logic has the clearest semantics of the simple

representation schemes but is not rich enough for many purposes. First order logic

may be extended in one of three ways: a modal operator may be defined to give a 

modal system [Section 3.3], predicates may be allowed to range over both predicates 

and variables to give a higher order logic, or a type theory may be employed [7].

This chapter investigates the use of belief logic for the representation of expert

knowledge. The belief logic employed is the deduction model of belief developed by

Konolige [8]. This logic corresponds to the K system of modal logic [Section 3.3.]. 

There are other modal systems which may be used to represent belief. The K45 

system and the corresponding belief logic are also investigated.

The model theory (the theory used to evaluate the truth of a logical sentence)

of belief logic is different from the model theory of f.o .l. The logical language and 

model theory employed by an expert system constrain the range of concepts that can 

be represented and manipulated. The expert systems developed in this chapter are 

based on belief logic which is capable of expressing modal concepts. Expert systems 

based on f.o .l. cannot express modal concepts.

Because of the critical role of the logical language in representing knowledge in 

expert systems, the author concludes that the use of new languages and model 

theories constitutes new models for expert system design.
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4.2 Resolution Methods For The Deduction Model

4.2.1. Introduction

The deduction model of belief [1,2] is developed by deriving two effective 

resolution methods for it. To show how this is done we discuss the relationship 

between the belief logic IB and the corresponding modal system K. This gives the 

sound semantics for negative or false belief sentences which is needed to re— examine 

the way views are opened for agents. Before presenting the resolution rules the 

language of belief is formally defined and the procedure for deriving the skolem 

transform is described and analysed. Algorithms for skolem conversion and resolution 

are presented.

4.2.1. The language IB.

Definition 4.2.1. The propositional language IB is composed of the following symbols.

1. A  set of statement letters (or atomic formulae) P ,Q ...

2. A set of agents Bo, B i ,  B 2 ...

3. A set of truth functional operators A,K,C,N.

4. The symbols '< ' and '> '.

Definition 4.2.2. A well formed formula is defined by the formation rules.

FR1. An atomic formula is well formed.

FR2. If a  and |3 are well formed formulae and B is an agent then 

A a  |3, C a  |3, K a  (3, Na, <  B> a  are well formed.

FR3. A formula is well formed iff it can be constructed by the above

rules.

Ordinary formulae are those which do not include the belief operator <  B o> and are 

given the standard interpretation. Sentences of the form < B o > P  are interpreted as 

'Bo believes P' or 'P is in the belief set of Bo'. We adopt Konolige's interpretation

of belief as outlined in Section 3.4.4.[1,2] Employing the deduction model of belief

means that inferences in the belief set of Bo are made using the deduction rules p 

only. We have the deductive closure property:

b e l(< B ,p > ) =  {<p:B \-p<p} (where B is the base set of beliefs of Bo)

*The language IB is the same as Konolige's language LB except for a modification 

to the syntax.
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4.2.3. An alternative semantics for the deduction model.

The modal system K corresponds to the logical system IB when one agent is 

considered and the deduction rules are complete (the deduction rules enable all 

logically true inferences to be made). The following pairs of sentences are equivalent 

under these assumptions.

logical system: IB K

sentence 1. < B o > P  LP

sentence 2. N < B o > P  MNP

Sentences 1. and 2. taken together are not satisfiable in K. Proof: in all worlds 

accessible from wo P is true by 1. but in at least one of those worlds P is false by

2. therefore there is no model satisfying both 1. and 2. (P cannot be both true and 

false in an accessible world).

In the deduction model of IB sentences 1. and 2. are not consistent either. To 

prove N < B o> P to be inconsistent with a set of sentences S a view is opened for 

Bo and a refutation proof for NP in that view must be obtained. This proves

< B o > N P  is false, therefore < B o > P  is true, contradicting 1. In this example 

sentences 1. and 2. are immediately contradictory but usually sentence 1. would be 

derived by the opening of a view as described.

In the model of belief as presented by Konolige negative belief eg N < B o > a  is 

not explicitly interpreted as a commitment to the truth of N o in some belief world. 

Konolige sees < B o > a  and N < B o > a  as contradictory sentences about Bo's beliefs. 

We extend this interpretation to state that there may be several belief worlds

compatible with what Bo believes, in one of which a  is false by the latter sentence 

but true in all belief worlds by the former, demonstrating a contradiction. The belief 

worlds correspond to the worlds of modal logic but are parameterised by the same 

language and deduction rules as in the deduction model. In future we refer to views 

in the sense that they represent deduction in a belief world. The proposed new

structure for belief worlds is illustrated in Figure 4.2.1.
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u n iv er se= U  
d 1 =<B, p>

REAL
WORLD

universe= U  

d 2=  <  B ,p>

BELIEF WORLDS 

OF AGENT Bo

Figure 4.2.1. Belief worlds and model structure for 
agent Bo.

The tuple <  <p,v o,U,D,rf>  specifies the model of belief 
where D =  { d i,d 2 ,...dn} such that d i...d n  are the deduction 
structures for agents l . . .n
and <p>v o,U ,i7 define the first order model theory [Section 3.4.4.] 

t  sentences which are not members of B
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The combination of negative belief.

The question of whether two negative belief sentences, for example N < B o > P  

and N < B o > Q , may be combined to give a single sentence N < B o > R  arises. The

conjunction of the former sentences in K is K MNP MNQ. It is incorrect to move

the conjunction operator K to within the scope of M to derive M K NP NQ as 

stating that P is false in a world wi (woRwi) and Q is false in W2 (W0 RW2 ) does 

not imply that P and Q are false in the same world. In general negative belief

sentences may not be combined. Consequently in the deduction model only one 

negative belief sentence is allowed in a view (in both interpretations of a view).

4.2.4 Conversion to Clausal Form.

A view must always contain one sentence resulting from a negative belief

sentence. From N < B> a  the sentence N a is added to the view. In carrying out

deduction by resolution all sentences must converted into clausal form, from N < B> a

the clausal form of N o will appear in the view. This gives two additional rules for

conversion to clausal form.

Rule SI Sk(< B> a) =  < 5> [S k (a )]

Rule S2 S k (N < B > a ) = N<B>Af[Sk(Na)]

where Sk(a) returns the clausal form of a  
(clausal form is indicated by the use of italics)

The sequence N < B > N [J  in clausal form denotes that the original sentence was a

negative belief sentence (N < B > N  may be thought of as the possibility operator). The

normal form for sentences in IB can be simplified by the following rules.

Rule IB1 A sentence of the form <  B> a  is equivalent to

< B >  K A P i...P m  ... A Q i...Q n  (4.2.1.)

where K A P i...P m  ... A Q i...Q n  is the conjunctive normal form

of a,

which is in turn equivalent to

K < B >  A P i...P m  ... < B >  A Q i...Q n  (4.2.2)

where there are only disjunctions of atomic formula within the scope of the 

belief operators.
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Rule IB2 A sentence of the form N < B> a  is equivalent to

N < B > N K A P i...P m  ... A Q i.. .Q n  (4.2.3.)

where K A P i...P m  ... A Q i...Q n  is the conjunctive normal form 

of Ncn,

which in turn implies

K N < B> N A P i...P m  ... N < B> N A Q i.. .Q n  (4.2.4)

Where there are only disjunctions of atomic formulae within the scope of the 

sequence N < B > N, this sequence is equivalent to the possibility operator M in K.

The sequence is replaced by 'N < Z?>A" when writing sentences in clausal form.

As equation 4.2.4 is derived from but not equivalent to equation 4.2.3 the 

conjunctive normal form of IB, the set of conjunctions S i ,  is not equivalent to the

original set So of sentences in IB. However if S i is inconsistent then so is So.

Proof: If Si is inconsistent: S i |-P and Si h-NP for some P

By rules IB1 and IB2 and the logical equivalences

So hS 1 therefore SohP and SohNP i.e. So is inconsistent.

If there is only one disjunctive term in equations 4.2.3. and 4.2.4. then So and Si 

are equivalent. Restricting a  in rule IB2 to atomic sentences also restores the 

equivalence of S o and S 1 . Alternatively if each negative belief term is indexed then 

one or more clauses with the same index may appear in a view and equivalence is 

restored.

4.2.5. Algorithms for Skolem Conversion.

Conversion of sentences into skolem normal form involves conversion to 

conjunctive normal form and the replacement of quantified variables by skolem 

functions. In addition, substitution into the context of belief must be carried out 

correctly. First the technique for conversion to cnf of sentences in IB is presented, 

followed by the definition of a quantified language of belief IBQ and the additional 

rules for skolem conversion.
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The conversion of sentences in IB to cnf is shown in Figure 4.2.2.

Sentence in IB Cnf Clause form

APQ APQ 1{P ,Q U
CPQ A NP Q [ {N P ,Q } ]
KPQ KPQ 1{P},{Q }J
NP NP [ {N P }]
<  B > P <  B> P 1 { < B >  [P ]}]
NAPQ K NP NQ [ {N P } ,{N Q }]
NCPQ K P NQ [ {P } ,{N Q }J
NKPQ A NP NQ [{N P ,N Q }]
NNP P [{P}J
N < B > P N < B> P [ { N < B > N  NP}}

Figure 4.2.2. Sentences in IB with their equivalent in cnf 
and the clausal form.

Where P and Q are atomic formula the figure gives an exhaustive conversion table. 

If P and Q are allowed to be any well formed formula the conversion process must 

continue until only atomic formulae and their negations remain. Any sentence may 

be converted into one beginning with A or K, any sub—sentence may be similarly 

converted. We use the following equivalences:

Sentence Equivalent Clause form
in IB in IB

1. A  AUV Q A U A V Q 1{U ,V ,Q }]

2. A KUV Q K AUQ AVQ [ {U ,Q } , {V ,Q } ]

3. K AUV Q K AUV Q [ {U ,V } ,{Q }]

4. K KUV Q K U K V Q [ { U } ,{V } ,{Q }]

where AUV or KUV are sentences in cnf which replace P in APQ or KPQ

With these equivalences a method for skolem conversion which uses a recursive

function skolem is defined. If u is the input sentence of IB, the function skolem(u,v)

returns one or more lists of disjuncts v i...v n , the clauses whose conjunction is

equivalent to u. The function skolem—not(u,v) is equivalent to skolem(Nu,v). The

conversion rules are given in Figure 4.2.3. Rules 5,8 and 9 return at least two

values for y. These rules may be applied after any of the other rules during

conversion. The effect is to distribute K across each of the other operators. This is
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justified by the equivalences 1—4 above and the rules IB1 and IB2 for the belief 

operator.

1. skolem]ot, [ot]) i f  ot is atomic.

2. skolem—not(a , [Not.]) i f  ot is atomic.

3. skolem] Aot0, a'0')  i f  skolem]a, a ')
and skolem](3, 0').

4. skolem(Cot0, ot’0') i f  skolem—not(ot, a')
and skolem]0, 0').

5. skolem(Ka0, y) i f  skolem]a, ot')
and skolem]0, 0 ’) 
and y=ot' or y =  0'.

6. skolemfNot, ct’) i f  skolem—not]ct, ot').

7. sko lem (<B > at, <B >ot')  i f  skolem]ct, ot').

8. skolem—not]Aot0, y) i f  skolem—not]ct, ot')
and skolem—not]0, 0') 
and y=ot' or y = 0 ' .

9. skolem—not(Cct0, y) i f  skolem]ot, a ')
and skolem—not]0, 0') 
and y=ot' or y = 0 f.

10. skolem—not(Kot0, ct'0') i f  skolem—not]ct, a')
and skolem—not]0, 0 ’).

11. skolem—notfNct, ot') i f  skolemfct, a').

12. skolem—n o t(< B >  ot, N < B > N o t ' ) i f  skolem—not]a ,  otr) .

Figure 4.2.3. Clausal form conversion rules for IB. 

where a'|3' is the union of lists o' and 0 ’

The conversion rules can be immediately written as rules in Prolog and can be 

adapted to convert the quantified logic. One similar Prolog routine requires six sets 

of rules to achieve conversion to skolem normal form [3]. The method presented 

above is adapted from the reduction stage of the tableau proof method as described 

by Snyder [4].

Quantification

The definition of the quantified language of belief of IBQ is essentially the same

as that defined in Konolige [1, see also Section 3.4.4]. The syntax and semantics are
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now given.

Definition 4.2.3. The language IBQ is composed of the following symbols:

1. A set of predicate letters of degree n written Pn .

2. A set of individual variables x ,y ,...

3. A set of individual constants a ,b ,...

4. A set of function of degree n written fn .

5. A set of truth functional operators A,K,C,N.

6. The quantifier symbols U,3.

7. A  set of agents B o.B i---

8. The symbols < , > , ( , ) .

Terms and atomic formulae are defined in the usual way [Section 3.2.2.].

Definition 4.2.4. A well formed formulae (wff) of IBQ is defined by the 

following rules:

1. An atom is a well formed formula.

2. If a  and 0  are wff then A a0, Ca0, K a 0 , Na, < B i> o i

are well formed.

3. If a  is well formed and x is free in a  then 

Ux a  and 3x a  are well formed.

4. A formula is well formed only if it can be constructed 

by the above rules.

Definition 4.2.5. The interpretation of IBQ. The interpretation is specified by a 

tuple <  <p, v o ,U ,D , fj> where:

U is a universe of individuals

<p is a mapping from constants to individuals in U  

n  is an assignment of truth values to all ground atoms containing 

only elements of U

D =  {d o .d i,...}  d i= < B ,p (i)>  and bel(di)= {\p IB hp(i)^}

V =  {rjo.rp...}

Let m= <  <p,i> o,U,D,t7> be a model structure. By UmP we mean that m assigns

*The language IBQ is the same as Konolige's language LBQ except for a 
modification to the syntax.
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the sentence P the value true. By P'P we mean the sentence P with all of its 

constants replaced by the corresponding elements of U.

1. If P is a ground atom UmP iff p ofP'P)— true

2. Ujn K P Q iff U^P and K^Q  

Um A P Q iff UmP or UmQ 

Um C P Q iff y m ?  or HnQ 

%  N P iff *TmP

3. kJjn 3xP iff for some keU, ^ P k x 

(every x in P is replaced by k)

4. Ujjj UxP iff for all keU, UnjPfc*

5. Um< Bi> P iff Pebel(di)

The additional skolemization rules required by IBQ are given in Figure 4.2.4. 

These rules are expressed in terms of the functions skolem and skolem—not as

13. skolemf^xot, a') i f  skolem(a, a ’)
(by definition a  is within the scope o f  x)

14. skolem(3xa, Q) i f  3xot lies within the scope o f  universally
quantified variables xo...xn
and skolem(ct, a ’)
and |3 =  a ' ,{h(xo...xn)/ x}
where h() is a skolem function new to
the entire set o f  sentences

15. skolem—not(Vxa, (3) i f  Uxa lies within the scope o f  universally
quantified variables xo ...xn
and skolem—not(a, a')
and |3 =  a , .{h (xo .. .xn )/x )
where h() is a skolem function new to
the entire set o f  sentences

16. skolem—not(3xot, a') i f  skolem—not(ot, a')
(by definition a  is within the scope o f  x)

Figure 4.2.4. Additional skolemization rules for IBQ. 

before. Rules 14 and 15 require the list of universally quantified variables that a  lies 

within the scope of: this list is generated by rules 13 and 16. The rules implement 

the procedure for skolem conversion as described by Robinson [5]. In practice the
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Prolog rules maintain a list of the universally quantified variables which is a 

parameter of the skolem  function.

A universally quantified variable may 'become' existentially quantified as the 

conversion process proceeds so the substitution of skolem functions for variables must 

be done during conversion. The scope of a quantified variable does not change 

through conversion and so a variable x, quantified outside a belief operator must be 

replaced by the schematic function g(x) within the scope of the belief operator, prior 

to conversion to clause form. This procedure is correct because if x is universally 

quantified g(x) must appear in the agents belief set else if x is existentially quantified 

g(h) must appear in the belief set (where h is a skolem function). The procedure for 

the substitution of terms for variables ensures that all occurrences of x are replaced 

by the new term (x or h) irrespective of whether x is the argument of the schematic 

function.

4.2.6. Resolution.

The resolution method described by Konolige requires that deductions in an 

agents belief set are carried out in a view which must be opened by a negative 

belief literal. This presents a difficulty in designing effective resolution methods. For 

example, backwards chaining is a common strategy for refutation proofs, the goal is 

to resolve away a set of literals which may include ordinary literals, negative belief 

literals and positive belief literals. The latter case presents a problem as backwards 

chaining must stop when such a literal is encountered and the algorithm must begin 

selecting negative belief literals and opening views in order to resolve the positive 

literal. There is no obvious criterion for selecting the negative belief literals.

From our interpretation of views as belief worlds and the commitment to the 

truth of N a in some view, given N< B> a, as described earlier, we give the following 

rules for performing deduction by resolution in a view for agent Bo.
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Rule VI A view for agent Bo may be opened by a positive or a negative
belief literal.

V2 When a negative belief literal is added to a view the view
is said to be fixed.

V3 Positive belief literals < B  o > []  may be added to a view.

V4 Negative belief literals N < B  o > [ ]  may be added to a view if it is
not in the fixed state.

V5 The resultant of two clauses in a view is found by binary resolution.

V6 A view is closed when it is in the fixed state and the null clause
is derived

Note: By the definition of skolem normal form each belief literal has a single 

clause as its argument.

These rules ensure that exactly one negative belief literal is included in a view and

that views may be opened by a positive or a negative belief literal. The binary

resolution rule ensures that the null clause is derived if the clauses are inconsistent

and the attachment rule connects ordinary literals and belief literals. These ideas are

summarised in the EB— resolution rule which we give after re— stating the rule for

B— resolution:

B— resolution

, N < B > A q, R o 
< B > A \ ,  R 1

< B > A k .  Rk
R o .. .R k  where Ai.. .Aky-pAo
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We replace the deduction of A o by a refutation proof and require that one negative 

belief literal is included.

EB— resolution 

< B > A i ,
N < B > N  Ao, R o 

< B > A k .  Rk______
R o.. .Rk where A  o

Ak p
U

In practice the deduction rules p will be sentences of the form <  B >  Ca@, 

if { < B > D a} . . . { < B > D nj  is the clause form of a subset of p then the refutation 

proof can be written:

Ao

Ak  
D 1

Dn
U

An algorithm which implements the EB— resolution rule is given in Figure 4.2.5. The 

goal G is proven by translating NG into clause form and deriving the null clause. 

The functions resolve and EB—resolve return the value true if the null clause can be 

derived. The Wise Man Puzzle can be solved using this algorithm. Finding the

solution by backwards chaining requires a view to be opened for a positive belief 

literal.

Quantification.

A Herbrand's theorem for IBQ can be derived: a set of sentences in IBQ in

skolem normal form is unsatisfiable if and only if a finite set of its ground instances

is unsatisfiable [1], For refutation proofs of sentences in the quantified logic, in

addition to returning the value true or false the functions resolve and EB—resolve

must return the substitutions which allow the literals to be unified. The constants

which correspond to the term g(c) in the belief system of the agent, where c is an

individual in the real world, must be substituted as defined by the naming function.

This function must be defined explicitly as part of the model of the agents beliefs.
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resolve( [  ]).

resolve(G) i f  G =  [g i ...gm)
and data(D) 
and di eD
and di complements g i 
and resolve(G-gA) 
and resolve(D-di).

resolve([v<Bo> G y l G i ] )  i f  EB—resolve(Bo, G-\) 
and the view closes 
and resolve(G2 ).

EB—resolve(Bo, []).

EB—resolve(Bo, G) i f  G = { g t  . ..gm]  
and data(D)
and D = ( v < B o > D i ) D 2 and dieD-t 
and di complements g i 
and EB—resolve(Bo, D i —di) 
and EB—resolve(Bo, G —g i )  
and resolve(D2 ).

E B -reso lve (B o ,[v< B \> G -\!G 2 ]) i f  EB-resolve(BoB-\, G i )  
and the view closes 
and EB—resolve(Bo, G 2 ).

Figure 4.2.5. Backwards chaining algorithm implementing EB—resolution.

D and G are lists of literals, d  and g are literals and D— d  is the list
D  minus d, v takes the value N  if < B > G  is a negative belief literal.
The checks which ensure rules VI — 6 are enforced are omitted from the
algorithm for the sake of clarity.

Note that in depth first search the above backwards chaining algorithm is 
homogeneous whereas Konolige's system would have to switch between different 
views.

4.2.7. Hyperresolution.

Hyperresolution is a forward chaining resolution method. Inferences are made by 

selecting a rule and deriving the conclusion if the conditions can be satisfied. In the 

deduction model the agents' rules are a parameter of the model and inferences are 

made if the conditions of the rules can be satisfied by clauses in the belief set. The 

deduction model exactly describes the inferences that are made if hyperresolution is 

applied to clauses in the belief set of an agent. The model requires that deductions 

are made by applying rules and that derived clauses may participate in further 

deductions, this is exactly what is carried out by hyperresolution. The hyperresolution
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method we present implements the deduction model directly. One advantage of 

hyperresolution over backwards chaining is that the search space is sparser [Section 

3.2.6].

The derived clauses represent the agents beliefs to a specified depth of search 

and as they are explicitly stored in the database they can be examined and 

introspective reasoning can be carried out. These aspects of the inference procedure 

are examined in the two following sections.

The hyperresolution rule uses binary resolution and a version of EB— resolution 

where only unit clauses may be resolved with the goal clause, called 

HEB— resolution.

HEB— resolution

< B > [ P \  . ..Pm]
<B>[Pi ’]
N < B > N [P i'J

< B > fP m '1
[ ]  where Pi and Pi* can be shown to be

complementary by binary or HEB—resolution
if.

Now the hyperresolution rule HI can be defined:

Rule HI

< B > [ L  \ ...Lm,LnJ
<B>[L^']

< B > t L m l________
< B > [ L n ]  where Li and L i'  can be shown to be

complementary by binary or HEB—resolution

This rule shows how positive beliefs are propagated. There is also a need to

propagate negative belief as is shown by considering the following sentences:

1. <  B >  CP i P 2

2 . N <  B >  NP i

< B > N P 2 is inconsistent with 1. and 2. therefore N < B > N P 2 can be inferred, but 

this sentence cannot be derived by H I. The hyperresolution rule which allows such 

deductions to be made is defined as follows:

♦This is an incomplete version of hyperresolution for Horn clauses.
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Rule H2

< B > [ L  i . . .L m ,L n]
< B > [ L  \ ']
N < B > N [L i ' ]

< B > f L m ' J _________
N < B > N [L n ]  where one negative belief literal occurs

and where Li and L i' can be shown to be 
complementary by binary or HEB—resolution

Tableau proofs of rules HI and H2 are given in Appendix 2. Intuitively, Rule HI

propagates belief in all belief worlds whereas Rule H2  propagates belief in the belief

world of the one negative belief literal (the world where L i'  is true). Both rules are

required to solve the Wise Man Puzzle by forward chaining, the solutions to this

puzzle are discussed further in Appendix 3.

Each rule in the belief set has the form < B > [ L \  ...Lm,LnJ. The algorithm for 

implementing hyperresolution selects each rule in turn and attempts to derive the null 

clause from [L  \ . . .Lm ],  the tail of the rule, by HEB or binary resolution. If one 

negative belief literal is included in the derivation then N < B > N [L n ]  is added to the 

database (by Rule H2), else < B > [ L n ]  is added (by Rule H I). This procedure is 

repeated n times where n is the depth of inference.

4.2.8. Conclusions

Effective forwards and backwards chaining resolution methods have been 

developed for the deduction model of belief. These methods may be used alone or 

combined to prove theorems in belief logic. The analysis of belief worlds, the 

procedure for deriving the skolem normal form and the resolution methods are new 

developments of the deduction model.

The clear semantics of Konolige's belief logic are retained as is the concept of

attachment and his method of solving the quantifying— in problem. The belief logic

does not have the property of omniscience as the deductions which can be made are

determined by the deduction rules, an explicit parameter of the model [1, Sections

3 .4 .2 .—3.4.4.]. The new resolution method uses the name of the agent as a pointer

to the world a literal exists in, whereas a variable or skolem function is used for

this purpose by the resolution methods for the full modal logics [Section 3.3.3.]. The
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new resolution methods cannot prove all theorems of the analagous K modal system, 

however the new methods can deduce all beliefs from rules which are true in all 

belief worlds which is what is required in order to model belief systems.

The deduction model was designed to be a model of the beliefs of an agent.

Agents are able to make deductions within their own beliefs and to reason about the 

beliefs of other agents. A simple system of temporal reasoning can be developed in 

the same framework. Facts and rules that were believed in the past may be viewed 

as being true in a <  past> belief world. An agent could have the following beliefs:

<  Joe>  <  past> P Joe believes that P was true in the past.

<  Joe> C <  past> R T Joe believes that if in the past R was

true then T is true.

Deductions can be made in the past belief world and past beliefs may be used to 

determine present beliefs. Other modal concepts can be treated within this 

framework, for example, words such as 'could', 'would' etc. in English are often 

used to distinguish what is desired or wished from reality. A belief operator <  wish> 

could express these ideas (wishful thinking !).

The addition of the belief operator to first order logic gives a new logic which 

is more expressive than the original. The framework of belief logic can express many 

modal ideas. Inferences from a set of sentences in belief logic can be made using 

the automated deduction methods developed by the author.
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4.3 An Expert System For Pulmonary Function And
Lung Sound Analysis

4 .3.1. Introduction

In this section the building of an expert system based on a logical model of the 

field of expertise is described. The application is the interpretation of pulmonary 

function tests. We show how the model is developed and refined and its dependence 

on the underlying logical language. The refinement of two groups of rules in first 

order logic is explained as a process of defining new rules and new logical concepts. 

This refinement is continued when the rules are expressed in belief logic. This 

procedure gives an explicit logical model of the domain, in the form of a rule base. 

The use of belief logic in an expert system is a novel approach to expert system 

design. The rules for analysing lung sound data are derived from work done in 

Section 2.5 and are integrated with the rules for pulmonary function analysis. The 

integrated system is tested.

We begin by discussing the basic features of pulmonary function test 

interpretation and the conversion of this knowledge into rules and the rule base in 

first order logic. The more novel implementation in belief logic is given later in the 

chapter.

4.3.2. The Interpretation of Pulmonary Function Test Data.

A measurement such as vital capacity (vc) is interpreted with respect to the 

predicted normal value calculated from the sex, age and height of the subject [1]. 

Often several airflow or volume measurements are assessed in order to decide 

whether airways are obstructed or lung volume is reduced. First we consider the 

calculation of predicted normal values.

For a male adult the predicted normal value of vc is given by the equation: 

vcp =  -0 .0 2 2 * Age +  5.29*Height -  3.09 (4.3.1.)

For a female adult the prediction equation is:

vcp =  -0 .0 2 4 * Age +  4.44*Height -  2.59 (4.3.2.)

Confidence in the predicted normal value is determined by the standard deviation

(SD) associated with each prediction equation. The predicted normal range is defined
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as vcp ± 2SD, that is, the normal region is bounded by the predicted upper bound

(vcp -+- 2SD) and the predicted lower bound (vcp — 2SD). The facts about the sex,

age, height and weight of the subject are stored in the database. Figure 4.3.1. shows

these facts expressed in first order logic. The notation used is that of the belief logic

IBQ described in Section 4.2.5. (the '# ' symbol marks the end of a logical

sentence). Figures 4.3.1. and 4.3.2. are taken from the database and rule base, both

of which are text files. The predicates have the following definitions.

code(x) x is the subjects identification code
sex(x) x is one of the symbols 'male', 'female'
age(x) x is the subjects age in years
height(x) x is the subjects height in metres
weight(x) x is the subjects weight in kg

These predicates are used as the conditions of logical rules which express equations

4.3.1. and 4.3.2. The conclusion is the predicate 'prednormal' which has the

following definition.

prednormal(x, y) x is the measurement (vc for example)
y is the predicted normal value of x

In Figure 4.3.2. rules 101,102 implement equations 4.3.1. and 4.3.2. The predicate

'equation' also appears as a condition of the rules, it performs the following

calculation:

equation(vi ,V2 ,w i ,w 2 ,x i ,X2 ,y,z)

where vi*V 2 -+- wi*W 2 +  x i * X 2+  y =  z  

'equation' performs a combination of additions and multiplications which is commonly 

used in the set of rules for calculating the predicted normal values. It can be 

introduced into the inference procedure as an instance of theory resolution, where 

the theory is simply real number arithmetic. The predicates 'add' and 'multiply' can 

also be included.

add(x,y,z) where x+  y= z

multiply(x,y,z) where x*y= z

To calculate the predicted upper and lower bounds the predicted normal value must 

be known, together with the predicate 'normallimit' which has the following 

definition:
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1
c o d e  ( p f  ) #
2
s e x  ( f e m a l e  ) #
3
a g e  ( 67 ) #
4
h e i g h t  ( 1 . 3 9  ) #
5
w e i g h t  ( 1 . 5 7  ) #

Figure 4.3.1. A  section of the database.

101
V x V y V z C K s e x  ( m a l e  )

K a g e  ( x )
K h e ig h t  ( y )
e q u a t io n  ( - 0 . 0 2 2 ,  x ,  5 . 2 9 ,  y ,  0 ,  0 ,  - 3 . 0 9 ,  z ) 
p red n orm al ( v c ,  z )#

102
V x V y  V z C K s e x  ( f e m a l e  )

K a g e  ( x  )
K h e ig h t  ( y  )
e q u a t io n  ( - 0 . 0 2 4 ,  x ,  4 . 4 4 ,  y ,  0 ,  0 ,  - 2 . 5 9 ,  z ) 
p red n orm al ( v c ,  z )#

Figure 4.3.2. A  section of the rule base.

1 1 7
V v  Vw Vx Vy Vz C K p r e d n o r m a l  ( v ,  w )

K s e x  ( x  )
K n o r m a l l i m i t  ( x ,  v ,  y  ) 
a d d  ( w, y ,  z ) 
p r e d u p p e r b o u n d  ( v ,  z  ) #

1 1 8
V v  Vw Vx Vy V y l  Vz C K p r e d n o r m a l  ( v ,  w ) 

K s e x  ( x  )
K n o r m a l l i m i t  ( x ,  v ,  y  )
K m u l t i p l y  ( y ,  - 1 . 0 0 ,  y l  ) 
a d d  ( w, y l ,  z ) 
p r e d l o w e r b o u n d  ( v ,  z  ) #

1 1 9
n o r m a l l i m i t  ( m a l e ,  v c ,  1 . 1  ) #
120
n o r m a l l i m i t  ( f e m a l e ,  v c ,  0 . 8 8  ) #

Figure 4.3.3. Rules in first order logic.
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normallimit(x,y,z,) x is male or female
y is the measurement 
z is 2SD for measurement y, sex x

Figure 4.3.3. gives the rules for calculating the predicted upper bound values for all

measurements. A total of 34 rules is required to calculate all predicted values for all

measurements.

One or more of eight pulmonary function measurements may be used to assess 

the state of the lungs. These measurements are referred to by the shorthand symbols 

given in Figure 4.3.4.

Symbol Measurement

vc vital capacity
frc functional residual capacity
tic total lung capacity
rv residual volume
rvtlc the ratio rv/tlc
fev forced expiratory volume in 1 second
fevfvc the ratio fev/fvc
kco transfer coefficient

Figure 4.3.4. Definition of medical symbols.

The degree of airway obstruction is assessed as mild if the following conditions are

met:

0.8*(fevfvCp — 2SD) < fevfvc < fevfvCp — 2SD (4.3.3.)

where fevfvc =  the measured value of the ratio fev/fvc 

and fevfvCp =  the predicted value of the ratio fev/fvc

equivalently

0 .8 *predicted lower bound fevfvc < measured fevfvc

< predicted lower bound fevfvc 

The predicted values of each measurement can be calculated. We define two more 

predicates

measured(x,y) x is the measurement
y is the value of x

degree(x.y) y is the clinical abnormality
x is the degree (or seriousness) of y
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The rule defining mild airways obstruction can be written: 

yx^yUz C K measured(fevfvc, x)

K prednormal(fevfvc, y)

K multiply(y,0.8,z)

K lessthan or equal(z,x) 

lessthan(x,y)

degree(mild, airwaysobstruction) (4 .3 .4 .)

The translation of each pulmonary function interpretation rule from the conceptual 

form of equation 4.3.3. to the logical form of 4.3 .4  is carried out as above.

The knowledge was available in a form where it could be readily translated into 

logical rules. This situation arose because a computer based interpretation system 

based on these rules already exists in the Department of Respiratory Medicine at 

Glasgow Royal Infirmary [2]. Consequently the task of knowlege acquisition has been 

carried out over a number of years by Dr.R.Carter, R.McCusker and other health 

service staff. The advantage of the expert system approach is that the calculation of 

normal values and test interpretation can be defined in one logical language, at 

present two programs written in different languages are required (the languages are 

Fortran and Quark). The logical model of the area of expertise can be examined 

more readily when the rules are written in a formal logical notation. This logical 

model will be referred to as the "knowledge model". The knowledge model is 

expressed in the language of the underlying logical system which may be first order 

logic or belief logic. The refinement of the knowledge model is now described.

4.3.3 The Knowledge Model in First Order Logic.

This section presents two important sets of rules which are part of the rule 

base. The first set to be examined assesses the degree of airways obstruction, the 

second set assesses the degree of restriction. Consideration of these two groups 

demonstrates the method we wish to present. The complete rule base is too large for 

each rule to be discussed individually here.

One of two sets of rules for the assessment of airways obstruction is applied
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depending on the value of fev. Fev is low if:

measured fev < 0.7*predicted lower bound fev

otherwise fev is not low. Rules 149 and 168 [Appendix 4] define whether 'low^ev)' 

is true or 'notlow(fev)' is true. In the latter case the rules in Figure 4.3.5. are

applied. Their expression in first order logic is given in Figure 4.3.6. These rules 

have only three conditions in their conceptual form and up to seven conditions in 

the logical form. The rules are not complex and the translation from conceptual to 

logical form is immediate. When fev is low the rules given in Figure 4.3.7. are

applied, Figure 4.3.8. gives the logical form of these rules. Again the translation to 

logical form is immediate. The assessment of the degree of airways obstruction is 

based on which range, defined with respect to the predicted lower bound, the 

measured fev/fvc ratio falls into.

The rules for assessing the severity of a restrictive defect are more complex 

than those quoted so far. In order to express them clearly one rule must be broken

down into several, and new predicates must be defined. These rules are defined in

terms of the values of tic and the ratio rv/tlc in addition to the ratio fev/fvc, Figure

4.3.9. gives three rules in conceptual form.

The comparison of a measured value with its predicted upper or lower bound

appears at least twice in each rule. A predicate which defines whether a

measurement is above or below its upper or lower bound can be defined:

range(x,y) x is the measurement
y is one of the symbols 'aboveupperbound'
'belo wupperbound', 'abovelowerbound *,
'belowlo werbound'

Four rules define which values of y are true for each measurement. They all have 

the form:

yxUyMz C K measured(x.y)

K predupperbound(x,z) 

lessthan(y,z)

range( x , belo wupperbound)

The condition 'measured fev/fvc > predicted lower bound fev/fvc' appears in
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m i l d  a i rw a ys  obs t r uc t io n  i f :
0.8*predicted lower bound fe v fv c  < measured fe v fv c

< predicted lower bound fe v fv c

moderate airways obstruction if :
0.6*predicted lower bound fe v fv c  < measured fe v fv c

< 0.8*predicted lower bound fe v fv c

moderately severe airways obstruction i f :
0.45*predicted  lower bound fe v fv c  < measured fe v fv c

< 0.6*predicted lower bound fe v fv c

severe airways obstruction if :
0.45*predicted  lower bound fe v fv c  > measured fe v fv c

Figure 4.3.5 The assessment of airways obstruction when 
FEV1 is not low.

1 3 5
Vx Vy V y l  Vy2 C K n o t l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 8 ,  y l  )
K l e s s t h a n o r e q u a l  ( y l ,  x  ) 
l e s s t h a n  ( x ,  y  )
d e g r e e  ( m i l d ,  a i r w a y s o b s t r u c t i o n  ) #

1 3 6
Vx Vy  V y l  Vy2 C K n o t l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 6 ,  y l  )
K m u l t i p l y  ( y ,  0 . 8 ,  y 2  )
K l e s s t h a n o r e q u a l  ( y l ,  x  ) 
l e s s t h a n  ( y 2 ,  x  )
d e g r e e  ( m o d e r a t e ,  a i r w a y s o b s t r u c t i o n  ) #

1 3 7
Vx Vy V y l  Vy2 C K n o t l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 4 5 ,  y l  )
K m u l t i p l y  ( y ,  0 . 6 ,  y2  )
K l e s s t h a n o r e q u a l  ( y l ,  x  ) 
l e s s t h a n  ( y 2 ,  x  )
d e g r e e  ( m o d e r a t e l y s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

1 3 8
Vx Vy V y l  Vy2 C K n o t l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 4 5 ,  y l  ) 
l e s s t h a n  ( x ,  y l  )
d e g r e e  ( s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

Figure 4.3.6. Rules in first order logic.
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m a j o r  a i r w ay s  obs t r uc t ion  i f :
0.65*predicted  lower bound fe v fv c  < measured fe v fv c

< predicted lower bound fe v fv c

severe airways obstruction if :
0.65*predicted lower bound fe v fv c  > measured fe v fv c

Figure 4.3.7.  The assesment of airways obstruction 
when FEV1 is low.

1 4 2
Vx Vy  V y l  Vy2 C K l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 6 5 ,  y l  ) 
l e s s t h a n  ( x ,  y l  )
d e g r e e  ( s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

1 4 3
Vx Vy V y l  Vy2 C K l o w  ( f e v  )

K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K m u l t i p l y  ( y ,  0 . 6 5 ,  y l  )
K l e s s t h a n  ( x ,  y  )
l e s s t h a n o r e q u a l  ( y l ,  x  )
d e g r e e  ( m a j o r ,  a i r w a y s o b s t r u c t i o n  ) #

Figure 4.3.8 Rules in first order logic.
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m i l d  res t r i c t i v e  d e f e c t  i f :  
predicted lower bound fe v fv c  < measured fe v fv c  
and 0.9*predicted lower bound tic < measured tic

< predicted lower bound tic 
and predicted upper bound rvf tic > measured rv / tic

moderate restrictive defect i f :  
predicted lower bound fe v fv c  < measured fe v fv c  
and 0.8*predicted lower bound tic < measured tic

< 0.9*predicted lower bound tic  
and predicted upper bound r v / t ic  > measured rvf tic

severe restrictive defect if :  
predicted lower bound fe v fv c  < measured fe v fv c  
and 0.8*predicted lower bound tic > measured tic 
and predicted upper bound rv! tic > measured rv! tic

Figure 4.3.9. The assessment of restrictive defects.

1 5 0
Vx V x l  Vx2 C K n o e v i d e n c e  ( a i r w a y s o b s t r u c t i o n  )

K r a n g e  ( r v t l c ,  b e l o w u p p e r b o u n d  )
K r a n g e  ( t i c ,  b e l o w l o w e r b o u n d  )
K m e a s u r e d  ( t i c ,  x  )
K p r e d l o w e r b o u n d  ( t i c ,  x l  )
K m u l t i p l y  ( x ,  0 . 9 ,  x2  ) 
l e s s t h a n o r e q u a l  ( x 2 ,  x  ) 
d e g r e e  ( m i l d ,  r e s t r i c t i v e d e f e c t  ) #

15 1
Vx V x l  Vx2 Vy C K n o e v i d e n c e  ( a i r w a y s o b s t r u c t i o n  ) 

K r a n g e  ( r v t l c ,  b e l o w u p p e r b o u n d  )
K m e a s u r e d  ( t i c ,  y  )
K p r e d l o w e r b o u n d  ( t i c ,  x  )
K m u l t i p l y  ( x ,  0 . 9 ,  x l  )
K m u l t i p l y  ( x ,  0 . 8 ,  x2  )
K l e s s t h a n  ( y ,  x l  )
l e s s t h a n o r e q u a l  ( x 2 ,  y  )
d e g r e e  ( m o d e r a t e ,  r e s t r i c t i v e d e f e c t  ) #

152
Vx V x l  Vx2 C K n o e v i d e n c e  ( a i r w a y s o b s t r u c t i o n  )

K r a n g e  ( r v t l c ,  b e l o w u p p e r b o u n d  )
K m e a s u r e d  ( t i c ,  x  )
K p r e d l o w e r b o u n d  ( t i c ,  x l  )
K m u l t i p l y  ( x ,  0 . 8 ,  x2  ) 
l e s s t h a n  ( x ,  x 2  )
d e g r e e  ( s e v e r e ,  r e s t r i c t i v e d e f e c t  ) #

Figure 4.3.10. Rules in first order logic.
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each rule. The meaning of this comparison is that if the measured value of fev/fvc 

is greater than the predicted lower bound then there is no evidence of airways 

obstruction. The numerical comparison may be replaced by 'no evidence(airways 

obstruction)', a new predicate which is more meaningful. Rule 147 defines when this 

is the case:

147 C range( fevfvc, abovelowerbound)

no evidence( airwaysobstruction)

The severity of the restrictive defect is determined by which range, defined with 

respect to the predicted lower bound, the measured value of tic lies in. The rules 

are given in logical form using the new predicates 'range' and 'no evidence' in 

Figure 4.3.10.

The translation of the rules for the assessment of restriction involved additional 

logical concepts. Replacing numerical comparison tests by a predicate such as 'range' 

makes the rules more compact and easier to read and understand. Such rules can be 

said to be based on higher level concepts. The procedure of defining rules and 

predicates will be referred to as building the knowledge model. The longer or more 

complex the rule the greater the need for higher level symbolic concepts. As each 

new predicate is defined by one or more rules it is possible to ensure that there is 

no 'overlap' between concepts (ie they are formally defined to be distinct).

4.3.4. The Knowledge Model in Belief Logic.

The belief logic IBQ is the logical system developed to implement the deduction 

model. The deduction model formalises all aspects of the inference process including 

which inferences are made by the control strategy employed. This model has the

property of deductive closure which means in practice that the deduction rules are

applied exhaustively to the data set. We use the deduction model to formally define 

the inference process of the expert system. One or more expert agents may be

defined, associated with each is a set of deduction rules. In practice we define one 

agent called <  expert> . The set of rules p constitutes the rules for the interpretation 

of pulmonary function data. Agents may have beliefs about other agents or about
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their own beliefs. Introspective reasoning is explored in Sections 4.4 and 4.5.

In this approach to expert system design not only the logical language and

theory are formally defined but also the actual theorem proving method as

implemented on the computer is formally specified.

The knowledge model is the logical model of the area of expertise defined by

the deduction rules. It is expressed in the logical language that implements the

deduction model, namely the belief logic IBQ. Our discussion of the knowledge 

model in first order logic made no reference to the framework within which it was 

set i.e. how inferences were to be made. When the knowledge model is specified in 

belief logic as deduction rules, these rules are specified as a component of the 

deduction model. An introduction to the deduction model is given in Section 3.4.4., 

the algorithms for forwards and backwards inference are developed in Section 4.2.

The deduction model, its language and implementation have been described and 

it remains to define the deduction rules. This is achieved by translating the 

knowledge model into belief logic. This can be done immediately by preceding each 

first order rule by '< ex p er t> ', thus placing the first order rule base within the 

agents belief system. In fact we do not adopt this approach but will use the belief

language to further refine the knowledge model. The beliefs of the expert agent are

restricted to symbolic concepts. All arithmetical predicates are written on the level of 

first order logic and all symbolic concepts appear in the belief system (IBQ includes 

first order logic). We define the universe of individuals which exist in each world to 

be the same universe U (i.e. the Barcan formula and its converse are true in the 

model of belief that we adopt for the present application). The deduction rules p are 

given in terms of symbols only, there is a second set of rules p' which have 

numerical terms. The expert rule base is the combination of p and p ' .

By developing the knowledge model in this way we continue the trend towards

defining higher level concepts described earlier. This enables a type of introspective 

reasoning called plausible reasoning to be carried out. The remainder of this section 

describes the translation of the knowledge model into belief logic. We define the
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universe of individuals U to be the same in the belief world as in the real world.

Examining the rules for the classification of airways obstruction (Figures 4.3.5  

and 4.3.7) it can be seen that the degree of obstruction is dependent on two 

conditions. The first is whether fev is reduced or not, the second is the range within 

which the measured value of fevfvc lies. If names are given to these ranges then the 

logical rules may be specified in terms of symbols alone. The division of the 

predicted value scale into ranges is illustrated in Figure 4.3.11.

Range Multiplier
of fevfvCp— 2SD 

  1.0

  0.8
fevfvc -» b
(measured    0.65
value) c

  0.6
d

----------------------  0.45
e

  0.0

Figure 4.3.11. Classification of the fevfvc measurement
with respect to the predicted lower bound.

This division is represented in the logical language by the predicate

'define. fevfvc. range':

define.fevfvc.range(x,y,z) x is the larger multiplier
y is the smaller multiplier 
z is the name of the range

Rules 142—146 in Figure 4.3.12 define the ranges, rule 147 compares the measured

value of fevfvc to each defined range and adds the predicate 'fevfvc.in.range' to the

experts' belief set when the conditions can be satisfied. These rules are applied in

the same way as deduction rules and are part of the expert system rule base.

The airways obstruction interpretation rules may now be written more clearly

than previously was the case. For example the conclusion of rule 135 is that the

degree of airways obstruction is mild if fev is not low and fevfvc is in range a, this

is expressed in IBQ as follows:
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142
d e f i n e . f e v f v c . r a n g e ( i . o , 0 . 8 , a  ) #
1 4 3
d e f i n e . f e v f v c . r a n g e ( 0 . 8 , 0 . 6 5 , b  ) #
144
d e f i n e . f e v f v c . r a n g e ( 0 . 6 5 , 0 . 6 , c  ) #
145
d e f i n e . f e v f v c . r a n g e ( 0 . 6 , 0 . 4 5 , d ) #
1 4 6
d e f i n e . f e v f v c . r a n g e ( 0 . 4 5 , 0 ,  e ) #
147
Vx Vy V y l  Vy2  Vz V z l Vz 2

C K m e a s u r e d  ( f e v f v c ,  x  )
K p r e d l o w e r b o u n d  ( f e v f v c ,  y  )
K d e f i n e . f e v f v c . r a n g e  ( z ,  z l ,  z 2 )  
K m u l t i p l y  ( y ,  z l ,  y l  )
K m u l t i p l y  ( y ,  z ,  y 2  )
K l e s s t h a n o r e q u a l  ( y l ,  x  ) 
l e s s t h a n  ( x ,  y2  )
< e x p e r t  > f e v f v c . i n . r a n g e  ( z 2  ) #

Figure 4.3.12. Rules in belief logic.

1 3 5
< e x p e r t  > C K n o t l o w  ( f e v  )

f e v f v c . i n . r a n g e  ( a  )
d e g r e e  ( m i l d ,  a i r w a y s o b s t r u c t i o n  ) #

1 3 6
< e x p e r t  > C K n o t l o w  ( f e v  )

A f e v f v c . i n . r a n g e  ( b  ) 
f e v f v c . i n . r a n g e  ( c  )
d e g r e e  ( m o d e r a t e ,  a i r w a y s o b s t r u c t i o n  ) #

137
< e x p e r t  > C K n o t l o w  ( f e v  )

f e v f v c . i n . r a n g e  ( d )
d e g r e e  ( m o d e r a t e l y s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

138
< e x p e r t  > C K n o t l o w  ( f e v  )

f e v f v c . i n . r a n g e  ( e  )
d e g r e e  ( s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

1 3 9
< e x p e r t  > C K l o w  ( f e v  )

A f e v f v c . i n . r a n g e  ( a  ) 
f e v f v c . i n . r a n g e  ( b )
d e g r e e  ( m a j o r ,  a i r w a y s o b s t r u c t i o n  ) #

140
< e x p e r t  > C K l o w  ( f e v  )

A f e v f v c . i n . r a n g e  ( c  )
A f e v f v c . i n . r a n g e  ( d ) 
f e v f v c . i n . r a n g e  ( e  )
d e g r e e  ( s e v e r e ,  a i r w a y s o b s t r u c t i o n  ) #

Figure 4.3.13. Rules in belief logic.
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<  expert> C K notlow(fev)

fevfvc. in . range( a) 

degree(mild, airways obstruction)

(compare this with the equivalent rule in Figure 4.3.6)

The refined versions of the six rules 135—140 are given in Figure 4.3.13, these are 

all deduction rules. The method outlined above may be applied to all sets of first 

order rules. This completes the description of the knowledge model for pulmonary

function test interpretation. The complete rule base in IBQ is listed in Appendix 4.

4.3.5. The Interpretation of Lung Sound Data.

Lung sound data and pulmonary function data was available for the group of

subjects studied in Section 2.5. Rules for the interpretation of lung sound data are 

derived from the results of that study. The predicted values of median frequency

(F50) and F85 can be calculated from the linear regression equations obtained by 

statistical analysis. Comparison of the measured values of F50 to the predicted values 

enables the sound spectrum recorded at a particular site to be assessed as above, 

within or below the predicted normal range. By examining both F50 and F85

conclusions can be drawn about the significance of the differences between the 

measured and predicted spectral shape.

We have no direct evidence associating spectral characteristics with physiological 

changes (other than through FEV1) so the rules which will be defined make no such 

deductions. The rules give an analysis of spectral shape in the light of clinical 

observations.

The normal region is defined as the predicted value ± the 90% confidence 

interval and is expressed in logical rules as was done for the predicted normal values 

of pulmonary function measurements. The predicted values of F50 and F85 are 

dependent on the measured value of FEV1 only. The measured value of F50 must 

lie within one of the sound ranges 'aboveupperbound', 'normalrange' or 

'belowlowerbound'. The predicate 'sound.range' is defined below and is added to the
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belief set when the appropriate conditions are satisfied.

sound.range(x,y,z) x is recording site
y is the measurement
z is the sound range

One of two sets of rules is applied depending on whether crackles were

observed during recording or not. Where crackles were absent the rules given in

Figure 4.3.14 were applied. It is always the case that the conditions of one of these

rules can be satisfied.

If F50 is above the predicted upper bound and if F85 above the predicted

upper bound then there is a major shift upwards in frequency (relative to the

predicted spectral shape). If F50 is above the predicted upper bound then it would

be expected that F85 would show a similar shift, if this is not the case we

conclude that the spectrum has an abnormal shape. The rules are based on the ideas

that a change in F50 should be reflected in a change in F85 and that a change in

F85 alone is less significant than a change in F50. The rules for the analysis of

sound spectrum where crackles were observed are based on the same considerations

and are shown in Figure 4.3.15.

The conversion of rules from the conceptual form to deduction rules is

straightforward, the following rule is typical:

< exp ert>  Ux C K decision.assess(x, crackles)

K sound.range(x, f50, aboveupperbound)

sound.range(x, f85, aboveupperbound)

conclude(severe, crackling, x)

(the variable x stands for one of the recording sites)

These rules can be specified in belief logic without going through the step of giving

a first order representation. By carefully defining the 'sound.range' predicate and the

interpretation rules it is ensured that all possible combinations of values of F50 and

F85 are given some analysis.

137



sound spectrum shows a major sh if t to high frequency if :  
f5 0  above the predicted upper bound 
and f8 5  above the predicted upper bound

abnormal sound spectrum if :
f5 0  above the predicted upper bound 
and f8 5  below the predicted upper bound

normal sound spectrum if :
f5 0  is in the normal range
and f8 5  is below the predicted upper bound

sound spectrum shows a moderate sh if t to high frequency i f :  
f5 0  is in the normal range 
and f8 5  is above the predicted upper bound

sound spectrum shows a sh ift to low frequency i f
f5 0  is below the predicted lower bound 
and f8 5  is below the predicted upper bound

sound spectrum is abnormally broad i f :
f5 0  is below the predicted upper bound 
and f8 5  is above the predicted upper bound

Figure 4.3.14. Lung sound interpretation where no 
crackles were observed.

severe crackling if :
f5 0  is above the predicted upper bound 
and f8 5  is above the predicted upper bound

m ild  crackling if :
f5 0  is in the normal range
and f8 5  is above the predicted upper bound

abnormal sound spectrum if :
f5 0  is below the predicted lower bound 
and f8 5  is above the predicted upper bound

moderate crackling if :
f5 0  is above the predicted upper bound 
and f8 5  is below the predicted upper bound

insign ifican t crackling if :
f5 0  is below the predicted upper bound 
and f8 5  is below the predicted upper bound

Figure 4.3.15. Lung sound interpretation where 
crackles were observed.
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4.3.6. The Integrated Expert System.

The expert system was implemented by two compiled programs. The shell 

program provided the user interface and was able to call the inference program when 

required. This division frees memory for stack use when the inference algorithm is 

being run. The shell provides the user interface in the form of a screen editor which 

is used to view and edit the rule base and database as these are text files. A 

command to convert the rules into clausal form is provided, any ill— formed rules are 

reported as being in error. Commands are provided to call the inference procedure, 

which need not be given a specific goal, and to to convert the derived clauses 

(hyperresolvents) from clausal form into the format of belief logic. The results file 

may be examined using the editor. A trace of the rules used in the derivation of 

each new fact is given in the results file. This form of output is available as a result 

of employing the hyperresolution strategy.

A sketch of the programs and files that make up the expert system is presented 

in Figure 4.3.16. The algorithms for the conversion of sentences to clausal form and 

to implement hyperresolution are those developed in Section 4.2. The rules for 

pulmonary function test interpretation and those for lung sound analysis are combined 

to form the expert rule base. The expert system composed of the shell programs and 

the pulmonary function and lung sound rule base will be referred to as the 'Inspire' 

system.

The pulmonary function test results for each subject were stored in a database 

file. The rule base was applied to each data file and the results stored. Comparison 

between the results of the pulmonary function interpretation system of the Royal 

Infirmary and those of the expert system showed agreement in 24/24 cases. In two 

further cases no comparison was possible as results were obtained using rules which 

were not implemented in the expert system. The fact that a similar interpretation 

system exists has eased the problems of knowledge acquisition and of verifying the 

rule base.
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DATABASE 
(TEXT FILE)

RULE BASE 
(TEXT FILE)
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INFERENCESHELL

RESULTS FILE 
(TEXT FILE)

RESULTS
(PROLOG

DATA+- RULES 
(PROLOG
DATABASE) DATABASE)

IZZI FILE
* DATA IN CLAUSAL FORM 

CD  PROGRAM

 ^  CONTROL

 >  FILE READ/WRITE

Figure 4.3.16. Programs and files of the Inspire expert system.



4.3.7. Conclusions

The Inspire system was able to integrate numeric and symbolic information in 

one framework. The technique of defining higher level concepts during the 

development of a rule base was aided by the use of belief logic. The actual theorem

proving method is specified by the deduction model. This feature makes the control

mechanism of the inference strategy explicit. The use of a forward chaining search

strategy proved useful during the process of refining the knowledge model as

incorrect inferences resulting from logical or typing errors in the rule base were

identified relatively easily by examining the set of derived sentences. The use of the

deduction model to represent other modal notions such as time was not required in

the interpretation of pulmonary function measurements. A modal operator such as 

<  past> could be useful in writing rules which describe the progression of disease, as 

past observations are often used in the assessment of the current condition of a 

patient. Belief logic can represent this form of reasoning.

An expert system called Puff, which was designed for the interpretation of

pulmonary function data, has been implemented by Aikens et al at Stanford 

University [3]. Puff was built using Emycin, an expert system shell derived from the 

Mycin system. Knowledge was represented as production rules which were 

backward—chained to prove a specific goal. Two versions of Puff were developed. 

One version was written in Interlisp and ran on a DEC 10 computer, the second 

version was written in Basic and ran on a PDP 11 minicomputer. The latter version 

was used in a medical department where it was in daily use. Aikens reported that 

difficulties arose when rules were added or modified, changes in one rule affected 

others in unexpected ways. Another limitation was the inability of Puff to represent 

typical cases of lung disorder. Both problems may (in part) be due to the inability 

of the production rule scheme to fully represent the model of the domain held by 

the expert. The Puff rule for the diagnosis of moderate airways obstruction is shown 

in Figure 4.3.17. This rule can be compared with the equivalent rule in belief logic, 

Figure 4.3.13. The knowledge model is expressed by a larger number of simpler



RULE011

I f :  1) A: The mmf/mmf-predicted r a t i o  i s  between 35 and 45,  and
B: The f v c / f v c - p r e d i c t e d  r a t i o  i s  g r e a t e r  than 80,  o r

2)  A: The mmf/mmf-predicted r a t i o  i s  between 25 and 35, and
B: The f v c / f v c - p r e d i c t e d  r a t i o  i s  l e s s  than  80

Then:  1) There I s  s u g g e s t i v e  ev idence  ( . 5 )  t h a t  the  deg ree  o f
o b s t r u c t i v e  a irways  d i s e a s e  as  i n d i c a t e d  by the  MMF 
i s  m odera te ,  and 

2} I t  i s  d e f i n i t e  ( 1 . 8 )  t h a t  the fo l low ing  1s one o f  the  
f i n d i n g s  abou t  the  d i a g n o s i s  o f  o b s t r u c t i v e  a irways  
d i s e a s e :  Reduced m id - e x p i r a t o r y  f low I n d i c a t e s
m odera te  a i rway  o b s t r u c t i o n .

PREMISE: [SAND (SOR (SAND ( BETWEEN* (VAL1 CNTXT MMF) 35 45)
(GREATERP* (VAL1 CNTXT FVC) 80 ) )

(SAND (BETWEEN* (VAL1 CNTXT MMF) 25 35)
( LESSP* (VALl CNTXT FVC) 80]

ACTION: (DO-ALL (CONCLUDE CNTXT DEG-MMF MODERATE TALLY 500)
(CONCLUDETEXT CNTXT FINDINGS-OAD

(TEXT SMMF/FVC2) TALLY 1000))

Figure 4.3.17. A Puff production rule in English and Lisp 
versions.
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rules when expressed in belief logic than is the case for the production rule scheme. 

The rules which define the degree of airways obstruction were conceived of as a 

group when belief logic was employed. This was a result of refining the knowledge 

model as described previously.

The Inspire system is an advance on Puff in that the representation scheme 

employed is based on a more expressive logic.

Inspire was programmed in Prolog and run on IBM PS/2 microcomputers. More 

development of the user interface will be necessary to bring the Inspire system into 

clinical use. The inference procedure, including the unification algorithm, was 

programmed in Prolog and as a result the time taken to process a data file was of 

the order of minutes. A faster inference procedure could be written in a language 

such as C or Lisp.
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4.4 A Logic Of Plausible Belief

4.4.1 Introduction

This section presents a method of reasoning with incomplete information that is 

compatible with the first order rules typical of an expert system rule base. The logic 

of plausible belief is similar to the K45 system of classical modal logic. The set of 

believed sentences are those which may be derived using the deduction rules. This is 

an approximation to the ideal case where all logically true consequences may be

enumerated (as in the K45 system).

We begin by describing the K45 system, its relationship with the deduction 

model and the derivation of two rules of inference which allow plausible deductions 

to be made.

4.4.2 The K45 Modal System.

Prepositional K45 is defined by adding modal axioms 4 and 5 to the K system 

(defined in Section 3.3 .2 .). The additional axioms are:

4. C LP LLP

5. C MP LMP

When L is interpreted as the belief operator, these axioms define positive and 

negative introspection respectively. The structure of the resulting modal system is

shown in Figure 4.4.1. Any sentence true in all possible worlds wi, i> 0  must be 

true in all worlds accessible from these (by axiom 4), a sentence true in one possible 

world must be true in at least one accessible world (by axiom 5). These conditions 

are satisfied if the accessibility relation R is both reflexive (wiRwi,i>0) and an 

equivalence relation (wiRwj wjRwi, i,j>  0), hence all possible worlds are accessible 

to all other possible worlds as illustrated in Figure 4.4.1.

This system was chosen to model belief because it captures the notion that there 

are sentences which are believed LP and sentences which are compatible with what is 

believed MQ. If LP is true then all possible worlds/belief worlds assign the value true 

to P. P is then said to be a member of the agents' belief set. If MQ is true then 

Q is true in some belief world, Q is compatible with the belief set but not a
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MQ
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wo W2

MQ

W 3

Figure 4.4.1. K45 modal structure.

member of it. Through negative introspection MQ is believed if MQ is true, that is,

MQ is true in every belief world (LMQ is true) and therefore a member of the 

belief set, although Q may not be true in all belief worlds. The agents belief set

includes true beliefs (P) and qualified beliefs (MQ). Certain and qualified beliefs are

distinguished.

It is possible to identify sentences of the form M K Q iK Q 2 ...Q n through 

introspection. Such sentences identify n formulae which form a consistent extension of 

the theory defined by expert rules. This study examines the case where n= 1 i.e. we 

wish to identify sentences of the form MQ.

Autoepistemic logic has been shown to be equivalent to the modal system S5 

which is the system obtained by adding the axiom C LP P to K45 [1]. S5 is a logic 

of knowledge whereas K45 is a logic of belief.
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4.4.3. The Deduction Model and the K45 System.

A method for plausible reasoning analagous to the prepositional K45 system is 

now presented. The prepositional theory forms the basis of the first order theory but 

was not implemented.

In defining the K45 system it was not necessary to specify a practical inference 

procedure. Model theory or tableaux proofs may be used to determine whether 

sentences are true or false. We now show how the deduction model may be 

employed as the inference procedure.

The deduction model explicitly states that the only inferences which can be 

made are those which result from applying the deduction rules to the base set of 

sentences. A set of deduction rules which allow every logical consequence of the base 

set to be derived is said to be complete. If such a set of rules is defined then all 

sentences aeB  in the deduction model correspond to a sentence La in K45. A set of 

consistent belief worlds could be constructed where sentences analagous to M(3 (where 

f3 is not a member of B) would be assigned truth values in each world. Figure

4.4.2. shows such a worlds diagram, the deduction structure is modified as follows: 

d i= < B ,B E i,p >  for world wi, i> 0  

where the set B is the belief set in the deduction model 

which corresponds to the set (aiLa is true} in K45 

and BE =  Uj BEi in the deduction model corresponds 

to the set {|3:Mj3 is true} in K45

W1

wo

W 2

BE 2

BEi

Figure 4.4.2. Belief worlds diagram of the introspective 
deduction model.
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Each belief world must be consistent. If 0 1  is true in wi it must not be possible to 

derive y  and N 7  for any formula 7  as a result. If this condition is satisfied M7  will 

be true in all belief worlds.

In the belief logic IB the sentence <  expert> a  is interpreted as 'a is a member 

of the belief set of the expert agent' and corresponds to La in modal logic. If the 

expert believes '|3 is possible' the sentence <  expert> <  possible> |3 is true, this 

sentence corresponds to LM/3 in modal logic. In practice the deduction rules will not 

be complete, therefore we write <  expert> <  plw> (3 to state that /3 is true in a world 

compatible with the experts beliefs. Such worlds are called plausible worlds.

Typically deduction rules do not allow negative information (false atomic 

sentences) to be inferred. Such information would be specified by a complete belief 

set. A standard set of deduction rules must be augmented by additional rules which 

allow negative sentences to be derived. This can be viewed as a process of 

completing the knowledge model by not only specifying facts which are true but also 

those which are not. This requires implicit relationships between concepts to be made 

explicit, for example the concepts 'big' and 'small' are exclusive but this relationship 

would not normally be stated in an expert system rule base. Completing the 

knowledge model requires that implicit relationships be defined by rules (pc). This 

procedure improves the approximation to the ideal case.

Deduction

The set of beliefs B may be derived by applying the deduction rules pc n times 

using the hyperresolution method. Once this has been carried out the following rule 

of inference may be employed to derive plausible inferences:

Definition 4.4.1. Propositional rule for plausible deduction.

If N a i /B  and a 2 ...aneB  

and C K aiK a 2 ...an  |3 epc 

then |3 eBE and <  plw> (3 eB

The equivalent rule in K45 is:

If M ai and L a 2 . . .Lon and L C K aiK a 2 ...an  (3 then M|3
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This rule states that if q i is true in some belief world wi and a 2 ...an  are true in 

all belief worlds and |3 is a consequence of q i  ...cm then 0  must be true in wi.

This inference rule allows plausible atomic formulae to be added to the agents 

belief set using the deduction rules. There is no necessary connection between the

plausible beliefs: they extend the belief set but do not form competing theories for 

extending the belief set. The operation of the inference rule is clear and shows the 

role that negative information plays as if, in applying the above definition, N ai is

found to be a member of B then the conclusion /3 cannot be derived. This method 

does not involve the very inefficient truth maintainance procedures required by

autoepistemic logic [2 ].

4 .4.4. A First Order Theory for Plausible Reasoning.

With the introduction of quantifiers into the language of belief a universe of

individuals must be associated with each belief world. In the belief logic IBQ each

belief world is associated with one universe U. In defining a modal structure it is not 

necessary for the same inividuals to exist in each world. In studying formal systems 

of belief we are concerned with the truth assignments of atomic formula (which 

depend upon the inividuals which exist in a particular world). Allowing the 

individuals which exist in each world to vary in order to satisfy a truth assignment is 

an unintuitive way to proceed. It is clearer to define a common universe for every 

world and evaluate the truth of atomic formulae on that basis. These considerations 

also apply to the first order deduction model whose structure is shown in Figure

4.4.3. The difference between the model structure shown in this figure and that of 

IBQ is that every belief world is accessible from every other. To represent plausible 

beliefs the operator <  plw> is added to the language IBQ by defining <  plw> a  to

be a well formed formula if a  is well formed. As was the case for the propositional

logic the <  plw> operator is analagous to the possibility operator M in modal logic. 

The rule of inference is defined as follows:
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BEi universe*»U 
di=<B,BEi,p>

pc
W1

BE 2 universe—U 
d2=<B,BE2,p>

wo
universe=U

pc
W 2

Figure 4.4.3. Belief worlds diagram of the introspective 
deduction model.

The tuple <  U ,D >  specifies the model, 
where U is the universe of individuals 
and D = { d i,d 2 ...dn} such that di . . . dn  are the 
alternative belief worlds of the agent.

Definition 4.4.2. First order rule for plausible deduction.

If N'yi(xi)^©  and 7 2 ( x 2 )...-yn(xn) eB 

and CK<yi(x i)K 'y 2 (x 2) . . . 7 n(xn) afy) e pc 

then co(y) eBE and <  plw> co(y) eB 

where -yi and a) denote predicates.

Completing the logical model is a greater problem in first order logics than in

propositional logic systems. If the Herbrand universe (the set of ground terms which 

may be substituted for a variable) is infinite then an infinite amount of negative

information must be generated to complete the model. This problem is overcome if 

the test for plausibility NT7 i ( x i ) / B  may only be applied where a ground substitution

has been found for x i .  The restricted rule of inference is defined as follows:

Definition 4.4.3. D45 rule for plausible deduction.

If 7 2 (x 2 ) . . . 7 n(xn) eB

and (g/x 1 > 7 1  ( x i ) =  7 1 (g)

where g is a ground substitution for x i

and N 7 i(g )/B

and CK7 i (x i )K 7 2 ( x 2 ) . . . 7 n(xn) oj(y) e pc 

then (4y) eBE and <  plw> u(y) eB



This rule derives a subset of the sentences which may be derived from consideration 

of K45 model theory. The amount of negative information required to complete the 

model is reduced. Consider a rule such as CK P(x) Q(x) R(x). If there is no

information about which individuals have the property P then for all individuals 

'a ','b ','c' which have the property Q it is plausible that these individuals have the 

property R. By definition 4.4.3. the ground terms 'a y b '.'c '  may be substituted for x 

in the sentence P(x) as Q(x) eB under the substitutions {a/x},{b/x},{c/x}. The same 

derivations would be made using the rule of Definition 4.4.2. as 'a ','b ','c' are the

only substitutions for x in Q(x) for which Q(x) eB. More generally, the terms which

may be substituted for x in P(x) must be obtained from ground substitutions of other 

predicates which form conditions of the rule. This restricts the choice of substitution 

to a 'typical' set of individuals. If 'e' could not reasonably be substituted for x in 

Q(x) then it is not necessary to define P(e) to be false as the truth of P(e) will 

never be tested (let Q be the property of being an integer and 'e' stand for the 

planet Mars). Consequently the amount of negative information which must be

generated is reduced.

A more general version of the plausible rule of inference may be defined by 

allowing more than one condition of a deduction rule to be satisfied by the test for 

plausibility. A rule of plausible deduction Dp is added to the K system. The resulting 

modal system does not correspond to a classical system.

Definition 4.4.4. Dp rule for plausible deduction.

If for all 7 i(xi)

i) 7 i(xi) eB or

ii) (g/xi>7 i(xi)= 7 i(g) and N 7 i(g )/B  

where g is a ground substitution for xi 

and CK7 i ( x i )K 7 2 ( x 2 ) . . . 7 n(xn) co(y) e pc 

then oj(y) eBE and <  plw> ofy) eB

The assumption is made that if 7 1  and 7 2  are plausible, and they are the conditions 

of a deduction rule p i , then they may be true in the same plausible world. This is
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reasonable unless N y 2( x 2 ) may be inferred from -yi(xi) ,  consequently the conditions 

of p 1 could never be satisfied. The rule base must not contain rules with 

contradictory conditions.

4.4.5 Conclusions

The method of plausible reasoning is limited to deriving plausible atomic 

sentences. It is to be expected that, when the Dp inference rule is employed, the 

number of plausible interpretations of a set of sentences will increase as the number 

of known facts decreases.

Non-standard logics [Section 3.5.3] employ a consistency operator. This operator 

referrs to the whole of what is believed. There may be several extensions of a set 

of sentences expressed in a non— standard logic. The theory of plausible belief 

assumes that all sentences have the status of belief. If the database is incomplete

there may be several consistent belief worlds. These worlds are identified through 

introspective reasoning. There is no consistency operator as such, however plausible

sentences are derived using introspective deduction rules which make reference to the 

whole set of beliefs. Plausible deductions are distinguished from ordinary beliefs. 

Non— standard logics do not make a distinction in this way. The first order theory of 

plausible belief assumes that the only individuals which have a specific property are

those which can be inferred to do so, on the basis of all currently known facts.

Predicate circumscription takes a similar approach [Section 3.5.2.].

The theory of plausible belief allows an agent to derive conclusions from 

incomplete information through introspective reasoning. The theory is analagous to a 

classical modal system and has efficient computational properties through the use of 

the deduction model. Implicit relationships between sentences must be made explicit 

by defining new deduction rules to allow negative information to be derived.
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4.5 The Use Of Plausible Reasoning In An Expert System

4.5.1. Introduction.

The theory of plausible reasoning was developed with the aim of extending first 

order theories in belief logic. The expert system rules defined in Section 4.3.3. are 

such a theory. The use of a plausible deduction rule presumes that the knowlege 

model is complete, in the sense defined in Section 4.4.3. This approach is not 

appropriate for numeric concepts as it is not practical to explicitly define all numbers 

to be distinct. In refining the expert rule base high level symbolic concepts replaced 

numerical definitions of predicted normal regions. The result was a set of deduction 

rules in which only genuinely symbolic concepts were defined. When the rule base is 

in this form it is possible to explicitly define the relationships between (ground) 

atomic sentences and consequently for the belief set to become complete. It is not 

necessary to define all negative facts as the plausible rule of inference does not allow 

arbitrary substitution of terms for variables.

In order to test the theory, a refined expert system rule base [Section 4.3] was 

completed, and the plausible inferences examined as the number of facts in the 

database was reduced. This method of evaluation allows the plausible facts derived 

from incomplete information to be compared with the true conclusions drawn from 

the completely specified situation.

4.5.2. Plausible Deductions from Incomplete Information.

The rule base used in this experiment consisted of 62 rules, 25 of which were 

deduction rules. The rules included those which calculate the predicted normal values 

of pulmonary function measurements and those for the analysis of lung sound.

The belief set of the expert agent was calculated to a depth of search of 6 (6 

applications of hyperresolution). The inference rule (D45 or Dp) was then applied by 

selecting each rule in turn and generating all possible inferences. The use of forward 

chaining ensures that all beliefs are represented in the database, therefore determining 

whether an atomic formula is believed or not is decided by searching for that 

formula.
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The rule base was completed by defining 16 additional deduction rules. The 

majority were concerned with defining the sound ranges to be exclusive, the following 

rule was typical:

< exp ert>  tfxUy C sound.range( x, y, below lower bound )

N sound.range( x, y, normal range )#

This rule states that for the measurements F50 or F85 (y), made at any position on 

the chest wall (x), if the measurement is below the predicted lower bound then it is 

not in the normal range. This rule makes the fact that the sound ranges were 

defined to be exclusive and do not overlap explicit.

The total number of deduced facts (including plausible ones) increased from 99 

before the use of Dp and the completion of p to 135 afterwards. The database 

typically consists of 32 facts about the age, height etc of each subject.

Three cases were investigated employing the rule Dp.

Case 1. No facts were deleted.

Case 2. The fact that breath sound was observed to be quiet at the right upper 

(ru) recording site was deleted from the database.

Case 3. The sentence defining the measurement of F85 at the ru location was 

deleted from the database.

The same cases were investigated employing the rule D45. For clarity they will be 

referred to as cases 4,5 and 6.

Results

Case 1. The sound spectrum at the upper right recording site was concluded to 

be of normal shape. No plausible sentences were deduced.

Case 2. Two plausible sentences were deduced:

i. <  expert> <  plw> sound.spectrum ( ru, normal )

It is plausible that the sound spectrum at the ru location 

is normal
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ii. <  expert> <  plw> conclude ( insignificant, crackling, ru )

It is plausible that there is an insignificant degree of crackling 

at the ru location

As there was no information as to the presence or absence of crackles it was 

plausible to assume their presence and to conclude that the degree would be 

insignificant or to assume their absence and to conclude that the sound spectrum 

would be normal. In fact these assumptions are mutually exclusive.

Case 3. Four plausible beliefs were derived. Sentences i. and ii. were again 

deduced, by assuming that the F85 lies in the predicted normal region in addition to 

the assumption about the presence of crackles. The following sentence were derived:

iii. <  expert> <  plw> sound.spectrum (ru,moderate.shift.to.high.frequency)

It is plausible that the sound spectrum at the ru location shows

a moderate shift to high frequency.

iv. <  expert> <  plw> conclude ( mild, crackling, ru )

It is plausible that there is a mild degree of crackling at the 

ru location.

These sentences were deduced by assuming that F85 lies above the predicted normal

region in addition to assuming the absence/presence of crackles.

Case 4. No plausible sentences were deduced.

Case 5. The same two plausible sentences (i and ii) were deduced as in Case 2. 

Case 6. No plausible sentences were deduced. Each rule which allows sentences

i.— iv. to be derived in case 3. does so by making two plausible assumptions. The 

inference rule D45 allows only one plausible assumption to be made to satisfy the 

conditions of each rule selected. Therefore when the amount of data decreases no 

sound inferences can made.
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Analysis

The true K45 structure can be enumerated for the cases examined above. Where

no sentences are removed from the database and the deduction rules are complete

there is only one belief world. Where one sentence is removed there are 3

alternative belief worlds which are distinguished by the assignment of the value true

to the following facts:

World 1: breath sound was observed

the spectrum is assessed as a breath sound spectrum

the sound spectrum is normal

World 2: breathing was quiet

the spectrum is assessed as a breath sound spectrum

the sound spectrum is normal

World 3: crackles were observed

the spectrum is assessed as containing crackles

the degree of crackling is insignificant

When a second sentence is removed from the database 6 belief worlds may be

distinguished:

Worlds F85 in normal range
1 and 2:

the sound spectrum is normal

Worlds F85 above upper bound
3 and 4:

sound spectrum shows a moderate shift to high frequency 

World 5: F85 in normal range

the degree of crackling is insignificant 

World 6: F85 above upper bound

the degree of crackling is mild 

In cases 2 and 5 where one sentence was deleted, both inference rules identify two 

plausible conclusions. In fact one of these conclusions is included in two worlds, 1 

and 2, and the other in world 3. Neither D45 nor Dp can identify the observed 

characteristic which distinguishes worlds 1 and 2 (i.e. whether breath sound was
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observed or breathing was quiet). When a second sentence is deleted rule Dp 

identifies the four main classes of worlds of the true K45 structure. If the set of 

expert rules were more complex then plausible sentences which are always true in 

the same worlds would be derived but the rule Dp could not show this to be the 

case.

4.5.3. Conclusions

The use of Dp reflects the actual modal structure better than the use of the

D45 inference rule. Neither rule was designed to identify the full modal structure. At 

present the expert system user must find the assumptions which the inference rule 

has used by examining the rule base and database. With some modifications to the 

software, the examination could be done interactively which would enable the user to 

explore the alternative default assumptions and their consequences. Such an approach 

may avoid the need for the full K45 structure to be enumerated. The techniques of 

completing the rule base and restricting the test for plausibility to ground terms may 

aid the development of efficient methods of calculating the full K45 structure.

The theory of plausible reasoning is based on the K45 system of modal logic 

whereas logics which employ consistency operators (Default Logic [1] and 

Autoepistemic Logic [2]) are not based on a classical modal system [Section 3.5.].

Let CONS be the consistency operator; then sentences such as CONS P ^ Q are 

interpreted as 'if it is consistent to assume P then conclude Q. The sentences CONS 

P and NP are contradictory. The CONS operator is not equivalent to M (possibility)

as MP and NP are not contradictory, even in S5. Another strategy may be to add

an axiom such as Q 3 LQ to the K modal system in order to make NP and MP 

contradictory. This is unwise as the axiom MQ 3 Q follows from Q D LQ, that is, 

the distinction between LP, MP and P would be lost. The CONS operator cannot be 

considered to be equivalent to L (necessity) as LP and NP are only contradictory in 

systems which include the axiom LQ  ̂ Q and in such systems assuming LP is 

equivalent to assuming P. In plausible reasoning sentences such as P ^ Q are 

qualified by the belief operator which is equivalent to L. If it is consistent to assume
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P (NP is not believed, NLNP = MP) then deduce Q where both P and Q have the

status of being true in at least one belief world. P and Q are qualified by the

possibility operator. In the K45 modal system sentences which are believed such as P

3 Q are true in all belief worlds and sentences which are possibly true are possibly

true in all belief worlds. In each belief world there is a set of certain beliefs and a 

set of possible (or plausible) beliefs.

The incorporation of plausible reasoning into an expert system brings any gaps 

in the database to the attention of the user. The user may then investigate the 

reasons for the plausible deductions. Ordinary belief logic does not provide any 

mechanism for such introspective reasoning. Research into the application of methods 

for reasoning with incomplete information to real problems is at an early stage [3].
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4.6 A Note On Logic And Uncertainty

First order logic (f.o .l.) allows properties to be assigned to sets of individuals. 

Sentences are constructed with the truth functional operators and the universal and 

existential quantifiers are employed to define the status of variables. Proofs can be

constructed to show that f.o .l. has the properties of completeness, consistency and to

show that the system is semi— decidable. First order logic is an abstract mathematical 

system which may be used to express ideas and to make deductions.

Much of human reasoning is inexact or uncertain. Uncertainty arises because of 

the random nature of the world or because knowledge is expressed in vague terms. 

First order logic insists that a proposition is either true or false, contradiction is not 

permitted. Several theories have been developed which allow a degree of belief to be 

associated with the conclusion of a logical rule. The use of probability theory often 

contains the assumption that the conditions of a rule occur independently of each 

other (the joint probability is not calculated). This assumption can lead to errors [1]. 

Certainty theory overcomes this problem. A value between — 1 (false) and •+■1 (true) 

is associated with all propositions. The numerical values are propagated in an 

intuitive but ad—hoc fashion [2].

Let the certainty of a proposition P be 0.8. The certainty factor is greater than

0 hence P is more true than false. The certainty factor is not equal to 1 therefore

P is not entirely true, P is both true and false. First order logic does not allow the 

truth assignment of a proposition to be contradictory. The use of a numerical theory 

to assign certainty factors is necessary because contradiction and uncertainty are part 

of human reasoning but f.o .l. is unable to express contradiction.

The problem of making deductions from incomplete information is related to the 

problem of uncertain reasoning. Default or autoepistemic rules define what 

assumptions are to be made when the database is incomplete [Section 3.5]. These 

rules are explicitly expressed. The problem is to identify a consistent extension or 

theory for a set of sentences. There may be no such theory or several competing 

theories. An alternative approach is to express sentences in the modal system K45.
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Sentences which are known to be true are true in all worlds, sentences whose truth 

value is unknown may be true in some world. A  system of possible worlds is 

constructed, each containing a consistent set of sentences comprising sentences which 

are necessarily true and a set which are possibly true. Each world represents a

competing theory consistent with the known facts and rules. If the database is

complete only one theory may be constructed.

The problem of inexact reasoning may be approached from a similar 

perspective. If there is uncertainty about the validity of a rule or about the 

conditions on which a conclusion depends, then such rules can be given the status of 

being possibly true (as opposed to being necessarily true). A  system of possible 

worlds can be constructed to show the impact of assuming one rule to be true and 

another false etc. Each world must be consistent and represents a competing theory.

In f.o .l. a consistent set of sentences can only have one model (or theory). A

numerical measure of certainty is used to suppress competing theories and to select 

the most likely solution. This method does not make the pattern of logical inference 

completely explicit. Numerical values and weights can obscure the steps of logical 

inference.

Examination of the competing theories which result from the use of modal 

operators as outlined above should allow an expert to clarify the rulebase. For 

example a rule which is possibly true may be eliminated or strengthened when an 

expert has examined its role in determining the competing theories. This approach is 

opposite to that of Ginsberg [3] who improved the performance of an expert system 

by fine tuning the numerical weights in an inference network, a procedure which 

must further obscure the logical model of the domain which an expert can construct.
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4.7 . Conclusions

The use of belief logic in expert system design allows modal concepts to be

expressed and reasoned with. The procedure of refining the logical model of the area

of expertise can be aided by the use of belief logic. The framework of the deduction 

model can be used to implement simple theories of time in addition to reasoning 

about belief. The problem of reasoning with incomplete information can be tackled 

by performing introspective reasoning which requires an agent to reason about its 

own knowledge. The deduction model of belief can represent reasoning about the 

beliefs of another agent and the special case of introspective reasoning. The axioms 

which define the introspective deduction model must be implemented so as to aviod 

generating an infinite number of false sentences. Plausible reasoning presents an 

insight into this problem and a solution to it.

The simple model of belief is analagous to the K system of modal logic and the 

introspective model of belief is analagous to the K45 system. These modal systems 

have well understood model theories and proof procedures. The expert systems 

developed in this chapter inherit the clear semantics of modal logic. The work 

presented in this chapter has used modal ideas in a creative way and has not been

limited to the implementation of a theorem proving program (although this was an

important task).

Belief logic has many potential applications. The deduction model of belief can 

represent the beliefs of many agents and this capability could be used to implement 

an expert system involving several expert agents. Reasoning about belief is necessary 

if a tutoring program is required to make deductions about the knowledge of a user. 

Another application of the deduction model is to represent the beliefs of a robot 

agent which must co— operate with other robots and consequently reason about their 

beliefs and actions. The new resolution methods presented in this chapter may be 

used to implement the deduction model so that these applications and others can be 

explored.
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Chapter 5 Directions For Future Work



Directions For Future Work

Lung Sound Research

The investigation of the changes in lung sound produced by reversible changes 

in the lung could be a useful field of research. Exercise and the administration of 

allergens can produce significant changes in the lungs and consequently may affect 

the spectrum of lung sound produced. The changes in the lung can be measured by 

the forced expiratory tests. In addition airflow at the mouth should be monitored 

continuously and lung sound should be recorded simultaneously from several sites on 

the chest wall. Such investigations could give insights into the changes in the lungs

produced by the stimuli and their effects on the power spectrum of lung sound.

The study of lung sound amongst groups of subjects could also employ the

measurement technique outlined above whereby airflow and sound are simultaneously 

recorded. In addition, a reliable method of compensating the recorded sound 

spectrum for the chest wall characteristics would be desirable in order to increase the

accuracy of the results. The relationship between FEV1 and sound recorded over

several lobes of the lung could be further explored by such experiments.

If the diameter of the airways could be measured directly, by a scanning 

technique for example, or if the airflow in a lobe could be measured then the 

relationship between these parameters and the sound spectrum could be proven 

conclusively.

Expert System Development

The Inspire expert system is not in clinical use at present. Future development
3

of this system should aim to improve the user interface. This can be achieved by

providing a menu to guide the user and a natural language interface capable of

translating the user's queries into belief logic and of translating the results from

belief logic into English. These features would allow a more natural dialogue between 

user and computer and is the case at present. The author believes that the data and 

rules files should not be translated into a natural language as the precision of the 

logical formula would be lost. A user who wishes to modify the rule base must be
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familiar with belief logic.

The time taken for the computer to make inferences from a set of rules 

increases as the number of rules increases. At present the inference procedure is 

written in Turbo Prolog. A more efficient inference procedure could be written in a 

version of Prolog which allows the nesting of predicates or allows database predicates 

to contain variables as then the unification mechanism of the Prolog system could be 

used (at present the unification algorithm is programmed in Turbo Prolog because 

this language lacks the above mentioned features). Alternatively the proof procedure 

could be written in C.

Further Study of Logic Systems

The use of belief logic in applications such as expert system design and robotics 

aids the study of formal systems for knowledge representation by showing practical 

applications of those systems.

Worlds models can be used to represent changes in time from one world to the 

next, to represent belief and to represent the impact of actions on belief. Worlds 

models can be a powerful way to describe changes in the real world or in the 

beliefs of an agent. New formal systems of logic based on worlds models could 

replace intuitive theories of reasoning about time and reasoning where information 

may be incomplete or may be updated.
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Appendix 1

Anderson K. Aitken S. Macleod J.E.S. Moran F.

Lung-Sound Transmission And Reliability O f Chest Signs.

Lancet 1988 ii:228
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Frequency spectrum/amplitude graph.
T h e  tw o variables are taken from 100-1500 H z  to  represent lower 

frequency range (F50 =  m edian frequency o f  spectral energy) and higher 
frequency range (F85 =  frequency below which 85%  o f spectral energy lies). 
Closed symbols — pre-pleural aspiration breath sounds; open 
symbols =  post-aspiration; rbp  =  right base posteriorly; lup =  superior border 
o f the scapula; lb p  =  left base posteriorly.

have influenced the clinical examination of the chest when certain 
disorders were suspected. However, as Spiteri and colleagues 
conclude, abnormal breath sounds produced by airway narrowing 
(wheezes) correlate consistently with the forced expiratory volume 
in 1 s.* The difficulties encountered by some clinicians in 
assimilating clinical signs from chest examination might be 
explained by inexperience but consideration of the causes of these 
signs offers a more satisfactory explanation of what is and is not a 
“consistent” or “good and reliable” sign. Wheeze or stridor result 
from altered sound generation because of airways narrowing, which 
presumably does not influence transmission of these noises through 
the chest. However, if a structural abnormality occurs in lung tissue 
or in the pleural or chest walls, airway sounds may be transmitted to 
the chest wall to produce some of the less common clinical signs, 
such as bronchial breathing or whispering pectoriloquy.

We have recorded breath sounds from a thin 14-year-old boy 
with what was clinically considered to be bilateral pneumonic 
consolidation because of bronchial breathing at both lung bases. 
The chest X-ray suggested a normal right lung with consolidation 
and effusion in the left hemithorax. Ultrasound of the thorax was 
done to assist chest aspiration and a thin rim of pleural fluid encasing 
the left lung was detected. Computerised tomography, done 
primarily to assess the lung parenchyma, showed normal right 
pleura and lung, with predominantly left lower lobe consolidation 
and the pleural abnormality found on ultrasound. The breath 
sounds were recorded from both bases posteriorly before and after 
pleural aspiration, and a frequency spectrum produced by 
computer analysis and fast Fourier transformation.

The abnormal lung sounds at both lung bases were altered by 
removal of the fluid (figure). The left lung had a residue of high 
frequency sounds representing bronchial breathing which were also 
initially present on the right only to disappear after aspiration. The 
results suggest that the thin rim of pleural fluid on the left was solely 
responsible for producing the lung sound abnormality detected 
from the right lung.

Error is possible in all the components of the diagnostic process3 
and, as Spiteri et al suggest, some clinical findings in chest 
examination seem less reliable than others. Our case suggests that 
signs that arise because of pathology which influences the 
transmission of sound generated in the airways are most often those 
found to be inconsistent or misleading.

LUNG-SOUND TRANSMISSION AND RELIABILITY Department of Respiratory Medicine, 
Glasgow Royal Infirmary,
Glasgow G31 2ES; 
and Department of Electronic and 
Electrical Engineering,

Glasgow University

OF CHEST SIGNS K. A n d e r s o n  
S. A it k e n  
J. E. S. M a c L e o d  
F. M o r a n

S ir ,—Dr Spiteri and colleagues (April 16, p 873) find 
considerable disagreement between physicians in interpretation of 
chest signs, with a 28% failure to achieve the correct diagnosis. 
Considering the factors involved in the production of chest signs, 
we suggest that this result is probably as good as can be expected. 
The development of chest X-ray was considered by some1 to have 
reduced chest auscultation to a perfunctory ritual and thereby may

1. Forgaci P. Lung sounds. B r J  Dis Chest 1969; 63: 1-12.
2. Pardee NE, Martin C F , Morgan EH. A test of the practical value of estimating breath

sound intensity. Chest 1986; 70: 341-44.
3. Koran LM. The reliability of clinical methods, data and judgments. N  Engl J  Med

1975;293:695-701.
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Appendix 2

Proof of resolution rule H I .

To prove that < B > P n  is a consequence of sentences 1—4 by the tableau proof 

method: negate the goal sentence and show that the tableau closes.

1. T <  B > CK P 1 K P 2 P 3 Pn deduction rule
2. T <  B > P 1 assumption
3. T <  B > P 2 assumption
4. T < B > P s assumption
5. F <  B > Pn negation of goal

open a view for agent < B >

6. F Pn from 5.
7. T P i from 2.
8. T P 2 from 3.
9. T P 3 from 4.
10. T CK P i K P 2 P 3 Pn from 1.
11. F K P iK P 2P 3 12. T Pn tableau splits
13. F P i 14. F K P2P 3 * tableau splits

* 15. F P 2 16. F P 3 tableau splits
* *

The tableau closes. The clausal form of sentences 1— 4 is j
1. < B > [ L  1 , L 2 , L 2 ,La]
2. < B > [ L i  ’]
3. < B > [ L 2 ’J
4. < B > f L z , 1

deduce < B > [ L a]

where L 1 =  NP i , L 2 =  NP 2 , L3= NP 3 ,  L a =  P 4 , and 
L 1 '= P 1 , L 2' = P 2, L 3' = P 3
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Proof of resolution rule H2.
To prove that N < B > N P n  is a consequence of sentences 1—4 by the tableau proof

method: negate the goal sentence and show that the tableau closes.

1 . T < B >C K  P i K P 2 P 3 Pn deduction rule
2. T <  B > Pi assumption
3. F <  B > NP 2 assumption
4. T < B > P 3 assumption
5. F N < B> NPn negation of goal
6. T <  B > NPn from 5.

open a view for agent <  B>

7. F N P 2 from 3.
8. T P 2 from 7.
9. T NPn from 6.
10. F Pn from 9.
11. T Pi from 2.
12. T P 3 from 4.
13. T CK Pi K P 2 P 3 Pn from 1.
14. F K P 1 K P 2 P 3 15. T Pn tableau splits
16. F P i 17. F K P2 P 3 * tableau splits

* 18. F P 2 19. F Ps tableau splits
* *

The tableau closes. The clausal form of sentences 1—4 is as follows:
1. < B > [ L  i ,L  2,L z, L a]
2. < B > / L i 7
3. N < B > N [ L 2 ’]
4. < B > ( L z ' }

deduce N < B > N [ L a]

where L i= N P i ,  L 2= N P 2 , L 3 =  N P 3 , L 4 = P 4 , and 
L 1 '= P 1 , L 2’= P 2 , L 3'= P 3
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Appendix 3

Solutions of the Wise Man Puzzle

The Wise Man Puzzle is often used to demonstrate the ability of modal logic to 

represent and solve problems involving belief. The deduction model is adopted where 

the operators L and M are replaced by a single belief operator, for example

<  agent A > P states that agent A believes P to be true. More than one agent may be 

defined and agents may have beliefs about each other. This aspect is highlighted by 

the Wise Man puzzle, which can be stated as follows:

'A King wishes to determine which of his three wise men is the wisest. He 

arranges them in a circle so that they can see and hear each other and tells them 

that he will put a white or a black spot on each of their foreheads, but at least one 

spot will be white. In fact all three spots are white. After a while the wisest 

announces that his spot is white. How does he know ?'

We will consider the problem where two men are involved, 

take White—A to stand for 'agentA has a white spot'

and White—B to stand for 'agentB has a white spot'

where agentA and agentB are the wise men

The following rules define the problem, they are stored in the knowledge base in

clausal form.

Both agents have white spots.

1) White—A

2)White—B

Each agent believes that least one spot is white.

3)<agentA > A White—A White—B

4)<agentB > A White—A W hite-B

Each agent believes the other believes this too.

5)<  agentA> <  agentB> A W hite-A W hite-B

6)<  agentB> <  agentA> A W hite-A W hite-B
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If agent A has a white spot then agentB will see it.

7)C White—A  <  agentB> White—A

8)C NWhite—A <  agentB> NWhite—A

9)C White—B <  agentA> White—B

10)C NWhite—B <  agentA> NW hite-B  

Each agent knows this.

11)<agentB > C White—B <  agentA> White—B

12)<agentB > C NW hite-B <  agentA> NWhite—B

13)<agentA > C White—A <  agentB> White—A

14)<agentA > C NW hite-A <  agentB> NWhite—A

Neither agent can deduce the colour of his own spot with the above 

information. If agentA says that he does not know the colour of his spot then we 

may add this fact to agentB's beliefs.

15)< agentB> N < agentA> White—A

Now it can be shown that agentB can deduce that the colour of his spot is white. 

The aim is to prove <  agentB> White—B. The prolog programs are able to prove 

this, giving the following derivation by backwards chaining: 

goal> <  agentB> White—B

negate goal and convert to clausal form: N<agentB> NWhite—B 

resolve with 12) new goal> < a g e n t B X a g e n t A > N W h i t e —B 

resolve with 6) new goal> <agentB> < agentA>Wkite—A

resolve with 15) (< a g en tB > N <a g en tA > N W hi te—A) to get □ (the empty clause). 

The goal can be derived using hyperresolution rules HI and H2 as follows:

16) < agentB>N<a ge ntA>W hite—B from 6) and 15) using H2

17) < agentB>White—A  from 7) and 1) using HI

18) < agentA>White—B from 9) and 2) using HI

19) < agentB>Wkite—B from 12) and 16) using HI 

The goal sentence 19)< agentB> White—B has been derived.

Note: the deduction rule model is not used in this example.
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Appendix 4 

Inspire Rule Base in Belief Logic

101
Vx Vy Vz C K <  expert >  sex ( male )

K age ( x )
K height ( y )
equation ( —0.022, x, 5.29, y, 0, 0, —3.09, z ) 
prednormal ( vc, z )#

102
Vx Vy Vz C K <  expert >  sex ( female )

K age ( x )
K height ( y )
equation ( —0.024, x, 4.44, y, 0, 0, —2.59, z ) 
prednormal ( vc, z )#

103
Vw Vx Vy Vz C K <  expert >  sex ( male )

K age ( x )
K height ( y )
K weight ( z )
equation ( 0.017, x, 5.83, y, —0.041, z, —4.28, w )
prednormal ( frc, w )#

104
Vx Vy Vz C K <  expert >  sex ( female )

K height ( x )
K weight ( y )
equation ( 5.64, x, —0.031, y, 0, 0, —4.95, z ) 
prednormal ( frc, z )#

105
Vx Vy Vz Vzl C K <  expert >  sex ( male )

K age ( x )
K height ( y )
K weight ( z )
equation ( 0.024, x, 2.18, y, —0.017, z, —1.69, z l )
prednormal ( rv, zl )#

106
Vx Vy Vz C K <  expert >  sex ( female )

K age ( x )
K height ( y )
equation ( 0.008, x, 2.95, y, 0, 0, —3.76, z ) 
prednormal ( rv, z )#

107
Vx Vy Vz C K <  expert >  sex ( male )

K height ( x )
K weight ( y )
equation ( 7.61, x, —0.019, y, 0, 0, —4.73, z ) 
prednormal ( tic, z )#

108
Vx Vy Vz C K <  expert >  sex ( female )

K age ( x )
K height ( y )
equation ( —0.017, x, 7.37, y, 0, 0, —6.35, z ) 
prednormal ( tic, z )#
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Vx Vy Vz C K <  expert >  sex ( male )
K age ( x )
K weight ( y )
equation ( 0.33, x, —0.14, y, 0, 0, 23.4, z ) 
prednormal ( rvtlc, z )#

110
Vx Vy Vz C K <  expert >  sex ( female )

K age ( x )
K height ( y )
equation ( 0.28, x, 27.0, y, 0, 0, —28.0, z ) 
prednormal ( rvtlc, z )#

111
Vx Vy Vz C K <  expert >  sex ( male )

K age ( x )
K height ( y )
equation ( —0.036, x, 3.78, y, 0, 0, —1.1, z ) 
prednormal ( fev, z )#

112
Vx Vy Vz C K <  expert >  sex ( female )

K age ( x )
K height ( y )
equation ( —0.031, x, 2.94, y, 0, 0, —0.59, z ) 
prednormal ( fev, z )#

113
Vy Vz C K <  expert >  sex ( male )

K age ( y )
equation ( —0.373, y, 0, 0, 0, 0, 91.8, z ) 
prednormal ( fevfvc, z )#

114
Vy Vz C K <  expert >  sex ( female )

K age ( y )
equation ( —0.261, y, 0, 0, 0, 0, 92.1, z ) 
prednormal ( fevfvc, z )#

115
Vy Vz C K <  expert >  sex ( male )

K age ( y )
equation ( —0.011, y, 0, 0, 0, 0, 2.43, z ) 
prednormal ( kco, z )#

116
Vy Vz C K <  expert >  sex ( female )

K age ( y )
equation ( —0.004, y, 0, 0, 0, 0, 2.24, z ) 
prednormal ( kco, z )#

117
Vv Vw Vx Vy Vz C K prednormal ( v, w )

K <  expert >  sex ( x )
K normallimit ( x, v, y )
add ( w, y, z ) 
predupperbound ( v, z )#

118
Vv Vw Vx Vy Vyl Vz C K prednormal ( v, w )

K <  expert >  sex ( x )
K normallimit ( x, v, y )
K multiply ( y, — 1.00, yl ) 
add ( w, y l , z ) 
predlowerbound ( v, z )#
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119
normallimit ( male, vc, 1.1 )#
120
normallimit ( female, vc, 0.88 )#
121
normallimit ( male, frc, 1.23 )#
122
normallimit ( female, frc, 0.9 )#
123
normallimit ( male, rv, 0.83 )#
124
normallimit ( female, rv, 0.7 )#
125
normallimit ( male, tic, 1.47 )#
126
normallimit ( female, tic, 1.06 )#
127
normallimit ( male, rvtlc, 8.6 )#
128
normallimit ( female, rvtlc, 11.0 )#
129
normallimit ( male, fev, 1.1 )#
130
normallimit ( female, fev , 0.79 )#
131
normallimit ( male, fevfvc, 14.38 )#
132
normallimit ( female, fevfvc, 10.88 )#
133
normallimit ( male, kco, 0.54 )#
134
normallimit ( female, kco, 0.98 )#
135
<  expert >  C K notlow ( fev )

fevfvc.in.range ( a )
degree ( mild, airwaysobstruction )#

136
<  expert >  C K notlow ( fev )

A fevfvc.in.range ( b ) 
fevfvc.in.range ( c )
degree ( moderate, airwaysobstruction )#

137
<  expert >  C K notlow ( fev )

fevfvc.in.range ( d )
degree ( moderatelysevere, airwaysobstruction )#

138
<  expert >  C K notlow ( fev )

fevfvc.in.range ( e )
degree ( severe, airwaysobstruction )#

139
<  expert >  C K low ( fev )

A fevfvc.in.range ( a )
fevfvc.in.range ( b )
degree ( major, airwaysobstruction )#
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140
<  expert >  C K low ( fev )

A fevfvc.in.range ( c )
A fevfvc.in.range ( d )
fevfvc.in.range ( e )
degree ( severe, airwaysobstruction )#

141
define.fevfvc.range ( 1.0, 0.8, a )#
142
define.fevfvc.range ( 0.8, 0.65, b )#
143
define.fevfvc.range ( 0.65, 0.6, c )#
144
define.fevfvc.range ( 0.6, 0.45, d )#
145
define.fevfvc.range ( 0.45, 0, e )#
146
Vx Vy Vyl Vy2 Vz Vzl Vz2 

C K measured ( fevfvc, x )
K predlowerbound ( fevfvc, y )
K define.fevfvc.range ( z, z l ,  z2 )
K multiply ( y, z l ,  yl )
K multiply ( y, z, y2 )
K lessthanorequal ( y l ,  x ) 
lessthan ( x, y2 )
<  expert >  fevfvc.in.range ( z2 )#

147
<  expert >  Vw C K degree ( w, airwaysobstruction )

range ( tic, aboveupperbound ) 
with ( hyperinflation )#

148
<  expert >  Vw C K degree ( w, airwaysobstruction )

K range ( rv, aboveupperbound ) 
range ( tic, belowupperbound ) 
with ( airtrapping )#

149
Vx Vy Vyl C K measured ( fev, x )

K predlowerbound ( fev, y )
K multiply ( y, 0.7, yl ) 
lessthan ( x, yl )
<  expert >  low ( fev )#

150
<  expert >  C K range ( fevfvc, belowlowerbound )

K range ( rvtlc, leupperbound )
A tic.in.range ( a )
tic.in.range ( b )
degree ( reduced, lungvolume )#

151
<  expert >  C K range ( tic, belowlowerbound )

K range ( fevfvc, belowlowerbound ) 
range ( rvtlc, aboveupperbound ) 
degree ( reduced, lungvolume )#

152
<  expert >  C K range ( fevfvc, belowlowerbound )

K tic.in.range ( c )
range ( rvtlc, leupperbound )
degree ( major, restrictivedefect )#
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153
<  expert >  C range ( fevfvc, abovelowerbound )

noevidence ( airwaysobstruction )#
154
<  expert >  C K noevidence ( airwaysobstruction )

range ( tic, aboveupperbound ) 
evidence ( hyperinflation )#

155
<  expert >  C K noevidence ( airwaysobstruction )

K range ( rv, aboveupperbound ) 
range ( tic, belowupperbound ) 
evidence ( airtrapping )#

156
define.tic.range ( 1.0, 0.9, a )#
157
define.tic.range ( 0.9, 0 .8 , b )#
158
define.tic.range ( 0.8, 0.0, c )#
159
Vx Vy Vyl Vy2 Vz Vzl Vz2 

C K measured ( tic, x )
K predlowerbound ( tic, y )
K define.tic.range ( z, z l ,  z2 )
K multiply ( y, z l ,  yl )
K multiply ( y, z, y2 )
K lessthanorequal ( y l ,  x ) 
lessthan ( x, y2 )
<  expert >  tlc.in.range ( z2 )#

160
<  expert >  C K noevidence ( airwaysobstruction )

K range ( rvtlc, belowupperbound )
tlc.in.range ( a )
degree ( mild, restrictivedefect )#

161
<  expert >  C K noevidence ( airwaysobstruction )

K range ( rvtlc, belowupperbound ) 
tlc.in.range ( b )
degree ( moderate, restrictivedefect )#

162
<  expert >  C K noevidence ( airwaysobstruction )

K range ( rvtlc, belowupperbound ) 
tlc.in.range ( c )
degree ( severe, restrictivedefect )#

163
<  expert >  C K noevidence ( airwaysobstruction )

K range ( tic, belowlowerbound ) 
range ( rvtlc, geuppperbound ) 
degree( reduced, lungvolume )#

164
Vx Vy Vz C K measured ( x, y )

K predupperbound ( x, z )
lessthan ( y, z )
<  expert >  range ( x, belowupperbound )#

165
Vx Vy Vz C K measured ( x, y )

K predupperbound ( x, z )
lessthan ( z, y )
<  expert >  range ( x, aboveupperbound )#
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Vx Vy Vz C K measured ( x, y )
K predlowerbound ( x, z ) 
lessthan ( y, z )
<  expert >  range ( x, belowlowerbound )#

167
Vx Vy Vz C K measured ( x, y )

K predlowerbound ( x, z )
lessthan ( z, y )
<  expert >  range ( x, abovelowerbound )#

168
Vx Vy Vyl C K measured ( fev x )

K predlowerbound ( fev y )
K multiply ( y, 0 .7 , yl ) 
lessthanorequal ( y l ,  x )
<  expert >  notlow ( fev )#

169
<  expert >  C K notlow ( fev )

K range ( fevfvc, belowlowerbound )
K range ( fev, belowlowerbound )
K range ( rv, belowupperbound ) 
range ( rvtlc, geupperbound )
suggests ( obstruction.or.airtrapping, underestimated )#

170
Vx Vy Vyl C K <  expert >  notlow ( fev )

K <  expert >  range ( fevfvc, belowlowerbound )
K <  expert >  range ( fev, belowlowerbound )
K <  expert >  range ( rvtlc, aboveupperbound )
K measured ( fevfvc, x )
K predlowerbound ( fevfvc, y )
K multiply ( y, 0.6, yl ) 
lessthanorequal ( y l ,  x )
<  expert >  suggests ( obstruction.or.airtrapping, underestimated )#

171
<  expert >  C K notlow ( fev )

K range ( fevfvc, belowlowerbound )
K range ( fev, belowlowerbound )
K range ( rv, belowupperbound ) 
range ( rvtlc, geupperbound )
suggests ( get.further.info.from, body.plethsmography )#

172
<  expert >  C K notlow ( fev )

K range ( fevfvc, belowlowerbound ) 
range ( tic, belowlowerbound )
suggests ( get.further.info.from, body.plethsmography )#

173
Vx Vy Vyl C K <  expert >  notlow ( fev )

K <  expert >  range ( fevfvc, belowlowerbound )
K <  expert >  range ( fev, belowlowerbound )
K <  expert >  range ( rvtlc, aboveupperbound )
K measured ( fevfvc, x )
K predlowerbound ( fevfvc, y )
K multiply ( y, 0.6, yl ) 
lessthanorequal ( y l , x )
<  expert >  suggests ( get.further.info.from, body.plethsmography )#
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Vx Vxl Vx2 Vy Vyl C K <  expert >  notlow ( fev )
K <  expert >  range ( fevfvc, abovelowerbound )
K <  expert >  measured ( fev, x )
K <  expert >  measured ( rvtlc, y )
K predlowerbound ( fev, xl )
K predupperbound ( rvtlc, yl )
K multiply ( x l ,  1.2, x2 )
K lessthan ( x, x2 ) 
lessthanorequal ( y l , y )
<  expert >  suggests ( obstruction.or.airtrapping, underestimated )#

175
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K range ( rv, aboveupperbound ) 
range ( rvtlc, geupperbound )
suggests ( obstruction.or.airtrapping, underestimated )#

176
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K range ( fev, belowlowerbound ) 
range ( rvtlc, geupperbound )
suggests ( get.further.info.from, body.plethsmography )#

177
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K range ( tic, belowlowerbound ) 
range ( rvtlc, geupperbound )
suggests ( get.further.info.from, body.plethsmography )#

178
Vx Vy Vyl Vy2 C K measured ( x, y )

K predlowerbound ( x, yl )
K predupperbound ( x, y2 )
K lessthan ( y l ,  y ) 
lessthan ( y, y2 )
<  expert >  assign ( x, normalrange )#

179
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K assign ( tic, normalrange )
range ( rvtlc, aboveupperbound )
on.dynamic.testing ( no.airwaysobstruction )#

180
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K assign ( tic, normalrange )
range ( vc, belowlowerbound )
on.dynamic.testing ( no.airwaysobstruction )#

181
<  expert >  C K notlow ( fev )

K range ( fevfvc, abovelowerbound )
K assign ( tic, normalrange )
range ( rv, belowlowerbound )
on.dynamic.testing ( no.airwaysobstruction )#
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182
Vx Vxl Vx2 C K <  expert >  low ( fev )

K <  expert >  range ( rvtlc, aboveupperbound )
K <  expert >  range ( rv, aboveupperbound )
K measured ( fevfvc, x )
K predlowerbound ( fevfvc, xl )
K multiply ( x l ,  0.7, x2 ) 
lessthan ( x2, x )
<  expert >  suggests ( define.obstruction.or.trapping, by.body.plethsmography )#

183
<  expert >  C K low ( fev )

K range ( rvtlc, abovelowerbound ) 
range ( rv, belowupperbound ) 
evidence ( airtrapping.underestimated )#

184
<  expert >  C K low ( fev )

K range ( rvtlc, abovelowerbound ) 
range ( rv, belowupperbound )
suggests ( get.further.info.from, body.plethsmography )#

185
<  expert >  C K low ( fev )

range ( tic, belowlowerbound )
suggests ( get.further.info.from, body.plethsmography )#

186
Vx Vxl C K measured ( kco, x )

K predlowerbound ( kco, xl ) 
lessthanorequal ( x l , x )
<  expert >  degree ( normal, transfer.coefficient )#

187
<  expert >  C kco.in.range ( a )

degree ( slightly.reduced, transfer.coefficient )#
188
<  expert >  C kco.in.range ( b )

degree ( moderately.reduced, transfer.coefficient )#
189
<  expert >  C kco.in.range ( c )

degree ( severely.reduced, transfer.coefficient )#
190
define.kco.range ( 1.0, 0.8, a )#
191
define.kco.range ( 0.8, 0.6, b )#
192
define.kco.range ( 0 .6 , 0.0, c )#
193
Vx Vy Vyl Vy2 Vz Vzl Vz2 

C K measured ( kco, x )
K predlowerbound ( kco, y )
K define.tic.range ( z, z l ,  z2 )
K multiply ( y, z l ,  yl )
K multiply ( y, z, y2 )
K lessthanorequal ( y l ,  x ) 
lessthan ( x, y2 )
<  expert >  kco.in.range ( z2 )#

194
Vx Vy Vz C K measured ( x, y )

K predupperbound ( x, z ) 
lessthanorequal ( y, z )
<  expert >  range ( x, leupperbound )#

177



195
Vx Vy Vz C K measured ( x, y )

K predupperbound ( x, z ) 
lessthanorequal ( z, y )
<  expert >  range ( x, geupperbound )#

201
Vx Vy C K measured ( fev, x )

equation ( —64.51, x, 0, 0, 0, 0, 414.3, y ) 
prednormal ( f50, y )#

202
Vx Vy C K measured ( fev, x )

equation ( —181.04, x, 0, 0, 0, 0, 995.7, y ) 
prednormal ( f85, y )#

203
normallimit ( male, f50, 168 )#
204
normallimit ( female, f50, 168 )#
205
normallimit ( male, f85, 284 )#
206
normallimit ( female, f85, 284 )#
207
Vx Vy Vyl Vz C K sound.measured ( x, y, z )

K predupperbound ( y, yl ) 
lessthan ( z, yl )
<  expert >  sound.range ( x, y, belowupperbound )#

208
Vx Vy Vyl Vz C K sound.measured ( x, y, z )

K predupperbound ( y, yl ) 
lessthan ( y l ,  z )
<  expert >  sound.range ( x, y, aboveupperbound )#

209
Vx Vy Vyl Vz C K sound.measured ( x, y, z )

K predlowerbound ( y, yl ) 
lessthan ( z, yl )
<  expert >  sound.range ( x, y, belowlowerbound )#

210
Vx Vy Vyl Vz C K sound.measured ( x, y, z )

K predlowerbound ( y, yl ) 
lessthan ( y l ,  z )
<  expert >  sound.range ( x, y, abovelowerbound )#

211
Vx Vy Vyl Vy2 Vz C K sound.measured ( x, y, z )

K predupperbound ( y, yl )
K predlowerbound ( y, y2 )
K lessthanorequal ( z, yl ) 
lessthanorequal ( y2, z )
<  expert >  sound.range ( x, y, normalrange )#

212
<  expert >  Vx C K decision.assess ( x, crackles )

K sound.range ( x, f50, aboveupperbound ) 
sound.range ( x, f85, aboveupperbound ) 
conclude ( severe, crackling, x )#

213
<  expert >  Vx C K decision.assess ( x, crackles )

K sound.range ( x, f50, normalrange ) 
sound.range ( x, f85, aboveupperbound ) 
conclude ( mild, crackling, x )#
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214
<  expert >  Vx C K decision.assess ( x, crackles )

K sound.range ( x, f50, normalrange ) 
sound.range ( x, f85, normalrange ) 
conclude ( insignificant, crackling, x )#

215
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, aboveupperbound )
sound.range ( x, f85, geupperbound )
sound.spectrum ( x, major.shift.to.high.frequency )#

216
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, aboveupperbound ) 
sound.range ( x, f85, belowlowerbound ) 
sound.spectrum ( x, abnormal.concentration )#

217
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, normalrange )
sound.range ( x, f85, leupperbound ) 
sound.spectrum ( x, normal )#

218
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, normalrange )
sound.range ( x, f85, aboveupperbound )
sound.spectrum ( x, moderate.shift.to.high.frequency )#

219
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, belowlowerbound ) 
sound.measured ( x, f85, leupperbound ) 
sound.spectrum ( x, shift.to.low.frequency )#

220
<  expert >  Vx C K decision.assess ( x, breathsound )

K sound.range ( x, f50, belowlowerbound ) 
sound.range ( x, f85, aboveupperbound ) 
sound.spectrum ( x, abnormally.broad )#

221
<  expert >  Vx C K decision.assess ( x, crackles )

K sound.range ( x, f50, aboveupperbound ) 
sound.measured ( x, f85, leupperbound ) 
conclude ( moderate, crackling, x )#

222
<  expert >  Vx C observed ( x, crackles )

decision.assess ( x, crackles )#
223
<  expert >  Vx C observed ( x, breathsound )

decision.assess ( x, breathsound )#
224
<  expert >  Vx C observed ( x, quiet )

decision.assess ( x, breathsound )#
225
<  expert >  Vx C observed ( x, breath )

decision.assess ( x, breathsound )#

This is a listing of the 'Inspire.all' rule base. The first order rule base for 
pulmonary function interpretation is held in the file 'Inspire. foT and the
corresponding belief logic rule base is held in the file 'Inspire.ibq\
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