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THE COMPLEXITY OF REASONING FOR FRAGMENTS OF DEFAULT

LOGIC

OLAF BEYERSDORFF AND ARNE MEIER AND MICHAEL THOMAS AND
HERIBERT VOLLMER

Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität
Appelstr. 4, 30167 Hannover, Germany
E-mail address: {beyersdorff,meier,thomas,vollmer}@thi.uni-hannover.de

Abstract. Default logic was introduced by Reiter in 1980. In 1992, Gottlob classi-
fied the complexity of the extension existence problem for propositional default logic as
Σp

2-complete, and the complexity of the credulous and skeptical reasoning problem as
Σp

2-complete, resp. Πp

2-complete. Additionally, he investigated restrictions on the de-
fault rules, i.e., semi-normal default rules. Selman made 1992 a similar approach with
disjunction-free and unary default rules. In this paper we systematically restrict the set
of allowed propositional connectives. We give a complete complexity classification for all
sets of Boolean functions in the meaning of Post’s lattice for all three common decision
problems for propositional default logic. We show that the complexity is a trichotomy
(Σp

2-, NP-complete, trivial) for the extension existence problem, whereas for the credulous
and sceptical reasoning problem we get a finer classification down to NL-complete cases.

1. Introduction

Reiter’s default logic is one of the best known and most successful formalisms to model
common-sense reasoning. Default logic extends the usual logical (first-order or proposi-
tional) derivations by patterns for default assumptions. These are of the form “in the
absence of contrary information, assume . . . ”. Reiter argued that his logic is an adequate
formalization of the human reasoning under the closed world assumption. In fact, today
default logic is widely used in artificial intelligence and computational logic.

What makes default logic computationally presumably harder than propositional or
first-order logic is the fact that the semantics (i. e., the set of consequences) of a given set
of premises is defined in terms of a fixed-point equation. The different fixed points (known
as extensions or expansions) correspond to different possible sets of knowledge of an agent,
based on the given premises.

In a seminal paper from 1992, Georg Gottlob formally defined three important decision
problems for default logic:

(1) Given a set of premises, decide whether it has an extension at all.
(2) Given a set of premises and a formula, decide whether the formula occurs in at least

one extension (so called brave or credulous reasoning).

Key words and phrases: Computational complexity, default logic, nonmonotonic reasoning, Post’s lattice.
Supported in part by DFG grant VO 630/6-1.
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(3) Given a set of premises and a formula, decide whether the formula occurs in all
extensions (cautious or sceptical reasoning).

While in the case of first-order default logic, all these computational tasks are undecidable,
Gottlob proved that for propositional default logic, the first and second are complete for the
class Σp

2 , the second level of the polynomial hierarchy (Meyer-Stockmeyer hierarchy), while
the third is complete for the class Πp

2 (the class of complements of Σp
2 sets).

In the past, various semantical and syntactical restrictions have been proposed in or-
der to identify computationally easier or even tractable fragments (see, e. g., [Sti90, Sti92,
KS91]). This is the starting point of the present paper. We propose a systematic study
of fragments of default logic defined by restricting the set of allowed propositional connec-
tives. For instance, if we look at the fragment where we forbid negation and allow only
conjunction and disjunction, the monotone fragment of default logic, we show that while
the first problem is trivial (there always is an extension, in fact a unique one), the second
and third problem become coNP-complete. In this paper we look at all possible sets B of
propositional connectives and study the three decision problems defined by Gottlob when
all involved formulas contain only connectives from B. The computational complexity of
the problems then, of course, becomes a function of B. We will see that Post’s lattice of all
closed classes of Boolean functions is the right way to study all such sets B. Depending on
the location of B in this lattice, we completely classify the complexity of all three reasoning
tasks, see Figs. 1 and 2. We will show that, depending on the set B of occurring connectives,
the problem to determine the existence of an extension is either Σp

2-complete, NP-complete,
or trivial, while the other two problems are complete in one of the classes Σp

2 (or Πp
2), NP,

coNP, P or NL (under first-order reductions).
The motivation behind our approach lies in the hope that identifying fragments of

default logic with simpler reasoning procedures may help us to understand the sources of
hardness for the full problem and to locate the boundary between hard and easy fragments.
Our improved algorithms for easier fragments could lead to better tools than we have today.

This paper is organized as follows. After some preliminary remarks in Sect. 2, we
introduce Boolean clones in Sect. 3. At this place we also provide a full classification of the
complexity of logical implications for fragments of propositional logic, as this classification
will serve as a central tool for subsequent sections. In Sect. 4, we start to investigate
propositional default logic. Section 5 then presents our main results on the complexity of
the decision problems for default logic. Finally, in Sect. 6 we conclude with a summary and
a discussion. Due to space restrictions, some proofs are deferred to the appendix.

2. Preliminaries

In this paper we make use of standard notions of complexity theory. The arising com-
plexity degrees compass the classes NL, P, NP, coNP, Σp

2 and Πp
2 (cf. [Pap94] for back-

ground information). For the hardness results we use constant-depth reductions, defined as
follows: A language A is constant-depth reducible to a language B (A ≤cd B) if there exists
a logtime-uniform AC0-circuit family {Cn}n≥0 with unbounded fan-in {∧,∨,¬}-gates and
oracle gates for B such that for all x, C|x|(x) = 1 iff x ∈ A (cf. [Vol99]).

We also assume familiarity with propositional logic. The set of all propositional formu-
lae is denoted by L. For A ⊆ L and ϕ ∈ L, we write A |= ϕ iff all assignments satisfying
all formulas in A also satisfy ϕ. By Th(A) we denote the set of all consequences of A,
i. e. Th(A) = {ϕ | A |= ϕ}. For a literal l and a variable x, we define the meta-language
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Figure 1: Post’s lattice. Colors indicate the complexity of EXT(B), the Extension Existence
Problem for B-formulae.

expression ∼l as ∼l := x if l = ¬x and ∼l := ¬x if l = x. For a formula ϕ, let ϕ[α/β] denote
ϕ with all occurrences of α replaced by β, and let A[α/β] := {ϕ[α/β] | ϕ ∈ A} for A ⊆ L.

3. Boolean Clones and the Complexity of the Implication Problem

A propositional formula using only connectives from a finite set B of Boolean functions
is called a B-formula. The set of all B-formulae is denoted by L(B). In order to cope with
the infinitely many finite sets B of Boolean functions, we require some algebraic tools to
classify the complexity of the infinitely many arising reasoning problems. A clone is a set
B of Boolean functions that is closed under superposition, i. e., B contains all projections
and is closed under arbitrary composition. For an arbitrary set B of Boolean functions,
we denote by [B] the smallest clone containing B and call B a base for [B]. In [Pos41]
Post classified the lattice of all clones and found a finite base for each clone, see Fig. 1.
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Figure 2: Post’s lattice. Colors indicate the complexity of CRED(B) and SKEP(B), the
Credulous and Skeptical Reasoning Problem for B-formulae.

In order to introduce the clones relevant to this paper, we define the following notions for
n-ary Boolean functions f :

• f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
• f is monotone if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
• f is c-separating if there exists an i ∈ {1, . . . , n} such that f(a1, . . . , an) = c implies
ai = c, c ∈ {0, 1}.
• f is self-dual if f ≡ dual(f), where dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).
• f is linear if f ≡ x1⊕ · · · ⊕xn⊕ c for a constant c ∈ {0, 1} and variables x1, . . . , xn.

The clones relevant to this paper are listed in Table 1. The definition of all Boolean clones
can be found, e. g., in [BCRV03].

For a finite set B of Boolean functions, we define the Implication Problem forB-formulae
IMP(B) as the following computational task: given a set A of B-formulae and a B-formula
ϕ, decide whether A |= ϕ holds. The following theorem provides a classification of the
complexity of the implication problem. The full proof is contained in the appendix.

4



Name Definition Base
BF All Boolean functions {∧,¬}
R0 {f : f is 0-reproducing} {∧, 6→}
R1 {f : f is 1-reproducing} {∨,→}
M {f : f is monotone} {∨,∧, 0, 1}
S0 {f : f is 0-separating} {→}
S1 {f : f is 1-separating} {6→}
S00 S0 ∩ R0 ∩ R1 ∩M {x ∨ (y ∧ z)}
S10 S1 ∩ R0 ∩ R1 ∩M {x ∧ (y ∨ z)}
D {f : f is self-dual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L {f : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {≡}
L2 L ∩ R0 ∩ R1 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z,¬}
V {f : f ≡ c0 ∨

∨n

i=1
cixi where the cis are constant} {∨, 0, 1}

V2 [{∨}] {∨}
E {f : f ≡ c0 ∧

∧n
i=1

cixi where the cis are constant} {∧, 0, 1}
E2 [{∧}] {∧}
N {f : f depends on at most one variable} {¬, 0, 1}
N2 [{¬}] {¬}
I {f : f is a projection or a constant} {id, 0, 1}
I2 [{id}] {id}

Table 1: A list of Boolean clones with definitions and bases.

Theorem 3.1. Let B be a finite set of Boolean functions. Then IMP(B) is coNP-complete
if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B], and in P for all other cases.

In the above theorem, we can further classify the tractable part into ⊕L-complete and
AC0-complete cases, but this refined analysis is not needed for the results of this paper.

4. Default Logic

Fix some finite set B of Boolean functions and let α, β, γ be propositional B-formulae.
A B-default (rule) is an expression d = α:β

γ ; α is called prerequisite, β is called justification

and γ is called consequent of d. A B-default theory is a pair 〈W,D〉, where W is a set of
propositional B-formulae and D is a set of B-default rules. Henceforth will we will omit
the prefix “B-” if B = BF or the meaning is clear from the context.

For a given default theory 〈W,D〉 and a set of formulae E, let Γ(E) be the smallest set
of formulae such that

(1) W ⊆ Γ(E),
(2) Γ(E) is closed under deduction, i.e. Γ(E) = Th(Γ(E)), and

(3) for all defaults α:β
γ ∈ D with α ∈ Γ(E) and ¬β /∈ E, it holds that γ ∈ Γ(E).

A (stable) extension of 〈W,D〉 is a fixpoint of Γ, i. e. a set E such that E = Γ(E).
The following theorem by Reiter provides an alternative characterization of extensions:

Theorem 4.1 ([Rei80]). Let 〈W,D〉 be a default theory and E be a set of formulae.
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(1) Let E0 = W and Ei+1 = Th(Ei) ∪
{
γ


 α:β

γ ∈ D,α ∈ Ei and ¬β /∈ E
}
. Then E is a

stable extension of 〈W,D〉 iff E =
⋃

i∈N
Ei.

(2) Let G =
{α:β

γ ∈ D

α ∈ E and ¬β /∈ E

}
. If E is a stable extension of 〈W,D〉, then

E = Th(W ∪ {γ | α:β
γ ∈ G}).

In this case, G is also called the set of generating defaults for E.

Note that stable extensions need not be consistent. However, the following proposition
shows that this only occurs if the set W is inconsistent already.

Proposition 4.2. Let 〈W,D〉 be a default theory. Then L is a stable extension of 〈W,D〉
iff W is inconsistent.

Proof. Let 〈W,D〉 be a default theory. We compute the set Γ(L) from the above definition
of Γ. The third condition does not apply, because for E = L, ¬β /∈ E is never fulfilled.
Therefore, Γ(L) = Th(W ) by conditions 1 and 2. Now, L is a fixpoint of Γ iff Th(W ) = L,
i.e., if W is inconsistent.

As a consequence we obtain:

Corollary 4.3. Let 〈W,D〉 be a default theory.

• If W is consistent, then every stable extension of 〈W,D〉 is consistent.
• If W is inconsistent, then 〈W,D〉 has a stable extension.

The main reasoning tasks in nonmonotonic logics give rise to the following three decision
problems:

(1) the Extension Existence Problem EXT(B)
Instance: a B-default theory 〈W,D〉
Question: Has 〈W,D〉 a stable extension?

(2) the Credulous Reasoning Problem CRED(B)
Instance: a B-formula ϕ and a B-default theory 〈W,D〉
Question: Is there a stable extension of 〈W,D〉 that includes ϕ?

(3) the Skeptical Reasoning Problem SKEP(B)
Instance: a B-formula ϕ and a B-default theory 〈W,D〉
Question: Does every stable extension of 〈W,D〉 include ϕ?

The next theorem follows from [Got92] and states the complexity of the above decision
problems for the general case [B] = BF.

Theorem 4.4. Let B be a finite set of Boolean functions such that [B] = BF. Then EXT(B)
and CRED(B) are Σp

2-complete, whereas SKEP(B) is Πp
2-complete.

Proof. The upper bounds given in [Got92] do not depend on the Boolean connectives allowed
and thus hold for any finite set B of Boolean functions. For Σp

2- and Πp
2-hardness, it suffices

to note that if [B] = BF, then there exist B-formulae f(x, y), g(x, y) and h(x) such that
f(x, y) ≡ x∧ y, g(x, y) ≡ x∨ y, h(x) ≡ ¬x and both x and y occur at most once in f , g and
h [Lew79]. Hence, the hardness results proved by Gottlob [Got92] generalize to arbitrary
bases B with [B] = BF.

6



5. The Complexity of Default Reasoning

In this section we will classify the complexity of the three problems EXT(B), CRED(B),
and SKEP(B) for all choices of Boolean connectives B. We start with some preparations
which will substantially reduce the number of cases we have to consider.

Lemma 5.1. Let P be any of the problems EXT, CRED, or SKEP. Then for each finite
set B of Boolean functions, P(B) ≡cd P(B ∪ {1}).

Proof. The reductions P(B) ≤cd P(B∪{1}) are obvious. For the converse reductions, we will
essentially substitute the constant 1 by a new variable t that is forced to be true (this trick
goes already back to Lewis [Lew79]). For EXT, the reduction is given by 〈W,D〉 7→ 〈W ′,D′〉,
where W ′ = W[1/t] ∪ {t}, D

′ = D[1/t], and t is a new variable not occurring in 〈W,D〉. If
〈W ′,D′〉 possesses a stable extension E′, then t ∈ E′. Hence, E′

[t/1] is a stable extension of

〈W,D〉. On the other hand, if E is a stable extension of 〈W,D〉, then Th(E[1/t]∪{t}) = E[1/t]

is a stable extension of 〈W ′,D′〉. Therefore, each extension E of 〈W,D〉 corresponds to the
extension E[1/t] of 〈W ′,D′〉, and vice versa.

For the problems CRED and SKEP, it suffices to note that the above reduction 〈W,D〉 7→
〈W ′,D′〉 has the additional property that for each formula ϕ and each extension E of 〈W,D〉,
ϕ ∈ E iff ϕ[1/t] ∈ E[1/t].

The next lemma shows that, quite often, B-default theories have unique extensions.

Lemma 5.2. Let B be a finite set of Boolean functions such that [B] ⊆ R1 or [B] ⊆ M. Let
〈W,D〉 be a B-default theory with finite D. Then 〈W,D〉 has a unique stable extension.

Proof. For [B] ⊆ R1, every premise, justification and consequent is 1-reproducing. As all
consequences of 1-reproducing functions are again 1-reproducing and the negation of a 1-
reproducing function is not 1-reproducing, the justifications in D become irrelevant. Hence
the characterization of stable extensions from the first item in Theorem 4.1 simplifies to the
following iterative construction: E0 = W and Ei+1 = Th(Ei) ∪

{
γ


 α:β

γ ∈ D,α ∈ Ei
}
. As

D is finite, this construction terminates after finitely many steps, i.e., Ek = Ek+1 for some
k ≥ 0. Then E =

⋃

i≤k Ei is the unique stable extension of 〈W,D〉.
For [B] ⊆ M, every formula is either 1-reproducing or equivalent to 0. As rules with

justification equivalent to 0 are never applicable, each B-default theory 〈W,D〉 with finite
D has a unique stable extension by the same argument as above.

As an immediate corollary, the credulous and the sceptical reasoning problem are equiv-
alent for the above choices of the underlying connectives.

Corollary 5.3. Let B be a finite set of Boolean functions such that [B] ⊆ R1 or [B] ⊆ M.
Then CRED(B) ≡cd SKEP(B).

5.1. The Extension Existence Problem

Now we are ready to classify the complexity of EXT. The next theorem shows that this
is a trichotomy: the Σp

2-completeness of the general case [Got92] is inherited by all clones
above S1 and D, for a number of clones the complexity of EXT reduces to NP-completeness,
and, due to Lemma 5.2, for the majority of cases the problem becomes trivial.

Theorem 5.4. Let B be a finite set of Boolean functions. Then EXT(B) is

7



(1) Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

(2) NP-complete if [B] ∈ {N,N2,L,L0,L3}, and
(3) trivial in all other cases (i. e., if [B] ⊆ R1 or [B] ⊆ M).

Proof. For S1 ⊆ [B] ⊆ BF or [B] = D, observe that in both cases BF = [B ∪ {1}]. Claim 1
then follows from Theorem 4.4 and Lemma 5.1.

For the second claim, it suffices to prove membership in NP for EXT(B) for every finite
B ⊆ L and NP-hardness for EXT(B) for every finite B with N ⊆ [B]. The remaining cases
[B] ∈ {N2,L0,L3} all follow from Lemma 5.1, because [N2 ∪ {1}] = N, [L0 ∪ {1}] = L, and
[L3 ∪ {1}] = L.

We start by showing EXT(L) ∈ NP. Given a default theory 〈W,D〉, we first guess a
set G ⊆ D which will serve as the set of generating defaults for a stable extension. Let

G′ = W ∪ {γ | α:β
γ ∈ G}. We use Theorem 4.1 to verify whether Th(G′) is indeed a stable

extension of 〈W,D〉. For this we inductively compute generators Gi for the sets Ei from
Theorem 4.1, until eventually Ei = Ei+1 (note, that because D is finite, this always occurs).

We start by setting G0 = W . Given Gi, we check for each rule α:β
γ ∈ D, whether Gi |= α

and G′ 6|= ¬β (as all formulas belong to L(B), this is possible by Theorem 3.1). If so, then
γ is put into Gi+1. If this process terminates, i.e., if Gi = Gi+1, then we check whether
G′ = Gi. By Theorem 4.1, this test is positive iff G generates a stable extension of 〈W,D〉.

To show NP-hardness of EXT(B) for N ⊆ [B], we will ≤cd-reduce 3SAT to EXT(B).
Let ϕ =

∧n
i=1(li1 ∨ li2 ∨ li3) and lij be literals over propositions {x1, . . . , xm} for 1 ≤ i ≤ n,

1 ≤ j ≤ 3. We transform ϕ to the B-default theory 〈W,Dϕ〉, where W := ∅ and

Dϕ :=

{
1 : xi
xi






1 ≤ i ≤ m

}

∪

{
1 : ¬xi
¬xi



 1 ≤ i ≤ m

}

∪

{
∼liπ(1) : ∼liπ(2)

liπ(3)






1 ≤ i ≤ n, π is a permutation of {1, 2, 3}

}

.

To prove the correctness of the reduction, first assume ϕ to be satisfiable. For each satisfying
assignment σ : {x1, . . . , xm} → {0, 1} for ϕ, we claim that

E := Th({xi | σ(xi) = 1} ∪ {¬xi | σ(xi) = 0})

is a stable extension of 〈W,Dϕ〉. We will verify this claim with the help of the first part of

Theorem 4.1. Starting with E0 = ∅, we already get E1 = E by the default rules 1:xi

xi

and
1:¬xi

¬xi

in Dϕ. As σ is a satisfying assignment for ϕ, each consequent of a default rule in Dϕ is

already in E. Hence E2 = E1 and therefore E =
⋃

i∈N
Ei is a stable extension of 〈W,Dϕ〉.

Conversely, assume that E is a stable extension of 〈W,Dϕ〉. Because of the default

rules 1:xi

xi

and 1:¬xi

¬xi

, we either get xi ∈ E or ¬xi ∈ E for all i = 1, . . . ,m. The rules of the

type ∼li1:∼li2
li3

ensure that E contains at least one literal from each clause li1 ∨ li2 ∨ li3 in ϕ.
As E is deductively closed, E contains ϕ. By Corollary 4.3, the extension E is consistent,
and therefore ϕ is satisfiable.

Finally, the third item of the theorem directly follows from Lemma 5.2.

5.2. The Credulous and the Sceptical Reasoning Problem

Now we will analyse the credulous and the sceptical reasoning problem. For these prob-
lems, there are two sources for the complexity. On the one hand, we need to determine a
candidate for a stable extension. On the other hand, we have to verify that this candidate

8



is indeed a finite characterization of some stable extension — a task that requires to test for
formula implication. Whence the Σp

2-completeness of CRED(B) and the Πp
2-completeness of

SKEP(B) if [B] = BF. Depending on the Boolean connectives allowed, one or both tasks can
be performed in polynomial time. We obtain coNP-completeness for clones that guarantee
the existence of a stable extension but whose implication problem remains coNP-complete.
Conversely, if the implication problem becomes easy, but determining an extension candi-
dates is hard, then CRED(B) is NP-complete, while SKEP(B) has to test for all extensions
and is coNP-complete. This is the case for the clones [B] ∈ {N,N2,L,L0,L3}. Finally, for
clones B that allow for solving both tasks in polynomial time, CRED(B) and SKEP(B) are
in P. The complete classification of CRED(B) is given in the following theorem.

Theorem 5.5. Let B be a finite set of Boolean functions. Then CRED(B) is

(1) Σp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

(2) coNP-complete if X ⊆ [B] ⊆ Y , where X ∈ {S00,S10,D2} and Y ∈ {R1,M},
(3) NP-complete if [B] ∈ {N,N2,L,L0,L3},
(4) P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1,L2}, and
(5) NL-complete if I2 ⊆ [B] ⊆ I.

The proof of Theorem 5.5 follows from the upper and lower bounds given in the Propo-
sitions 5.6 and 5.7 below.

Proposition 5.6. Let B be a finite set of Boolean functions. Then CRED(B) is contained

(1) in Σp
2 if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

(2) in coNP if [B] ⊆ R1 or [B] ⊆ M,
(3) in NP if [B] ⊆ L,
(4) in P if [B] ⊆ V, [B] ⊆ E or [B] ⊆ L1, and
(5) in NL if [B] ⊆ I.

Algorithm 1 Determine existence of a
stable extension of 〈W,D〉 containing ϕ.

Require: 〈W,D〉, ϕ
1: Gnew ←W
2: repeat

3: Gold ← Gnew

4: for all α:β
γ
∈ D do

5: if Gold |= α then

6: Gnew ← Gnew ∪ {γ}
7: end if

8: end for

9: until Gnew = Gold

10: if Gnew |= ϕ then

11: return true

12: else

13: return false

14: end if

Proof. Part 1 follows from Theorem 4.4 and
Lemma 5.1.

For [B] ⊆ R1, let 〈W,D〉 be an R1-default
theory and ϕ ∈ L(R1). As for every default rule
α:β
γ ∈ D we can never derive ¬β (as ¬β is not 1-

reproducing), the justifications β are irrelevant
for computing a stable extension. Thence, using
the characterization in the first part of Theo-
rem 4.1, we can iteratively compute the appli-
cable defaults and eventually check whether ϕ
is implied by W and those generating defaults.
Algorithm 1 implements these steps on a deter-
ministic Turing machine using a coNP-oracle to
test for implication of B-formulae. Clearly, Al-
gorithm 1 terminates after a polynomial num-
ber of steps. Moreover, Algorithm 1 is a mono-
tone ≤p

T-reduction from CRED(B) to IMP(B),
in the sense that for any deterministic oracle
Turing machine M that executes Algorithm 1,
A ⊆ B implies L(M,A) ⊆ L(M,B), where L(M,X) is the language recognized by M with
oracle X. As coNP is closed under monotone ≤p

T-reductions [Sel82], CRED(B) ∈ coNP.
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For [B] ⊆ M, Algorithm 1 can be easily adopted, because we are restricted to 1-
reproducing functions and the constant 0. Thus, before executing Algorithm 1, we just
delete all rules α:β

γ with β ≡ 0 from D, as these rules are never applicable.

For [B] ⊆ L, we proceed similarly as in the proof of item 2 in Theorem 5.4. First, we

guess a set G of generating defaults and subsequently verify that both Th(W∪{γ | α:β
γ ∈ G})

is a stable extension and that W ∪ {γ | α:β
γ ∈ G} |= ϕ. Using Theorem 3.1, both conditions

may be verified in polynomial time.
For [B] ⊆ V, [B] ⊆ E, and [B] ⊆ L1, we again use Algorithm 1. As for these types of

B-formulae, we have an efficient test for implication (Theorem 3.1), CRED(B) ∈ P.
For [B] ⊆ I, we show that CRED(B) is constant-depth reducible to the graph accessi-

bility problem, GAP, a problem that is ≤cd-complete for NL. Let 〈W,D〉 be an I-default

theory with D = {αi:βi

γi
| 1 ≤ i ≤ k} and let ϕ be an I-formula. We transform (〈W,D〉, ϕ)

to the GAP-instance (G,
∧

ψ∈W ψ,ϕ), where G = (V,E) is a directed graph with

V := {αi | 1 ≤ i ≤ k} ∪ {γi | 1 ≤ i ≤ k} ∪ {
∧

ψ∈W ψ,ϕ} and

E := {(αi, γi) | 1 ≤ i ≤ k} ∪ {(u, v) ∈ V | u |= v} .

Then ϕ is included in the (unique) stable extension of 〈W,D〉 iff G contains a path from
∧

ψ∈W ψ to ϕ. As implication testing for all B ⊆ I is possible in AC0, CRED(B) ≤cd GAP.

We will now establish the lower bounds required to complete the proof of Theorem 5.5.

Proposition 5.7. Let B be a finite set of Boolean functions. Then CRED(B) is

(1) Σp
2-hard if S1 ⊆ [B] or D ⊆ [B],

(2) coNP-hard if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B],
(3) NP-hard if N2 ⊆ [B] or L0 ⊆ [B],
(4) P-hard if V2 ⊆ [B], E2 ⊆ [B] or L2 ⊆ [B], and
(5) NL-hard for all other clones.

Proof. Part 1 follows from Theorem 4.4 and Lemma 5.1.
For S00 ⊆ [B], S10 ⊆ [B], and D2 ⊆ [B], coNP-hardness is established by a ≤cd-

reduction from IMP(B). Let A ⊆ L(B) and ϕ ∈ L(B). Then the default theory 〈A, ∅〉 has
the unique stable extension Th(A), and hence A |= ϕ iff (〈A, ∅〉, ϕ) ∈ CRED(B). Therefore,
IMP(B) ≤cd CRED(B), and the claim follows with Theorem 3.1.

For the third item, it suffices to prove NP-hardness for N2 ⊆ [B]. For L0 ⊆ [B], the
claim then follows by Lemma 5.1. For N2 ⊆ [B], we obtain NP-hardness of CRED(B)
by adjusting the reduction given in the proof of item 2 of Theorem 5.4. Consider the
mapping ϕ 7→ (〈{ψ},Dϕ〉, ψ), where Dϕ is the set of default rules constructed from ϕ
in Theorem 5.4, and ψ is a satisfiable B-formula such that ϕ and ψ do not use common
variables. By Theorem 5.4, ϕ ∈ 3SAT iff 〈{ψ},Dϕ〉 has a stable extension. As any extension
of 〈{ψ},Dϕ〉 contains ψ, we obtain 3SAT ≤cd CRED(B) via the above reduction.

To prove P-hardness for E2 ⊆ [B], V2 ⊆ [B], and [B] ∈ {L1,L2}, we provide a reduction
from the accessibility problem for directed hypergraphs, HGAP. HGAP is P-complete under
≤cd-reductions [SI90]. In directed hypergraphs H = (V,E), hyperedges e ∈ E consist of a
set of source nodes src(e) ⊆ V and a destination dest(e) ∈ V . Instances of HGAP contain
a directed hypergraph H = (V,E), a set S ⊆ V of source nodes, and a target node t ∈ V .

10



We transform such an instance (H,S, t) to the CRED({∧})-instance (〈W,D〉, ϕ), where

W := {ps | s ∈ S}, D :=

{∧

v∈src(e) pv :
∧

v∈src(e) pv

pdest(e)





e ∈ E

}

, ϕ := pt

with pairwise distinct propositions pv for v ∈ V . For V2 ⊆ [B], we set

W := {
∨

s/∈S

ps}, D :=

{∨

v∈V \src(e) pv :
∨

v∈V \src(e) pv
∨

v∈V \(src(e)∪{dest(e)}) pv





e ∈ E

}

, ϕ :=
∨

v∈V \{t}

pv.

For [B] ∈ {L1,L2}, we again modify the above reduction and map (H,S, t) to the CRED(B)-
instance

W := {ps | s ∈ S}, D :=

{
≡v∈src(e) pv : ≡v∈src(e) pv

pdest(e)





e ∈ E

}

, ϕ := pt.

The correctness of these reductions is easily verified.
Finally, it remains to show NL-hardness for I2 ⊆ [B]. We give a ≤cd-reduction from

GAP to CRED({id}). For a directed graph G = (V,E) and two nodes s, t ∈ V , we transform
the GAP-instance (G, s, t) to the CRED(I2)-instance

W := {ps}, D :=

{
pu : pu
pv






(u, v) ∈ V

}

, ϕ := pt.

Clearly, (G, s, t) ∈ GAP iff ϕ is contained in all stable extensions of 〈W,D〉.

Finally, we will classify the complexity of the sceptical reasoning problem. The analysis
is similar to the classification of the credulous reasoning problem (Theorem 5.5).

Theorem 5.8. Let B be a finite set of Boolean functions. Then SKEP(B) is

(1) Πp
2-complete if S1 ⊆ [B] ⊆ BF or D ⊆ [B] ⊆ BF,

(2) coNP-complete if X ⊆ [B] ⊆ Y , where X ∈ {S00,S10,N2,L0} and Y ∈ {R1,M,L},
(3) P-complete if V2 ⊆ [B] ⊆ V, E2 ⊆ [B] ⊆ E or [B] ∈ {L1,L2}, and
(4) NL-complete if I2 ⊆ [B] ⊆ I.

Proof. The first part again follows from Theorem 4.4 and Lemma 5.1.
For [B] ∈ {N,N2,L,L0,L3}, we guess similarly as in Theorem 5.4 a set G of defaults and

then verify in the same way whether W and G generate a stable extension E. If not, then
we accept. Otherwise, we check if E |= ϕ and answer according to this test. This yields a
coNP-algorithm for SKEP(B). Hardness for coNP is achieved by modifying the reduction
from Theorem 5.4 (cf. also the proof of Proposition 5.7): map ϕ to (〈∅,Dϕ〉, ψ), where Dϕ

is defined as in the proof of Theorem 5.4, and ψ is a B-formula such that ϕ and ψ do not
share variables. Then ϕ /∈ 3SAT iff 〈∅,Dϕ〉 does not have a stable extension. The latter is

true iff ψ is in all extensions of 〈∅,Dϕ〉. Hence 3SAT ≤cd SKEP(B), establishing the claim.
For all remaining clones B, observe that [B] ⊆ R1 or [B] ⊆ M. Hence, Corollary 5.3

and Theorem 5.5 imply the claim.

6. Conclusion

In this paper we provided a complete classification of the complexity of the main rea-
soning problems for default propositional logic, one of the most common frameworks for
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nonmonotonic reasoning. The complexity of the extension existence problem shows an in-
teresting similarity to the complexity of the satisfiability problem [Lew79], because in both
cases the hardest instances lie above the clone S1 (with the exception that instances from D

are still hard for EXT, but easy for SAT). The complexity of the membership problems, i.e.,
credulous and skeptical reasoning, rests on two sources: first, whether there exist unique
extensions (cf. Lemma 5.2), and second, how hard it is to test for formula implication. For
this reason, we also classified the complexity of the implication problem IMP(B).

In the light of our present contribution, it is interesting to remark that by results of
Konolige [Kon88], propositional default logic and Moore’s autoepistemic logic are essentially
equivalent. Even more, the translation is efficiently computable. Unfortunately, this trans-
lation requires a complete set of Boolean connectives, whence our results do not immediately
transfer to autoepistemic logic. It is nevertheless interesting to ask whether the exchange of
default rules with the introspective operator L yields further efficiently decidable fragments.
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Appendix A. The Complexity of the Implication Problem

Let B be a finite set of Boolean functions. The Implication Problem for B-formulae is
defined as

Problem: IMP(B)
Instance: A set A of B-formulae and a B-formula ϕ.
Question: Does A |= ϕ hold?

We have already stated the classification of the complexity of IMP(B) in Theorem 3.1
(cf. also Fig. 3):

Theorem 3.1. Let B be a finite set of Boolean functions. Then IMP(B) is coNP-complete
if S00 ⊆ [B], S10 ⊆ [B] or D2 ⊆ [B], and in P for all other cases.

We split the proof of Theorem 3.1 into several lemmas.
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Figure 3: Post’s lattice. Colors indicate the complexity of IMP(B), the Implication Problem
for B-formulae.

13



Lemma A.1. Let B be a finite set of Boolean functions. The implication problem for
propositional B-formulae, IMP(B), is coNP-complete if S00 ⊆ [B] or S10 ⊆ [B].

Proof. Membership in coNP is apparent, because given A and ϕ, we just have to check that
for all assignments σ to the variables of A and ϕ, either σ 6|= A or σ |= ϕ.

The hardness proof is inspired by [Rei03]. Observe that IMP(B) ≡cd IMP(B ∪ {1}) if
∧ ∈ [B], and that IMP(B) ≡cd IMP(B ∪ {0}) if ∨ ∈ [B] (because ϕ |= ψ ⇐⇒ ϕ[1/t] ∧ t |=
ψ[1/t] and ϕ |= ψ ⇐⇒ ϕ[0/f ] |= ψ[0/f ] ∨ f where t, f are new variables). It hence suffices to
show that IMP(B) is coNP-hard for M0 = [S00 ∪ {0}] and M1 = [S10 ∪ {1}]. We will show
that IMP(B) is coNP-hard for each base B with M2 ⊆ [B]. To prove this claim, we will
provide a reduction from TAUTDNF to IMP(B), where TAUTDNF is the coNP-complete
problem to decide, whether a given propositional formula in disjunctive normal form is a
tautology.

Let ϕ be a propositional formula in disjunctive normal form over the propositions
X = {x1, . . . , xk}. Then ϕ =

∨n
i=1

∧m
j=1 lij , where lij are literals over X. We take new

variables Y = {y1, . . . , yk} and replace in ϕ each negative literal lij = ¬xl by yl. Let ϕ′

be the resulting formula. Now define ψ1 :=
∧k
i=1(xi ∨ yi) and ψ2 := ϕ′. We claim that

ϕ ∈ TAUTDNF ⇐⇒ ψ1 |= ψ2.
Let us first assume ϕ ∈ TAUTDNF and let σ : X ∪ Y → {0, 1} be an assignment such

that σ |= ψ1. As ϕ is a tautology, σ |= ϕ. But also σ |= ϕ′, as we simply replaced the
negated variables in ϕ by positive ones and ϕ′ is monotone. As σ was arbitrarily chosen,
ψ1 |= ψ2.

For the opposite direction, let ϕ /∈ TAUTDNF. Then there exists an assignment σ : X →
{0, 1} such that σ 6|= ϕ. We extend σ to an assignment σ′ : X ∪ Y → {0, 1} by setting
σ′(yi) = 1 − xi for i = 1, . . . , k. Then σ′(xi) = 0 iff σ′(yi) = 1, and consequently σ′

simulates σ on ϕ′. As a result, σ′ 6|= ϕ′ = ψ2. Yet, either σ′(xl) = 1 or σ′(yl) = 1 and thus
σ′ |= ψ1, yielding ψ1 6|= ψ2.

Lemma A.2. Let B be a finite set of Boolean functions. Then IMP(B) is coNP-complete
if D2 ⊆ [B].

Proof. Again we just have to argue for coNP-hardness of IMP(B). As D2 ⊆ [B], we know
that g(x, y, z) := (x∧y)∨(y∧z)∨(x∧z) ∈ [B]. Clearly, g(x, y, 0) = x∧y and g(x, y, 1) = x∨y.
Denote by ψBi , i ∈ {1, 2}, the formula ψi with all occurrences of x ∧ y and x ∨ y replaced
with a B-representation of g(x, y, f) and g(x, y, t), resp.

We give a reduction from the general coNP-hard implication problem IMP(B) for [B] =
BF to IMP(B) for [B] ⊆ D2 by a modification of the reduction given in the proof of Lemma
A.1. We map a pair (ψ1, ψ2) of propositional formulae to ({ψ′

1, t}, ψ
′
2) where

ψ′
1 := g(g(ψB1 , t, f), f, t) and ψ′

2 := g(g(ψB2 , t, f), f, t).

As the variables x and y may occur several times in g, ψB1 and ψB2 might be exponential
in the length of ϕ (recall that ψ2 is ϕ with all negative literals replaced by new variables).
That this is not the case follows from the associativity of ∧ and ∨: insert parentheses in such
a way that we get a tree of logarithmic depth. We claim that ψ1 |= ψ2 ⇐⇒ {ψ′

1, t} |= ψ′
2.

Let σ be an arbitrary assignment for the variables in ϕ. Then σ may be extended to
{f, t} in the following ways:

σ(t) := 0: Then {ψ′
1, t} ≡ 0 and {ψ′

1, t} |= ψ′
2.

σ(t) := 1, σ(f) := 1: In this case, g(g(ψB1 , t, f), f, t) ≡ 1 ≡ g(g(ψB2 , t, f), f, t) and thus
{ψ′

1, t} |= ψ′
2.
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σ(t) := 1, σ(f) := 0: Then ψ′
1 = g(g(ψB1 , t, f), f, t) ≡ (ψB1 ∧ t) ∨ f ≡ ψ1 and ψ′

2 =
g(g(ψB2 , t, f), f, t) ≡ (ψB2 ∧ t) ∨ f ≡ ψ2. Thus ψ1 |= ψ2 iff {ψ′

1, t} |= ψ′
2.

Hence, as claimed, ψ1 |= ψ2 ⇐⇒ {ψ′
1, t} |= ψ′

2.

Lemma A.3. Let B be a finite set of Boolean functions such that [B] ⊆ V, [B] ⊆ E or
[B] ⊆ L. Then IMP(B) is in P.

Proof. Consider the case [B] ⊆ V first. Let B be a finite set of Boolean functions such that
[B] ⊆ V. Let A be a finite set of B-formulae and let ϕ be a B-formula such that A and ϕ
only use the variables x1, . . . , xn. Let ϕ ≡ c0 ∨ c1x1 ∨ · · · ∨ cnxn with constants ci ∈ {0, 1}
for 0 ≤ i ≤ n. Equally, every formula from A is equivalent to an expression of the form
c′0∨c

′
1x1∨· · ·∨c

′
nxn with c′i ∈ {0, 1}. Then, A |= ϕ iff either c0 = 1 or there exists a formula

ψ ≡ c′0 ∨ c
′
1x1 ∨ · · · ∨ c

′
nxn from A such that c′i ≤ ci for all 0 ≤ i ≤ n.

The value of c0 can be determined by evaluating ϕ(0, . . . , 0). Furthermore, for 1 ≤ i ≤ n,
ci = 0 iff c0 = 0 and

ϕ(0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0) = 0.

The values of the coefficients of formulae in A can be computed analogously. Thus IMP(B)
can be computed in constant depth using oracle gates for B-formula evaluation. As B-
formula evaluation is in P, the claim follows.

In the case [B] ⊆ E, the proof is analogous to the above proof for [B] ⊆ V.
For the remaining case, let B be a finite set of Boolean functions with [B] ⊆ L. In order

to show that B-implication is polynomial-time solvable, observe that F |= α iff F ∪{α⊕ 1}
is inconsistent. Let F ′ denote F ∪ {α⊕ 1} rewritten such that for all ϕ ∈ F ′,

ϕ = c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn,

where c0, . . . , cn ∈ {0, 1}. F
′ is polynomial-time constructible, since c0 can be determined

by evaluating ϕ(0, . . . , 0), and for i = 1, . . . , n, ci = 1 iff

ϕ(0, . . . , 0) 6≡ ϕ(0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0).

F ′ can now be transformed into a system of linear equations S via

c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn 7→ c0 + c1x1 + · · · + cnxn = 1 (mod 2).

Clearly, the resulting system of linear equations has a solution iff F ′ is consistent. The
equations are furthermore defined over the field Z2 and can thence be solved in polynomial
time using the Gaussian algorithm. Thus B-implication can by solved in polynomial time.
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