
37?
0 / d f

/ / o . 3 s i 7

USING EXTENDED LOGIC PROGRAMS TO FORMALIZE

COMMONSENSE REASONING

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Wen-Bing Horng, B.S., M.S.

Denton, Texas

May, 1992

37?
0 / d f

/ / o . 3 s i 7

USING EXTENDED LOGIC PROGRAMS TO FORMALIZE

COMMONSENSE REASONING

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Wen-Bing Horng, B.S., M.S.

Denton, Texas

May, 1992

Horng, Wen-Bing, Using Extended Logic Programs to Formalize Commonsense

Reasoning. Doctor of Philosophy (Computer Science), May, 1992, 172 pp., 14 illus-

trations, bibliography, 141 titles.

In this dissertation, we investigate how commonsense reasoning can be formal-

ized by using extended logic programs. In this investigation, we first use extended

logic programs to formalize inheritance hierarchies with exceptions by adopting Mc-

Carthy's simple abnormality formalism to express uncertain knowledge. In our rep-

resentation, not only credulous reasoning can be performed but also the ambiguity-

blocking inheritance and the ambiguity-propagating inheritance in skeptical reasoning

are simulated.

In response to the anomalous extension problem, we explore and discover that

the intuition underlying commonsense reasoning is a kind of forward reasoning. The

unidirectional nature of this reasoning is applied by many reformulations of the Yale

shooting problem to exclude the undesired conclusion. We then identify defeasible

conclusions in our representation based on the syntax of extended logic programs.

A similar idea is also applied to other formalizations of commonsense reasoning to

achieve such a purpose.

One of the biggest problems with the existing formalizations of nonmonotonic

reasoning is that they cannot deal with conflicting information. We propose the gener-

alized answer set semantics to resolve conflicts by capturing the idea of dependency-

directed backtracking in truth maintenance systems. Also, similar approaches are

applied to other formalizations to resolve conflicting information.

Although McCarthy's abnormality formalism is commonly used to represent

uncertain knowledge, we find that it has the semantical inconsistency problem in

interpreting conclusions and propose a simple method to fix it. We then explore an

interesting property called "unless" semantics in commonsense reasoning and enhance

the generalized answer set semantics to incorporate this important semantics. It turns

out that the transformed logic programs become more coherent and their conclusions

become more reasonable.

Since the definition of an answer set of an extended logic program is a gener-

alization of that of stable models of a general logic program, both of them are non-

constructive. We present a new approach to compute stable models and a method

to compute answer sets based on the computation of stable models, which make our

formalization more practical.

ACKNOWLEDGMENTS

I would first like to thank my major advisor, Chao-Chih Yang, for his guidance,

encouragement, and support. He introduced me to the fields of logic programming

and commonsense reasoning and motivated me to the problems considered in this

dissertation. I have learned a great deal from his classes and personal discussions of

how to do research independently.

I would also like to thank to the other members of my doctoral committee,

Roy Thomas Jacob, Sajal K. Das, James L. Poirot, and particularly Frank Vlach for

helpful comments on my earlier drafts.

This work was supported by the Department of Computer Sciences, University

of North Texas. It is my pleasure to acknowledge the departmental chairman, Paul

S. Fisher, for his generous financial assistantships.

Finally, I wish to thank my family and friends for their supports and expec-

tations. I am grateful to my parents, Chen-Der and Ah-Chau, and would like to

dedicate this dissertation to them. They sacrificed their whole lives for bringing up

me, teaching me, and encouraged and supported me in pursuing advanced study. I

also indebted to my brother and sisters for taking care of my over seventy-year-old

parents during my six years' study in the United States. Special thanks to my wife,

Shu-Chin, for her patiently looking after me. In addition, I owe a great deal to my

lovely daughter, Terry. Due to busy writing my dissertation, I had little time to play

with her. Now, I have finished my dissertation, I can have more time to stay with my

family.

m

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii

LIST OF ILLUSTRATIONS vi

1 INTRODUCTION 1

1.1 Commonsense Reasoning 2
1.2 Logic Programming 4

1.3 Organization of the Dissertation 6

2 FORMALIZATIONS OF NONMONOTONIC REASONING 9

2.1 Closed World Reasoning 11
2.1.1 Closed World Assumption 11
2.1.2 Generalized Closed World Assumption 12
2.1.3 Extended Generalized Closed World Assumption 13
2.1.4 Careful Closure Procedure 13
2.1.5 Extended Closed World Assumption 14

2.2 Nonmonotonic Logic 15
2.3 Autoepistemic Logic 17
2.4 Default Logic 19
2.5 Circumscription 22
2.6 Logic Programs 25

2.6.1 Negation as Failure Rule 26
2.6.2 Program Completion 27
2.6.3 Stratified Logic Programs 29
2.6.4 Extended Logic Programs 30

3 INHERITANCE HIERARCHIES WITH EXCEPTIONS 34

3.1 Related Work 37
3.2 Formalizing Exceptions in Inheritance Hierarchies 42
3.3 Exceptions in Unambiguous Inheritance Hierarchies 49
3.4 Exceptions in Ambiguous Inheritance Hierarchies 51

3.4.1 Credulous Reasoning 53
3.4.2 Skeptical Reasoning 57

3.5 Redundant Statements in Inheritance Hierarchies 60

4 THE ANOMALOUS EXTENSION PROBLEM 63

4.1 Examples with Anomalous Extensions 64
4.1.1 McCarthy Anomaly 64
4.1.2 Hanks-McDermott Anomaly 66
4.1.3 Morris Anomaly 68

IV

4.2 Investigating Intuition Behind Commonsense Reasoning 69
4.3 Related Work 74
4.4 Discussions 76

5 DEFEASIBLE CONCLUSIONS 79

5.1 Identifying Defeasible Conclusions 81
5.2 Answer Set Semantics with Defeasible Conclusions 86
5.3 Applying Defeasible Conclusions to Commonsense Reasoning 88
5.4 Defeasible Conclusions in Other Formalizations 90

5.4.1 Fixed Point Construction Based Formalizations 90
5.4.2 Minimal Model Definition Based Formalizations 91

6 CONFLICT RESOLUTION 93

6.1 Background 95
6.2 Truth Maintenance Systems 97
6.3 Related Work 100
6.4 Generalized Answer Set Semantics 102
6.5 Conflict Resolution in Other Formalizations 110

6.5.1 Generalized Extensions I l l
6.5.2 Generalized Stable Expansions 112
6.5.3 Generalized Supported Models 113

7 "UNLESS" SEMANTICS 116

7.1 Overview with an Example 119
7.2 Semantic Inconsistencies in the Abnormality Formalism 122
7.3 Exploring "Unless" Semantics 125
7.4 Formalizing Unless Semantics in Extended Logic Programs 130
7.5 "Unless" Semantics in Default Logic and Autoepistemic Logic 137

8 COMPUTING ANSWER SETS 139

8.1 Reduction to General Programs 141
8.2 Computing Stable Models 143

8.2.1 Step 1: Constructing Dependency Graphs 144
8.2.2 Step 2: Simplifying Logic Programs and Dependency Graphs . 145
8.2.3 Step 3: Finding Negative Loops 149
8.2.4 Step 4: Finding Cuts 151
8.2.5 Step 5: Generating Stable Models 152

8.3 Examples of Computing Stable Models 154

8.4 Computing Answer sets 158

9 CONCLUSION AND FUTURE RESEARCH 159

BIBLIOGRAPHY 163

LIST OF ILLUSTRATIONS

3.1 NETL network representation 38
3.2 E&R's network representation 39
3.3 Touretzky's network representation 40
3.4 Network of the semantically inconsistent knowledge 46
3.5 Network of flying birds 49
3.6 The Nixon diamond 52
3.7 Nested Nixon diamond in credulous reasoning 55
3.8 Nested Nixon diamond in credulous reasoning 56
3.9 Nested Nixon diamond in skeptical reasoning 59
3.10 Nested Nixon diamond in skeptical reasoning 60
3.11 Redundant links in the network 61
8.1 The dependency graph of P 155
8.2 The simplified dependency graph of P 156
8.3 The dependency graph of P 157

VI

CHAPTER 1

INTRODUCTION

Commonsense reasoning prevails in our everyday life. It is one of the important

reasoning abilities a human being possesses besides deductive reasoning [24], inductive

reasoning [74], probabilistic reasoning [89, 90], fuzzy reasoning [139, 140, 141], and

so on. Usually, our knowledge about a specific domain is incomplete, and sometimes

we are forced to draw conclusions from it. In this case we may need to make some

default assumptions which correspond to our intuition in order to derive reasonable

conclusions. Nevertheless, once new information which conflicts with any default

assumptions made is learned, we need to withdraw the conclusions previously derived

from these defeated assumptions.

A canonical example about flying birds is often used as an illustration in the

literature of commonsense reasoning. Since we know "typically, birds fly," if we

now only have the information that Tweety is a bird, we may directly jump to the

conclusion that Tweety can fly by making the default assumption that Tweety is a

normal bird. Later on, if we are told that Tweety is an ostrich, we will retract our

previous belief and draw another new conclusion that Tweety cannot fly to reflect the

new information and the general rule "normally, ostriches do not fly."

From the above example, we know that commonsense reasoning is a kind of

plausible reasoning. This kind of reasoning has the property of nonmonotonicity

and is also called nonmonotonic reasoning in artificial intelligence (AI). Informally,

a reasoning system is called nonmonotonic if the set of theorems derived from a

theory does not increase when the theory is augmented. This means that some

1

previously derived theorems will be retracted if new knowledge is added. Therefore,

the conclusions drawn from nonmonotonic reasoning are tentative; they are defeasible

when more complete knowledge is obtained.

1.1. Commonsense Reasoning

The importance of commonsense reasoning in AI had been recognized long before

formal theories were proposed. Some early researchers advocated using mathematical

logic as formal systems to formalize such a kind of reasoning. Minsky [83], however,

invoked the nonmonotonic nature of commonsense reasoning against classical logic

and challenged the proponents of logic-based reasoning in AI to formalize the inher-

itance of prototypical properties and their exceptions, such as the foregoing flying

birds example. Since then, the formalization of nonmonotonic reasoning, based on

formal logic, has become a whole new field. There are several major formalizations

of nonmonotonic reasoning, each based on different concepts: Reiter's closed world

assumption (CWA) [105] presumes total knowledge of the domain being represented,

McDermott and Doyle's nonmonotonic logic [73, 72] and Reiter's default logic [106]

both are grounded in the notion of logic consistency, McCarthy's circumscription

[70, 71] is based on the notion of minimal models, and Moore's autoepistemic logic

[84] is built on epistemic logic. In addition, a lot of research work has been done

to improve the above formalizations by eliminating their defects or by strengthen-

ing their expressive powers. Although so many formal theories are proposed, none

of them is superior to the others; each one of them has its own merits and its own

demerits.

While AI people were cheered by the progress of the formalization of nonmono-

tonic reasoning, they were depressed to hear the result from the celebrated paper by

Hanks and McDermott [44, 45]. They presented a simple problem, the famous Yale

shooting problem (YSP), in temporal reasoning and examined three of the major

formalizations of nonmonotonic reasoning: default logic, circumscription, and non-

monotonic logic. Unfortunately, they found out that all these formalizations generate

an undesired, counter-intuitive conclusion, which causes the so-called anomalous ex-

tension problem. Because of this, two questions will naturally arise: (1) Is there

anything going wrong with these nonmonotonic reasoning formalizations? (2) Does

the anomalous extension problem just belong to temporal reasoning? For the first

question, the answer should be no. With careful formulation of commonsense knowl-

edge, the anomalous extensions will not appear. For example, Morris [86], Gelfond

[32], and You and Li [138] independently reformalized the YSP based, respectively,

on default logic, autoepistemic logic, and circumscription to subtly exclude the un-

desired extension. However, these reformalizations are going to 'crash' if conflicting

information (i.e., information contrary to what we expect) is learned later; they do

not even generate any conclusions. From this point of view, we may say that the

current nonmonotonic reasoning formalizations are too weak to deal with conflicting

information. Thus, research in enhancing this capability is still going on [42, 87],

As to the second question, the answer is absolutely no. Without appropriate

formulation of commonsense knowledge, unwanted conclusions may also appear in

non-temporal reasoning. It seems that some researchers misdiagnosed the problem

by regarding the anomalous extension problem as only appearing in temporal rea-

soning and proposed various methods to cure this situation [117]. However, Morris

[86] (and other authors in [71,108]) observed that this anomalous extension problem

occurs not only in temporal reasoning but also in non-temporal reasoning. He also

presented an example from taxonomic reasoning which is structurally similar to the

YSP and generates an anomalous extension. The most important contribution of his

work is that Morris discovered that if the above examples are formalized in terms

of a truth maintenance system (TMS) [21], then surprisingly, the undesired exten-

sion disappears. This is due to the nonmonotonic characteristic of the TMS and its

unidirectional nature of inference [86]. Although the TMS is a powerful reasoning

mechanism, it lacks formal semantics. Owing to Morris' new finding, looking for a

suitable semantics for the TMS becomes more urgent.

Recently, several proposals have been presented to provide the TMS with proper

semantics [31, 92, 103, 104], each based on default logic, autoepistemic logic, or the

stable model semantics [33] in logic programming. All these proposals, however, fail

to capture the idea of dependency-directed backtracking, an important process in the

TMS to resolve conflicts. Giordano and Martelli [42] tried to capture this idea by

generalizing the stable model semantics, but the anomalous extension of the YSP

reappears when the generalized stable model semantics is used. Nevertheless, this

unsuccessful attempt gives us a clue that commonsense reasoning may be formalized

by logic programming with a suitable semantics, which is less explored in the AI com-

munity. The reason for this may be traced back to the history of logic programming.

1.2. Logic Programming

Logic programming was introduced in the early 1970s by Kowalski [55] and

Colmerauer et al. [18] based on the notion that logic can be used as a programming

language. It is a declarative programming following the principle of separation of logic

and control proposed by Kowalski [56,57]. Ideally, a programmer should be concerned

only with the declarative meaning of his or her program, while the procedural aspects

of the program's execution are handled automatically by the system. Unfortunately,

this ideal has not yet been achieved with current logic programming systems. One of

the reasons is the lack of clarity as to what should be the proper declarative semantics

of logic programs and, in particular, what should be the meaning of negation in logic

programming [97].

Earlier research [128] focused mostly on definite logic programs (i.e., programs

do not contain negation in their bodies) because of their simplicity and execution

efficiency. For dealing with negation, Clark [16] subsequently proposed an effective

procedure called the negation as failure rule to implement the CWA in logic pro-

gramming systems. This rule works well in definite programs, but it encounters

several severe problems, such as the termination and floundering problems, when ap-

plied to general logic programs (i.e., programs that contain negation in their bodies)

[114,115,116]. Recently, Apt et al. [3] and Van Gelder [129] independently introduced

a broad class of logic programs called stratified to alleviate the negation problem and

defined a unique 'canonical' model as the declarative semantics for these stratified

programs. Beyond stratification, it seems that no canonical models can be defined,

for there may exist more than one minimal model and it is hard to choose one from

them [33]. To overcome this difficulty, borrowing the idea of stable expansions from

autoepistemic logic, Gelfond and Lifschitz [33], among others [8, 95, 130], proposed

the stable model semantics for non-stratified logic programs.

The problem with traditional logic programming is that total knowledge is pre-

sumed because the negation as failure rule automatically applies to every negative

literal. Hence, it does not allow one to deal directly with incomplete information. In

order to cope with this problem, Gelfond and Lifschitz [34] further extended their sta-

ble model semantics to the answer set semantics and called such a kind of programs

extended logic programs. The nice features of extended programs are: (1) they include

classical negation, in addition to the conventional negation-as-failure, not, (2) they

allow the CWA to be applied to some specified predicates, and (3) they permit mul-

tiple models, and each one is considered as a possible answer. With these powerful

capabilities, extended logic programs may be used as a knowledge representation tool

to formalize commonsense reasoning.

Kowalski and Sadri [58] may be the pioneers in the attempt to express exceptions

in logic programs. They modified the answer set semantics so that it can deal with

the default reasoning of Poole's approach [94] by allowing the explicit representation

of exceptions in addition to general rules. In this mechanism, general rules are repre-

sented as clauses with positive literals in the heads, while exceptions axe represented

with negative literals in the heads. The reasoning process is performed by assigning

exceptions a higher priority than rules, so that if a contradiction arises between a

rule and an exception, the exception overrides the rule. Although such a scheme is

simple, it suffers from two major limitations: It cannot directly express general rules

(respectively, exceptions) with negative (respectively, positive) literals in the heads.

Moreover, it does not allow exceptions to exceptions, which often occur in inheritance

hierarchies with exceptions.

1.3. Organization of the Dissertation

The major purpose of this dissertation is to investigate how commonsense rea-

soning can be formalized by extended logic programs. In this investigation, we adopt

McCarthy's simple abnormality formalism [71] to express exceptions, for it can pro-

vide reasonable explanations when conflicting information is recognized. It turns out

that our formalization of commonsense knowledge by using extended logic programs

does not have the limitations of Kowalski and Sadri's method. In addition, several

important problems, such as anomalous extensions, defeasible conclusions, conflict-

ing information, and "unless" semantics, in commonsense reasoning are explored, and

solutions to these problems are also proposed.

The remainder of this dissertation is organized as follows. Chapter 2 surveys

several major formalizations of nonmonotonic reasoning which include varied forms

of closed world reasoning, nonmonotonic logic, autoepistemic logic, default logic,

and circumscription. In addition, nonmonotonic inference mechanisms such as the

negation as failure rule and program completion used in logic programming to generate

negative information and the syntax of extended logic programs with answer set

semantics are also reviewed.

In Chapter 3, we investigate how inheritance hierarchies with exceptions can be

formalized by using extended logic programs. In this investigation, our formalization

can perform not only the conventional credulous reasoning but also it can simulate the

ambiguity-blocking inheritance and ambiguity-propagating inheritance in the newly

proposed skeptical reasoning.

In Chapter 4, three examples in the literature demonstrating the anomalous

extension problem are first illustrated. The intuition behind commonsense reasoning

is then investigated. Finally, we show how the methods (including our formalization

using extended logic programs) proposed to exclude anomalous extensions are all

based on this intuition.

In Chapter 5, defeasible conclusions in commonsense reasoning are identified

because not every conclusion is retractable. We first identify defeasible conclusions in

our representation just based on the simple syntax of extended logic programs. Then,

we apply similar approaches to other formalizations of nonmonotonic reasoning to

achieve this purpose.

In Chapter 6, we tackle the problem of conflicting information in common-

sense reasoning, which most nonmonotonic reasoning formalizations cannot deal with.

Based on the idea of dependency-directed backtracking in TMSs, we propose the

generalized answer set semantics to resolve conflicts. Also, similar approaches are

applied to other formalizations of nonmonotonic reasoning to handle conflicts.

In Chapter 7, we first point out the semantic inconsistency problem in Mc-

Carthy's original simple abnormality formalism and propose a simple way to fix it.

We then explore "unless" semantics in commonsense reasoning and propose the ex-

tended answer set semantics to incorporate this new semantics in the generalized

answer set semantics. It turns out that a clause in an extended logic program can

be transformed into one of four other forms based on the given information so that

the conclusions will become more reasonable and coherent. Also, we endow the other

formalizations of nonmonotonic reasoning with the full power of the above "unless"

semantics.

In Chapter 8, we first present a new approach to compute stable models of gen-

eral logic programs. We then propose a method to compute answer sets of extended

logic programs based on the computation of stable models. The thesis ends up with

conclusions, discussions, and possible future research.

CHAPTER 2

FORMALIZATIONS OF NONMONOTONIC REASONING

As noted in the previous chapter, commonsense reasoning is a kind of plausible

reasoning. It is interesting to see that almost all examples demonstrated in AI which

call upon such a reasoning have the following common pattern [107]:

Normally, A holds.

Several possible paraphrases of this pattern are "typically, A is the case," "assume

A by default," and "in the absence of information to the contrary, assume A" Note

that the last paraphrase is based on the notion of logical consistency which motivates

several earlier formal theories of nonmonotonic reasoning such as nonmonotonic logic

[73, 72] and default logic [106].

In the standard flying birds example, "birds fly" cannot be interpreted as "all

birds fly" because there exist exceptions such as ostriches, penguins, dead birds, and

so forth. It should be represented by an instance of the above pattern of plausible

reasoning as "normally, birds fly," and may be paraphrased as "typically, birds fly,"

"if X is a bird, then assume by default that X flies," or "if X is a bird and nothing

is known that X cannot fly, then assume X flies."

Can the above common pattern of plausible reasoning be formalized by classical

logic? As recognized by most AI researchers, the answer is negative. One obvious

argument is that plausible inference is not transitive due to the presence of exceptions.

For example, cephalopods are molluscs and molluscs normally are shell-bearers, but

cephalopods normally are not shell-bearers [30, 28].

10

There are still two popular arguments against the use of classical logic for for-

malizing commonsense reasoning [107]. Firstly, if we formalize the above flying birds

example by explicitly listing all possible exceptions by the axiom

bird(X) A ->ostrich{X) A ->penguin(X) A ->dead(X) A • • • —* fly(X),

we still could not derive fly(tweety) if we only know that Tweety is a bird. This

is because we are not given that Tweety is not an exception, such as an ostrich or

penguin. Since the antecedent of the implication cannot be derived, there is no way

we can conclude the consequent. The second argument against classical logic is due

to the monotonicity of classical logic, while commonsense reasoning is nonmonotonic.

Throughout the dissertation, the following naming convention is followed unless

otherwise specified. Strings beginning with lowercase letters are used to denote pred-

icate symbols, function symbols, constants, and propositions, while strings beginning

with uppercase letters are used to denote predicates, literals, variables, formulas, and

so on. In some places, lowercase Greek letters are also used to denote formulas. The

standard logic connectives are "A" (conjunction), "V" (disjunction), (negation),

(implication), and (equivalence), while the quantifiers are "3" (existential)

and "V (universal). Sometimes, "A" and are used interchangeably for conve-

nience. Note that in the convention of logic programming, " is used to denote

"if" and has the unidirectional property. In this dissertation, is used to denote

implication of an axiom in first-order logic, while " is used to denote "if" of a

clause in logic programming. Formulas, such as axioms or clauses, without explicit

quantifications are assumed to be universally quantified. In the following, we briefly

survey several major formalizations of nonmonotonic reasoning and nonmonotonic

inference rules in logic programming dealing with the negation problem.

11

2.1. Closed World Reasoning

The basic idea of closed world assumption is to assume a ground atom false if it

is not a logical consequence of a theory. This idea was first used to derive negative

information in database systems and later was modified to deal with commonsense

reasoning.

2.1.1. Closed World Assumption

Reiter [105] proposed the closed world assumption (CWA) which is based on the

presumption of total knowledge about the domain being represented. This assump-

tion is usually applied to the theory of databases [133]. Suppose we have a student

enrollment database. If we cannot find a record, say John enrolls course CS110, then

it is reasonable to assume that John does not take the course. It is natural to extend

this notion to the case of deductive databases [67, 76, 77, 78]: if a positive fact is not

derivable from a given database, then it is assumed false.

Let T be a first-order theory, which contains a set of first-order formulas. Reiter

defines the CWA of T by

CWA(T) = T U {-"AIA is a ground atom and T H A},

where a set alternatively represents a conjunction. In other words, the implicit nega-

tive information of T sanctioned by the CWA includes those negative ground literals

whose positive counterparts axe not derivable from T. Under the CWA, queries are

evaluated with respect to (wrt) CWA(T), rather than T itself.

The major advantage of the CWA is that it can save tremendous memory space

because the number of negative facts, in general, far exceeds the number of positive

ones. However, the problem with the CWA is that the CWA of a theory might be

inconsistent. For example, given Ti = (p(a) Vp(b)}, because T\ H p(a) and T\ t* p(b),

CWA(Ti) = {p{a) V p(b), ~<p(a), -i>p(b)}, which is inconsistent. But if theories are

12

restricted to be Horn (i.e., each formula in the theory is a Horn clause, which is a

disjunction of literals with at most one positive literal), Reiter has shown that the

CWA of a Horn theory T preserves the consistency of T. In this case, the CWA for

Horn theories can be regarded as a syntactic counterpart of the semantic definition of

the least Herbrand models defined by van Emden and Kowalski [128]: Given a Horn

theory T, a ground negative literal ->A in T can be assumed if and only if A is not

in the least Herbrand model of T. (Note that the review of closed world reasoning in

logic programming, the negation as failure rule, is in Subsection 2.6.1.)

2.1.2. Generalized Closed World Assumption

In order to cope with the inconsistency problem under the CWA, Minker [75]

proposed the generalized CWA (GCWA) for non-Horn theories. Given a non-Horn

theory T, the syntactic definition of the GCWA is defined by

GCWA(T) = T U {->A|A is a ground atom and there is no ground

positive clause (or null clause) K such that

T\- AV KbutTfr K},

where a ground positive clause is a disjunction of ground atoms. Minker also provided

a semantic definition for the GCWA as follows: For a non-Horn theory T, a ground

negative literal ->A in T can be assumed if and only if A is not in any minimal model

of T, where a model M of T is minimal if there is no proper subset of M which is

also a model of T. Consider the above non-Horn theory T% = {p(a) V p(b)}. Since

the minimal models of T\ are (p(a)} and (p(6)}, no ground negative literal can be

assumed. Thus, the GCWA of 7\ is 2\ itself, which is consistent. Furthermore, Minker

has shown that the syntactic and semantic definitions of the GCWA are equivalent.

In addition, for the case of Horn theories, the GCWA reduces to the CWA.

13

2.1.3. Extended Generalized Closed World Assumption

Since both the CWA and the GCWA only assume ground negative literals, Yahya

and Henschen [132] extended the GCWA, called the extended GCWA (EGCWA), to

accept ground negative clauses (i.e., disjunctions of ground negative literals). Note

that this approach interprets the disjunction as exclusive or rather than inclusive or.

Given a non-Horn theory T, the syntactic definition of the EGCWA is defined by

EGCWA(T) = T U {C\C is a ground negative clause ->Pi V • • • V ~>Pn and

there is no ground positive clause (or null clause) K

such that, for i = 1 , . . . , n, T h P,- V K but T 1/ K}.

Its semantic definition is defined as follows: Given a non-Horn theory T, a ground

negative clause C = ~>Pi V • • • V ->Pn in T can be assumed if and only if C is true in

every minimal model of T. Again, consider the above non-Horn theory T% = {p(a) V

p(b)}, which has two minimal models {p(a)} and (p(6)}. Because the disjunction

is interpreted as exclusive or in the EGCWA, p(o) and p{b) cannot both be true

simultaneously. Since the ground negative clause ~*p(a) V~>p(b) is true in both minimal

models of Ti, it can be assumed by the EGCWA. Yahya and Henschen have also

shown that the semantic and syntactic definitions of the EGCWA are equivalent.

Furthermore, if the minimal ground negative clauses assumed by the EGCWA are

restricted to be unit (i.e., ground negative literals only), the EGCWA reduces to the

GCWA.

2.1.4. Careful Closure Procedure

Due to the fact that all the CWA, the GCWA, and the EGCWA apply the

closed world reasoning to each predicate in a given theory, none of them can derive

any new positive information. Thus, they are rarely used in commonsense reason-

ing. Borrowing the idea of circumscribing some specified predicate symbols from

14

circumscription [70, 71], Gelfond and Przymusinska [35] proposed the careful closure

procedure (CCWA), which modifies Minker's GCWA to a subset of predicate symbols

of a theory to solve some simple commonsense reasoning problems. Given a first-order

theory T, let P and Z be disjointed sets of predicate symbols from T. A ground atom

A is called free for negation in T if there exists no ground positive clause K containing

predicate symbols from P such that T h A V K but T H K. The syntactic definition

of the CCWA is then defined by

CCWA(T; P; Z) = T U {->A\A is free for negation in T}.

The corresponding semantic definition of the CCWA is as follows: A ground negative

literal ~>A whose predicate symbol is in P can be assumed if A is not in every (P, Z)-

minimal model of T (for the definition of (P, Z)-minimal models, see Section 2.5).

Now, let us illustrate how the CCWA solves simple commonsense reasoning. Con-

sider the theory T? = {bird(tweety), bird(X) A ~>ab(X) —> fly(X)} with P = {ab}

and Z = {fly}. It is easy to see that ab(tweety) is free for negation in T% because

there does not exist a ground positive clause K in the definition of CCWA. Thus,

CCWA(T2; P'I Z) = T2 U {-iab(tweety)}. This can derive the conclusion that Tweety

can fly, which is what we want to draw from commonsense reasoning. Note that

none of the CWA, the GCWA, and the EGCWA can derive such a conclusion. It has

been shown by the authors that the syntactic and semantic definitions are equivalent.

Furthermore, if P contains all predicate symbols from T, then the CCWA coincides

with the GCWA.

2.1.5. Extended Closed World Assumption

Gelfond et al. [36, 37] subsequently proposed the extended CWA (ECWA) by

combining the ideas from the CCWA and the EGCWA. They first refined the notion

of free for negation as follows: Given a first-order theory T, let P and Z be sets of

15

predicate symbols defined in the CCWA and Q be the remaining predicate symbols

from T. For notational convenience, given a set R of predicate symbols, R+ (respec-

tively, R~) is used to denote the set of all ground positive (respectively, negative)

literals with predicate symbols from R. Also, a sentence denotes a closed formula.

Now, an arbitrary sentence S not involving predicate symbols from Z is said free for

negation in T if there exists no disjunction K = Kx V • • • V Kn, where each K, is in

^ ^ Q ? such that T b S V K, but T H K. In this definition, the disjunction

S V K is required to be minimal in T. Then, the syntactic definition of the ECWA is

defined by

ECWA(T) = T U {- ,5|5 is free for negation in T}.

The corresponding semantic meaning of the ECWA is that a sentence S not involving

predicate symbols from Z can be assumed false if it is false in every (P, Z)-minimal

model of T. It is easy to see that if Z = Q = 0, then the ECWA is identical to

the EGCWA. Gelfond et al [37] also proved that the ECWA is, in fact, equivalent

to circumscription through model-theoretical definition. They further extended the

ECWA to the iterated CWA (ICWA) for the stratified theories and showed that the

ICWA is equivalent to prioritized circumscription. Besides the above various kinds

of CWA, Rajasekar et al. [99] also proposed a weaker definition of the GCWA, called

the weak GCWA (WGCWA), for deriving negative information in non-Horn theories.

2.2. Nonmonotonic Logic

McDermott and Doyle's nonmonotonic logic (NML) [73] is a consistency-based

approach to formalize commonsense knowledge. They modified a standard first-order

logic by introducing a modal operator M, whose informal interpretation is "is consis-

tent." The flying birds example can be formalized in their logic by the axiom

16

bird{X) A Mfly(X) -> fly(X).

This formula can be read informally as "if X is a bird and it is consistent to assert

that X can fly, then X flies." Owing to the need of consistency checking, this ap-

proach can then have a single general nonmonotonic inference rule whose intuitive

content is "Af <f> is derivable if ~>(f> is not derivable."

Let A be a nonmonotonic theory. McDermott and Doyle defined a fixed point

T of A if

T = th(AU {MV\-KJ i T}),

where th denotes closure under first-order logical consequence. They also defined the

theorems of T to be the intersection of all its fixed points. The major problem with the

NML is that the notion of consistency is too weak. The M operator fails to adequately

capture the intuitive concept of consistency. For example, the nonmonotonic theory

{Mp, ->p] is consistent.

In response to this defect, McDermott [72] later tried to develop several stronger

versions of the logic based on the standard modal logics T, S4, and S51. Unfortunately,

these attempts turn out either to be too weak to adequately characterize the M

operator in the cases of T and S4 or to collapse the nonmonotonic S5 to ordinary S5

and thus become monotonic. Moore [84] pointed out that the problem with above

logics is that they all contain the schema L<f> —• <f>, which means that if an agent

believes <f>, then <f> is true—but this is not generally true, even for ideally rational

agents. Note that the modal operator L is used in Moore's autoepistemic logic.
XA11 modal logics discussed here have two inference rules: modus ponens (<j> A (<j> -+ ip) —> ijj) and

necessitaiion (<f> —• L<j>), where L = They include some axiom schemata from the following

list: K: L{ij> —* t(>) —* (L<j> -* Lip), T: L<f> —*• </>, 4: L<j> —• LL<j>, and 5: ->L<̂ —* Note that

T is the model logic based on the axiom schemata K and T, S4 is T together with 4, and S5 is S4

together with 5.

17

2.3. Autoepistemic Logic

In response to the semantic deficiencies of McDermott and Doyle's NML, Moore

[84] proposed a reconstruction of their logic based on belief rather than consistency,

which he calls autoepistemic logic (AEL). Recall that the former logic uses a modal

operator M to mean consistency. AEL invokes a dual operator L to mean "is be-

lieved," which roughly corresponds to Moore's AEL is a propositional logic

only with the usual formulas formed from a propositional language augmented with

the modal operator L.

AEL is intended to model the beliefs of an agent reflecting his own beliefs. The

central role in Moore's formalization is played by the notion of a stable autoepistemic

expansion of a set of formulas A which intuitively represents a possible set of beliefs

of an ideal rational agent. The agent is ideally rational in the sense that he believes

in all and only those facts which he can conclude from A and from his other beliefs.

If this expansion is unique, then it can be viewed as the set of theorems which follow

from A in AEL.

Given some set A of premises, a set T of formulas is a stable expansion of A if

it satisfies the fixed point condition

T = th(A U {Lw\u e T} U {-Lu>|w g T}),

where th denotes closure under the entailment relation of propositional logic. Note

that under the dual correspondence of L with -«M Moore's stable expansions dif-

fer from McDermott and Doyle's fixed points only by the inclusion of {Lw|u> € T}

in his fixed point construction. This set provides for an agent's perfect "positive

introspection"; if u is in the agent's belief set, then he believes u> so that I w is

also in his belief set. The second set in the definition provides for perfect "negative

18

introspection"; if u> is not in an agent's belief set, then the agent does not believe u>

so that ->Lu> is in his belief set.

Levesque [59, 60] subsequently generalized Moore's logic to the first order case.

The flying birds example can then be formalized in this logic by the axiom

Urd(X) A -iL-*fly(X) -* fly(X),

which is possibly paraphrased as "if X is a bird, and if you do not believe (know) that

X cannot fly, then X flies." As observed by Konolige [54], stable expansions have some

undesirable properties. He noted that the theory {Lp —• p) has two stable expansions.

One contains ->Lp only, which is intuitively appropriate because there is no ground

for entering p into the belief set. The other one contains both Lp and p, which

is intuitively unacceptable. The unwanted one corresponds to an agent arbitrarily

entering p, hence also Lp, into his belief set. In order to eliminate this undesired

property of Moore's AEL, Konolige [54] proposed the strongly grounded expansion,

a refinement of the original stable expansion, to achieve it. Another problem with

Moore's AEL is that some simple theories do not have stable expansions, which was

pointed out by Morris [87]. He then introduced the notion of stable closure to fix this

difficulty.

Recently, Shvarts [118] argued that McDermott's non-monotonic modal logics

[72] may be viewed as autoepistemic logics, and Moore's logic is surely an important

one of them. In addition, Shvarts indicated that many problems arising in Moore's

logic may be solved with McDermott's logic by an appropriate choice of the underlying

modal system. For instance, if S4 is taken to be the underlying system, then the

ungrounded extensions found by Konolige disappear, and the additional extensions

introduced by Morris take their place.

19

2.4. Default Logic

The other promising approach to the formalization of nonmonotonic reasoning

is Reiter's default logic [106], which is also consistency-based. Default logic is very

similar to NML except that default reasoning is expressed by rules of inference, called

defaults, rather than by assertions in the logical language itself. A default is an

expression of the form:

q(a?): Mfojx),..., M/3m(x)
UJ(X) '

where <*(«), fti(x), and LO(X) are all formulas whose free variables are among those

in x = xi,..., xn, and means "conjunction." a(aj) is called the prerequisite of

the default, /?»(«)'s are called its justifications, and UJ(X) is called its consequent

The intuitive meaning of the default is "if a(x) holds and each one of /?,(«) can be

consistently assumed, then u(x) can be derived." If the prerequisite is empty, it may

be understood as any tautology. There are two classes of defaults with only a single

justification, /3(x). Those with ft(x) = u{x) are said to be normal, while those with

/?(«) = u>(x) Aflx), for some -y(x), are called semi-normal. Virtually all the defaults

occurring in the literature fall into one of these two classes. The flying birds example

can be represented by the default

bird(X): Mfly(X)

M X)

which may be read as "if X is a bird, and it can be consistently assumed to fly, then

that X flies can be derived."

A default theory is an ordered pair (D, W), where D is a set of defaults and

W is a set of sentences. Recall that a sentence is a first-order closed formula. The

extensions of a default theory (D, W) are defined by a fixed point construction. For

any set S of sentences, define r(S') to be the smallest set satisfying the following three

20

properties:

(1) w c r (5) .

(2) T(S) is closed under first-order logical consequence.

(3) If (a : M/?i, . . . ,M/3m)/uj G D, a e T(S), and - i # £ S (for i = 1 , . . . , m), then

€ T(S).

Then, E is defined to be an extension of the default theory (D, W) if and only if

T(E) = E] i.e., if and only if E is a fixed point of the operator T. A default theory

(D, W) may have multiple extensions, and each extension is viewed as a possible set

of beliefs for an agent.

Because normal defaults are a very common default pattern, they are broadly

applied to formalize commonsense knowledge. Reiter [107] argued that one of the

advantages of default logic is that there is a "proof theory" in the case that all

default rules are normal. The sense in which normal defaults have a "proof theory" is

the following: Given a set W of sentences, a set D of normal defaults, and a sentence

/?, then /3 is in some extension of W wrt the defaults D if and only if the "proof

theory" sanctions this. The problem with this argument is that a contradictory pair

of sentences can be derived from this "proof theory." This is because each sentence

belongs to a different extension. For example, let W\ = {p(a) V p{i)} and D\ =

{: M->p(X)/->p(X)}. The theory {D\, Wi) has two extensions; one contains p(a) and

-ip(6), and the other one contains -'p(a) and p(b). By the claimed "proof theory"

above, the contradictory pair p(a) and ~>p(a) are derived although each extension is

consistent.

One major problem with the default theory is that defaults sometimes interact

with one another, but normal defaults cannot adequately constraint these interactions

[108]. A typical example, taken from [108], to demonstrate this problem is as follows:

• Typically, adults are employed.

21

• Typically, high-school dropouts are adults.

• Typically, high-school dropouts are not employed.

This may be expressed by the following normal defaults:

adult(X) : Memployed(X)
employed(X) '

dropout(X) : Madult(X)
adult(X) '

dropout{X) : M -^employed(X)
-iemployed(X)

Given a dropout Tony, the theory will generate two extensions, which differ only in

his status of employment because of the interaction of the first and the third defaults.

Intuition suggests us to assume that Tony is unemployed, for typical dropouts are not

typical adults. This atypicality should block the transitivity from dropout through

adult to employed. The first default, however, does not contain explicit information of

these exceptional situations which should block its application. One way to overcome

this problem is to put these exceptional information in the justification. Thus, the

first default above becomes

adult(X): Memployed(X) A ~>dropout(X)
employed(X) '

which is not applicable to known dropouts.

From the above example, it is easy to see how semi-normal defaults can be

used to resolve the ambiguities resulting from the interaction between defaults. This

approach, however, has three major drawbacks: Firstly, the complexity of theories

with semi-normal defaults is substantially worse than that of theories with normal

defaults. Secondly, it is possible to over the intersections between defaults so that

the resulting theory has no extension. Finally, in a large, complicated system, it is

not easy to find all the intersections at the time when new knowledge is given to the

system.

22

2.5. Circumscription

One of the most powerful formalizations of nonmonotonic reasoning is called

circumscription introduced by McCarthy [70, 71]. This approach is based upon the

notion of truth in all minimal models. Assume L is a first-order language. Suppose

P = {pi, . . . ,pm} and Z = {zi,..., zn} are tuples of distinct predicate symbols of L.

The predicate symbols from P are to be circumscribed, and those from Z are allowed

to vary when the circumscription process is performed and thus are called variables.

Let A(P, Z) be a theory which contains predicate symbols from P and Z. The process

of circumscription transforms A(P, Z) into a stronger second-order sentence such that

it satisfies certain properties. The circumscription of P in A(P, Z) with variable Z is

the following sentence CIRC(A(P, Z); P; Z):

A(P, Z) A VP', Z'[(A(P', Z') A P ' -+ P) —> P ' = P], (2.1)

where P = {p^,...,} and z = {z'x,..., z'n) are tuples of predicate variables

similar to P and Z, and P' —> P stands for A^p'^X) —* Pi(X). Formula (2.1)

states that P has a minimal possible extension under the assumption that A(P, Z)

holds and Z is allowed to vary in the process of minimization. The above sentence

CIRC(A(P, Z); P; Z) can also be written in the following way

A(P, Z) A -»3P', Z'[A(P', Z') A P'< P], (2.2)

where P ' < P is the abbreviation for (P' < P) A -i(P < P') in which P' < P denotes

P ' —> P. The second conjunct in formula (2.2) is called the circumscription axiom

of A(P, Z). It says that the extensions in A(P, Z) of predicate symbols of P cannot

be made smaller even when the extensions of predicate symbols of Z are allowed to

vary; or more succinctly, P is minimal in A with Z varying.

Lifschitz [63] further provided the model-theoretic meaning of circumscription

to clarify this notion as follows: Let P and Z be defined as above. For any two

23

structures M\ and define M\ <p'z Mi if

(1) M\ and M2 have the same domain,

(2) Mi and M2 interpret all function symbols and predicate symbols other than

those of P and Z identically, and

(3) for each predicate symbol pi of P, p,'s extension in M\ is a subset of its extension

in M2.

Thus, Mi < p , z Mi if Mi and M2 differ only in how they interpret the constants in P

and Z, and the extension of each p,- in Mi is a subset of its extension in M2. Note that

the relation <P 'Z places no restrictions on how Mi and M2 interpret the predicates of

Z. A structure M is minimal wrt < p , z in a class S of structures if M € S and there

is no structure M' € S such that M' <p,z M, in which M' <F,Z M is defined to be

M' <p,z M but not M <p,z M'. A model of a theory T is called (P, Z)- minimal if

it is minimal wrt < p , z in the class of all models of T. Lifschitz [63] and Etherington

[27] independently proved that the sentences being true in all (P, Z)-minimal models

of A(P, Z) are precisely the sentences entailed by CIRC(A(P, Z); P; Z).

As illustrated by McCarthy [71] with an example (see Subsection 4.1.1), circum-

scription seems not adequate to formalize commonsense knowledge because of the

existence of undesired minimal models. He then proposed a more powerful version

of circumscription, called prioritized circumscription, to choose a preferred minimal

model by assigning an appropriate priority to each predicate symbol of the theory.

Let a tuple P of predicate symbols be partitioned into disjointed parts P1,...,Pk

such that the predicate symbols in P* have higher priorities than those in P J for i < j.

The prioritized circumscription of A with the priorities P 1 > • • • > Pk and variable

Z is denoted by

CIRC (A; P 1 > • • • > P*; Z) = A t i CIRC(A; P«; P * 1 , . . . , Pk, Z).

24

Although prioritized circumscription is a powerful formalization of commonsense

knowledge, one problem with it is: How do we assign an appropriate priority to each

predicate symbol before it is performed so that the result will conform to our intuition?

The other question with circumscription is that because choosing P and Z differently

will result in different conclusion, how do we appropriately choose the correct P and

Z so that the conclusion will agree with our intuition? One major drawback of the

circumscription is that it is difficult to implement because its definition involves a

second-order quantifier. Lifschitz [63] investigated some special cases in which the

circumscription reduces to a first-order formula. Subsequently, Przymusinski [96],

Ginsberg [40, 41], and Baker and Ginsberg [5] proposed algorithms to compute the

more general case of circumscription, each based on the ECWA or the assumption-

based TMS (ATMS) [20].

There are various extensions of circumscription. Minker and Perlis [80,81,82] de-

veloped protected circumscription to allow prescription of what objects are or are not

to be included in the circumscription process. Lifschitz [64], partly in response to the

challenge from Hanks and McDermott [44], developed pointwise circumscription to

deal with the frame problem. Perlis [91] reformulated the circumscription, called the

autocircumscription, based on the consistency which is related to self-knowledge and

especially to negative introspection. Lifschitz [65] further modified the autocircum-

scription to include both negative and positive introspection and called it introspective

circumscription, which is in many ways similar to Moore's AEL. Also, by introducing

the concept of supportedness in logic programming into circumscription, You and Li

[138] proposed supported circumscription to eliminate the anomalous extension of the

YSP.

25

2.6. Logic Programs

Logic programming was introduced in the early 1970s by Kowalski [55] and

Colmerauer et al. [18], and the first Prolog interpreter was implemented by Roussel

in 1972 [112]. It is a direct outgrowth of earlier work in automatic theorem proving

and AI. Also, it is heavily founded on the earlier fundamental discovery of the res-

olution principle by Robinson [110] in 1965, for resolution is an inference rule which

is particularly well-suited to automation on computers.

Logic programming is based on the idea of declarative programming stemming

from Kowalski's [55, 56] principle of separation of logic and control. Ideally, a pro-

grammer should be concerned only with the declarative meaning of his or her pro-

gram, while the procedural aspects of program's execution are handled automatically

by systems. Unfortunately, this ideal has not yet been achieved with current logic

programming systems. One of the reasons is the lack of clarity as to what should be

the proper declarative semantics of logic programs and, in particular, what should be

the meaning of negation in logic programming [97].

Initially, logic programming almost deals with definite logic programs (i.e., each

clause in the program does not contain negation in its body), van Emden and Kowal-

ski [128] first defined the least Herbrand model as the declarative semantics of definite

logic programs as follows: Every definite logic program P has exactly one minimal

Herbrand model, called the least Herbrand model of P, which is the set of all ground

atoms being logical consequences of P. The procedural semantics of definite logic

programs was first described by Kowalski [55] and was called SLD-resolution in [4],

where SLD-resolution stands for Linear resolution with Selection function for Definite

clauses. It was shown that SLD-resolution is sound and complete in [4, 17, 47].

26

2.6.1. Negation as Failure Rule

Clark [16] subsequently proposed an effective procedure, called the negation as

failure rule (NF-rule), to deal with negation in normal logic programs2 (i.e., each

clause in the program allows negation in its body). The NF-rule is a practical im-

plementation of closed world assumption in logic programming systems to derive

negative information and thus is a nonmonotonic inference rule. It states that if a

ground atom A is in the SLD finite failure set of a normal logic program, then ->A

can be assumed. Informally, a ground negative literal ->A is deduced by the NF-rule

if every possible proof of A fails finitely. Since the SLD finite failure set is a subset of

the complement of the least Herbrand model, it can be seen that the NF-rule is less

powerful than the CWA.

Since Clark's NF-rule is based on SLD-resolution to derive negative information,

the SLD-resolution augmented by the NF-rule is called SLDNF-resolution [67]. In

SLDNF-resolution, there is no restriction on which positive literal in a goal can be

selected for resolution; however, only the ground version of a negative literal can be

selected. This condition is called the safeness condition on the selection of literals.

Basically, the procedure of SLDNF-resolution is as follows: When a positive literal

is selected, SLD-resolution is essentially used to derive a new goal. However, when

a ground negative literal ~>A is selected, an attempt is made to construct a finitely

failed SLDNF-tree with the ground goal clause <— A as its root. If such a finitely

failed tree is constructed, then the subgoal ~>A succeeds. Otherwise, if an SLDNF-

refutation is found for <— A, then the subgoal ->A fails. Note that bindings are only

made by successful calls of positive literals. In addition, the NF-rule is purely a test,

for negative calls never create bindings; they only succeed or fail.

2Normal logic programs are also called general logic programs in other literature.

27

One problem with SLDNF-resolution procedure is the floundering problem which

is defined as follows: Let P be a normal logic program, and G be a normal goal. A

computation of P U {(?} flounders if at some point in the computation, a goal is

reached which contains only non-ground negative literals. In this case, no literal can

be selected to satisfy the safeness condition. For example, if G is <— ~<p(X) and P

is any normal program, then the computation of P U {G} flounders immediately. In

response to this difficulty, restrictions on the form of clauses in normal programs are

proposed by several authors [19, 67] to avoid floundering. For instance, a clause in

a normal program is range-restricted if every variable of the clause occurs in some

positive literal of its body. This restriction ensures that all negative literals can be

fully instantiated before they are selected. The other problem with SLDNF-resolution

procedure is the termination problem. If a normal program contains recursive rules,

it may exist infinite SLDNF-trees, and thus cause the non-termination of tree con-

struction. Thus, finding a mechanism for detecting infinite branches is an important

issue in logic programming [93].

2.6.2. Program Completion

Clark [16] also introduced the concept of program completion to define a declar-

ative semantics for negation in normal logic programs. In a normal program, the

bodies of clauses with predicate symbol p in the head can be viewed as "sufficient"

conditions for deriving p from the program. Clark suggested that the bodies of clauses

can also be taken as "necessary" conditions with the result that negative information

about p can be assumed if all these conditions are not met. He also provided a con-

structive definition for completed programs and used it to prove the soundness and

completeness of the NF-rule for definite logic programs.

28

Suppose that

p{T\,..., T n) «— Li A • • • A Lm (2.3)

is a clause in a normal program P about predicate symbol (relation) p. We will re-

quire a new predicate symbol = not appearing in P whose intended interpretation is

the identity relation. Let Xi,... ,Xn be variables not appearing in the clause. Then,

clause (2.3) is equivalent to

p(Xi,...,Xn) *— (Xi = T\) A • • • A (X n = Tn) A L\ A • • • A Lm.

Finally, if Y\,..., Yd are the variables of clause (2.3), then the above form is equivalent

to

rtXu... ,X„)«- 3Y, • • • 3 Y i d X , = Ti) A • • • A (X, = T.)A

Li A • • • A Lm). (2.4)

We call this the general form of clause (2.3). Suppose there are exactly k clauses,

k > 0, in P about predicate symbol p. Let

p(Xi,..., Xn) Ei

(2.5)

p(Xi,..., JTn) <— Ek

be the k general forms of these clauses. Each of the Ei will be an existentially quan-

tified conjunction of literals as the left-hand side of (2.4). The completed definition

of p, implicitly given by P, is

VX1--VXn(p(Xu...1Xn)*+ElV"'VEk).

The if-half of this definition is just the k general forms of clauses (2.5) grouped

as a single implication. The only-if half is the completion law for p. If there is no

clause for p, the completed definition of p, implicitly given by P, is

V * ! . . • VXn (p(Xu ...,xn)~ false),

where false is a contradiction.

29

Let P be a normal program. The completion of P, denoted by comp(P), is

the collection of completed definitions of predicate symbols in P together with an

appropriate equality theory [16, 67]. Having defined program completion, Clark [16]

suggested that negative information not given by a completed program is taken to be

false.

One major problem with program completion is that it may cause inconsistency

in normal programs. For example, let P contain only one clause p(a) <— ~>p(a), which

should be equivalent to p(a). However, comp(P) = VX(p(X) (X = a) A ->p(a)) is

not consistent. Furthermore, Clark's program completion is sensitive to the syntax

of programs. For instance, both the theories {p(a) *— ->q(a)} and {q(a) *— ->p(a)}

should be equivalent, but they have different models. The former one has model

{p(a)}, while the latter one has model {9(a)}. In order to overcome the defects of pro-

gram completion, several refinements are proposed; these includes weak completion

theory [68], generalized predicate completion [122, 52], parallel predicate completion

[38], prioritized predicate completion [123], generalized program completion [23], and

strong completion of logic programs [22].

2.6.3. Stratified Logic Programs

Because of the above difficulties of negation in logic programming, a lot of re-

search work has been done in attempting to find a more precise semantics for larger

classes of logic programs. Apt et al. [3] and Van Gelder [129] independently in-

troduced an important class of logic programs (see also earlier work by Chandra

and Harel [13]), called stratified, whose definition is given below. Let M be a level

mapping of a logic program from its set of predicate symbols to the non-negative

integers. Let Sym(L) return the predicate symbol of literal L. A logic program

P is called stratified if there is a level mapping M such that, for every clause

30

H <— L\ A • • • A Ln in P, M(Sym(H)) > M(Sym(Li)) for each positive literal Li, and

M(Sym(H)) > M(Sym(Lj)) for each negative literal Lj. The most important fea-

ture of stratified programs is that they do not allow recursion through negation and

thus form a collection of natural strata (or levels). Evaluation of a literal on an upper

stratum will depend on the values of the same and lower strata. Therefore, a unique

'natural' minimal Herbrand model (the canonical model) of a stratified logic program

is easily defined by an iterated manner, and such a model (called iterated fixed point

model) is then argued to represent the declarative semantics of the program.

Beyond stratification, it seems that no canonical model can be defined because

there may exist more than one model and it is difficult to determine one among them

[33]. To overcome this difficulty, several different semantics for non-stratified logic

programs have been proposed. The stable model semantics is proposed by Gelfond

and Lifschitz [33], which is based on the stable expansions of Moore's AEL. The

default model semantics is proposed by Bidoit and Froidevaux [8], which is based on

the extensions of Reiter's default logic and coincides with stable models. The weakly

perfect model semantics is proposed by Przymusinska and Przymusinski [95], which

is based on McCarthy's circumscription or on Reiter's CWA. The well-founded model

semantics is proposed by Van Gelder et al. [130] and is based on three-valued logic.

2.6.4. Extended Logic Programs

The problem with the traditional logic programming is that total knowledge

is presumed because the NF-rule is automatically applied to every negative literal.

Therefore, it does not allow one to deal directly with incomplete information. In

order to cope with this problem, Gelfond and Lifschitz [34] further extended their

stable model semantics to the answer set semantics and called this kind of programs

extended logic programs, which contain the classical negation -i in addition to the

31

negation-as-failure not. In such extended logic programs, negative information is rep-

resented explicitly by the classical negation The answer set semantics of extended

logic programs is defined so that the answer for a ground query A is yes, no, or un-

known, depending on whether the answer set contains A, ->A, or neither, respectively.

The answer no corresponds to the presence of explicit negative information in the pro-

gram, while the answer unknown corresponds to the absence of both explicit positive

and explicit negative information. Gelfond and Lifschitz also showed that there is a

closed relationship between extended logic programs and Reiter's default logic [106]:

the answer sets for an extended logic program coincide with the extensions of the cor-

responding default theory. With this augmented syntactics and the new semantics,

extended logic programs provide more expressive power as a knowledge representation

tool to formalize nonmonotonic reasoning.

Since the dissertation will base on extended logic programs to formalize com-

monsense knowledge, in the following, the syntactics and answer set semantics of

these programs are briefly reviewed. An extended logic program is a set of formulas

of the form

Lo * i i) • • • 5 Lm,not Lm-i-i> • • • ? fiot Ln (2.6)

where n > m > 0, and each Li is a literal. Formulas of the above form are also

called clauses in the context of extended logic programs. A literal is a formula of

the form A or ~>A, where A is an atom. Note that the negation sign in the negative

literal ->A represents the classical negation, but not the negation-as-failure denoted

by not in (2.6), so that expressions of the form not A are not literals according to

this definition.

In the semantics of extended logic programs, a clause with variables is treated as

standing for the set of all its ground instances. Therefore, it is sufficient to define the

notion of answer set for extended logic programs without variables. The definition

32

includes two parts. First, we consider the special case where the extended logic

programs without variables do not contain the negation-as-failure not. Then, we

consider the general case.

Let II be an extended logic program without variables that does not contain not,

and let Lit be the set of all ground literals in the language of II. The answer set of

II, denoted by a(ll), is the smallest subset S of Lit such that

(i) for any clause L0 *- Lx,..., Lm in II, if each L{ £ S (for i = 1 , . . . , m), then

Lo€S,

(ii) if S contains a pair of complementary literals, then S = Lit.

In case (ii), we say that II is contradictory. Consider the program IIj = {Q «— -iP,

-<P <—}. It has the only answer set a(IIi) = {-iP, Q}.

Now, let II be any extended logic program not containing variables. Let Lit be

defined as before. For any set S C Lit, let II s be the extended logic program obtained

from II by deleting

(i) each clause containing an expression not L in its body with L € S, and

(ii) all expressions of the form not L in the bodies of the remaining clauses.

Clearly, II5 does not contain not, so that its answer set is already defined. If this

answer set coincides with S, then we say that S is an answer set of II. That is, S

is an answer set of II if and only if S = a(II5). For example, consider the program

n 2 = {->Q <- not P}. It is easy to see that n 2 has only one answer set: {-.Q} which

is also the answer set of n | ^ = {~>Q <—}. By the answer set semantics, the answers

that the program II2 should give to the queries P and Q are, respectively, unknown

and no.

An extended logic program may have more than one answer set. For example,

the program II3 = {P <— not Q, Q <— not P} has two answer sets: {P} which

is also the answer set of n | P } = {P *-}, and {Q} which is also the answer set

33

°f n| — {Q *—}. An extended logic program may have no answer sets. For

example, the program II4 = {P «- not P} does not have any answer set. Moreover,

an extended logic program may also be contradictory. For example, the program

n5 = {P ~>P «—} is contradictory.

Note that the answer set semantics treats clauses of the form Q <- P as inference

rules "from P derive Q," rather than conditionals. So it inhibits the use of the

"contrapositive." That is, the inference "from --Q derive -.P" is not allowed.

CHAPTER 3

INHERITANCE HIERARCHIES WITH EXCEPTIONS

Semantic networks [98, 102] are an important tool for knowledge representation.

They express knowledge in terms of concepts, their properties, and the hierarchical

relationship between concepts. There is an important class of information structures

called inheritance hierarchies which is a central part of almost all semantic networks

and knowledge representation languages [9, 10, 29, 43]. In an inheritance hierarchy,

each concept is represented by a node, and the hierarchical relationship between

concepts is depicted by connecting appropriate concept nodes via IS-A links1. Nodes

at the lowest level of an IS-A hierarchy denote individuals, whereas nodes at higher

levels denote classes of individuals. Properties are also represented by nodes, and the

fact that a property applies to a concept is represented by connecting the property

node and the concept node via an appropriately labeled link. In general, a property

is attached to the highest concept in an IS-A hierarchy to which the property applies.

For inheritance hierarchies without exceptions, a property attached to a node also

applies to all its descendants.

Although semantic networks are a powerful notation for representing knowledge,

they lack formal semantics as pointed out by Woods [131]. In response to this defi-

ciency, Cercone and Schubert [12,113] first regarded semantic networks as notational

variants of first-order logic. Hayes [46] and Charniak [15] subsequently formalized

semantic networks based on first-order logic. This formalization can be viewed as

providing the semantics for semantic networks [28]. The translation of semantic

1For brevity, is-A links are used to denote both is-A and INSTANCE-OF links in semantic networks.

34

35

networks into first-order logic invokes mapping individuals to constants, classes to

unary predicates, and properties to either unary or binary predicates. For example,

an IS-A link between nodes2 TWEETY and CANARY in an inheritance hierarchy is

expressed as canary(tweety), while the IS-A link between CANARY and BIRD is rep-

resented as

canary{X) —> bird(X). (3-1)

If a property is mapped to a unary predicate, then property specifications, such as

"canaries are yellow," may be expressed as

canary(X) —> yellow(X).

In this translation, inheritance is obtained by one or more applications of the inference

rules of universal instantiation and modus ponens. For instance, given canary(tweety)

and axiom (3.1), one may infer bird(tweety) by a single application of the above two

inference rules.

This elegant translation described above works well only in the case of no ex-

ceptions existing in the inheritance hierarchies. However, if exceptions are permitted,

the translation suffers from an important problem, for first-order logic is monotonic

but inheritance hierarchies with exceptions are nonmonotonic. Therefore, research

on considering the effects of allowing exceptions in inheritance hierarchies becomes

important [29, 30, 28, 124, 125, 26, 27].

The NETL system proposed by Fahlman [29] was one of earlier approaches to

deal with exceptions in inheritance hierarchies. However, this method may lead to

unintuitive or even invalid conclusions. Later on, Etherington and Reiter [28, 26, 27]

proposed that inheritance hierarchies with exceptions could be formalized by default

logic. But this approach does not clearly describe how to add exception links to

2Nodes in an inheritance hierarchy are represented by strings of small capitals.

36

their new network representation. Touretzky [124, 125] also presented the notion

of inferential distance ordering to compute inheritance based on the NETL network

representation but without using exception links. Nevertheless, this approach does

not completely capture the idea of the given knowledge because only default links are

allowed in its network representation. Both the above two approaches (except NETL)

may generate multiple conclusions. Because this type of inference generates every

possible conclusion, it is called credulous reasoning [126]. Inheritance hierarchies with

only one conclusion is called ambiguous, and unambiguous otherwise. Horty et al.

[50,51] later presented a new type of inference called skeptical reasoning for ambiguous

inheritance hierarchies with exceptions. The latter inference type is further divided

into two different cases: ambiguity blocking inheritance and ambiguity propagating

inheritance. Both of these two cases also generate intuitive conclusions for different

requirement.

Recently, Kowalski and Sadri [58] modified the answer set semantics of extended

logic programs to deal with default reasoning of Poole's approach [94]. In their

method, general rules are represented as clauses with positive literals in the heads,

while exceptions are clauses with negative literals in the heads and having higher

priority than general rules. Although the mechanism is simple, it has an important

limitation: the syntax is too restricted. That is, general rules with negative literals

in the heads and exceptions with positive literals in the heads cannot be expressed

directly. Moreover, exceptions to exceptions cannot be expressed either.

In this chapter, we investigate how logic programs can be used to represent in-

heritance hierarchies with exceptions so that the limitations of the above mechanism

can be eliminated. In our approach, we adopt the simple abnormality formalism,

which was first proposed by McCarthy [71] for circumscriptive theories, to formalize

these inheritance structures. Also, exceptions are assumed to be expressed directly

37

in our approach. It turns out that if the inheritance hierarchies are unambiguous,

the abnormality formalism can be directly applied. However, if the inheritance hi-

erarchies are ambiguous, directly applying this formalism will encounter difficulties.

In this case, we need to modify it depending on the required inference type. Here-

after, inheritance hierarchies (or networks) are used to denote these hierarchies with

exceptions unless otherwise indicated.

3.1. Related Work

NETL proposed by Fahlman [29] is an earlier approach dealing with exceptions

in inheritance networks. It adopts shortest path heuristic to compute inheritance. In

the NETL network representation, all links are default links and only exception links

for IS-NOT-A links are allowed. Unfortunately, this efficient shortest path algorithms

may lead to unintuitive or even invalid conclusions as observed in [28, 108, 124].

Subsequently, Etherington and Reiter [26, 27, 28] proposed that default theo-

ries could be used as the semantics of inheritance hierarchies in the same spirit as

first-order theories for semantic networks. They enhanced the NETL network rep-

resentation, called E&R network representation, of inheritance hierarchies with five

different link types:

(1) strict IS-A links (•) ,

(2) default IS-A links (>),

(3) s t r ic t IS-NOT-A links (111 ! •) ,

(4) default IS-NOT-A links (-H-H->), and

(5) exception links (->).

In the enhanced network representation, IS-A and IS-NOT-A links are divided into

strict and default links, and exception links which prohibit from invoking some

38

OSTRICH

FLYING OSTRICH

Figure 3.1: NETL network representation

default links are fully expressed, which is contrary to the NETL representation where

exception links are only allowed for IS-NOT-A links. Moreover, they also presented a

translation of these hierarchies into default logic. The translation of strict links into

first-order formulas is the same as that for semantic networks as described above,

while a default link corresponds to a default rule with the exception information in

its justification if exception links for the default link exist. Consider the following

knowledge:

• Normally, birds fly.

• Ostriches are birds but normally do not fly.

• Flying ostriches are ostriches and can fly.

The NETL network representation of the above knowledge is shown in Figure 3.1,

whereas the corresponding E&R network representation is shown in Figure 3.2.

Note that in the NETL representation, all links are default links and only exception

links for IS-NOT-A links are allowed. The corresponding default theory (Di,Wy) of

Figure 3.2 is as follows:

39

BIRD t

OSTRICH

FLYING OSTRICH

Figure 3.2: E&R's network representation

f bird(X) : Mfly(X) A -^ostrich(X)
D ' - 1 M X) '

ostrich(X) : M~^fly(X) A flying jostrich(X) \

- 7 W : i i '

Wi = {f lyingjostrich(X) —» fly(X),

ostrich(X) —> bird(X),

flyingjostrich(X) —> ostrich(X)}.

Clearly, this approach uses semi-normal defaults to represent inheritance networks in

default logic. Given a flying ostrich Henry, the above default theory will conclude that

Henry is an ostrich, but can fly. Since semi-normal defaults are used, this approach

inherits the disadvantages of semi-normal defaults as described in Section 2.4. In

addition, this approach does not clearly describe how to add the exception links to

the E&R network representation.

Touretzky [124, 125] later presented the notion of inferential distance ordering

to deal with the exceptions in inheritance hierarchies. He adapted the NETL network

representation, but did not use exception links. His approach can be briefly described

40

OSTRICH
A

FLYING OSTRICH

Figure 3.3: Touretzky's network representation

as follows: Given an inheritance hierarchy, if node A inherits property P from node B

and property ->P from node C, then "if A has an inheritance path via B to C and not

vice versa, then conclude P; if A has an inheritance path via C to B and not vice versa,

then conclude ->P; otherwise report an ambiguity." [125] For the above example, the

corresponding inheritance hierarchy of Touretzky's network representation is depicted

in Figure 3.3. Given the flying ostrich Henry, because Henry inherits property FLY

from F L Y I N G j O S T R I C H and property ->FLY from O S T R I C H , and there is an inheritance

path from F L Y I N G j O S T R I C H to O S T R I C H but not vice versa, we conclude that Henry

can fly. The problem with this approach is that the network representation seems not

completely capture the given knowledge, for the links in his network representation

are all default links [11].

The latter two methods described above both generate multiple extensions from

an inheritance hierarchy if the corresponding defaults defeat each other. We will call

the inheritance hierarchies with more than one extension ambiguous, and unambiguous

otherwise. Recently, a new type of inference for ambiguous inheritance networks

41

called skeptical reasoning was proposed by Horty et al. [50, 51] to distinguish it

from the previous inference type called credulous reasoning. The intuition behind

the credulous strategy is that it will believe any of the conflicting arguments and

thus may produce an exponential number of extensions from a single inheritance
I

hierarchy. In contrast to the credulous reasoners, skeptical reasoners will not believe

any conflicting argument. In other words, they only conclude something which is

unambiguous and thus always generate a unique extension. However, there are still

two different cases for the skeptical reasoning. Horty et al. [50, 51] first attempted

to achieve this reasoning by blocking any inference from an ambiguous node, which

is referred to as ambiguity blocking inheritance. This kind of skeptical reasoning is

not equivalent to taking the intersection of all credulous extensions. Touretzky et

al. [126] mentioned another version of skepticism which will propagate ambiguities

from ambiguous nodes. Such version is often referred to as ambiguity propagating

inheritance and is equivalent to the intersection of all credulous extensions. Stein

[120] subsequently proposed an algorithm to compute extensions of this ambiguity

propagating inheritance.

Recently, Kowalski and Sadri [58] modified the answer set semantics of extended

logic programs to deal with default reasoning of Poole's approach [94] by allowing the

explicit representation of exceptions in addition to general rules. In this m e c h a n i s m ,

general rules are represented as clauses with positive literals in the heads, while

exceptions are clauses with negative literals in the heads. The reasoning with general

rules and exceptions is performed by assigning exceptions to have a higher priority

than rules so that if a contradiction arises between a rule and an exception, the

exception overrides the rule. To illustrate this, consider the following extended logic

program which contains a general rule

fly(X) <- bird(X)

42

and an exception

-*fly{X) *- ostrich(X).

This program states that normally birds fly and ostriches do not fly. If Tweety is

both an ostrich and a bird, then we conclude that Tweety does not fly because the

exception overrides the general rule.

Although the representation of general rules and exceptions in the above mech-

anism is simple, it suffers from an important limitation: the syntax is too restricted.

In other words, general rules with negative literals in the heads and exceptions with

positive literals in the heads cannot be expressed directly. For example, the clause

-ifly(X) *— ground janimal{X)

cannot be directly used to represent a general rule since the literal in the head is neg-

ative. Although ->fly(X) may be expressed by some other predicate like nofly(X),

it loses the expressive merits of the extended logic programs. Moreover, exceptions to

exceptions cannot be expressed, and hence, this complicated case cannot be handled

correctly. For instance, the clause

fly(X) <— f lying-ostrich(X),

which states that flying ostriches can fly, is an exception to the exception "ostriches

do not fly" of the above logic program. If Sam is both an ostrich and a flying ostrich,

then by this mechanism, we will make the wrong conclusion that Sam cannot fly

because the new exception above is regarded as a general rule.

3.2. Formalizing Exceptions in Inheritance Hierarchies

In general, human knowledge about a specific domain contains at least two parts:

facts and general rules. A fact is certain knowledge, which is universally true and

hence contains no exceptions. A fact usually has the form "P is always Q" (or "P is

43

always not Q") which is represented by the strict IS-A link P • Q (or by the strict

IS-NOT-A link P | H !• Q) in an inheritance hierarchy3. If P is an individual of class

Q, then the above strict IS-A and IS-NOT-A links can be expressed, respectively, in

extended logic programs by the clauses q(p) <— and ~<q(p) If P is a subclass of Q,

then these two strict IS-A and IS-NOT-A links can be expressed, respectively, by the

clauses

» (. *) « - r i *)

and

M X) « - P(X).

On the other hand, a general rule is an uncertain belief, which contains excep-

tions. A general rule usually has the form "normally, P is Q" (or "normally, P is not

Q") which is represented by the default IS-A link P > Q (or by the default IS-NOT-A

link P 1111> q) associated with a unique abnormality label a6, in the hierarchy. The

above two default IS-A and IS-NOT-A links can be expressed, using the abnormality

formalism, in extended logic programs by the clauses

q(X) *- p(X) A not abi(X) (3.2)

and

-»q(X) <- p(X) A not abi(X), (3.3)

respectively. The predicate abi(X) means that an object X of class P is abnormal

in aspect i, and the negation-as-failure not stands for "not derivable (or provable)."
O

Usually, in clause (3.2), an object of class P being abnormal in aspect i means that

it has something wrong (abnormal) so that it cannot be in class Q (or cannot have

property Q). That is, aspect i is closed related to class (or property) Q. Note that

the classical negation -> in front of abnormality predicates of the original abnormality
3Here, we adapt Etherington's five link types [26, 28] to represent inheritance hierarchies for our

purpose.

44

formalism

p{X) A ̂ abi(X) -> q(X) (3.4)

and

p(X) A ~>abi(X) - • - q (X) (3.5)

is changed into the negation-as-failure not in our representation. Note also that the

corresponding axioms (3.4) and (3.5) in the original abnormality formalism are first-

order formulas, whereas the above clauses (3.2) and (3.3) are clauses in extended

logic programs which are treated as inference rules as noted in Subsection 2.6.4. As

discussed by Kowalski and Sadri in [58], the negation-as-failure not, rather than the

classical negation -i, is usually interpreted as the negation implicit in the word "un-

less." This is the reason why the classical negation -> in front of abnormality predicates

of the original abnormality formalism is replaced by the negation-as-failure not in the

representation of using extended logic programs. We think this modification is more

intuitive to capture the meaning of the general rules. Clause (3.2) states that if we

cannot prove an object of class P abnormal in aspect i, then we conclude that it is in

class Q; or more succinctly, p(X) implies q(X) unless abi(X). Similar interpretation

can also be applied to clause (3.3). For the convenience of subsequent discussions, if

there is no need to distinguish between default and strict links, the IS-A link P —> Q

is used to denote either a strict or a default IS-A link from P to Q, and the IS-NOT-A

link P •/* Q is used to denote either a strict or a default IS-NOT-A link from P to Q.

Up to this point, each of the facts and the general rules in one's knowledge

about a specific domain is easily expressed by a clause in extended logic programs.

We call such a set of clauses a basic program. Since the basic program may contain

abnormality predicates, abi(X), now the question is: How do we know that a certain

class is abnormal in some aspects according to the above representation? Ordinarily,

if we know that P is a subclass of Q, then P could inherit the properties of Q. However,

45

this is not the case if exceptions are allowed in the networks. The intuition underlying

inheritance hierarchies with exceptions is that subclasses are more specific so that

they can incorporate information about exceptional cases [124, 125, 126]. That is,

subclasses should be allowed to override superclasses. This gives us a clue to find a

certain class abnormal in some aspects so that the resulting representation satisfies

this intuition. In order to do so, some notion about the knowledge to be formalized

needs to be clarified.

Definition 3.1: Knowledge about a specific domain is called semantically

inconsistent if, intuitively, a pair of contradictory conclusions may be drawn from it,

and is called semantically consistent otherwise. •

To illustrate this notion, consider the following knowledge about birds:

• Winged birds can fly.

• Birds are normally winged birds.

• Ostriches are birds but normally do not fly.

Since "ostriches normally do not fly" is a more specific information, by the above

intuition that subclasses should override superclasses, we may conclude that ostriches

do not fly. On the other hand, since ostriches are birds and birds are normally winged

birds, and since we cannot infer that ostriches have no wings, by intuition we may also

conclude that ostriches are winged birds, which can fly. Here, a pair of contradictory

conclusions are drawn: ostriches can fly and also do not fly. Therefore, the above

knowledge is semantically inconsistent. If the intuition that subclasses should override

superclasses is the dominate inference rule (such as in [125]) to conclude that ostriches

do not fly, then we need to retract the other conclusion that ostriches can fly. The only

way to retract this conclusion is that ostriches must be abnormal birds wrt having

wings because "winged birds can fly" is a fact which is universally true. However, we

cannot say that ostriches are abnormal birds wrt having wings, which conflicts with

46

WINGED BIRD

BIRD

OSTRICH

Figure 3.4: Network of the semantically inconsistent knowledge

our intuition because there is no way we can infer that ostriches have no wings from

the given knowledge.

For the above semantically inconsistent knowledge, Touretzky's inferential dis-

tance ordering approach [124,125] will conclude that Tweety does not fly if we know

that Tweety is an ostrich. This is because all links in his network representation

are default links; it does not completely capture the given information. As to the

approach of Etherington and Reiter [28], it is not clear how to add the exception

links to their network representation for the above example. If no exception links are

added, the corresponding network representation is depicted in Figure 3.4 and its

default theory (D2, W2) is as follows:

J bird(X) : MwingedJnrd(X)
£ 2 = t wingedJnrd{X)

ostrich(X) : M~>fly(X)\

J '

Wi — {wingedJ>ird(X) —• fly{X),

ostrich(X) —> Urd(X)}.

47

Given an ostrich Tweety, the default theory will conclude that Tweety is a winged

bird and can fly. Note that the conclusion that Tweety is a winged bird matches our

intuition, but the conclusion that Tweety can fly does not.

However, if the fact "winged birds can fly" in the above semantically inconsis-

tent knowledge is changed into the general rule "winged birds normally can fly" or

the phrase "winged birds" is replaced by "flying birds," then the revised knowledge

becomes semantically consistent. In the former case, we can intuitively say that os-

triches are abnormal winged birds wrt flying, for "ostriches normally do not fly" is a

more specific information. In the latter case, we can say that ostriches are abnormal

birds wrt flying because of the same reason. Here, we say that the class FLYING_BIRD

is most related to the property FLY. Motivated by this example, in the following, only

semantically consistent knowledge is considered. Before defining a given class being

abnormal in some aspects, some prerequisite definitions are given first.

Definition 3.2: Let T be an inheritance hierarchy. A path from A to B in T

is called positive if each link in the path is an IS-A link. A path from A to B in T is

called negative if the last link is C -f* B and the path from A to C is positive. •

Definition 3.3: Given a path from A to B, a default link is called the nearest

default link in the path if the default link has the minimum number of links away

from B. •

Definition 3.4: Given a path from A to B, if

(i) the last link in the path is a default link, then B is called most related to itself,

(ii) the last link in the path is a strict link, then D is called most related to B if the

nearest default link in the path is C —> D. •

Definition 3.5: A path from A to B in an inheritance hierarchy is called

shortest if it contains the minimum number of links. •

48

Definition 3.6: Let T be an inheritance hierarchy. Class R is called abnormal

in aspect i if the following conditions are both satisfied:

(i) There exists a link R •/* Q in I\

(ii) There exists a shortest positive path from R to Q such that P —• S is the nearest

default link with label aft,-, and R is a subclass of P. •

Note that S and Q in the above definition are not necessarily distinct. By this

definition, since R is a subclass of P and since class R contains exceptional information

(i.e., it may derive ->q(X)), R must be abnormal in aspect i so that the default link

P -* S is blocked. In other words, class R does not inherit property Q from its

superclasses, which satisfies the intuition that subclasses should override superclasses.

Similarly, we have the following symmetric definition.

Definition 3.7: Let T be an inheritance hierarchy. Class R is called abnormal

in aspect i if the following conditions are both satisfied:

(i) There exists a link R —> Q in I\

(ii) There exists a shortest negative path from R to Q such that P —> S (or P Q

if Q = s) is the nearest default link with label afy, and R is a subclass of P. •

In the above two definitions, class R being abnormal in aspect i can be expressed

in extended logic programs by the clause

abi(X)«- r(X),

which is represented by the exception link R -> at, in the inheritance hierarchy,

where abi is the label of the default link from P to S. Such a clause is called an

inheritance cancellation rule by McCarthy [38, 71]. All the inheritance cancellation

rules need to be added to the above basic program so that the resulting representation

can satisfy the intuition underlying inheritance networks with exceptions. Note that

the shortest paths in the above two definitions are not necessarily required. This

condition only provides computational efficiency for finding most related properties

49

FLY

s I
\

ab21 THING \ \

OSTRICH

FLYING OSTRICH

Figure 3.5: Network of flying birds

because the most related nodes must be in these paths so that subclasses can override

superclasses due to appropriate cancellation rules.

3.3. Exceptions in Unambiguous Inheritance Hierarchies

We first illustrate the simple case where the inheritance networks with exceptions

are unambiguous. Recall that in this case, each network has only one credulous

extension. Consider the following commonsense knowledge about birds:

• Things normally do not fly.

• Birds are things but normally fly.

• Ostriches are birds but normally do not fly.

• Flying ostriches are ostriches and can fly.

The corresponding inheritance network is shown in Figure 3.5. Obviously, "birds

50

are things," "ostriches are birds," and "flying ostriches are ostriches and can fly" are

facts, which are easily expressed by the following clauses:

1. thing(X) *— bird(X),

2. Mrd(X) *— ostrich(X),

3. ostrich(X) <— f lying ..ostrich(X),

4. fly(X) *— flyingjostrich(X).

The general rule "things normally do not fly" is expressed, according to our

representation using abnormality formalism, by the clause

5. -<fly(X) *— thing(X) A not abi(X),

which states that things cannot fly unless they are abnormal in aspect 1. Since birds

are a subclass of things and since we know that birds normally fly which is a more

specific information, obviously, birds are among those objects that are abnormal in

aspect 1. More formally, because there exists a link BIRD —* FLY and because in the

shortest negative path from BIRD to FLY the nearest default link is THING -f* FLY

with abnormality label a&„ by definition, BIRD is abnormal in aspect i. Therefore,

we have the following inheritance cancellation rule

6. ah(X) «- bird(X).

Because the above inheritance cancellation rule declares that birds are abnormal in

aspect 1, it blocks the inheritance of the non-flying property of things. Similarly,

we have the following clauses expressing the remaining general rules and cancellation

rules:

7. fly(X)«- bird(X) A not ab2(X),

8. ab2(X) <— ostrich(X)}

9. ->fly(X) <— ostrich(X) A not ab3(X),

10. abz(X) <— flyingjostrich(X).

We call this extended logic program III.

51

As noted by Genesereth and Nilsson in [38], the important feature of this way of

dealing with exceptions is that additional clauses about abnormalities can be added

at any time. New knowledge about flying or non-flying objects can be expressed

by adding clauses to the logic program instead of by having to change them. For

example, if we later learn that penguins are birds but normally do not fly, we just

need to add the following new clauses to IIi:

11. birds(X) «— penguin(X),

12. ~>fly(X) <— penguin(X) A not ab^X),

13. ab2(X) <— penguin(X).

Now, if we know that Tweety is an ostrich, we add the clause

14. ostrich(tweety) <—

to IIi and obtain the answer set

{ostrich(tweety), bird(tweety), thing (tweety), -< fly (tweety),

ab\(tweety), ab2(tweety)},

which concludes that Tweety is also a bird and a thing, but it does not fly. On

the other hand, if we learn that Sam is a flying ostrich, in the similar way, we can

conclude that Sam is also an ostrich, a bird, and a thing, and it can fly. From the

above example, we can see that the abnormality formalism can be directly applied in

unambiguous inheritance networks.

3.4. Exceptions in Ambiguous Inheritance Hierarchies

Now, we illustrate the general case where the inheritance networks with ex-

ceptions are ambiguous. Recall that in this case, each network has more than one

credulous extension. Consider the following famous Nixon diamond problem asked

by Reiter [71]:

52

PACIFIST

REPUBLICAN QUAKER

NIXON

Figure 3.6: The Nixon diamond

• Quakers are normally pacifists.

• Republicans are normally non-pacifists.

• How about Nixon, who is both a Quaker and a Republican?

The corresponding inheritance network is shown in Figure 3.6. These facts and

general rules are easily expressed, according to our representation using abnormality

formalism, by the following extended logic program II2:

1. pacifist(X) <— quaker(X) A not abi(X),

2. -1 pacifist(X) *— republican(X) A not ab2(X),

3. quaker(nixon)

4. republican(nixon) <—.

Because neither Quakers nor Republicans are a subclass of each other, we do not have

inheritance cancellation rules in this example.

Since Nixon is both a Quaker and a Republican, how do we know whether or

not he is a pacifist? Careless readers might think that this knowledge is semanti-

cally inconsistent because there is no way we can infer abi(nixon) and ab<i{nix(m).

Thus, the pair of contradictory literals pacifist(nixon) and ->pacifist(nixon) are con-

cluded. However, this is not the case. The above knowledge is perfectly semantically

53

consistent because if Nixon is a pacifist, he must be abnormal in aspect 1, or similarly,

if Nixon is a non-pacifist, he must be abnormal in aspect 2. Since it has two valid

extensions, the corresponding inheritance network is ambiguous. Some earlier inher-

itance reasoners, such as FRL [109] and NETL [29], cannot identify this ambiguity.

So far, two major different intuitive and correct inference types have been proposed

to deal with these ambiguous inheritance networks [126]: credulous reasoning and

skeptical reasoning. In the following, we elaborate how our representation with a

minor modification can be used to simulate these two inference types.

3.4.1. Credulous Reasoning

A credulous reasoner [28, 125] tries to draw as many conclusions as possible. It

will allow one to conclude that Nixon is either a pacifist or a non-pacifist, but not

both. Clearly, the above program II2 cannot draw any one of these conclusions. In

fact, it has no answer sets at all. For n 2 to perform credulous reasoning, we can

simulate it in the following way: Once we infer that Nixon is a pacifist (respectively,

non-pacifist), he must not be a non-pacifist (respectively, pacifist). In other words,

if an individual is known to be a pacifist (respectively, non-pacifist), he must be

abnormal in the corresponding aspects appeared in the bodies of the general rules

which conclude non-pacifists (respectively, pacifists) so that these general rules will

be blocked. In doing so, we need to add the clauses

5. a&i(X) <— ->pacifist(X),

6. aft2pO <— pacifist(X),

to II2 and obtain the following two answer sets:

{quaker(nixon), republican(nixon), pacifist(nixon), ab2(nixon)}

and

{quaker(nixon), republican(nixon), ->pacifist(nixon), ab^nixon)}.

54

Obviously, these two answer sets are the conclusions a credulous reasoner generates.

To formalize the credulous reasoning in our representation, we need the following

definitions.

Definition 3.8: A path is called a strict path if every link in the path is a

strict link and is called a default path otherwise. •

Definition 3.9: Let T be an inheritance hierarchy. A pair of conflicting paths

from A to B in T is defined to be a pair of positive and negative default paths from A

to B in T. •

Definition 3.10: The nearest abnormality label in a path is the abnormality

label of the nearest default link in the path. •

Definition 3.11: Let abi be the label of a default link A —> B. Then, A is

called the starting node of label afet. •

Definition 3.12: Let T be an inheritance hierarchy. A node B is called

ambiguous wrt node A if there exists a pair of conflicting paths from A to B in T and

the length of each path is at least two. •

Now, we can simulate the credulous reasoning by using extended logic programs

with defining backward exception links as follows:

Definition 3.13: Let T be an inheritance hierarchy. Suppose node B is am-

biguous wrt node A. Let a6, and abj be the nearest abnormality labels of the negative

and positive paths from A to B, respectively. Also, let C and D be the starting

nodes of labels abi and abj, respectively. Then, the positive backward exception link

A -> abi and the negative backward exception link A + + + + > abj are added to T,

which correspond, respectively, to the clauses

<- a(X) A c(X)

and

abj(X) <- -ia(X) A d(X). •

55

A + **

Figure 3.7: Nested Nixon diamond in credulous reasoning

The above formulation of adding backward exception links is exactly in the same

spirit of the interaction of defaults in default logic. Consider Figure 3.7 which is a

nested Nixon diamond. Node A is ambiguous wrt to node F because there exist a

positive default path from F to A via E and C and a negative default path from F to A

via B. Similarly, node C is ambiguous wrt node F because there exist a positive default

path from F to C via E and a negative default path from F to C via D. Therefore, the

positive backward exception links A > abi and C > 063 and the negative

backward exception links A + + + + > ab2 and C + + + + > a&4 need to be added to the

network. The corresponding extended logic program II3 of Figure 3.7 is as follows:

1. H/),

2. <*(/),

3. e(/) ,

4. - a (X) <- b(X) A not ah(X),

5. a(X) <— c(X) A not a&2p0,

6. ~>c(X) <- d(X) A not ah{X),

56

4- + .

hjf ab3 ao4

Figure 3.8: Nested Nixon diamond in credulous reasoning

7. c(X) •— e(X) A not ab^X),

8. ah(X) «- a(JT) A 6(X),

9. a&2(X) <- ->a(X) A c(X),

10. ab3(X) *- c(X) A d(X),

11. ab4(X) <- ^c(X) A e(X).

The above extended logic program II3 has three answer sets:

Si = W) > «*(/)» e(/)> -•«(/)» ~,C(/)' a64(/)},

£2 = W) , d(f), e(/), c(/), afc2(/), «M/)},

5s = W) > <*(/)> e(/)> a(/)> c(/)> a6i(/)> a^(/)},

which agree with the extensions produced by the corresponding default theory.

If the default link C —+ A is changed into a strict link in the above network,

the modified inheritance hierarchy is shown in Figure 3.8. In this case, the original

negative backward exception link A + + + + > ab2 becomes the new backward exception

link A + + + + > 064 because a64 is the nearest abnormality label of the positive path

from F to A. In this network, there are only two answer sets S\ and S3.

57

3.4.2. Skeptical Reasoning

A skeptical reasoner [50] refuses to draw conclusions in ambiguous situations. For

the above Nixon diamond example, it will offer no opinion as to whether Nixon is or is

not a pacifist. The above program II2 also cannot obtain this conclusion. For the case

of ambiguity-propagating inheritance, since its extension is equivalent to taking the

intersection of all credulous extensions, we can simply simulate this version of skeptical

reasoning by taking the intersection of all answer sets obtained by using credulous

reasoning. For the case of ambiguity-blocking inheritance, however, its extension is

not equivalent to taking the intersection of all credulous extensions. We can simulate

this version of reasoning in the following way for the Nixon diamond example. Since

Quakers are normally pacifists, they must block other general rules which conclude

non-pacifists. In other words, Quakers must be abnormal in the corresponding aspects

appeared in the bodies of the general rules which conclude non-pacifists. Similarly,

since Republicans are normally non-pacifists, they must block other general rules

which conclude pacifists. That is, Republicans must be abnormal in the corresponding

aspects appeared in the bodies of the general rules which conclude pacifists. In doing

so, the clauses

7. abi(X) <— republican(X),

8. abi(X) <— quaker(X),

need to be added to II2. Clearly, in this case, there is only one answer set

{quaker(nixon), republican(nixon), ab^nixon), ab2(nixon)}

which offers no opinion about Nixon's pacifism. To formalize the ambiguity-blocking

inheritance in our representation, we need the following definitions:

Definition 3.14: Given a path from A to B whose first link is a strict link,

a strict subpath from A to C of the given path is called the longest if the subpath

contains the maximum number of links. •

58

Definition 3.15: Given a path from A to B which contains ambiguous nodes,

the one with the minimum number of links away from B is called the nearest ambiguous

node of the path. •

Definition 3.16: Given a path from A to B, a node C is called the nearest

certain node of the path if one of the following conditions is satisfied.

(i) Node C is the nearest ambiguous node of the path when there exist ambiguous

nodes in the path.

(ii) The path from A to C is the longest strict subpath of the given path when there

is no ambiguous node in the path. •

Now, we simulate the ambiguity-blocking inheritance by adding forward excep-

tion links as follows:

Definition 3.17: Let T be an inheritance hierarchy. Suppose node B is am-

biguous wrt node A. Let afe, and C be the nearest abnormality label and the nearest

certain node in the positive path from B to A, respectively. Also, let abj and D be the

nearest abnormality label and the nearest certain node in the negative path from B to

A, respectively. Then, the following two forward exception links are added to T: the

exception links C > abj and D > a6,, which are represented, respectively,

by the clauses

abj(X) «- c(X) A e{X)

and

abi(X) <- d(X) A / (X) ,

where E and F are the starting nodes of labels abj and a6,, respectively. •

Consider Figure 3.9 which is basically the same as Figure 3.7, but for skeptical

reasoning. In this figure, since there exists a pair of conflicting paths from F to

A, the forward exception links C > ab\ and B > a&2 need to be added to

the inheritance hierarchy. Similarly, for the pair of conflicting paths from F to C,

59

Figure 3.9: Nested Nixon diamond in skeptical reasoning

the forward exception links E > ab̂ and D > ab̂ need to be added to the

network. The corresponding extended logic program II4 of Figure 3.9 is as follows:

i- K f) ,

2. <*(/),

3. e(/) ,

4. - 'a(X) <— b(X) A not abi(X),

5. a{X) <— c(X) A not ab2(X),

6. -<c(X) d(X) A not abz(X),

7. c{X) <- e(X) A not ab^X),

8. ahiX) <- c(X) A b(X),

9. ab2(X) b(X) A c(X),

10. ah{X) <- e(X) A d(X),

11. ah(X) *- d(X) A e(X).

Since node C is ambiguous, it is blocked. Thus, the negative link B A is not

blocked, and we can conclude Clearly, there is only one answer set of the

60

Figure 3.10: Nested Nixon diamond in skeptical reasoning

above program n4 :

{&(/)> <*(/), e(/), ->a(/)},

which is not equivalent to the intersection of the credulous extensions.

Consider the above figure with the default link C -> A replaced by a strict link.

In this case, the modified inheritance hierarchy is shown in Figure 3.10. Now, node

C is the nearest ambiguous node, and ab4 is the nearest abnormality label in the

positive path from F to A. Here, the original forward exception link B -> ab2 is

replaced by the new exception link B > ab4. As we can see, the negative link

B A is still not blocked by the new exception link B - - - - -> ab4, and thus, we have

the same answer set as before.

3.5. Redundant Statements in Inheritance Hierarchies

As noted by Touretzky in [124], true but redundant statements may cause prob-

lems in some earlier inheritance reasoners, such as FRL [109] and NETL [29]. Consider

the following commonsense knowledge in [124]:

61

GRAY

ELEPHANT

ROYAL ELEPHANT

CIRCUS ELEPHANT

CLYDE

redundant

link

Figure 3.11: Redundant links in the network

• Elephants are typically gray.

• Royal elephants are elephants but are typically not gray.

• Circus elephants are royal elephants.

• Clyde is a circus elephant.

The corresponding inheritance network is shown in Figure 3.11. By the intuition un-

derlying all inheritance systems that subclasses should override superclasses, Clyde is

not gray. Clyde being an elephant is a redundant statement because it can be derived

from the given information. If we add this fact explicitly to the above knowledge, it

causes problems in some inheritance reasoners. In FRL, Clyde will inherit properties

through both circus elephants and elephants. Thus, FRL will conclude that Clyde is

and also is not gray without identifying the contradiction. In NETL, the redundant

statement that Clyde is an elephant establishes the shortest inference path to gray,

which is shorter than the other two paths (one to gray and the other one to non-gray)

62

which go through circus elephant. NETL will, therefore, draw the intuitively wrong

conclusion that Clyde is gray.

It is easy to see that our approach is unaffected by such true but redundant

statements. By our representation, we have the following extended logic program II5:

1. gray(X) «— elephant(X) A not abi(X),

2. elephant(X) *— royaLeIephant(X),

3. ->gray(X) «— royal-elephant(X) A not a&2p0,

4. abi(X) <— royaljelephant(X),

5. royalje.lephant(X) <— circus-elephant(X),

6. circus-elephant(clyde)

If we add the redundant statement

7. elephant(clyde) <—

to n 5 , we still conclude that Clyde is not gray. This is because Clyde is both a circus

elephant and a royal elephant which implies that Clyde is abnormal in aspect 1 and

block the general rule to conclude gray.

CHAPTER 4

THE ANOMALOUS EXTENSION PROBLEM

The simple abnormality formalism was originally proposed by McCarthy [71]

primarily to express commonsense knowledge in circumscriptive theories. Unfortu-

nately, this formalism seems not adequate to fully achieve such a purpose as first

illustrated by McCarthy himself in [71], for there may exist undesired, unintutive

minimal models, which are called anomalous extensions1. Later on, Hanks and Mc-

Dermott in their celebrated paper [44, 45], the best paper at AAAI-86 [1], carefully

examined McCarthy's proposed solution to the frame problem using such a formal-

ism, and then, they discovered that there exists an anomalous extension in the famous

Yale shooting problem (YSP) from temporal default reasoning when it is formalized

in three major existing non-monotonic reasoning mechanisms (i.e., Reiter's default

logic [106], McCarthy's circumscription [71], and McDermott-Doyle's non-monotonic

logic [73]). Subsequently, Morris also in his celebrated paper [85, 86], the most out-

standing paper at AAAI-87 [2], demonstrated that the anomalous extension problem

not only presents in temporal reasoning, but also occurs in non-temporal reasoning

by presenting an example from taxonomic reasoning.

Several solutions have been proposed to cope with this anomalous extension

problem. However, some of them [117] only deal with temporal reasoning. In this

chapter, we are only interested in the solutions to more general cases which also

include non-temporal reasoning. Morris [86] first proposed that when the YSP is

*As noted in [45], because of the parallel properties between extensions in default logic and

minimal models in circumscription, both terms will be used interchangeably.

63

64

reformulated in terms of a truth maintenance system (TMS) [21], the anomalous ex-

tension noted by Hanks and McDermott disappears. He also showed that by mimick-

ing the TMS formulation, non-normal defaults in default logic can be used to exclude

the anomalous extensions. Similar to the non-normal representation, Gelfond [32]

also presented a reformulation of the YSP based on autoepistemic logic to avoid the

unintuitive expansion. Recently, You and Li [138] also present the supported circum-

scription based on the notion of supportedness in logic programming to achieve the

same purpose of excluding anomalous extensions.

In this chapter, we first illustrate the three aforementioned examples with anoma-

lous extensions and then show that if they are formulated in extended logic programs

as presented in Chapter 3, the undesired conclusions are excluded. We then inves-

tigate the intuition behind commonsense reasoning; especially, when there are more

than one conclusion, how do we choose a preferred one which corresponds with our

intuition? Then, we review each of the solution mentioned before to see how it can ex-

clude unwanted conclusions. Finally, we give a brief discussion on the other approach

to the famous YSP.

4.1. Examples with Anomalous Extensions
i

4.1.1. McCarthy Anomaly

McCarthy [71] first recognized that the abnormality formalism is not adequate

to formalize commonsense reasoning in circumscriptive theories. He illustrated this

point with the following first-order theory [71]:

1. ^ah{X) -+ ~>fly(X),

2. Urd{X) -> afei(X), 0

3. bird(X) A -.a&aPO fly(X),

65

4. canary(X) A ->abs(X) —> bird(X),

5. canary(tweety).

Since we know that Tweety is a canary, can we conclude that Tweety can fly? As

noted by McCarthy, simply circumscribing the above axioms over abu ab2, and 063,

varying fly, leaves this question undecided, because Tweety can either be abnormal

in aspect 1 or in aspect 3. That is, there are two minimal models: one concludes

that Tweety can fly, and the other does not. However, commonsense tells us that

we should conclude that Tweety can fly. In other words, the conclusion that Tweety

does not fly is counter-intuitive, which is an anomalous extension. In order to achieve

this intuition, we may prefer to have Tweety abnormal in aspect 1 to having Tweety

abnormal in aspect 3. This observation caused McCarthy to introduce a more power-

ful version of circumscription, called prioritized circumscription, to choose a preferred

minimal model by assigning an appropriate priority to each predicate symbol of the

theories.

Surprisingly, when the above theory is formalized by our representation using

extended logic programs, it has only one answer set which corresponds with our intu-

ition; the anomalous minimal model disappears. In our representation, the classical

negation -> in the front of each abnormal predicate, abi(X), is simply replaced by the

negation-as-failure not and the following extended logic program III is obtained:

1. -<fly(X) <- not abi(X),

2. abi(X) *- bird{X),

3. fly(X) <- bird(X) A not ab2(X),

4. bird(X) <— canary(X) A not oZ>3(X),

5. canary {tweety)

By the answer set semantics, program III has only one answer set

{canary(tweety), bird(tweety), fly(tweety), abi(tweety)},

66

which correctly answers the question that Tweety can fly. The main reason why our

representation has only one answer set is because the extended logic program above

becomes stratified after renaming each negative literal to be a positive literal with

the same arity (see Section 8.1 for more details), predicate symbols in lower stratum

have higher priorities as discussed in [37]. Thus, the priority assigned to ab3 is higher

than that to abi, which corresponds to the prioritized circumscription.

4.1.2. Hanks-McDermott Anomaly

Hanks and McDermott [44] presented the YSP in temporal reasoning to demon-

strate the anomalous extension problem as follows:

• A person is alive at situation so.

• A gun becomes loaded any time a load event happens.

• The person becomes dead any time he is shot with a loaded gun, and

being shot with a loaded gun is abnormal with respect to staying alive.

When the example is formulated by the situation calculus and the abnormality for-

malism, the following situation-calculus abnormality theory is obtained [45]:

1. t(alive,s0),

2. t(loaded, result(load, S)),

3. t(loaded, S) —> t(dead, result(shoot, S)) A ab(alive, shoot, 5),

4. t{F, S) A ->a6(F, E, S) -* t{F, result{E, S)),

where t(F, S) represents the assertion that fact F is true in state S, result(E, S)

represents the situation resulting from applying event E to the situation 5, and

ab(F, E, S) represents the assertion that fact F is abnormal wrt event E occurring

in state S. Note that the last axiom is a frame axiom, which states that fact F will

remain true in a new situation after event E happens unless F is abnormal in the

new state. Consider the following situations:

67

so — the initial state,

$i = result(load, sQ) — the state resulting from loading a gun in state s0,

82 = result(wait,si) — the state resulting from waiting for a while in state si,

53 = result(shoot,S2) — the state resulting from shooting the gun in state s2.

The question is whether the person is alive or dead at situation 53. Similarly, simply

circumscribing ab, varying t, leaves this question undecided because there are two

minimal models: One concludes that the person is dead when he was shot, which

agrees with our intuition. The other one concludes that the gun mysteriously be-

comes unloaded during the waiting period, so the person is still alive after shooting,

which is counter-intuitive.

When the shooting example is formulated by our representation, the following

extended logic program n 2 is obtained:

1. t(alive,so) ,

2. t(loaded,Si) ,

3. t(dead,ss) <— t(loaded, S2),

4. ab(alive, shoot, S2) *— t(loaded,S2),

5. t(alive,s\) <— t(alive,so) A not ab(alive,load,so),

6. t(alive,S2) <— t(alive,si) A not ab(alive,wait, S\),

7. t(alive,S3) <— t(alive,S2) A not ab(alive, shoot, 32),

8. t(loaded, s2) <— t(loaded, si) A not ab(loaded, wait, sx),

9. t(loaded,S3) «— t(loaded,S2) A not ab(loaded, shoot, S2).

By the answer set semantics, program n 2 has only one answer set:

{t(alive,s0), t(alive,si), t(alive,S2), t{loaded,Sx), t(loaded,S2),

t(loaded,S3), t(dead, S3), ab(alive, shoot, S2)},

which correctly conclude that the person is dead at state s3. Note that the above

logic program is also stratified.

68

4.1.3. Morris Anomaly

Morris also presented an example in taxonomic reasoning which is structurally

very similar to the YSP and also reproduces the same difficulty as follows:

• Animals normally cannot fly.

• Winged animals are exceptions to this; they can fly.

• All birds are animals.

• Birds normally have wings.

• Tweety is a bird.

To simplify the formulation of the example, he made the assignments

animal = "Tweety is an animal,"

bird = "Tweety is a bird,"

wing = "Tweety has wings,"

fly = "Tweety can fly,"

abA = "Tweety is an abnormal animal with respect to not flying,"

abB = "Tweety is an abnormal bird with respect to having wings."

By following the abnormality formalism, the example above is formalized by the

propositional theory:

1. animal A ->abA —> ~<fly,

2. wing —> abA,

3. wing -» fly,

4. bird —» animal,

5. bird A ->abB —• wing,

6. bird.

Intuitively, we may conclude that Tweety can fly because we only know that it is a

bird. However, as before, simply circumscribing abA and abB, varying fly, leaves this

intuition not confirmed because there are two minimal models: One concludes that

69

Tweety can fly, which matches our intuition. The other one concludes that Tweety

cannot fly because it has no wings, which is counter-intuitive.

Similarly, when the example is formulated by our representation, the following

extended logic program II3 is obtained:

1. ->fly «— animal A not abA,

2. abA *— wing,

3. fly «- wing,

4. animal«— bird,

5. wing *— bird A not abB,

6. bird

Clearly, program II3 has only one answer set

{bird, wing, fly, animal, abA},

which agrees with our intuition that Tweety can fly. Note that after renaming each

negative literal, the above program also becomes stratified.

4.2. Investigating Intuition Behind Commonsense Reasoning

Recall that commonsense reasoning is usually trying to derive plausible conclu-

sions from incomplete information by making some reasonable default assumptions.

In the standard flying bird example, "birds normally fly" can be represented by the

first-order axiom

bird(X) A ^ahiX) -> fly(X)

with P = {abi} and Z = {fly} in circumscriptive formalization. Now, suppose we

only know that Tweety is a bird. Since we have no idea about whether Tweety is

abnormal wrt flying, we will naturally make the reasonable assumption that Tweety

is a normal bird. Hence, we can conclude that Tweety can fly by default. The basic

70

idea in commonsense reasoning is that when a ground predicate A is not derivable,

then A is assumed false. In general, this idea works well in simple cases such as

the above flying bird example. However, if there exists a case when newly made

assumptions are derived from previously made assumptions, then some undesired,

unintuitive conclusions may be generated. Such situation may cause the anomalous

extension problem, which is illustrated by the following example.

Consider the commonsense knowledge:

• If professor John has students, he normally meets them every Friday.

• In the meeting, he normally likes to have a cup of coffee.

The above knowledge can be formalized by the propositional theory T\

1. has students A ->ab\ —• meeting,

2. meeting A ->ab2 —> coffee.

Suppose we only know that professor John does have some students working with

him. Then, we add this fact

3. hasjstudents

to the above theory T\. Now, we can conclude that professor John will meet his

students next Friday (meeting) and will have a cup of coffee at the meeting (coffee),

for we have no idea about anything abnormal wrt attending meeting or having coffee

of professor John. Indeed, this is the conclusion drawn from the circumscription of

T\ with P = {abl, a62} and Z — {meeting, coffee}. Note that both meeting and

coffee in the conclusion are the consequents of axioms, and the assumptions made,

->abl and ->«62, are both in the antecedents of axioms.

Suppose we later learn more information about professor John:

• If he is in meeting, then he is abnormal wrt being in his office.

• If he is not abnormal wrt being in his office, then he will stay in his office.

This can be expressed by the axioms:

71

4. meeting —* ab3,

5. ->a&3 —> office.

Since we have already concluded that professor John will meet his students on next

Friday, we may further conclude that he will be abnormal wrt being in his office

during the meeting time (a&3). This conclusion agrees well with our intuition. Let Tj

be the theory containing the above five axioms. However, when we circumscribe T2

with P = {abl, ab2, a&3} and Z = {meeting, coffee, office}, two minimal models are

obtained: One is Mi = {has^students, meeting, coffee, abS}, which is the intuitive

one. The other one is M2 = {hasstudents, abl, office}, which is an undesired

conclusion stating that professor John will be in his office and will be abnormal wrt

attending his students' meeting. In the following, we carefully examine how these

two minimal models are generated and how one of them matches our intuition while

the other one does not.

Firstly, we look at how the unintuitive model Mi is obtained. Since we cannot

derive that professor John is abnormal wrt being in his office (abS) from T2, the as-

sumption that he is not abnormal wrt being in his office at the meeting time (~>a&3)

can be assumed. With this assumption, we can derive that he is in his office (office)

by axiom 5 and he is not in the meeting (-1meeting) by the contraposition of axiom 4.

Furthermore, by the contraposition of axiom 1, we can derive that he is abnormal wrt

being in the meeting (abl). Note that this reasoning pattern is a kind of backward

reasoning because it starts from the assumptions in the highest level and performs

reasoning backward by using the contrapositives of axioms (i.e., in the reverse direc-

tion of implications of axioms). Such kind of backward reasoning is not an intuitive

reasoning mechanism human being possesses; it is not natural for people to reason

something backwards in incomplete information.

72

Now, we examine how the intuitive one M\ is generated. Since we do not know

that professor John will be abnormal wrt being in next Friday meeting (a&l), we can

assume that he will be normally present in the meeting (~>abl). Thus, he will attend

the meeting with his students (meeting) on next Friday by axiom 1. Similarly, by

axiom 2, we can conclude that professor John will have a cup of coffee (coffee) in the

meeting. Since he is assumed to be present in the meeting, by axiom 3, he will be

abnormal wrt being in his office (a&3). Such reasoning pattern is a kind of forward

reasoning because it starts from the assumptions in the lowest level and performs

reasoning upwards by following the direction of implications. This kind of forward

reasoning provides a way of deriving intuitive and plausible conclusions in incomplete

information when people perform commonsense reasoning.

From the above discussions, we may note that the direction of implications

of axioms in a theory which formulates a given commonsense knowledge plays an

important role in commonsense reasoning. Let T be a theory with P and Z be sets

of predicate symbols as defined in circumscription. Let A be a ground atom whose

predicate symbol is in P. If A does not appear in the consequent of any ground

instance of an axiom, then A cannot be derived. Furthermore, if A appears in the

consequents of some ground instances of axioms whose antecedents are not derivable,

then A also cannot be derived. In both cases, A is assumed false. On the other hand,

only the consequents of ground axioms in T can be derivable. Hence, commonsense

knowledge itself gives us a clue to make intuitive and reasonable assumptions; i.e., we

can perform commonsense reasoning just by following the direction of implication of

axioms. This can be formalized by the following way.

Definition 4.1: Let T be a theory formulating a commonsense knowledge. Let

p, q, and r be predicate symbols occurring in T. Then, p is called to be dependent on

q (denoted by q p) if

73

(i) there exists an axiom in T such that p occurs in the consequent and q occurs

in the antecedent, or

(ii) p is dependent on r and r is dependent on q. •

Here, p dependent on q means that the truth value of some ground predicate

p{...) is dependent on the truth value of some ground predicate q{...). Thus, q{...)

will be derived before p(...). So, q has higher priority than p in evaluation. Let a

level mapping M of a theory be a mapping from its set of predicate symbols to the

non-negative integers.

Definition 4.2: A theory T with P = {pi, . . . , pn) is called stratified if there

exists a level mapping M such that for each pair of predicate symbols pi and pj in P ,

M(pi) > M(pj) if

(i) pi > pj but not pj > pi,

(ii) pi > pk but not pk > Pi with M(pk) = M(pj), or

(iii) Pk > Pj but not pj > pu with M{pk) = M(p,);

and M(pi) = M(pj), otherwise. •

Consider the above theory T2. By axioms 1 and 4, we have abl meeting

and meeting a&3, respectively. By Definition 4.1, we have abl abS, which is

the only dependency we can derive. So, there exists a level mapping M such that

ab2 and ab3 are in the same level, and abl is in a higher level. Thus, we have Pi =

{abl > ab3, ab2} in prioritized circumscription. In this case, circumscribing T with

P = Pi and Z as before, we only obtain the intuitive minimal model Mi.

In some cases, the theory T is not stratified. For example, consider the following

simplified version of the Nixon diamond example:

1. ->abQ —» abR,

2. -iabR —> abQ.

74

We call the theory T3. In this theory, we have abQ > abR and abR » abQ by axioms 1

and 2, respectively. By transitivity, we also have abQ abQ and abR >> abR.

Clearly, theory T3 is not stratified. In this case, we assign abQ and abR the same

priority. Circumscribing T3 with P = {abQ, abR}, two minimal models are obtained:

Mi = {abR} and Mi — {abQ}, both of which are intuitive conclusions as noted in

Chapter 3.

4.3. Related Work

In order to cope with the anomalous extension problem, Morris [85] first demon-

strated that the undesired extension of the YSP disappears if it is reformulated in

terms of a TMS [21]. The professor John example (i.e., theory T2) in the previous

section can be expressed in the TMS by the following non-monotonic justifications

1. has students A out(abl) —• meeting,

2. meeting A out(ab2) —• coffee,

3. has students,

4. meeting —»• abZ,

5. out(ab3) —y office.

Note that each classical negation -< in front of a predicate symbol in P (to be cir-

cumscribed in circumscription) of T2 is changed into out in the TMS formulation.

These justifications generate a unique well-founded labeling which matches our intu-

ition. Morris further investigated the reason why the anomalous extensions can be

excluded and found out that it is due to the unidirectional nature of TMS inference.

Since defaults in default logic are also unidirectional, Morris [86] also performed

a mapping from non-monotonic justifications into non-normal defaults such that

the anomalous extension of the YSP also disappears. Consider the professor John

75

example. It can be expressed by non-normal defaults as follows:

{hasstudents : M~>abl meeting : M->ab2 : M->ab%
meeting ' coffee ' office

Wi = {hasstudents, meeting —» ab3}.

}•

Clearly, the default theory (Di,Wi) only generates the desired extension.

Due to the intimate relation between default logic and autoepistemic logic, Gel-

fond [32] also presented a reformulation of the YSP to avoid the unwanted expansion

in autoepistemic logic. In this approach, the professor John example can be expressed

by the following autoepistemic theory:

1. hasstudents A ->Labl —> meeting,

2. meeting A ~<Lab2 —* coffee,

3. has students,

4. meeting —> a&3,

5. ~>L abS —*• office.

Obviously, there is only one stable expansion of the theory. Morris [87] also pointed

out that -iL in AEL roughly corresponds to not in TMSs. This is another reason

why Gelfond's reformulation can avoid anomalous extensions.

By noting the importance of the direction of implications in commonsense rea-

soning, You and Li [138] also proposed the supported circumscription to avoid unin-

tuitive minimal models. They first defined oriented clauses to preserve the direction

of implications in first-order theory. Then, they applied the notion of supportedness

in logic programming to define their new definition of supported circumscription. A

minimal model M of a theory T is supported if each atom in M is the consequent of

a ground instance of an axiom in T. We look at the professor John example which is

represented by the first-order theory T2 in the previous section. The minimal model

Mi is supported because each atom in Mi is in the consequents, while M2 is not

76

supported because abl is not the consequent of any axiom in T^.

As pointed out in Section 4.1, if each illustrated example with anomalous exten-

sion is formulated by an extended logic program, the undesired conclusion is excluded.

This is because each clause in extended logic programs is unidirectional; in addition,

each answer set of an extended logic program is also supported. We think that it is

more natural to express commonsense knowledge by using extended logic programs

because extended logic programs possesses the above two advantages of eliminating

anomalous extensions. We look at the professor John example which can be expressed

by the following extended logic program II4:

1. meeting <— has ̂ students A not abl,

2. coffee <— meeting A not ab2,

3. has students <—,

4. «63 *— meeting,

5. office <— not ab3.

It is apparent that the unique answer set of program II4 is an intuitive conclusion. As

we can see, all the above solutions to coping with the anomalous extension problem

apply the unidirectional property of their formulations.

4.4. Discussions

In response to the anomalous extension problem of the famous YSP, many criti-

cisms and other solutions have been proposed to deal with it. For the discussions and

debates of these points, refer to the original paper by Hanks and McDermott [45] for

details. In the following, we briefly discuss two commonsense theorem provers which

also used the YSP as their demonstrative example. The first one is a circumscriptive

theorem prover presented by Ginsberg [41] based on his multi-valued logic [39]. This

77

simple prover does not allow prioritized circumscription. In his paper [41], Ginsberg

used the original circumscriptive theory of the YSP in [45] to demonstrate that both

the queries t(alive, s3) and ->t(alive, s3) are discontinued in his prover and then to

conclude that these queries do not follow from the circumscription. Note that the

above demonstration has nothing to do with the anomalous extension problem of the

YSP as discussed in Section 4.2; it is only used to show whether a query is followed

from the circumscription so that the theorem prover can successfully prove the query.

The second one is a default logic theorem prover recently proposed by Munoz and

Yang [88]. This prover primarily depends on constructing normal deduction graphs

(NDGs) to perform default reasoning based on Kleene's [53] three-valued logic by

changing the third truth value unknown into maybe. However, this approach has two

limitations: (1) Only a subset of default theories are considered; i.e., the set of ordered

network default theories [26] are assumed. (2) Only normal defaults with empty

prerequisite and the consequent being of the form like Horn clauses are considered.

In their paper [88], Munoz and Yang also used the original default theory of the YSP

in [45] for demonstration. Because it is impossible to construct an NDG from true

to t(alive,s3) and an NDG from true to ->t(alive, s3), the theorem prover returns

the answer maybe to the above two queries. Similar to the former prover, the latter

prover also does not deal with the anomalous extension problem of the YSP. The

following is a comment for the latter approach dealing with commonsense reasoning.

By intuition, when we say something may be true, we usually mean that we

know that thing and the possibility that it happens is very high. On the other hand,

when we say something is unknown, we usually mean that we have no idea about it.

However, the modified three-valued logic adopted by the default logic theorem prover

is too simple to differentiate this kind of difference. For example, suppose we have the

default theory (D2, W2) with Di = 0 and W2 = {block(a) V block(b)}. By the latter

78

approach, the prover will returns maybe for both queries block{a) and block(b). This

answer is reasonable because we know that A or B is a block. However, for the query

block(c), the prover will also return maybe to mean that C may be a block. But by

the above discussion of our intuition, because we have no idea about C, the prover

should return a more reasonable answer unknown, for C may be a dog, a table, and

so on.

CHAPTER 5

DEFEASIBLE CONCLUSIONS

O

As mentioned in Chapter 1, commonsense reasoning is a kind of plausible reason-

ing which draws conclusions from incomplete knowledge by making some reasonable

default assumptions. Thus, some conclusions are derived from such default assump-

tions, while others are not. For the standard flying birds example, the commonsense

knowledge that birds normally fly and Tweety is a bird can be formalized by the

extended logic program:

fly(X) <— bird{X) A not abi(X),

bird(tweety) .

The first clause states that if X is a bird and there is no evidence that X is abnor-

mal in aspect 1 (i.e., wrt flying), then the conclusion that X can fly is drawn. This

program has an answer set

{bird(tweety), fly(tweety)},

which corresponds with our intuition that Tweety is a bird and can fly. Note that the

conclusion that Tweety can fly is assumed by the default assumption that Tweety is

a normal bird wrt flying because we cannot derive the conclusion that Tweety is ab-

normal wrt flying. However, if new information showing that Tweety is an abnormal

bird wrt flying is learned, then fly(tweety) will be defeated. Thus, the conclusion

fly(tweety) is merely a temporary belief.

Now, suppose we are told that Tweety is also an ostrich and ostriches are birds

and normally do not fly. Such new commonsense knowledge can be expressed by the

clauses:

79

80

ostrich(tweety)

bird(X) <— ostrich(X),

-<fly(X) <— ostrich{X) A not a&2(^0,

a6i(X) <— ostrich(X),

where the last clause is an inheritance cancellation rule. The above augmented ex-

tended logic program has an answer set

{bird(tweety), ostrich(tweety), ab\{tweety), -> fly (tweety)},

which also agrees with our intuition that Tweety is an ostrich and cannot fly. Note

that since Tweety is now an abnormal bird wrt flying, the previous conclusion fly(tweety)

is retracted. In addition, the new conclusion that Tweety cannot fly is assumed by the

default assumption that Tweety is a normal ostrich wrt non-flying. From the above

discussion, it is easy to see that bird(tweety) and ostrich(tweety) are strictly true

because they are given facts, whereas ->fly(tweety) is assumed by default because

it is derived from the assumption that Tweety is a normal ostrich wrt non-flying.

It is noted that the answer set semantics [34] does not differentiate such a kind of

difference.

In commonsense reasoning, it is important to identify which conclusions are

assumed by default and which conclusions are strictly true, for only the conclusions

assumed by default can be retracted if new information which conflicts with any

default assumption made is learned. However, the current major formalizations of

nonmonotonic reasoning surveyed in Chapter 2 are not able to distinguish between

such two kinds of conclusions. This is due to the use of first-order logic by all of them

as well as the use of the definition of minimal models in circumscription [71] and

the ECWA [37] and the definition of fixed points in default logic [106], autoepistemic

logic [84], and nonmonotonic logic [73] (for details, refer to Section 5.4). Even the

answer set semantics defined for extended logic programs [34] which we apply to

81

formalize commonsense knowledge also cannot distinguish between them. This is

because in such a semantics, the answer to a ground query is yes, no, or unknown wrt

an answer set. In the following, we investigate how our formalization of commonsense

knowledge can be used to distinguish such a difference merely by the syntax of the

extended logic programs. Then, we briefly explore how similar approaches as used

in extended logic programs to identify defeasible conclusions can also be used in the

major formalizations of nonmonotonic reasoning to achieve the same purpose.

5.1. Identifying Defeasible Conclusions

Let II be an extended logic program. Let Lit be the set of all ground literals

in the language of II. Let II+ be the extended logic program obtained from II by

deleting each clause containing the negation-as-failure not in its body. Obviously,

n+ does not contain not, so its answer set, a(II+), is defined. Recall that a(II+) is

defined to be the smallest subset S of Lit such that for any ground clause instance

LQ <— L\ A • • • A LM in 11+, if each LI is in S (for i = 1, . . . , TO), then L0 is also in

S. If S contains a pair of complementary literals, then S = Lit and II+ is called

contradictory. It is interesting to see that a(II+) is monotonic in the sense that the

cardinality of a(II+) will not decrease if II is augmented.

Theorem 5.1: a(II+) is monotonic.

Proof: There are two cases to consider.

(i) If n+ is contradictory, then a(II+) will not be changed by adding any

clauses into II because a(II+) = Lit.

(ii) If n+ is not contradictory, there are still two subcases to consider, (a)

Suppose the added clause contains not in its body. Clearly, II+ will not include

such a clause, and hence, a(II+) is not changed, (b) Suppose the added clause C is

82

Lo <— L\ A • • • A Lm, which does not contain not in the body. Obviously, C will also be

added into II+. Let S be the answer set of II+ before C is added. By definition, for

any ground instance of C by 6 (a substitution), if each Lid is in S (for i = 1,..., m),

then LQO is added to S. Since no literal is deleted from S and LQO is added, the

cardinality of a(II+) increases. •

A literal L in Lit is said to be strictly true if L is in a(II+), for a(II+) is

monotonic. Thus, any literal in a(II+) will not be defeated by new information. The

complement of X, denoted by L, is A if L = ~>A or is ->A if L = A, where A is an

atom. Similarly, a literal L in Lit is said to be strictly false if L is in a(II+). In other

words, a literal is strictly fallse if its complement is strictly true. Obviously, if II+ is

not contradictory, a literal cannot be both strictly true and strictly false.

Let L <— Ai A • • • A Am A not B\ A • • • A not Bn (for TO, n > 0 and m + n > 1) be

a ground instance of a clause in II. Then, L is called true by default if

(i) each A,- is either strictly true or true by default,

(ii) none of Bj is strictly true, and

(iii) at least one Ai is true by default if n = 0.

Also, the expression not Bj is defined to be true by default if Bj is not strictly true.

Clearly, a literal which is true by default must be derived by at least one expression

not Bj where Bj is not strictly true. Therefore, such a literal is a possible defeasible

conclusion because once Bj is proved to be strictly true by new information, it will

be retracted; i.e., it will no longer be true by default derived by not Bj. Similarly, a

literal is called false by default if its complement is true by default. A literal in Lit

is called to have a strict truth value if it is strictly true or false and is called to have

a default truth value if it is true or false by default. Now, a literal in Lit is called

unsupported if it has no strict or default truth value. Note that a literal in Lit can

have both strict and default truth values.

83

Example 5.1: Consider III = {->P *—, P *— -<Q}. Clearly, IIj1" = III because

there is no occurrence of not in III. Since a(IIi) = ~>P is strictly true, P is

strictly false, and both Q and ->Q are unsupported. •

Example 5.2: Consider II2 = {->P Q <— ~>P}. Similarly, I l j = II2. Since

a(Il2) = {->P, Q}, both ->P and Q are strictly true, or equivalently, both P and ~>Q

are strictly false. Note that III and II2 represent exactly the same theory in first-order

logic; however, they express different programs in extended logic programs because

of the unidirectional if, <•—. •

Example 5.3: Consider II3 = {P *— not Q}. Since lis = = 0

(the empty set), not Q is true by default, and P is also, whereas Q and ~>Q are

unsupported. •

Example 5.4: Consider II4 = {Q <— not P, P <— not Q}. Similarly, Ilj" =

or(llj) = 0. Thus, P, Q, not P, and not Q are all true by default, whereas ->P and

->Q are false by default. •

The following two examples illustrate that some extended logic programs have

literals which are both true by default and false by default. It is coincident that these

two extended logic programs have no answer sets.

Example 5.5: Consider II5 = {P +- not Q, ->P <- not R}. Clearly, ILj" =

0. Thus, both not Q and not R are true by default, and P and -<P are also. By

definition, P and ~>P are also false by default. •

Example 5.6: Consider n 6 = {P *- not ->P, Q <- P, ->Q <- P}. We have

1̂ 6 = {Q P> "'Q P} and <*(Il6) = 0. Hence, not -<P is true by default, and P,

Q, and ->Q are also. By definition, ->P, Q, and ->Q are false by default. •

Because II+ contains no non-standard logic connective (i.e., the negation-as-

failure not), let En be the corresponding first-order theory of II+ with the unidi-

rectional if, <—, replaced by the bidirectional material implication, —•. Let thm(T)

84

denote the set of theorems derived from a first-order theory T. Then, the answer set

of n+ is a subset of the set of theorems derived from its corresponding first-order
I

theory En-

Theorem 5.2: a(II+) C thm(En).

Proof: Since first-order logic is monotonic, and II+ is a subset of En in the

sense that En is allowed to use the contrapositive, whereas II+ is not, the theorem is

proved. •

Let us define the following notations:

Ta = {L\L is strictly true},

Fa = {L\L is strictly false},

Td = {L\L is true by default},

Fd = {L\L is false by default},

U = {L\L is unsupported}.

Clearly, Ta = a(II+). By definition, it is easy to see that

(i) Lit = Ts\JFtUTdUFdUU,

(ii) U = Lit- (T, U F . U T j U F d) , and

(iii) the expression not L is true by default if L € Lit — T„.

Note that if a literal is unsupported, then its complement is also unsupported. The

following theorem shows that if S is an answer set of II, then a(II+) must be a subset

of 5.

Theorem 5.3: If S is an answer set of II, then a(II+) C S.

Proof: Since S is answer set of II, S = c*(IIs). By definition, II5 is obtained

from II by deleting each clause containing not L in its body with L G S and by

deleting not L in the remaining clauses in II. Clearly, II+ must be contained in II5,

for it does not contain any not. Because a(IIs) is monotonic (by Theorem 5.1) and
n+ c n5, a(n+) c a(n5) = s. •

85

From the above theorem, it is interesting to see one of the properties of con-

tradictory extended logic programs. If II is contradictory, then II+ is also; and vice

versa. Thus, whether or not an extended logic program is contradictory can easily be

identified by checking II+ only.

Theorem 5.4: II+ is contradictory if and only if Et is also.

Proof: (i) if part (•$=): Since II is contradictory, it has an answer set S = Lit.

Because II5 is obtained from II by deleting each clause containing not in its body, we

have IIs = 11+ By definition, S = a(IIs) = a(II+), which means II+ is contradictory.

(ii) only-if part (=£•): Similarly, since II+ is contradictory, it has an answer set

S = Lit. Suppose II is not contradictory. There ajre two cases to consider, (a) II has

answer sets. In this case, each answer set of II must not be Lit. Let S' be an answer

set of II. By Theorem 5.3, a(II+) = Lit is a subset of a(II5'). Clearly, a(n5') must

also be Lit, which contradicts the assumption, (b) II has no answer set. Obviously,

this case does not hold because in case (a), Lit is indeed an answer set of II. •

Given an extended logic program II, it has been shown that a(II+) = T„ is

monotonic. In the following, we show that Td and U are nonmonotonic in the sense

that the cardinalities of Td and U may decrease if II is augmented. Since T„ is

monotonic and is also contained in any answer set of II, the nonmonotonic behavior

of commonsense reasoning formalized by using extended logic programs is indeed

owing to the nonmonotonicity of Td.

Theorem 5.5: Td and U are nonmonotonic.

Proof: (by contradiction)

(i) Assume Td is monotonic. Let II be {P *- not Q). By definition, Td = {P}.

Suppose Q is added to II. Then, II becomes {P <- not Q, Q «-}, and Td becomes 0.

Obviously, the cardinality of Td decreases, which contradicts the assumption.

(ii) Assume U is monotonic. Let II be the same as in (i). By definition, U

86

= {Qi ~1Q}- Suppose ->Q is added to II. Then, II becomes {P «— not Q, -*Q *—},

and U becomes 0. Obviously, the cardinality of U decreases, which contradicts the

assumption. •

5.2. Answer Set Semantics with Defeasible Conclusions

In the original answer set semantics, literals in an answer set are all assumed to

have equal weight; i.e., they are all regarded as true in an extended logic program. As

noted earlier, in commonsense reasoning, some conclusions are strictly true, whereas

others are assumed by default. In the following, we enhance the answer set semantics

so that it can differentiate such two kinds of conclusions.

Definition 5.1: Let II be an extended logic program, and let S be an answer

set of II. A literal L in S is called strictly true and L is called strictly false if L is in

a(II+). On the other hand, a literal L in S is called true by default wrt S and Tj is

called false by default wrt S if L is not in a(II+). •

Recall that Td is the set of possible defeasible conclusions. The following theorem

states that any literal which is true by default wrt an answer set must be in Td- Thus,

a literal which is true by default wrt an answer set is called a defeasible conclusion.

Theorem 5.6: Let S be an answer set of II. If L is true by default wrt S,

then L is also in Tj-

Proof: Let L *— Ai A • • • A Am A not Bi A • • • A not Bn be a ground instance of a

clause in II which derives L. By definition, {Au..., Am} must be a subset of S, and

each Bj must not be in S (for all j = 1 , . . . , n) so that L is in S. Since L is true by

default wrt S, it is not in T„. This means that in the above clause, either n > 1 or

at least one Ai is not in T, if n = 0. Obviously, these conditions satisfy the definition

that L is true by default. •

87

As mentioned earlier, U is defined to the set Lit — (Ts U Fa U Tj U F&). The

following theorem shows that any literal in U must not occur in any answer set of II.

Theorem 5.7: Let £ be a literal in U. Then, L does not appear in any answer

set of II.

Proof: Let Dt and Df be the sets of literals which are true by default and false

by default wrt any answer set of II, respectively. Clearly, Dt C T& and Df C Fj.

Thus, U = Lit- (Ta U Fs U Tg U Fd) Q Lit — {Ta U Ft U Dt U Df), which is the set of

literals that must not appear in any answer set of II. •

Once the literals in an answer set can be identified to be strictly true or true

by default, it is easy to differentiate the answer for a ground query to be yes, no, yes

by default, no by default, or unknown. In the following, we define a query-answering

system for the enhanced answer set semantics to obtain such answers for ground

queries.

Definition 5.2: Let Q be a ground query, and let S be an answer set of II.

Then, the answer for Q wrt S is

(i) yes if Q is strictly true,

(ii) no if Q is strictly false,

(iii) yes by default if Q is true by default wrt S,

(iv) no by default if Q is false by default wrt S, or

(v) unknown if neither Q nor ~>Q is in S. •

Since an extended logic program may have multiple answer sets if a ground

query is a literal which is strictly true (respectively, strictly false), then the system

will reply only one answer yes (respectively, no) to such a query because it is strictly

true (respectively, strictly false) in all answer sets. On the other hand, if a ground

query is a literal which is not strictly true or strictly false, then the system will offer

multiple answers to such a query according to the above definition, each for an answer

88

set. There is a special case where a ground query is a literal which is unsupported.

Because both the unsupported literal and its complement do not appear in any answer

set of II, the system will reply only one answer unsupported to such a query to mean

that it is unknown for every answer set.

Example 5.7: Consider II7 = {P «—, Q <— not R}. We have Tt = {P} and

Td = {<?}• II7 has an answer set {P, Q}. Since P and Q are, respectively, in T„ and

Td, P and Q are, respectively, strictly true and true by default. Thus, the answers

for queries P, ~>Q, and R are yes, no by default, and unknown, respectively. •

Example 5.8: Consider II4 = {Q <— not P, P <— not Q} in Example 5.4. We

have Ts = 0 and Td = {P, Q}. II4 has two answer sets: {P} and {Q}- Since both P

and Q are in Td, they are both true by default. The answers for the query P will be

yes by default and unknown, whereas the answers for the query ->Q will be unknown

and no by default. Note that since II4 has two answer sets, each response from the

system corresponds to an answer set. •

5.3. Applying Defeasible Conclusions to Commonsense Reasoning

In this section, we demonstrate how the enhanced answer set semantics can be

used to identify defeasible conclusions in the standard flying bird example illustrated

in the beginning of this chapter. Consider the first part of commonsense knowledge

that birds normally fly and Tweety is a bird. We repeat the corresponding extended

logic program in the following and called it Ilg.

1. fly(X) <— bird(X) A not abi(X),

2. bird(tweety)

Clearly, Ilg = {bird(tweety) •-}, and a(IIjj") = {bird(tweety)}. Since abi(tweety) is

not in a(Il8), not abi(tweety) is true by default and fly {tweety) is also. Thus, Td =

89

{fly(tweety)}. Program II8 has an answer set

{bird(tweety), fly(tweety)}.

Since bird(tweety) is in <*(Il£), it is strictly true. On the other hand, since fly(tweety)

is in Td, it is true by default. By the enhanced answer set semantics, the conclusion

that Tweety is a bird, bird(tweety), is strictly true, while the conclusion that Tweety

can fly, fly(tweety), is true by default. Thus, fly(tweety) is a defeasible conclusion.

Now, we consider the second part of commonsense knowledge that Tweety is

also an ostrich and ostriches are birds and normally do not fly. Here, we also repeat

the corresponding clauses in the following:

3. ostrich(tweety)«—,

4. bird(X) <— ostrich(X),

5. - > f l y (X) <— ostrich(X) A not ab2(X),

6. abi(X) *— ostrich(X).

We call Hg augmented with the above clauses to be Ilg. By definition, we have

c^IIg) == {bird(tweety), ostrich(tweety), abi(tweety)}. Since ab2(tweety) is not in

<*(II£), not ab2(tweety) is true by default, and ->fly(tweety) is also. Thus, Td =

{-> fly (tweety)}. Program II9 has an answer set

{bird(tweety), ostrich(tweety), abi(tweety), ->fly (tweety)}.

Since bird(tweety), ostrich(tweety), and abi(tweety) are all in a(II^), they are all

strictly true. Note that because abi(tweety) is strictly true in II9, the conclusion

fly(tweety) in Ilg is retracted. Since - » f l y (tweety) is in Td, it is true by default. By

the enhanced answer set semantics, the conclusions that Tweety is an ostrich and a

bird and is abnormal wrt flying are strictly true, while the conclusion that Tweety

cannot fly is true by default. Hence, ->fly(tweety) is a defeasible conclusion.

90

5.4. Defeasible Conclusions in Other Formalizations

Similar to the answer set semantics, the major formalizations of nonmonotonic

reasoning also do not identify defeasible conclusions. In this section, we briefly discuss

how similar approaches as used in extended logic programs to identify defeasible con-

clusions can also be used in such formalizations. Because some of these formalizations

share the same properties, we divide them into two groups: One is the formalizations

based on fixed point construction, and the other is those based on minimal model

definition.

5.4.1. Fixed Point Construction Based Formalizations

The definitions of extension in default logic, of stable expansion in autoepis-

temic logic, and of fixed point in nonmonotonic logic are all based on fixed point

construction. For convenience, the term "extension" is used to mean one of the above

definitions according to the context. All these three formalizations of nonmonotonic

reasoning have the same characteristic that they all use a modal operator, either M or

L, in first-order logic. Defeasible conclusions in these formalizations can be identified

in the following:

Let T be a theory of one of the above three logics. Let T' be a theory obtained

from T by deleting each formula containing modal operators. Obviously, T' is a first-

order theory. Recall that we use thm(A) to denote the set of theorems derived from

a first-order theory A. By definition, it is easy to prove that if E is an extension of

T, then thm{T') must be a subset of E. Similar to the definition defined in extended

logic programs, literals in E can be differentiated as follows: A literal L in E is called

strictly true and L is called strictly false if L is in thm(T'). On the other hand, a

literal L in E is called true by default wrt E and L is called false by default wrt E

91

if L is not in thm(T'). Clearly, a conclusion which is true by default wrt any extension

is a defeasible conclusion.

Example 5.9: We illustrate the above method of identifying defeasible con-

clusions in default logic. Consider the first part of the flying bird example. It can be

formalized by the default theory 2\ = (Di, Wj):

„ iUrd(X):Mfly(X)\
Di = [i (x j }•
Wi = {bird(tweety)},

The default theory Ti has an extension E\ = {bird(tweety), fly(tweety)}. Note that

this extension cannot differentiate which conclusions are defeasible. By our method,

T{ = Wi, and thm(T{) — {bird(tweety)}. Therefore, bird(tweety) is strictly true

because it is in thm(Tl), while fly(tweety) is a defeasible conclusion because it is not

in thm(T{). •

5.4.2. Minimal Model Definition Based Formalizations

In terms of model-theoretical definition, it is shown that the ECWA is equiva-

lent to the first-order version of circumscription. Both of these two formalizations of

nonmonotonic reasoning use first-order theories to formalize commonsense knowledge

together with two sets of predicate symbols: P and Z. The set P contains predicate

symbols to be minimized, while the set Z contains predicate symbols which are al-

lowed to vary for achieving the foregoing minimization. Let T be a first-order theory

which formalizes a commonsense knowledge. Unlike the previous approach, we cannot

extract a theory from T by identifying modal operators. On the contrary, since T is

a first-order theory, it is easy to obtain the set, thm(T), of theorems derived from T.

It can be shown that for a (P, Z)-minimal model M of T, thm(T) must be a subset

of thm(T U M). Therefore, defeasible conclusions can be identified in the first-order

version of circumscription and the ECWA by the following definition. A literal L in

92

thm(T U M) is called strictly true and L is called strictly false if L is in thm(T). On

the other hand, a literal L in thm(T U M) is called true by default wrt M and L is

called false by default wrt M if L is not in thm{T). Obviously, a conclusion that is

true by default wrt any (P, ^-minimal model is a defeasible conclusion.

Example 5.10: For the above flying bird example, it can be formalized by the

circumscriptive theory T2 with P = {abi} and Z = {fly} as follows:

1. bird(tweety),

2. bird{X) A -afci(X) - • fly(X).

The theory T2 has a (P, Z)-minimal model M = thm{T2 U M) = {bird(tweety),

fly(tweety)}. Note that the model M also cannot identify which conclusions are

defeasible. In our approach, ^m(T 2) = {bird(tweety)}. Clearly, bird{tweety) is

strictly true because it is in thm(T2), while fly(tweety) is a defeasible conclusion

because it is not in thm(T2). •

CHAPTER 6

CONFLICT RESOLUTION

Recently, the famous Yale shooting problem (YSP) presented by Hanks and Mc-

Dermott [45] in temporal reasoning has drawn a lot of attention in the AI research

community with respective to discrepancies between intuition and formalization in

commonsense reasoning. This is because they formalized such a problem by using

three major formalizations of nonmonotonic reasoning (i.e., default logic, circumscrip-

tion, and nonmonotonic logic) and observed that all of these formalizations generate

two conclusions; only one of them corresponds with our intuition, and the unintuitive

one is known as the anomalous extension. Subsequently, Morris [86] also presented

a simple example structurally similar to the YSP from taxonomic reasoning, which

also produces an anomalous extension. This example demonstrates that the anoma-

lous extension problem not only occurs in temporal reasoning but also appears in

non-temporal reasoning, such as taxonomic reasoning.

In response to the anomalous extension problem, several solutions for the YSP

have been proposed to exclude the unintended conclusion. For example, Morris [86]

first reformulated the YSP in terms of a truth maintenance system (TMS) [21] to

exclude the unwanted conclusion. Furthermore, by mirroring the TMS formulation,

he used non-normal defaults in default logic to simulate nonmonotonic justifications

in TMSs to avoid the anomalous extension. Similar to the above approach, Gel-

fond [32] also proposed an elegant solution based on autoepistemic logic (AEL) to

exclude the undesired expansion. By employing the unidirectional nature of TMSs

and the supportedness concept in logic programming, You and Li [138] presented the

93

94

supported circumscription to obtain the same result. Note that in Chapter 3, our

formalization of commonsense knowledge by using extended logic programs for the

YSP also generates the intended conclusion only. However, of these solutions, only

the TMS representation can appropriately revise its beliefs in response to conflicting

information through dependency-directed backtracking. All other solutions are going

to collapse when conflicting information is learned.

It seems that dependency-directed backtracking is a powerful mechanism for

conflict resolution. Indeed, in the literature, there are several proposals which borrow

the similar idea of this mechanism to resolve conflicts. For example, Morris' stable

closure [87] is essentially by adding a minimal set of first-order axioms to an au-

toepistemic theory to simulate dependency-directed backtracking to resolve conflicts.

However, this approach has some peculiarities wrt the behavior of a TMS. Moreover,

one major problem with this approach is that how to find a minimal set of axioms for

an autoepistemic theory is not clear. Giordano and Martelli's generalized stable model

[42] was proposed to capture the idea of dependency-directed backtracking in logic

programming by using contraposition to resolve conflicts. However, the anomalous

extension of the YSP reappears in this approach. Although they claimed that it is

not a problem with the generalized stable model semantics because this semantics

simulates the incremental view of a TMS, what we want is the beliefs obtained from

the view of a static TMS. Along the line of Giordano and Martelli, in this chapter, we

propose the generalized answer set semantics for extended logic programs by using

contraposition and by keeping the unidirectional property of clauses. This semantics

really mimics the process of dependency-directed backtracking to resolve conflicts

from the view of a static TMS. Finally, a similar approach is also applied to default

logic, AEL, and circumscription to resolve conflicts.

95

6.1. Background

For simplicity of discussion, throughout this chapter, we will consider the sim-

plified example adopted from [86] which also contains the essential structure of the

YSP, but with less extraneous detail. The simplified example contains the following

set of first-order axioms:

{—>abB —» abA, —<abA —> —>fly, —>abB —> fly},

and with the normal defaults {: M~<abA/~>abA,: M —>abB/~>abB} if it is formalized by

default logic or with P = {abA, abB} and Z = {fly} if it is formalized by circumscrip-

tion. In which abA, abB, and fly stand for the propositions "Tweety is an abnormal

animal," "Tweety is an abnormal bird," and "Tweety can fly," respectively. As we

can see, both formalizations generate two conclusions; one concludes that Tweety is

an abnormal animal and can fly (which agrees with our intuition), whereas the other

one concludes that Tweety is an abnormal bird and cannot fly (which is unintuitive

and thus is an anomalous extension).

In order to cope with this anomalous extension problem, Morris [86] has shown

that if the YSP is formulated in terms of a TMS, then the unwanted conclusion is

excluded. For the simplified example, its TMS representation can be the following

set of justifications (refer to Section 6.2 for a review of TMSs):

{out(abB) —» abA, out(abA) —» no-fly, out(abB) —> fly}.

This generates a unique well-founded labeling IN = {abA, fly} and OUT = {abB,

no-fly}, which matches our intuition. If we subsequently learn that no.fly is true,

then a contradiction occurs which causes dependency-directed backtracking. The con-

traction is resolved by introducing a new justification, no.fly -»• abB, that makes abB

coming in, which results in abA and fly going out. Thus, the beliefs are appropriately

revised in response to new conflicting information.

96

By mapping nonmonotonic justifications to non-normal defaults, Morris [86] also

showed that the default logic representation of the YSP by using non-normal defaults

can avoid the unintended extension. For the simplified example, it can be represented

by the following set of non-normal defaults:

M~>abB : M~>abA : M~>abB\ 1 ah A ' - . / fy ' fly J '

which produces a single extension. However, if ~>fly is added as a new axiom, there

is no extension. This means that the non-normal default representation cannot deal

with conflicting information.

Gelfond [32] also presented an elegant solution, similar to the non-normal default

representation, using AEL to produce a single stable expansion for the YSP. The

simplified example can be formalized by this approach as follows:

{->LabB —• abA, -^LabA —> ~<fly, ->LabB —» fly}.

This axiom set has a unique stable expansion that contains abA and fly. However,

if ~>fly is added to the axiom set, there is no stable expansion.

You and Li [138] proposed the supported circumscription by employing the unidi-

rectional nature of TMSs and supportedness concept in logic programming to exclude

the unintended conclusion of the YSP. For the simplified example, this approach only

obtains a single supported model {abA, fly}. However, if ~>fly is learned to be true

later, the only (P, Z)-minimal model {abB} is not supported.

In Chapter 3, we have shown that the undesired conclusion of the YSP is also

excluded by our formalization of commonsense knowledge by using extended logic

programs. The simplified example can be expressed by our representation as follows:

{abA *— not abB, ->fly *— not abA, fly <— not abB}.

This program also produces a single answer set. However, if ~<fly is added to the

program, there is no answer set.

97

As we can see from the above solutions to coping with the anomalous extension

problem for the YSP, only the TMS representation can revise its beliefs appropriately

in response to conflicting information, while all other solutions are not able to deal

with this situation. This is because only TMSs have the conflict resolution mechanism

dependency-directed backtracking, which is briefly reviewed in the next section.

6.2. Truth Maintenance Systems

In the literature, two classes of truth maintenance systems (TMSs) are widely

discussed: Justification-based TMSs [21] support nonmonotonicity and maintain a

single set of beliefs at a time which can be revised when new conflicting information

is entered. Assumption-based TMSs [20] maintain multiple sets of beliefs simultane-

ously, but support nonmonotonicity only through awkward extensions to the basic

system. In the following, we only review justification-based TMSs on which Morris'

reformulation is based.

A justification given to a TMS is an implication of the form

ai A • • • A an A out(bi) A • • • A out(bm) —> c,

where each a,, each bj, and c are propositions and n, m > 0. The intended meaning of

such a justification is "belief in au..., an and disbelief in &i,..., bm justify the belief

in c." Each a, is called an in-justifier of the justification, while each bj is an out-

justifier. A justification is called nonmonotonic if it contains at least one ou^-justifier

in its antecedent. A justification with the empty antecedent (i.e., n = m = 0) is

called a premise, which represents a proposition always true.

Given a set J of justifications, the purpose of a TMS is to assign each proposition

in J a label in (believed) or out (disbelieved) so that the labeling is well-founded.

Before defining well-founded labelings, some required concepts are introduced first.

98

A justification is called to be satisfied by a labeling if its conclusion is labeled in, one

of its in-justifiers is labeled out, or one of its outf-justifiers is labeled in. A labeling is

called valid if each justification in J is satisfied. A proposition is called well-justified

if it is the conclusion of some justification whose oui-justifiers are all labeled out,

and whose in-justifiers are all themselves well-justified. Note that a well-justified

proposition is justified by a non-circular argument. A labeling is called well-founded

if it is valid and each proposition labeled in is well-justified. For convenience, we use

IN and OUT to denote the sets of propositions labeled in and out in a well-founded

labeling, respectively.

A well-justified proposition supported by at least one out-justifier is called an

assumption. Obviously, an assumption will be believed until one of its ouf-justifiers

comes in. A labeling is called inconsistent if it contains a pair of complementary

propositions labeled in. In our notation, the complement of a proposition is prefixed

by "no_." For example, fly and no.fly are a pair of complementary propositions.

When a well-founded labeling obtained from a TMS is inconsistent, a contradiction

is found and the dependency-directed backtracking mechanism is invoked to resolve

the contradiction. However, not all contradictions can be resolved by the mechanism.

Only the contradictions derived by some assumptions may be resolved. The major

idea for resolving conflicts by dependency-directed backtracking is to get rid of the

assumptions that lead to a contradiction. This can be accomplished as follows: The

mechanism first traces back from the contradiction to find the supporting assump-

tions which cause inconsistency, then picks a relevant assumption, and puts it out

by making one of its owf-justifiers in. To achieve the last step, a new justification is

introduced to the original set of justifications so that the labeling is revised. As we

can see, dependency-directed backtracking not only properly revises its set of beliefs

99

in response to conflicting information for a given set of justifications but also modifies

(augments) the set of justifications itself.

Example 6.1: Consider the TMS representation of the simplified example

repeated in the following:

1. out(abB) —> abA,

2. out(abA) —• no-fly,

3. out(abB) —• fly.

Since abB is not the conclusion of any justification, there is no way for a well-founded

labeling to label it in. Because abB has to be labeled out, abA and fly will be labeled

in by justifications 1 and 3, respectively. This in turn causes no.fly to be labeled

out by justification 2. Therefore, the labeling IN = {abA, fly} and OUT = {abB,

no-fly} is the only well-founded and consistent labeling. •

Example 6.2: Suppose no.fly is learned to be true later. Then, the following

premise is added to the above set of justifications:

4. no-fly.

The only well-founded labeling becomes IN = {abA, fly, no.fly} and OUT = {abB},

which is inconsistent and thus causes dependency-directed backtracking. Since the

contradiction is supported by the premise no-fly (justification 4) and the assumption

fly (justification 3), fly is the only assumption which needs to be moved out by

making the only ouf-justifier abB of it coming in. In order to do so, the TMS will

add the following new backward justification to the above set of justifications:

5. no-fly -* abB.

This allows to eliminate the contradiction and to obtain the correct labeling IN =

{no.fly, abB} and OUT = {abA, fly}. Note that the revised labeling agrees with

our intuition that Tweety is an abnormal bird and cannot fly. Note also that the set

of justifications is augmented by justification 5. •

100

6.3. Related Work

The conflict resolution mechanism dependency-directed backtracking employed

in TMSs is essentially by putting in one of the out-justifiers supporting the beliefs

in contradictions which are found in an inconsistent labeling. The similar concept

is also adapted by other solutions to resolve conflicts. For example, by borrowing

the idea of putting in some proposition, Morris [87] proposed the stable closure for

A EL by adding a minimal set of first-order axioms to response the collapse of stable

expansions when conflicting information is obtained.

Let A be an autoepistemic theory. A stable closure of A is a solution E of fixed

point equation

E = cl(A U G U {L x\x € E} U {-iL x\x £ E}),

where cl is first-order logical closure, and G is a minimal set (possibly empty) of first-

order axioms. The stable closure E is said to be generated by G. The minimality

condition on G means that if G' C G and E is also a solution generated by G', then

G' = G. Note that each stable expansion of A is also a stable closure of A because

G = 0 in this case.

Consider the simplified example formalized by AEL in Section 6.1. It has a

unique stable expansion, which is also the only stable closure. Note that if ->fly is

added as a new axiom, there is no stable expansion; but there is a stable closure

containing ->LabA and ~>fly, which is generated by {abB}.

The revision of beliefs using stable closure for the simplified example appears

to agree well with the one obtained from dependency-directed backtracking. Due

to this similarity, Morris further drew a rough analogy between ->Lx in AEL and

out(x) in TMSs. However, the definition of stable closure has some peculiarities

wrt the behavior of TMSs as noted by Morris himself: (i) The axiom Lp V p has a

101

nontrivial stable closure {p}, while it has no stable expansion; however, the corre-

sponding TMS representation, out(p) —> p, has no well-founded labeling, (ii) The

axiom set {Lp, L~>p} has a unique stable closure, the set of all sentences; however,

the corresponding TMS representation, out(p) —• false and out{nojp) —* false, has

the only inconsistent well-founded labeling IN = {p, no_p}, whose contradiction can-

not be resolved by dependency-directed backtracking. The most important problem

with stable closure is that how to find a minimal set G of first-order axioms for an

autoepistemic theory is not clear. Owing to the above mentioned drawbacks, Morris

[87] concluded "the notion of stable closure appears to capture at least part of the

idea of dependency-directed backtracking."

Recently, Giordano and Martelli [42] presented the generalized stable model se-

mantics for TMSs which is able to capture the idea of dependency-directed back-

tracking to resolve conflicts. Their conflict resolution process is essentially based on

the contrapositive use of justifications to resolve inconsistencies. For instance, con-

sider Example 6.2. By justification 4, no.fly is labeled in because it is a premise.

Then, using the contrapositive of justification 3, no.fly —> abB, proposition abB has

to be labeled in. Note that the contrapositive of justification 3 is precisely the new

justification the TMS introduces on backtracking to obtain a revised labeling.

Let J be a set of justifications which are represented as propositional clauses of

the form

at A • • • A an A not A • • • A not bm —> c,

where the consequent c is omitted if the justification is a constraint. Let M be a

set of propositions occurring in J . Let J'M be the set of clauses obtained from J by

deleting from the antecedents of each clause in J all the expressions not hi such that

b, £ M. Now, each clause occurring in J'M

a% A • • • A an A not &i A • • • A not bh —• c

102

can be regarded as the disjunction of literals (propositions or negated propositions)

-•ai V • • • V --an V &i V • • • V bh V c.

Let JM be the set of clauses in J'M having one and only one literal true in M. Then,

M is a generalized stable model of J if M is a model of J and

M = {p\p is a proposition in J and JM |= p}.

Consider the set of justifications in Example 6.2. It has a unique generalized

stable model M = {no-fly, abB}, which is the same as IN labeling obtained from a

TMS. However, for the set of justifications in Example 6.1, there are two generalized

stable models Mi = {abA, fly} and M2 = {a&B, no^fly}, while the TMS computes

only a single labeling corresponding to Mi. Note that the anomalous extension M2

reappears in this semantics. The authors claimed that the generalized stable model

semantics is in accordance with the incremental view of a TMS because the order of

justifications given to the TMS will affect the output labeling. However, the unwanted

model Mi is obtained from the augmented set of justifications by a newly added

backward justification in the incremental view of a TMS, not from the original set

of justifications in the static view of a TMS. Clearly, what we want is the model

Mi obtained from a static view of the TMS, which is indeed the major point Morris

claimed to use TMS representation to resolve conflicts in commonsense reasoning. The

major problem with this discrepancy is due to the fact that in the generalized stable

model semantics, the unidirectional nature (an important property in commonsense

reasoning) of a justification is lost.

6.4. Generalized Answer Set Semantics

As noted in Section 6.1, the answer set semantics in extended logic programs

cannot deal with conflicting information. In this section, along the line of Giordano

103

and Martelli [42], we present the generalized answer set semantics, which is a gener-

alization of the answer set semantics, so that it can also resolve conflicts. The conflict

resolution process in our approach is essentially achieved by using the contrapositives

of the related clauses and keeping their unidirectional property so as to exclude the

anomalous extension of the YSP which reappears in the generalized stable model se-

mantics. The behavior of the generalized answer set semantics corresponds well with

the static view of a TMS, which is what we want in commonsense reasoning to resolve

conflicts.

Several proposals [31, 92, 104, 103] have been presented to provide TMSs with

declarative and logic semantics based on stable models, default logic, and AEL. How-

ever, all these proposals cannot handle conflicting information because of the following

reason. In a TMS, a well-founded labeling can be inconsistent and thus dependency-

directed backtracking is called to resolve this inconsistency. Note that an inconsistent

well-founded labeling only contains a pair of complementary propositions, but not all.

On the contrary, if an answer set in extended logic programs, an extension in default

logic, or a stable expansion in AEL is inconsistent, then it will contain all the sentences

by conventional first-order logic. This is one of the difficulties in the major formal-

izations of nonmonotonic reasoning as well as the answer set semantics in extended

logic programs to handle conflicting information. In order to simulate inconsistent

well-founded labelings in a TMS, a relevance or contradiction-tolerant logic (such as

in [66]) can be used to allow contradictions in a model for logic programs or a clo-

sure for default logic or AEL. Morris [87] pointed out that an inconsistent model in

a relevance logic only reveals that some of one's beliefs may be in error, but such

a logic does not have the ability to resolve conflicts. In our approach, we will use

a relevance logic to allow contradictions in an answer set and use the contrapositives of

104

the related clauses to simulate dependency-directed backtracking to resolve conflicts

if the answer set is inconsistent.

Firstly, we modify the definition of an answer set so that contradictions are

allowed in an answer set underlying a relevance logic, and this modified definition is

called a relevance answer set. The definition of a relevance answer set is exactly the

same as the definition of an answer set except that the second condition for not-free

extended logic programs is deleted. That is, if II is a noi-free extended logic program,

the relevance answer set of II is the smallest subset R of Lit such that for any clause

LQ <— LX,..., LM in II, if each Z, is in R (for i = 1 , . . . , ra), then L0 is also in R. If

a relevance answer set R contains a pair of complementary literals, it is not replaced

by Lit as in the definition of an answer set.

Let II be an extended logic program. The relationship between answer sets and

relevance answer sets is shown in the following corollary.

Corollary 6.1: Let S be a consistent subset of Lit. Then, S is a relevance

answer set of II if and only if it is an answer set of II.

Proof: Because S is consistent, it does not contain any pair of complementary

literals. Hence, the second condition in the definition of an answer set for not-free

extended logic programs is not applied to S, and thus the corollary is proved. •

In the relaxed definition, extended logic programs which do not have answer sets

can have relevance answer sets. For instance, in Section 6.1, the simplified example

formulated in our representation by using extended logic programs does not have

answer sets, but it has a unique relevance answer set R = {abA, fly, ->fly}, which is

precisely the inconsistent labeling obtained from a TMS.

Once a relevance answer set R of II is obtained, we check whether it is incon-

sistent. If it is, then the conflict resolution process is performed as follows: Let C be

the set of all the complementary literals in R. Recall that in Chapter 5, Ts is used to

105

denote the set of strictly true literals derived from II. If C contains a pair of comple-

mentary literals both in Ta, then the contradiction cannot be resolved as in TMSs.

Thus, we only consider the case in which each pair of complementary literals are not

both strictly true. Recall that dependency-directed backtracking used in a TMS to

resolve conflicts is essentially "trace back from the contradiction to find the support-

ing assumptions which cause inconsistency, and then pick a relevant assumption and

put it out by making one of its outf-justifiers in.n As noted in [42, 92], there exists

an analogy between out(x) in TMSs and not x in extended logic programs. Thus,

an assumption in TMSs corresponds to a defeasible (i.e., true by default) literal in a

relevance answer set, and an owt-justifier in TMSs corresponds to a literal proceeded

by not. For convenience, we will use the terms "assumption" and "ouf-justifier" in

the following discussions. Now, we can simulate dependency-directed backtracking

by the following algorithm to compute the set 11# of clauses:

Algorithm 6.1: Computing II#

Input: II, R, T„, and C.

Output: II#.

1 11# = II and D = C — Tt;

2 while D ^ 0 do

3 for each clause c: L *— Ai, . . . , Am, not Bi,..., not Bn in II such that

4 L € D, each A,• € R, and each Bj £ R do begin

5 for each Ai $Ta (i = 1, . . . , m) do

6 Ai *— Ai,A,_i, • • •, Am, not B\,..., not Bn, L

7 is added to II# and D = D U {A,};

8 for each Bj (j = 1, . . . , n) do

9 Bj <— Ai, . . . , Am, not Bi,..., not Bj.u not ...,notBn,L

10 is added to II#;

106

11 II = II — {c} and D = D — {i};

12 endJfor.

In the above algorithm, IIjj is initialized to II and D is initialized to the difference

of C and Ts at line 1. Note that D includes some defeasible literals in R which

cause inconsistencies. The related clauses which derive defeasible literals leading to

contradictions are chosen at lines 3-4. The supporting defeasible literals which cause

contradictions are found and added to D at lines 5-7, and the related contrapositives

for assumptions are added to IIr. The related contrapositives for oui-justifiers are

added to 11# at lines 8-10, which simulated the step "by making one of its oui-justifiers

in." II and D are reset at line 11 because clause c and literal L are already considered.

It is clear that the while loop of line 2 simulates the process of dependency-directed

backtracking. However, dependency-directed backtracking only chooses a relevant

assumption and puts it out, whereas the while loop in the above algorithm chooses

all relevant assumptions and adds a corresponding contrapositive for each of these

assumptions.

Theorem 6.1: Algorithm 6.1 will terminate eventually.

Proof: Note that D is a subset of the relevance answer set R and only contains

defeasible literals. At each iteration of the while loop, let L in D be selected. There

must exist clauses in II whose heads are L such that the required conditions at line 3

are satisfied. Here, only defeasible literals A\ in R are added to D, and then L is

deleted from D and the selected clauses are removed from n . Since R is finite and a

chosen defeasible literal in D is deleted after each iteration, D will eventually become

empty. •

As we can see from the above algorithm, n # includes related contrapositives of

the clauses which lead to contradictions. Now, we are ready to define the generalized

answer sets of n such that contradictions are removed and conflicts are resolved.

107

Definition 6.1: Let R be a relevance answer set of II. If R is consistent, then

it is a generalized answer set of II. Otherwise, if S is a consistent relevance answer

set of IIr, then S is a generalized answer set of II. •

Corollary 6.2: Each consistent answer set of II is a generalized answer set of

n.

Proof: Let S be a consistent answer set of II. By Corollary 6.1, S is also a

consistent relevance answer set of II and thus a generalized answer set of II. •

^ Since in Algorithm 6.1, all the assumptions which lead to contradictions are

chosen and made false by adding appropriate contrapositives to II#, each generalized

answer set of II corresponds to a revised consistent well-founded labeling obtained

from dependency-directed backtracking. As noted in [86, 119], dependency-directed

backtracking can be applied for explanation. It is obvious that the generalized answer

set semantics can generate all possible explanations for conflicting information, which

is illustrated by the following examples.

Example 6.3: Consider the simplified example formalized by our representa-

tion as an extended logic program II repeated in the following:

cl: abA <— not abB,

c2: - i f l y <— not abA,

c3: fly <— not abB,

c4: ->fly .

It has no answer set, but has a unique relevance answer set R = {abA, fly, -'fly}.

Because R contains a pair of complementary literals, fly and ~~*fly, it is inconsistent.

Hence, the conflict resolution process is performed as follows: IIr is initialized to II.

Since C = {fly, —>fly} and Ts = {"'fly}, D = C — Ts = {fly}. Because the head of

clause c3 is in D and abB is not in R, the following contrapositive of c3 is added into

n«:

108

c5: abB *— ~>fly.

Then, II is reset to II — {r3}, and D is reset to D — {fly} = 0. Since D becomes

empty, the process terminates and IIR becomes {cl, c2, c3, c4, c5}. Now, IIR has

a unique consistent relevance answer set S = {~"fly, abB}. By definition, S is a

generalized answer set of II. Note that S is precisely the revised labeling IN obtained

from a TMS. An intuitive interpretation for S can be "because Tweety cannot fly

(-'fly), it must be an abnormal bird wrt flying (abB)," for both ~>fly and abB are

strictly true in IIR. •

Example 6.4: Consider the following extended logic program II which is a

simplification of the well-known Nixon-diamond problem:

cl: P <— not abQ,

c2: ->P *— not abR,

where the propositions P, abQ, and abR stand for "Nixon is a pacifist," "Nixon is an

abnormal Quaker," and "Nixon is an abnormal republican," respectively. Similarly,

II has no answer set, but it has a single relevance answer set R = {P, ~>P}. Since

R is inconsistent, the conflict resolution process is performed so that the following

contrapositives of cl and c2 are added into II#:

c3: abQ *— ->P,

c4: abR «— P.

Thus, IIR becomes {cl, c2, c3, c4}, which has two relevance answer sets Si = {P, abR}

and S2 = {"'P, abQ}. Because both <Si and S2 are consistent, they are generalized

answer sets of II. Note that since T, = 0, P, -<P, abQ, and abR are all true by

default; i.e., they are all defeasible conclusions. An intuitive interpretation for S\

can be "Nixon may be an abnormal republican and thus a pacifist." Similarly, an

interpretation for S2 can be "Nixon may be an abnormal Quaker and thus a non-

pacifist." •

109

Note that the above two interpretations provide explanations to the conflicting

information originally obtained in the answer set semantics. Note also that the two

relevance answer sets are exactly the same as those obtained from credulous reasoning

in ambiguous inheritance hierarchies as discussed in Chapter 3. This seems to suggest

that the credulous reasoning in ambiguous inheritance hierarchies can be simulated

by the generalized answer set semantics.

Example 6.5: Consider the following diagnostic example taken from [14],

which is simplified and formulated by the extended logic program II as follows:

cl: appendicitis <— pain A not indigestion A not colitis,

c2: -iappendix «— sayjnoappendix A not unreliable,

c3: appendix <— appendicitis,

c4: sayjnoappendix,

c5: pain.

As before, it has no answer set, but has a unique relevance answer set R = {pain,

sayjnoappendix, appendicitis, appendix, -'appendix}. Following the conflict resolu-

tion process in our approach, the following four contrapositives are added into IIR:

c6: ->appendidtis <— ->appendix,

c7: indigestion *— pain A ->appendicitis A not colitis,

c8: colitis <— pain A not indigestion A ->appendicitis,

c9: unreliable <— sayjnoappendix A appendix.

By definition, II has three generalized answer sets:

Si = {sayjnoappendix, pain, ->appendicitis, ->appendix, indigestion},

S? — {sayjnoappendix, pain, -<appendicitis, ->appendix, colitis),

S3 = {sayjnoappendix, pain, appendicitis, appendix, unreliable}.

Note that Ts = {sayjnoappendix, pain} for IIR. Thus, an intuitive interpretation

for Si can be "a patient who has pain in the right side and says that he has no ap-

110

pendix may have indigestion, but not appendicitis and thus no appendix." Similar

interpretations can also be applied for S2 and S3. •

The above three examples illustrate how conflicting information can be resolved

by the generalized answer set semantics which generates explanations. However, not

all conflicts in extended logic programs can be resolved, even if they do not contain

any pair of complementary strictly true literals. The following example gives such an

unresolvable conflict.

Example 6.6: Consider the following extended logic program II [34]:

cl: P <— not ->P,

c2: Q <— P,

c3: -<Q <— P.

It has the only inconsistent relevance set R = {P, Q, ~>Q}. After performing the

conflict resolution process, IIR is augmented by the following two contrapositives:

c4: ->P <— -<Q,

c5: «- Q.

Now, the inconsistent R is also the unique relevance answer set of IIR. Thus, the

conflict in this program cannot be resolved, and thus it does not have any generalized

answer sets. •

6.5. Conflict Resolution in Other Formalizations

Similar to the answer set semantics, the major formalizations of nonmonotonic

reasoning, such as default logic, AEL, and circumscription, illustrated in Section

6.1 also cannot resolve conflicting information. In this section, we briefly discuss

by example how the conflict resolution process used in the generalized answer set

semantics can also be applied to these formalizations with minor modification.

I l l

6.5.1. Generalized Extensions

Consider the default logic representation of the simplified example by using non-

normal defaults which is repeated in the following:

W = {-/(»},

^: M ->abB : M -*abA : M —>abB ^
abA ' -*fly ' fly]'

The default theory (W, D) has no extensions because if ~>abB is assumed, then fly

is derived from the third default in D which contradicts the axiom ->fly and thus

abB can be derived from the contradiction by classical logic. If we use a relevance or

contradiction-tolerant logic, then the above difficulty can be alleviated and a relevance

extension E = {fly, ->fly, abA} is produced. Since E is inconsistent, a conflict

resolution process needs to be performed to resolve this contradiction. Recall that in

Chapter 5, thm(W) = {->fly} is used to denote the set of literals which are strictly

true as derived from W. In [34], a default of the form

A%, • • • > Am . MBj) . . . , _

can be identified by a clause of the form in extended logic programs

Jj 4 ,... 9 Am, not Bi,..., not Bn

if each A,-, each Bj, and L are literals, where Bj is the complement of Bj as defined

in Chapter 5. Thus, the conflict resolution process is performed as follows: Since fly

in E is not strictly true and is the consequent of the third default in D, we add the

new axiom (roughly, a contrapositive of the default) ->fly -» abB to W. Now, the

augmented default theory (W, D) has a unique relevance extension E' = {->fly, abB},

which agrees with our intuition. Since E' is consistent, it is a generalized extension

of the original default theory.

112

6.5.2. Generalized Stable Expansions

Consider the simplified example formulated by the autoepistemic theory A listed

below:

1. ->LabB —• abA,

2. ->LabA —> -•fly,

3. ->LabB —*• fly,

4. -'fly.

Similarly, A does not have stable expansions because if abB is not believed, then fly

is derived from axiom 3 which contradicts axiom 4 (- i f l y) and thus abB is derived

from this contradiction by classical logic. If a relevance logic is used, then there is

a unique relevance stable expansion S which includes abA, fly, and ~>fly. Since S

is inconsistent, a conflict resolution process needs to be performed. Let A' be the

set of axioms obtained from A by removing each axiom including modal operator

L. Obviously, A' = {-'fly}. Recall that in Chapter 5, thm(A') = A' is used to

denote the set of literals which are strictly true as derived from A'. In [86], there

is a rough correspondence between ->Lx in AEL and out(x) in TMSs. Thus, the

conflict resolution process for AEL can be performed as follows: Since fly in S is

not strictly true and appears in axiom 3, we add the following new axiom (roughly,

a contrapositive of axiom 3) to the original autoepistemic theory:

5. -'fly -> abB.

The intuition of this new axiom is "the non-flying Tweety must be an abnormal bird,"

for axiom 3 says "if Tweety being an abnormal bird is not believed, then it can fly,"

but axiom 4 stating "Tweety does not fly" provides an evidence which contradicts

our expectation. The augmented autoepistemic theory has a unique relevance stable

expansion S' which includes ^ f l y and abB. Since S' is consistent, it is a generalized

stable expansion of the original autoepistemic theory.

113

6.5.3. Generalized Supported Models

As demonstrated in Section 6.1, supported circumscription [138] is proposed to

exclude the anomalous extension of the YSP. In this approach, oriented clauses are

defined to mimic clauses in logic programs. Therefore, an oriented clause is no longer

a first-order axiom because it cannot have contrapositives. However, this approach

cannot resolve conflicts as mentioned earlier. We repeat the simplified example for-

mulated by the first-order theory Tx in the following with P = {abA, abB} and Z =

{fly}--

1. ~>abB —> abA,

2. ->abA —> -ifly,

3. -'abB —> fly,

4. ~>fly.

Note that each axiom in T\ is an oriented clause in supported circumscription. Here,

Ti has a unique (P, Z)-minimal model {abB}, but it is not supported because abB

is not the head of any oriented clause. In [138], it is pointed out that prioritized

circumscription in the same context is actually supported circumscription. But this

is not true if conflicting information is present. Indeed, when conflicting information

is present, supported circumscription cannot resolve such a conflict, while prioritized

circumscription can. In the following, we present a modification of supported circum-

scription to resolve conflicts, and then sketch how prioritized circumscription can also

be used to resolve conflicts in addition to excluding anomalous extensions.

Let T be a set of oriented clauses, and P and Z be as in the definition of

circumscription. In order to simulate an inconsistent labeling in circumscription, we

can perform renaming as follows: Each negative literal ^p(Xu ...,Xk) appearing in

T is renamed to become a positive literal no.p(Xu... ,Xk) if p # P. The renamed

theory is called T'. Then, if a supported model of T is inconsistent (i.e., it contains

114

a pair of complementary literals, say A and no_A), then a similar approach of adding

contrapositives as before is performed. The augmented theory is called T". Now, if

a supported model of T" is consistent, then it is renamed back to be a generalized

supported model of T.

Consider again the theory T\ above which has no supported model. The renam-

ing operation only applies to clauses 2 and 4 and obtains

2'. ->abA —*• no-fly,

4'. no-fly.

There is only one supported model {no.fly, fly, abA} for the renamed theory T[.

Since it is inconsistent, the following contrapositive of axiom 3 is added to T[:

5. no-fly —• abB.

Let T" be the augmented theory obtained from T{. Here, the augmented theory T"

has a unique supported model Mi = {no . f l y , abB}. Since Mi is consistent, it will

be renamed back to {abB} which is a generalized supported model of T because abB

is supported by clause 5. Note that since each model only contains atoms, the literal

no.fly (i.e., ~>fly) in Mi is not included in the generalized supported model.

In the following, we briefly show how prioritized circumscription can also be

used to resolve conflicts. Let T be a set of oriented clauses, and P and Z be as in

the definition of circumscription. We first perform renaming as before and obtain a

renamed theory T'. Since V is a disjunction theory, if V is stratified (see [37]), then

there exists a stratification of T'. For any stratification of T', we can partition P into

P 1 , . . . ,Pn such that P1 > • • • > Pn (called a priority ordering) as in the definition

of prioritized circumscription. Let P' be a priority ordering of V. Then, a (P', Z)-

minimal model of T is a model what we want to resolve conflicting information.

Again, we examine the previous theory Tx. We have a unique priority ordering P'

(abB > abA) of T[because of axiom 1. There is a unique (P1, Z)-minimal model

115

M2 = {abB} of Ti, which is the same as the generalized supported model obtained

earlier.

CHAPTER 7

"UNLESS" SEMANTICS

Some of the earlier formalizations of nonmonotonic reasoning, such as nonmono-

tonic logic (NML) [73] and default logic [106], and the later ones, such as autoepis-

temic logic (AEL) [84], are based (partly) on the notion of logical consistency. For

example, the commonsense knowledge "birds fly" can be expressed in NML by

bird(X) A Mfly(X) —* fly(X).

This formula can be interpreted as "if X is a bird and it is consistent to assert that

X can fly, then X flies." In default logic, this commonsense knowledge is usually

represented by the normal default

bird(X): Mfly(X)

MX)
which may be read as "if X is a bird and can be consistently assumed to fly, then

that X flies can be derived." Similarly, this general rule can be formalized in AEL

by

Urd{X) A ->L~ifly(X) fly{X),

which is possibly paraphrased as "if X is a bird and it is not believed (known) that

X cannot fly, then X flies." Note that in these consistency-based formalizations,

the conventional use of logic consistency is either to consistently assume the conse-

quent as in NML and default logic or to consistently assume that the negation of the

consequent is not believed as in AEL in order to derive the consequent.

However, the conventional use of consistency to formalize commonsense knowl-

edge in consistency-based formalizations became changed after the simple abnormality

formalism was presented by McCarthy [71]. The formalism was originally proposed

116

117

to represent commonsense knowledge in circumscription essentially by introducing

abnormality predicates, abi(X), to express general rules and by adding inheritance

cancellation axioms to express the preference in inheritance hierarchies. For instance,

"birds fly" can be formalized in this formalism by the first-order axiom

bird(X) A ^abx(X) -* fly(X),

where abi(X) means "X is abnormal in aspect 1 (i.e., flying)." The axiom can be

read as "if X is a bird, then it can fly unless it is abnormal in aspect 1." Furthermore,

the inheritance cancellation axiom

ostrich(X) —» abi(X)

is introduced if we also know "ostriches are birds and normally do not fly." This

axiom says "ostriches are abnormal in aspect 1." Note that general rules can be

interpreted by using "unless," and we call these interpretations "unless" semantics.

Although McCarthy [71] pointed out that this formalism is not adequate to ex-

press commonsense knowledge in circumscription, it is widely adopted in other formal-

izations of nonmonotonic reasoning, especially, to exclude the anomalous extension

of the YSP as discussed in Chapter 6. For example, "birds fly" can be represented in

default logic by the non-normal default

Urd{X): M^ab^X)

fiy(x)

which can be interpreted as "if X is a bird, then it can fly unless it is derivable that

X is not abnormal in aspect 1." Similarly, this knowledge can be formalized in AEL

by

bird(X) A ->L abi(X) -» fly(X),

which may be read as "if X is a bird, then it can fly unless X being abnormal in

aspect 1 is believed (known)." Note that "unless" semantics gradually becomes a new

interpretation of commonsense knowledge. Moreover, Kowalski and Sadri [58] argued

118

that the negation implicit in the word "unless" can be interpreted as the negation-as-

fail lire not in extended logic programs. In this case, "birds fly" can also be expressed

by the clause

fly(X) *— bird(X) A not abi(X).

This is one of the basic concept we adopt to formalize general rules in commonsense

reasoning as discussed in Chapter 3.

In spite of the fact that the simple abnormality formalism is commonly used in

other formalizations of nonmonotonic reasoning, there are still two important prob-

lems encountered in expressing commonsense knowledge. Firstly, these formalizations

do not completely capture the idea of "unless" semantics as in the original proposal

(i.e., circumscription). For example, in addition to the general rule "birds fly," sup-

pose we also know that Tweety is a bird (i.e., bird(tweety)) and is abnormal in aspect

1 (i.e., abi(tweety)). Then, circumscribing over fly will conclude that Tweety cannot

fly (i.e., -> fly (tweety)). Similarly, if the above knowledge is formalized in terms of

a TMS, the same conclusion is also drawn. However, all other aforementioned refor-

mulations cannot derive this conclusion. It is apparent that all these formalizations

only capture part of the idea of "unless" semantics in circumscription. The second

problem is caused by the original simple abnormality formalism itself. The formalism

may lead to semantic inconsistencies in the interpretations of conclusions. Consider

the previous cancellation axiom. If we happen to know that Sam is a flying ostrich,

then we will conclude that Sam can fly, but is abnormal wrt flying (aspect 1), which

is apparently inconsistent. In order to cope with these problems, in the following

sections, we first modify the inheritance cancellation axioms such that the semantic

inconsistency problem is removed. Then, we explore "unless" semantics and endow

the formalizations of commonsense reasoning with the full power of this semantics.

119

7.1. Overview with an Example

In this section, we give an overview of our solutions to the aforementioned two

problems with an example. Consider the following commonsense knowledge:

• Elephants are typically gray.

• Royal elephants are elephants but are typically not gray.

• Circus elephants are royal elephants.

• Clyde is a circus elephant.

This knowledge can be formalized by the extended logic program III as follows:

1. gray(X) <— elephant(X) A not abi(X),

2. elephant(X)«— royal jelephant(X),

3. ~<gray(X) *— royaLelephant(X) A not ab2(X),

4. abi(X) <— royaLelephant(X),

5. royaljelephant(X) <— circus.elephant(X),

6. circusjelephant(clyde) ,

where abi(X) and 062(X) stand for UX is abnormal in aspect 1 (i.e., grayness)" and

UX is abnormal in aspect 2 (i.e., non-grayness)," respectively. Note that clause 4

is an inheritance cancellation rule introduced by the simple abnormality formalism.

Program III has a unique answer set

St — {circus je-lephant(clyde), royal .el ephant(clyde), elephant(clyde),

abi(clyde), ->gray(clyde)},

in which only ->gray(clyde) is defeasible, while all others are strictly true. The de-

feasible conclusion ->gray(clyde) means "Clyde is assumed not gray," which is just a

temporary belief. However, since abi(clyde) is strictly true, it states that Clyde must

be abnormal wrt grayness. Note here that the interpretation of 5i by using the notion

of defeasible conclusion as discussed in Chapter 5 produces a little bit of incoherence

120

due to the sightly different meaning conveyed by defeasible ~>gray{clyde) and strict

abi(clyde).

If we later come to know that Clyde is really gray, then the following clause is

added to the above program IIi:

7. gray(clyde)

Let n 2 be the augmented logic program. Now, II2 has no answer sets because the

conflicting information (clause 7) is learned. However, this conflict can be resolved

and then a unique general answer set

S2 = {circus-elephant(clyde), royal-elephant (clyde), elephant(clyde),

gray(clyde), abi(clyde), ab^clyde)}

is obtained. Note that all the literals in S2 are strictly true. Since ab\{clyde) and

ab2(clyde) are both strictly true, they state that the gray elephant Clyde is abnormal

wrt both grayness and non-grayness. Obviously, this causes semantic inconsistency

in the interpretation of S^.

For coping with this difficulty, in our solution discussed in the following section,

we argue that clause 4 should be formalized by

4'. abi(X) <— royalje.lephant{X) A not ab2(X).

Note that the expression not ab2(X) is added to the body of clause 4' because clause 3

expresses the general rule "royal elephants are typically not gray." Let IIj be IIi with

clause 4 replaced by clause 4'. Program 11̂ has a single answer set S[which is the

same as Si except that abi(clyde) now becomes defeasible, rather than strictly true

as in IIi. This means that Clyde is assumed not gray and thus is assumed abnormal

wrt grayness. Clearly, this interpretation seems quite reasonable because that Clyde

is not gray (i.e., ->gray(clyde)) is only a defeasible conclusion, and that Clyde is

abnormal wrt grayness (i.e., abi(clyde)) is also a temporary belief.

121

After adding the conflicting fact gray(clyde) to 11̂ , we call the new augmented

program H'2. Similarly, program has no answer sets, but it has a single gener-

alized answer set S'2 (which is identical, in this example, to its extended answer set

defined in Section 7.4) which is almost the same as S2 except that abi(clyde) becomes

->abi(clyde). This means that the gray elephant Clyde is abnormal wrt non-grayness

(i.e., ab2(clyde)) but is not abnormal wrt to grayness (i.e., ->ab\(clyde)). In other

words, since Clyde is gray, it must not be abnormal wrt to grayness, which turns out

that Clyde must be abnormal wrt non-grayness. It is apparent that this interpreta-

tion is more reasonable and the semantic inconsistency problem in the interpretation

of S2 above is removed.

Furthermore, we examine how the extended answer set is obtained as follows:

Since clause 7 is a conflicting fact, by the generalized answer set semantics, this con-

flict is resolved by adding the new ground clause

8. ab<i{clyde) <— royaLelephant(clyde) A gray(clyde).

Since royaljdephant{clyde) and gray(clyde) are both strictly true, ab2(clyde) is also

strictly true. Then, by "unless" semantics, the strictly true abi(clyde) causes clauses 3

and 4' to be transformed into the following two new clauses:

3'. gray(clyde) <— royaLelephant(clyde) A ah? (clyde),

4". ->ab\{clyde) *— royal-elephant(clyde) A ab2{clyde).

Similarly, since ->ab\(clyde) becomes strictly true, clause 1 is transformed into

1'. gray(clyde) <— elephant{clyde) A ~>abi(clyde).

As we can see, the given fact gray(clyde) is also derivable from the new clauses V

and 3', while it is not generated by any other clauses in II2 except the given fact

itself. Therefore, the transformed program (which contains clauses 1', 2, 3', 4", 5, 6,

7, and 8) not only generates a reasonable and consistent interpretation of its answer

122

set S'2 but also the transformed program itself becomes a coherent set of clauses for

the given commonsense knowledge.

7.2. Semantic Inconsistencies in the Abnormality Formalism

Recall that the intuition underlying inheritance hierarchies with exceptions is

that subclasses are more specific so that they can incorporate information about

exceptional cases; i.e., subclasses are allowed to override superclasses. In the simple

abnormality formalism, the introduced inheritance cancellation axioms are essentially

used to explicitly express this intuition. However, the formalism may cause seman-

tic inconsistencies in the interpretations of conclusions. We illustrate the semantic

inconsistency problem in the original proposal with an example.

Suppose we have the commonsense knowledge:

• Birds normally fly.

• Ostriches normally do not fly.

• Ostriches are birds.

In circumscription, the knowledge can be represented by the first-order theory Tx with

P = {ab%, 062} and Z = {fly} as follows:

1. bird(X) A ->abi(X) —> fly(X),

2. ostrich(X) A ->ab2(X) —• ->fly(X),

3. ostrich(X) —> bird(X),

4. ostrich(X) —> abi(X),

where abx(X) and ab2(X) stand for "X is abnormal in aspect 1 (i.e., flying)" and UX

is abnormal in aspect 2 (i.e., non-flying)," respectively. Note that the last axiom is

an inheritance cancellation axiom introduced by the abnormality formalism, which

means that all ostriches are abnormal wrt flying. However, if we happen to know that

123

Sam is an ostrich (i.e., ostrich(sam)) and can fly (i.e., fly(sam)) then circumscribing

over abi and ab2 by varying fly will obtain a unique minimal model

Mi = {ostrich(sam), Urd{sam), fly(sam), abi(sam), a&2(sam)}.

The model says that the flying ostrich Sam is a bird and is abnormal wrt both

flying (aspect 1) and non-flying (aspect 2), which is obviously inconsistent. Since

the conclusion afysam) (Sam is abnormal wrt non-flying) agrees with the given fact

fly(sam), the semantic inconsistency is indeed caused by ab\{sam) (Sam is abnormal

wrt flying) which is derived from the inheritance cancellation axiom.

With careful examination of the above example, one may notice that fly(sam)

is a conflicting information because it contradicts what we expect from the general

rule that ostriches normally fly, and Mi is obtained from conflict resolution discussed

in Chapter 6. Thus, it may be argued that we can create a subclass FLYING-OSTRICH

and express the above commonsense knowledge with the following axioms added to

Tn

5. flyingjostrich(X) —> ostrich(X),

6. flyingjostrich(X) —* fly(X),

7. flyingjostrich(X) —• ab2{X).

Let T2 be the augmented theory. With the fact flyingjostrich(sam), we still obtain

from T2 the same conclusion as that obtained from 7i, and thus the semantic incon-

sistency problem remains unsolved. Note that creating an exceptional subclass to

express conflicting information as in the previous example provides another way for

conflict resolution.

From the above reformalization, we can see that the semantic inconsistency

problem is independent of the way how the knowledge is formalized. In fact, it is

caused by the improper formalization of inheritance cancellation axioms introduced

by the abnormality formalism. To see why, we carefully examine the above theory

124

T\. Since we know that Sam is an ostrich and ostriches are abnormal wrt flying

(aspect 1) by axiom 4, Sam must be abnormal wrt flying which conflicts the given

fact that Sam can fly. However, since fly(sam) is a given fact, it should be more

credible than the conclusion ab\(sam) obtained from axiom 4. In fact, not every

ostrich is abnormal wrt flying because there may exist some flying ostriches, such

as Sam in the above example. Therefore, the added inheritance cancellation axiom

(axiom 4) does not reflect this exception and thus causes the semantic inconsistency

problem. In response to this difficulty, we use the following modified axiom to replace

axiom 4:

4'. ostrich(X) A ->ab2(X) —» a&i(X),

which means that if X is an ostrich and is not abnormal wrt non-flying (aspect 2),

then it is abnormal wrt flying (aspect 1). The above new inheritance cancellation

axiom provides a consistent meaning because flying ostriches must be abnormal wrt

non-flying which does not allow us to derive that they are also abnormal wrt flying as

in axiom 4. Let T[contain axioms 1, 2, 3, and 4'. Then, circumscribing over abi and

ab2 by varying fly will obtain a unique minimal model M2 which is almost the same

as M\ except that ab\(sam) is removed. Obviously, M2 is a consistent conclusion.

Similarly, for theory T2, with axiom 4 replaced by axiom 4', we still obtain the same

consistent conclusion as that obtained from T[. Thus, the semantic inconsistency

problem is resolved by the modified inheritance cancellation axioms.

Recall that in Chapter 3, we have defined a class R being abnormal in aspect i

in Definitions 3.6 and 3.7, which is expressed by the axiom

r(X) -» abi(X)

based on the abnormality formalism. Now, according to the above discussion, we can

modify the expressions for abnormalities as follows: If the link in the first condition of

Definitions 3.6 and 3.7 is strict, then class R being abnormal in aspect i is expressed

125

by the above axiom. Otherwise, if the link is default with label abj, then class R being

abnormal in aspect i should be expressed by the axiom

r(X) A abj(X) -* a6,(X).

7.3. Exploring "Unless" Semantics

In [58], it was argued that the negation-as-failure not can be used to express the

negation implicit in the word "unless" in commonsense reasoning. For example, the

flying bird example can be expressed by the following clause:

fly(X) <— bird(X) A not abi(X),

which may be read as "if X is a bird, then it can fly unless it is abnormal in aspect 1

(i.e., flying)." The clause implicitly implies "if X is a bird and is known to be

abnormal in aspect 1, then it cannot fly." However, the answer set semantics cannot

derive this conclusion ->fly(tweety) if we know bird(tweety) and ab\{tweety). But in

the original formalism, the conclusion ->fly(tweety) is derivable from circumscription

with P = {fly}. In addition, if the above knowledge is formalized in terms of a TMS,

we will obtain the same conclusion. It seems that the answer set semantics does

not capture the full idea of "unless" semantics in the original abnormality formalism.

In the following, we examine "unless" semantics in the convention of commonsense

reasoning by using extended logic programs for illustration.

We first look at the simple commonsense knowledge as follows:

(A) John is not going to the movie unless Mary is.

Using not to represent "unless," knowledge (A) can be expressed by the clause

Al. ~>go{john) <— not go(mary),

where predicate go(X) stands for UX is going to the movie." Now, consider the

following cases:

126

(i) If we know that Mary is not going to the movie (i.e., ->go(mary)), then so is not

John. This statement can be expressed by the clause

A2. -igo(john) *- ->go(mary),

and the conclusion ->go(john) is then derived from the given fact ->go(mary). Note

that the above clause can be transformed from clause A1 since go(mary) is strictly

false.

(ii) If we know that Mary is going to the movie (i.e., go(mary)), then so is John.

This statement can be expressed by the clause

A3. go(john) <— go(mary),

and the conclusion go(john) is then derived from the given fact go(rnary). Note that

clause A3 can be transformed from clause A1 since go{mary) is strictly true.

(iii) If we have no idea about whether or not Mary is going to the movie, then we

may assume by default that John is not going to the movie. The default conclusion

->go(john) is precisely obtained from the answer set of clause A1 because go(mary)

is unknown.

(iv) If we know that John is going to the movie (i.e., go(john)), then so is Mary. This

statement can be expressed by the clause

A4. go(mary) <— go(john),

and the conclusion go(mary) is then derived from the given fact go(john). Note that

clause A4 is obtained from clause A2 by contraposition since go(john) is strictly true.

(v) If we know that John is not going to the movie (i.e., ~>go(john)), then so is not

Mary. This statement can be expressed by the clause

A5. -<go(mary) *— ->go(john),

and the conclusion ->go{mary) is then derived from the given fact ->go(john). Note

that clause A5 is obtained from clause A3 by contraposition since go(john) is strictly

false.

127

In the above example, cases (i) and (ii) roughly correspond to deductive reason-

ing in AI because they deduce the conclusions from the given information. Case (iii)

corresponds to commonsense reasoning because of the presence of incomplete infor-

mation. And cases (iv) and (v) roughly correspond to abductive reasoning because

they provide plausible explanations to the known conclusions.

We examine a more complex example as follows:

(B) John is not going to the movie unless Mary and Jim are.

This knowledge can be formalized by the clauses

Bl. -igo(john) <— not both(mary,jim),

B2. both(mary, jim) <— go(mary) A go(jim),

B3. -iboth(mary, jim) <— -*go(mary),

B4. ->both(mary,jim) <— -igo(jim).

Note that clauses B3 and B4 can be combined into a single clause as follows if dis-

junctions are allowed in the bodies of clauses:

B5. -iboth(mary,jim) <— ->go(mary) V ->go(jim).

Now, consider the following cases:

(i) If we know that Mary or Jim is not going to the movie (i.e., -iboth(mary,jim)),

then so is not John. This can be formulated by the clause

B6. ->go(john) < >both(mary,jim), (transformed from Bl)

and the conclusion ->go(john) is then derived from the given fact.

(ii) If we know that both Mary and Jim are going to the movie (i.e., both(mary,jim)),

then so is John. This can be expressed by the clause

B7. go(john) <— both(mary,jim), (transformed from Bl)

and the conclusion go(jokn) is then derived from the given fact.

(iii) If we have no idea about whether Mary or Jim is going to the movie, then we

may assume by default that John is not going to the movie. The defeasible conclusion

128

->g°(john) is derived from clause Bl. Note that the above three cases are similar to

those of knowledge (A).

(iv) If we know that John is going to the movie (i.e., go(john)), then so are Mary

and Jim. This can be expressed by the clause

B8. go(mary) A go(jim) <— go(john),

which is derived by transitivity from the following two clauses:

B9. both(mary,jim) <— go(john),

BIO. go(mary) A go(jim) *— both(mary,jirn).

Note that clauses B9 and BIO are, respectively, obtained from clauses B6 and B5 by

contraposition since go(john) is strictly true and so is both(mary,jim). Note also

that clauses B8 and BIO are obtained by allowing conjunctions in the heads of clauses.

(v) If we know that John is not going to the movie (i.e., ->go(john)), then so is not

Mary or Jim. This can be expressed by the clause

Bl l . ->go(mary) V ->go(jim) <— ->go(john),

which is derived by transitivity from the following two clauses:

B12. ->both(mary,jim)«— -igo(john),

B13. ->go(mary) V ->go(jim) *— ->both(mary,jim).

Note that clauses B12 and B13 are, respectively, obtained from clauses B7 and B2

by contraposition since go(john) is strictly false and so is both(mary,jim). Note

also that clauses Bl l and B13 are obtained by allowing disjunctions in the heads of

clauses.

Now, we examine the last example as follows:

(C) John is not going to the movie unless Mary or Jim is.

This can be represented by the clause

CI. ~>go(john) <— not go(mary) A not go(jim).

Clause CI can also be represented by the following clauses such that the general rule

129

clause C2 is similar to clause A1 of knowledge (A):

C2. ->go(john) <— not or(mary,jim),

C3. or(mary,jim) *— go(mary) V go(jim).

C4. -<or(mary,jim) <— ->go(mary) A -*go{jim).

Consider the following cases:

(i) If we know that both Mary and Jim are not going to the movie (i.e., -<or(mary,jim)),

then so is not John. This can be expressed by the clause

C5. ->go(john) *— ->or(mary,jim). (transformed from C2)

(ii) If we know that Mary or Jim is going to the movie (i.e., or(mary,jim)), then so

is John. This can be expressed by the clause

C6. go(john) <— or(mary,jim). (transformed from C2)

(iii) If we have no idea about whether or not Mary or Jim is going to the movie, then

we may assume by default that John is not going to the movie.

(iv) If we know that John is going to the movie (i.e., go(john)), then so is Mary or

Jim. This can be expressed by the clause

C7. go(mary) V go(jim) <— go(john),

which is derived by transitivity from the following two clauses:

C8. or(mary,jim) «- go(john), (obtained from C5)

C9. go(mary) V go(jim) <- or(mary,jim). (obtained from C4)

(v) If we know that John is not going to the movie (i.e., ~~*go(john)), then so are

Mary and Jim. This can be expressed by the clause

CIO. ->go(mary) A ->go(jim) <— ->go(john),

which is derived by transitivity from the following two clauses:

C l l . ~>or(rnary,jim) <- -igo(john), (obtained from C6)

C12. -igo(mary) A ~>go(jirn) <- ->or(mary,jim). (obtained from C3)

Note that the above five cases are similar to those of knowledge (B).

130

7.4. Formalizing Unless Semantics in Extended Logic Programs

As we can see from the discussions of the previous section, clauses Al, Bl, and

C2 play an important role of the reasoning. Each of them can be transformed into

one of other four different forms depending on the given information. A clause, such

as Al, of the form

L <— A A not B

is called a canonical clause where L, A, and B are literals. It is noted from knowledge

(C) in the previous section that any ground clause that follows containing not can be

represented by a canonical clause by the following transformation:

1. L *— At A • • • A Am A not B\ A • • • A not Bn (m > 0, n > 1)

where each A,', each Bj, and L are literals. Let us define three new clauses

2. A <— Ai A • • • A Am,

3. B <- Bx V • • • V Bn,

4. B «— Bi A • • • A Bn,

where A and B are new literals, where Bj is the complement of Bj as defined in

Chapter 5. Then, clause 1 can be expressed by

5. L *— A A not B.

Note that clause 4 is required and essential in this transformation because it provides

important information for "unless" semantics.

Once a canonical clause is obtained, the "unless" semantics discussed in the

previous section can be formalized as follows: Suppose we have a canonical clause 5,

which is repeated in the following with a possible interpretation parenthesized after

it,

5. L <— A A not B (if A holds, then conclude L unless B is derivable),

and we know that A is strictly true. Then, the above canonical clause can be trans-

131

formed into

6. L *— A A B if B is strictly false,

7. L «— A A B if B is strictly true,

8. B *— A A L if L is strictly false,

9. B *— A A L if L is strictly true.

Note that clauses 6 and 7 deduce strict conclusions given strict evidence of the con-

ditions, whereas clauses 8 and 9 provide plausible explanations to the known conclu-

sions. Note also that clauses 8 and 9 are essentially contrapositives of clauses 6 and 7,

respectively. In the above transformation, clause 7 may also be transformed into

7'. L <— B if B is strictly true,

where the truth value of A is immaterial in this situation. For example, consider the

commonsense knowledge "If Henry has money, then he will go to the movies unless

he is busy." If we know that he is busy, then we will conclude that he is not going to

the movies, no matter whether or not he has money. In our discussion, we will use

the transformation of clause 7 instead of clause 7' for uniformity.

Now, we can incorporate "unless" semantics into the generalized answer set

semantics so that the resulting conclusions are more reasonable and the transformed

logic programs are more coherent. Let II be an extended logic program. Let II'

be II if II does not contain conflict information; otherwise, let II' be IIR which is

an augmented program produced from the conflict resolution process as discussed in

Chapter 6. Then, the process of incorporating "unless" semantics consists of three

phases. Phase 1 transforms each clause containing not in II' into a canonical clause

as discussed above. Let £ be the transformed program obtained from II'. Phase 2

performs the transformation of the canonical clauses in S such that they can deduce

strict conclusions. This phase is described in Algorithm 7.1 and the transformed

program is called £' . Phase 3 performs the transformation of the canonical clauses in

132

E' such that they can generate plausible explanations, which is described in Algorithm

7.2, and the transformed program is called E".

Algorithm 7.1: Transformation for deducing strict conclusions

Input: E.

Output: E'.

1 T = a(E+) and 53' = E;

2 while there exists a canonical clause c: L <— A A not B in E' such that

3 AzT and (B £T or B € T) do begin

4 if B G T then L <— A A B is added to E' and T = T U {!/};

5 if B G T then L *— AAB is added to E' and T = T U {X};

6 E' = E' - {c};

7 end_while.

Algorithm 7.2: Transformation for generating plausible explanations

Input: E'.

Output: E".

1 T = a(E'+) and E" = E';

2 while there exists a canonical clause c: L *— A A not B in E" such that

3 AeT and B £T and (LeTorLeT)do begin

4 if I G T then B *- A A l i s added to E" and T = TU{B};

5 if L G T then B <— A A L is added to E" and T = T U {S};

6 E" = E" - {c};

7 end_while.

In Algorithm 7.1, T is initialized to the set of literals which axe strictly true in

E, and E' is initialized to E at line 1. The while loop of line 2 chooses a canonical

clause in E' such that it can be transformed to deduce a strict conclusion. The

133

transformation of clauses 6 and 7 is performed at lines 4 and 5, respectively. The

selected clause is then deleted from £' at line 6 because each clause is considered

only once. The explanation for Algorithm 7.2 is similar to that for Algorithm 7.1

except that it is a transformation for generating plausible explanations. Note that the

additional constraint B ^ T of line 3 in Algorithm 7.2 is to eliminate the repetition of

transformation. The reason for separating into two algorithms and placing Algorithm

7.2 after Algorithm 7.1 is that generating plausible explanations is less important.

Once a transformed logic program E" is obtained from a given extended logic

program II, it is ready to define extended answer sets of II.

Definition 7.1: Let II be an extended logic program, and E" be an output of

Algorithm 7.2. Let E be a consistent subset of Lit. Then, E is an extended answer

set of II if E is an answer set of E". •

In the following examples, we show how the extended answer set semantics can

provide more reasonable conclusions for given commonsense knowledge.

Example 7.1: Consider the commonsense knowledge "birds normally fly and

Tweety is a bird," which can be formalized by the extended logic program III as

follows:

1. fly(X) <- bird(X) A not abx{X),

2. bird(tweety)*—,

where abi(X) stands for UX is abnormal wrt flying." Ill has a single answer set Si =

{bird(tweety), fly (tweety)}, in which fly(tweety) is defeasible. Si concludes that the

bird Tweety is assumed to fly, which corresponds with our intuition in commonsense

reasoning. Now, consider the following four cases:

Case 1: If we later come to know that Tweety is really abnormal wrt flying

(i.e., abi(tweety)), then we add the clause

3. ab\(tweety) <—

134

into III. Let II2 be III augmented by clause 3. Program II2 has a single answer set S2

= {bird(tweety), abi(tweety)}, which just states that the bird Tweety is abnormal wrt

flying. However, since abi(tweety) is strictly true, by "unless" semantics, a ground

instance of clause 1 is transformed into

1'. ->fly(tweety) <— bird(tweety) A ab\(tweety).

Now, the transformed program (which contains clauses 1', 2, and 3) has a single

extended answer set S'2, which is S2 augmented by a strictly true fly (tweety). The

extended answer set S'2 concludes that the abnormal bird Tweety cannot fly, which

makes perfect sense because we already know Tweety is really abnormal wrt flying.

Case 2: If we happen to know that Tweety is not abnormal (i.e., normal) wrt

flying (i.e., ->abi(tweety)), then we add the clause

4. -<abi(tweety) <—

into III. Let II3 be III augmented by clause 4. Here, program n3 has a unique

answer set S3 = {bird(tweety), ->abi(tweety), fly(tweety)}, in which fly(tweety) is

defeasible, whereas the other two are strictly true. This means that the normal bird

Tweety can be assumed to fly. However, since ab\(tweety) is strictly false in n3, by

"unless" semantics, a ground instance of clause 1 is transformed into

1". fly(tweety) <— Urd(tweety) A ->abi(tweety).

The transformed program (containing clauses 1", 2, and 4) has a single extended

answer set which is exactly the same as S3 except that fly(tweety) now becomes

strictly true. This means that the normal bird Tweety does fly. Note that the above

conclusion is stronger than S3, which is reasonable because we already know that

Tweety is a normal bird in n3.

Case 3: If we axe told that Tweety can fly, then the clause

5. fly(tweety) <—

is added into n x and a new program n 4 is obtained. Program n 4 has an answer set S4

135

= {bird(tweety), fly(tweety)}, which concludes that the bird Tweety flies. However,

since fly(tweety) is strictly true, by "unless" semantics, a ground instance of clause 1

is transformed into

V". ->abi(tweety) <— bird(tweety) A fly (tweety).

Now, the transformed program has an extended answer set S'4, which is S4 augmented

by a strictly true ->ab\(tweety). S'4 concludes that the flying bird Tweety is not ab-

normal wrt flying. Note here that the added literal -~>abi(tweety) provides a plausible

explanation for the fact fly (tweety), which is not in S4.

Case 4: If we observed that Tweety cannot fly, then the clause

6. -ifly(tweety) «—

is added into Hj.. Let II5 be the augmented program. Program II5 has no answer

set because the conflicting fact (clause 6) is obtained. However, this conflict can be

resolved by the conflict resolution process by adding the ground clause

7. abi(tweety) *— Urd(tweety) A ->fly(tweety)

into II4 and a generalized answer set S$ = {Urd(tweety), ->fly (tweety), abi(tweety)}

is generated, in which all literals axe strictly true. S5 concludes that the non-flying

bird Tweety is abnormal wrt flying. Note that in this case, the extended answer set

of n 5 is identical to S5 because clause 7 is already added to resolve conflict. •

Example 7.2: Consider the the extended logic program n in the following:

1. -ifly(X) <— not abi(X),

2. abi(X) <— bird(X) A not ab2(X),

3. fly(X) <— bird(X) A not ab2(X),

4. bird(X) «— canary(X) A not ab^(X),

5. canary(henry) «—,

6. -*fly(henry)

where predicates ab^X), ab2(X), and ab3(X) stand for "X is abnormal wrt non-

136

flying," UX is abnormal wrt flying," and "X is abnormal wrt a bird," respectively.

Since clause 6 is a conflicting fact, program II has no answer set. However, this

conflict can be resolved by the conflict resolution process by adding the following

three new ground clauses into II:

7. atyhenry) <— bird(henry) A ->fly(henry),

8. ->bird(henry) <— ->fly(henry) A not ab2(henry),

9. abz{henry) <— canary(henry) A ->bird(henry).

Let l i s be the augmented program. Now, program IIr has two generalized answer

51 = {canary(henry), ->fly(henry), bird(henry), ab^ihenry)),

52 = {canary(henry), -<fly(henry), ->bird(henry), abz(henry)}.

Note that only canary(henry) and ->fly(henry) are strictly true in Si and S2. Then,

Si can be interpreted as "the non-flying canary Henry may be an abnormal bird wrt

flying." Similarly, S2 can be interpreted as "the non-flying canary Henry may not be

a bird and thus is abnormal wrt a bird."

Since -1 fly(tweety) is strictly false, by "unless" semantics, a ground instance of

clause 1 is transformed into

1'. ->abi(henry) <— -ifly(henry).

Now, the transformed program of n also has two extended answer sets, which are

almost the same as the generalized answer sets except that the strictly true conclusion

->abi(henry) is also included. Note that, the added literal ->abi(henry) (Henry is not

abnormal wrt non-flying) provides a plausible explanation for the non-flying canary

Henry, which is not in the generalized answer sets. •

137

7.5. "Unless" Semantics in Default Logic and Autoepistemic Logic

In this section, we briefly discuss by example that "unless" semantics can easily

be applied to default logic and autoepistemic logic if they use the simple abnormality

formalism to represent commonsense knowledge. It is also shown that the conven-

tional use of logic consistency in formalizing commonsense knowledge works well with

"unless" semantics.

Consider the commonsense knowledge "professors are normally doctors." This

can be represented in default logic and AEL, respectively, by

prof(X) : M~>abi(X)
phd(X)

and

prof{X) A ->Labi(X) phd(X)

if the abnormal formalism is used, in which predicates prof(X), phd(X), and abi(X)

stand for "X is a professor," "X is a doctor," and "X is an exceptional professor to be

a doctor," respectively. Suppose we know that John is a professor (i.e., prof(john)).

Then, by "unless" semantics, both the ground non-normal default

prof(john) : M~>abx{john)
phd(john)

and the ground autoepistemic axiom

prof(john) A ->Lab\{john) —• phd(john)

can be transformed into

1. prof(john) A ~>abi(john) —• phd(john) if abx{john) is strictly false,

2. prof(john) A abi(john) -> ->phd(john) if abi(john) is strictly true,

3. prof (John) A ->phd(john) —• abi(john) if phd(john) is strictly false,

4. prof(john) A phd(john) —• ->abi(john) if phd(john) is strictly true.

Note that as in the extended answer set semantics, axioms 1 and 2 deduce strict

138

conclusions, whereas axioms 3 and 4 generate plausible explanations. Note also that

axioms 3 and 4 are contrapositives of axioms 1 and 2, respectively.

If the above commonsense knowledge is formalized by the conventional use of

logic consistency, then it cam be expressed in default logic and AEL, respectively, by

prof(X) : Mphd(X)
phd(X)

and

prof(X) A ->L~>phd(X) —> phd(X).

Given the fact that John is a professor, by "unless" semantics, both the ground normal

default

prof(john) : Mphd(john)
phd(john)

and the ground autoepistemic axiom

prof(john) A ->L~^phd(john) —> phd(john)

can be transformed into

5. prof(john) Aphd(john) —• phd(john) if phd(john) is strictly true,

6. prof(john) A ->phd(john) —• ->phd(john) if phd(john) is strictly false.

Note that the transformation of deducing strict conclusions is identical to that of

generating plausible explanations in this case. From the above illustration, the notion

of logic consistency seems to work quite well with the "unless" semantics.

CHAPTER 8

COMPUTING ANSWER SETS

As noted in previous chapters, extended logic programs with an appropriate an-

swer set semantics are a powerful knowledge representation tool. They are successfully

employed in the following aspects of commonsense reasoning:

• Formalizing inheritance hierarchies with exceptions.

• Excluding anomalous extensions by the unidirectional nature of clauses.

• Identifying defeasible conclusions by their simple syntax.

• Resolving conflicts by the augmented conflict resolution mechanism in the gen-

eralized answer set semantics.

• Producing more reasonable conclusions and more coherent extended logic pro-

grams to represent given commonsense knowledge by incorporating "unless"

semantics in the extended answer set semantics.

However, the definition of answer sets is based on a non-constructive fixed point

definition. One possible way to find all answer sets of an extended logic program n is

to check each subset of Lit of n to see whether it is an answer set by the fixed point

definition. Nevertheless, this naive approach is not feasible because the number of

subsets is exponential.

In [34], Gelfond and Lifschitz presented a renaming procedure to transform an

extended logic program n into a general logic program II* and then showed that for

a consistent set S C Lit, S is an answer set of n if and only if the renamed S (i.e.,

S*) is an answer set of n*. This is because extended logic programs are an extension

of general logic programs formed by incorporating classical negation. In fact, for a

139

140

general logic program P, M is an answer set of P if and only if M is a stable model

[33] of P because the definition of answer sets is also an extension of that of stable

models. The above renaming procedure seems to suggest a method of computing

answer sets of an extended logic program II by computing the stable models of the

renamed general logic program II*. Indeed, this is the basic idea of the algorithm of

computing answer sets presented in this chapter.

In the literature, there are two algorithms of computing stable models of general

logic programs. Pimentel and Cuadrado [92] proposed a new TMS based on stable

models which are computed directly by employing a label propagating algorithm

and the data structure called compressible semantic tree [111]. Eshghi [25] recently

proposed a method of computing stable models by using the assumption-based TMSs

[20]. In this chapter, we present a new approach to computing stable models based on

the notion of stratification [3,129]. The basic idea of our method is to find a minimal

set C of rules in a general logic program P such that P — C becomes stratified.

There tire five steps in our algorithm: First, construct the dependency graph G of

a general logic program P. Second, simplify G such that the simplified dependency

graph G' contains only strongly connective components; i.e., the value of each node

in G' completely depends on the values of the nodes incident to it. Third, find all

the loops with even and odd number of negative axes (which are called even and odd

negative loops, respectively) in G'. Then, find the collection of minimal sets (each

of these sets is called a cut) of rules in P' containing not, which appear in the even

negative loops. Finally, for each cut, form a stratified logic program and check its

iterated fixed point model [3] to see whether the model is a stable model of P. With

the above renaming procedure, an algorithm of computing answer sets of extended

logic programs based on computing stable models is then presented. Since a default

can be represented by a clause, it seems to suggest that the algorithm of computing

141

answer sets can also be used to compute extensions of default theories. Similarly, since

answer sets of extended logic programs are closely connected to stable expansions of

autoepistemic theories, our algorithm also can be used to compute stable expansions

of autoepistemic theories.

8.1. Reduction to General Programs

Before presenting the renaming procedure of transforming extended logic pro-

grams into general logic programs proposed in [34], we briefly review the definition of

stable models of general logic programs. A general logic program P is a set of clauses

of the form

H <— Ax,..., Am, not Bi,..., not J5n
x,

where H, each A,-, and each Bj are atoms. As assumed in [33], each clause containing

variables is replaced by all its ground instances so that all atoms in P are ground.

Let I be an interpretation of P. Let Pi be the logic program obtained from P by

deleting

(i) each clause containing the expression not B in the body with B € / , and

(ii) all the expressions not B in the bodies of the remaining clauses.

Since P j is noi-free (i.e., a definite logic program), it has a unique minimal Herbrand

model [67]. If this model is identical to / , then I is said to be a stable model of P.

The following theorem shows that for general logic programs, the definition of answer

sets reduces to that of stable models.

1In general logic programs, the negation-as-failure is usually represented by the notation "-i."

For the consistent use of the notations in this dissertation, not is used to represent the negation-

as-failure in general logic programs, rather than the conventional -i. (The notation "i" is used to

denote the classical negation in this dissertation.)

142

Theorem 8.1: Let M be an interpretation of a general logic program P. Then,

M is an answer set of P if and only if M is a stable model of P.

Proof: Note that, by definition, the procedure of computing Pj for a general

logic program P is essentially the same as that of computing II5 for an extended logic

program II, where I is an interpretation of P and S is a subset of Lit of II. Since P is

a general logic program, PM = PM, which is not-free. Because P contains atoms only

(the expression not A is not considered as a negative literal, where A is an atom),

the answer set of PM is the same as the minimal Herbrand model of PM, and thus

the theorem is proved. •

In [34], Gelfond and Lifschitz have shown that an extended logic program can be

transformed into a general logic program by the following renaming procedure: Let

II be an extended program. For any predicate symbol p occurring in II, let nojp be

a new predicate symbol of the same arity. The atom rao_p(...) is called the positive

form of the negative literal ->p(...). By definition, each positive literal is its own

positive form. The positive form of a literal L is denoted by L*. Let II* stand for the

general program obtained from II by replacing each clause

L0 *— At,Am, not Bi,..., not Bn

with

Ab • • • > not not B*.

For any set S C Lit, S* stands for the set of the positive forms of the elements of S.

Then, Gelfond and Lifschitz [34] provided the relationship between an extended logic

program II and its renamed program II* by the following theorem:

Theorem 8.2 (from [34]): A consistent set S C Lit is an answer set of II if

and only if S* is an answer set of II*. •

Recall that in Chapter 6, for resolving conflicting information in extended logic

programs, the definition of relevance answer sets is provided to allow contradictions.

143

The following corollary relaxes the constraint of the consistency condition in Theorem

8.2.

Corollary 8.1: A set S C Lit is a relevance answer set of II if and only if 5*

is an answer set (stable model) of II*.

Proof: If S is consistent, then the theorem reduces to Theorem 8.2. Now,

consider the case when S is inconsistent. Since relevance answer sets allow inconsis-

tencies, by definition, the method of computing relevance answer sets is the same as

that of computing minimal Herbrand models. Thus, the theorem is proved. •

8.2. Computing Stable Models

As mentioned in previous section, a general logic program can be assumed to be

a set of ground clauses for defining stable models. Since each ground atom can be

viewed as a proposition, in subsequent discussions, a general logic program P can be

regarded as a finite2 set of propositional clauses of the form

p *- p1,...,pm,not (ft,..., not qn, (8.1)

where p, each p,, and each qj are propositions. Each propositional clause is called

a rule in this chapter. For convenience, each rule in P is associated with a unique

natural number in front of it, and each of these rule numbers is used to stand for the

corresponding rule.

The algorithm for computing stable models presented in the following is based

on the notion of stratification [3,129]. The algorithm is divided into five steps: Step 1

constructs a dependency graph G for a general logic program P. Step 2 simplifies

the given logic program P and its dependency graph G into P' and G", respectively,
2As in the methods of computing stables models [92, 25], the set P of propositional clauses is

also assumed to be finite.

144

such, that the value of each node in G' completely depends on the values of the nodes

incident to it. Step 3 finds the sets of even and odd negative loops in G'. Step 4 finds

the set CUT of cuts, each of which contains a set of rules in the simplified program

P' such that by removing them from G\ there is no even negative loop. In Step 5,

for each cut in CUT, remove the required rules in the odd negative loops from P'

such that it becomes stratified. Then, check the iterated fixed point model of the

stratified program to see whether it is a stable model of the original program P. In

the following, we elaborate each step in detail.

8.2.1. Step 1: Constructing Dependency Graphs

Dependency graphs are a useful tool for query processing in database systems

[127], for finding minimal deduction graphs [48], and so on. In our algorithm for

computing stable models, a dependency graph is modified such that each arc of it is

labeled with a rule number and with either a positive ("+") or a negative sign

as in the following definition.

Definition 8.1: Let P be a general logic program. The dependency graph

G = (V, E) of P is a directed graph consisting of two nonempty and finite sets V and

E. V is the set of nodes corresponding to the propositions in P. E is the set of arcs

of the form (p, q, s, r) (indicating an arc incident from p to q with label r and sign s,

where both p and q are in V and rule r is in P) which is generated as follows: Given

a rule r in P of the form (8.1), each arc (pi,p, +, r) (for i = 1 , . . . , m) in E is called a

positive arc and each arc (qj,p, - , r) (for j = 1 , . . . , n) in E is called a negative arc.
•

The construction of the dependency graph G of P is shown in Algorithm 8.1,

which is easily followed by definition. The arrays INDEG and OUTDEG store the

indegree (the number of in-coming arcs) and outdegree (the number of out-going arcs)

145

of each node in V, respectively. Note that the computation of the indegrees and

outdegrees of nodes in V at lines 6-8 is needed for the simplification process discussed

in Step 2.

Algorithm 8.1: Constructing Dependency Graphs

Input: A logic program P.

Output: The dependency graph G = (V, E) of P associated with the arrays INDEG

and OUTDEG.

Method:

1 let V be the set of propositions occurred in P; E = 0;

2 for each rule r : p «— pi,... ,pm, not qi,..., not qn in P do begin

3 for i = l to m do E = E\J {(pi,p,r,});

4 for j = 1 to n do E = E U {(qj,p, —r,});

5 end_for;

6 for each node v in V do INDEG[u] = 0 and OUTDEG[u] = 0;

7 for each axe («, v, s, r) in E do

8 INDEG[u] = INDEG[v] + 1 and OUTDEG[u] = OUTDEG[u] + 1.

8.2.2. Step 2: Simplifying Logic Programs and Dependency Graphs

There are six cases in simplifying the dependency graph G and thus the logic

program P. Let T be the set {p\p <— is in P} of true propositions of P. Now, consider

the following cases:

(1) Suppose there is a true proposition p in T. Then, any rule in P with head p

will be redundant in determining the truth value of p because p is already true.

This implies that such a kind of rules can be deleted. In addition, any rule with

not p in the body will be deleted by the stable model definition.

146

(2) Suppose there exists a rule of the form u v, . . . with INDEG[t>] = 0 and

v € T. Then, since v is true, the truth value of u in the rule will depend on the

rest of the body. This implies that v can be removed from the body of the rule.

(3) Suppose there exists a rule of the form it«— . . . , v,... with INDEG[t>] = 0 and

v $ T. Then, since v is unknown, u is impossible derived from the rule. So, the

rule can be deleted.

(4) Suppose there exists a rule of the form u *— ..., not v,... with INDEG[u] = 0

and v € T. Then, since v is true, the rule will be deleted by the stable model

definition.

(5) Suppose there exists a rule of the form not v,... with INDEG[u] = 0

and v $ T. Then, since v is unknown, by definition, not v can be removed from

the body of the rule.

(6) Suppose there exists a rule with head v, non-empty body, and OUTDEG[u] = 0.

Then, the rule is of no use in finding loops. So, it will be temporarily removed

and put in the set REM for later use in Algorithm 8.5.

In the above six cases, case (1) deletes redundant rules, cases (2)-(5) remove the nodes

with indegrees being zero from G, and case (6) removes the nodes with outdegrees

being zero from G.

The simplification process is shown in Algorithm 8.2. Case (1) is performed at

lines 2-3, especially, by the procedure Remove. Since both cases (3) and (4) involve

the deletion of rules, they are performed at lines 7-8, especially, by the procedure

Update. Similarly, since both cases (2) and (5) involve the elimination of redundant

propositions in the bodies of rules, they are executed at lines 9-17. Finally, case (6)

of removing nodes with outdegree being zero is performed at lines 19-26. Note that

the set REM contains the simplified rules in P' which are temporarily removed in

case (6).

147

Algorithm 8.2: Simplifying Logic Programs and Dependency Graphs

Input: A logic program P and its dependency graph G = (V, E) with the arrays

INDEG and OUTDEG.

Output: The simplified program P', its simplified dependency graph G' = (V, E'),

the set REM of removed rules, and the set T of true propositions.

Method:

1 P' = P-V' = V; E> = E; REM = 0;

2 T = {p\p <— is in P'};

3 for each p in T do call Remove^); /* case (1) */

4 while there exists a node v in V' such that INDEG[u] = 0 do begin

5 V7 = V — M ;

6 while there exists an arc (u, u, s, r) in E' do

7 if (5 = "+" and v g T) or (s = and v e T) then

8 call Update(r) /* cases (3) and (4) */

9 else begin /* cases (2) and (5) */

10 E' = E'~ {(i>, u, 5, r}}; INDEG[u] = INDEG[u] - 1;

11 if s = then delete v from the body of rule r in P'

12 else begin

13 delete not v in the body of rule r in P'\

14 if rule r is of the form u <— in P' then

15 T = TU {u} and call Remove(u)

16 endJf

17 endJf

18 end_while;

19 while there exists a node v in V' such that OUTDEG [v] = 0

20 do begin /* case (6) */

148

21 V' = V'~ {u};

22 for each arc («, v, s, r) in. i£' do begin

23 E' = E'~ «u , v, 5, r » ; OUTDEG[U] = OUTDEG[m] - 1;

24 delete rule r from P'; REM = REM U {r}

25 end_for

26 end_while.

procedure Remove(p);

begin

1 while there exists a rule r in P' with head p do

2 call Update(r);

3 while there exists a rule r in P' containing not p in the body do

4 call Update(r)

end-procedure.

procedure Update(r);

begin

1 let rule r be of the form p *— pi,..., pm, not qi,..., not qn]

2 E' = E' — {(p!,p, + , r) , . . . , (pm,p,+,r), {qup, r) , . . . , (qn,p, -,r}};

3 INDEG[p] = INDEG[p] - m - n ;

4 delete rule r from P'

end-procedure.

It is easy to see that the simplified dependency graph G' = (V7, E') has the

property that the indegree and outdegree of each node in V' is non-zero. In addition,

it is easy to show that G' is a set of strongly connected components. As we can see,

the truth value of each node in V' completely depends on the truth values of the

149

nodes incident to it. Note that the set REM of rules is a stratified logic program

because the proposition in the head of each rule in REM has outdegree being zero.

8.2.3. Step 3: Finding Negative Loops

Definition 8.2: A negative loop in the simplified dependency graph G' is

defined to be a loop including at least one negative arc. An even or odd negative loop

is a negative loop with even or odd number of negative arcs, respectively. •

The method of finding negative loops is based on performing depth-first search

on each node of G', which is shown in Algorithm 8.3. In the algorithm, the required

data structures are described in the following:

(a) ELOOP and OLOOP are global variables which are sets containing all the even

and odd negative loops in G', respectively.

(b) NEG is a global variable which is a set containing all the labels of the negative

arcs occurring in even negative loops of ELOOP.

(c) RULE is also a global variable which is a set containing all the labels of the arcs

occurring in even negative loops of ELOOP.

(d) MARK is a global array used to mark each visited node.

(e) ARC (or Arc in Find-Loops) is a local array used to store the arcs in a loop.

(f) Each element (i.e., a loop) in ELOOP or OLOOP is represented by a three-tuple

of the form (neg,pos, loop) where pos and neg are sets of labels of the positive

and negative arcs occurring in a loop, respectively, and loop is the set of arcs in

the loop.

The depth-first search, the central part of the algorithm, is implemented by the

procedure Find_Loops. Note that |V| is used to denote the cardinality of set V. Since

the procedure Find JLoops will be performed on each node in V, some subgraphs of

G' will be repeatedly searched. Owing to this reason, a table can be used to store

150

all the possible paths from a node to another found so far to avoid redundant search.

Note that in procedure Find_Loops, a is used to denote a field in an arc whose

value is not interested.

Algorithm 8.3: Finding Negative Loops

Input: A simplified dependency graph G' = (V7, E').

Output: A set ELOOP of even negative loops in G', a set OLOOP of odd negative

loops in G', a set NEG of labels of the negative arcs occurring in even

negative loops, and a set RULE of labels of the arcs occurring in even

negative loops.

Method:

1 ELOOP = 0; OLOOP = 0; NEG = 0; RULE = 0;

2 for each node v in V' do MARK[t>] = 0; /* MARK is a global array */

3 for i = 1 to \V'\ do ARC[i] = 0; /* ARC is a local array */

4 for each node v in V' do

5 if MARK[i>] = 0 do MARK[t>] = 1 and call Find_Loops(t;, ARC, 1);

6 for each loop (neg, pos,loop) in ELOOP do

7 NEG = NEG U neg and RULE = RULE U neg U pos.

procedure Find_Loops(v, Arc, i);

begin

1 for each arc (v, u, s, r) in E' do begin

2 MARK[u] = 1; Arc[i] = (v, u,s, r);

3 if there exists an / such that 1 < I < i and Arc[/] = (u, _, _) then begin

4 pos = 0; neg = 0; loop — 0;

5 for k = I to i do begin

6 let Arcffc] be of the form (p, q, s', r'); loop = loop U {{p,q, s', r')};

151

7 if s' = "+" then pos = pos U {r'} else neg = neg U {r'}

8 end_for;

9 if \neg\ > 0 then /* a negative loop */

10 if \neg\ is even then ELOOP = ELOOP U {(neg,pos, loop)}

11 else OLOOP = OLOOP U {(neg,pos, loop)}

12 end-then

13 else Arc[i] = (v,u,s,r) and call Find_Loops(u, Arc, i + 1)

14 endJor;

end-procedure.

8.2.4. Step 4: Finding Cuts

Definition 8.3: In the simplified dependency graph G', a cut is defined to be

a subset C of labels of NEG such that by deleting each arc with label in C from G',

there does not exist any even negative loop. •

Note that some odd negative loops in OLOOP may be removed because of the

cuts. The idea of finding cuts is based on the strategy of backtracking, which is shown

in Algorithm 8.4, by the main procedure Find_Cuts. CUT is a global variable which

is a set containing all the cuts in G'. Each element of CUT is a three-tuple of the

form (cut, OR, OL) indicating that cut is a cut, OR is the set of labels of arcs in the

removed odd negative loops by cut, and OL is the set of remaining odd negative loops

after cut is found. Note that even though there is no even negative loop, procedure

Find_Cuts still generates the empty cut, (0,0,OL).

Algorithm 8.4: Finding Cuts

Input: A set ELOOP of even negative loops, a set OLOOP of odd negative loops,

and a set NEG of labels of the negative arcs occurring in even negative loops.

Output: A set CUT of cuts.

152

Method:

1 CUT = 0;

2 call Find_Cuts(0, 0, ELOOP, OLOOP, NEG).

procedure Find_Cuts(cu£, OR, EL, OL, Neg);

begin

1 if EL = 0 then CUT = CUT U {{cut, OR, OL)}

2 else for each rule number r in Neg do begin

3 if there exists a loop (neg, pos, loop) in EL such that r G pos U neg do begin

4 cut = cut U {r}; R = 0;

5 for each loop (n\,pl, Zl) in OL do /* remove odd negative loops */

6 if r £ n\ Up\ then OL = OL — {(»l,j?l,/l)} and OR = OR U nl U jpl;

7 for each loop (n2,p2,12) in EL do /* remove even negative loops */

8 if r € n2 U p2 then EL = EL — {(n2,p2,12)} and R — R U n2;

9 for each loop («3,p3,13) in EL do /* update the set n3 */

10 nZ = n3 — R and update the value of n3 in the loop

11 endJf;

12 call Find_Cuts(cu£, OR, EL, OL, Neg — {r})

13 end_for;

end-procedure.

8.2.5. Step 5: Generating Stable Models

Recall that RULE is the set of rule numbers (or labels) occurred in even negative

loops of OLOOP. For each cut (cut, OR, OL) in CUT, it is easy to see that (RULE

U OR — cut) forms a stratified logic program. Its iterated fixed point model N can

easily be found. Now, consider the following cases to further remove odd negative

153

loops in OL based on model N:

(1) Suppose there exists an arc (p, q, s, r) in an odd negative loop of OL such that

q is in N (i.e., there exists a rule r of the form q (not) p,...). Since q is

in N, the rule is of no use in determining the truth value of q.

(2) Suppose there exists an arc (p, q, s, r) in an odd negative loop of OL such that

p is in N and s = " (i.e., there exists a rule r of the form not p,...).

Since p is in N, the rule will be deleted by definition.

Let oddcut be the set of rule numbers to be deleted in the above two cases. Let Q

be the set of rule numbers occurring in the deleted odd negative loops of OL. Recall

that REM is the set of simplified rules removed in Algorithm 8.2. Now, we can see

that the set P'" = (RULE U REM U OR U Q) — (cut U oddcut) is a stratified logic

program. Let M be the iterated fixed point model of P"'. Then, check (M U T) to

see whether it is a stable model of the original program P, where T is the set of true

propositions obtained from Algorithm 8.2. The above procedure of computing stable

models is shown in Algorithm 8.5.

Algorithm 8.5: Generating Stable Models

Input: A general logic program P, the set CUT of cuts for P' , the set REM of removed

rules, the set T of true propositions, and the set RULE of labels occurred in

even negative loops.

Output: Either the set S of stable models or "no stable model."

Method:

1 5 = 0;

2 for each cut (cut, OR, OL) in CUT do begin

3 OL1 = 0; oddcut = 0; Q = 0;

4 while OL ^ OL1 do begin

5 OL1 = OL; P" = (RULE U OR U Q) — (cut U oddcut);

154

6 let N be the iterated fixed point model of P"\

7 for each loop (neg,pos,loop) in OL do begin

8 for each arc (p, q, s, r) in loop do

9 if (q € N) or (p G N and s = "—") then oddcut = oddcut U {r};

10 if \oddcut\ > 0 then OL = OL — {(neg,pos, loop)} and Q = QUnegUpos

11 end_for

12 end_while;

13 P'" = (RULE U REM U OR U Q) — (cut U oddcut);

14 let M be the iterated fixed point model of P"'\

15 if (M U T) is a stable model of P then S = S U {M U T}

16 end_for;

17 if S = 0 then print ("no stable model").

As we can see in Algorithm 8.5 of generating stable models of a general logic

program P, each computed set of atoms is checked to see whether it is a stable model

of P. Therefore, each model M in S of Algorithm 8.5 is a stable model of P. This

soundness property of the algorithm is provided in the following theorem without

proof.

Theorem 8.3 (Soundness): Let P be a general logic program. Let S be

the set of models computed in Algorithm 8.5. Then, each computed model in S is a

stable model of P. •

8.3. Examples of Computing Stable Models

Example 8.1: Consider the following general logic program P:

1. nfly *— not abl,

2. abl *— bird A not ab2,

155

> NBIRD
A

AB1 <

> FLY

CANARY > AB3

Figure 8.1: The dependency graph of P

3. fly <— bird A not ab2,

4. bird <— canary A not ab3,

5. canary ,

6. nfly*-,

7. ab2 *— bird A nfly,

8. nbird *— nfly A not ab2,

9. a&3 <— canary A nbird.

In step 1, the corresponding dependency graph Cr of P is constructed, which is de-

picted in Figure 8.1, in which a positive arc is represented by while a negative

arc is denoted by />. In step 2, T = {canary, nfly], and rules 5 and 6 are deleted

because their heads are true. Now, since both canary and nfly have indegrees being

zero, rules 4, 7, 8, and 9 are simplified, respectively, into

10. bird <— not abS,

11. ab2 <— bird,

12. nbird <— not ab2,

156

NBIRD
A

Figure 8.2: The simplified dependency graph of P

13. ab3 *— nbird.

Similarly, since both abl and fly have outdegrees being zero, rules 2 and 3 are tem-

porarily removed and are put in the set REM. The simplified program P' contains

rules 10, 11, 12, and 13, and its corresponding simplified dependency graph G' is

shown in Figure 8.2. In step 3, only an even negative loop loop is found in G', which

contains two positive arcs (defined by rules 11 and 13) and two negative arcs (defined

by rules 10 and 12 containing not) as follows:

loop = {{abS, bird, —, 10), (bird,ab2, +, 11), (ab2, nbird, — ,12),

(nbird, abS, +, 13)}.

Note that the set RULE = {10,11,12,13} contains the rules occurring in the only

even negative loop loop. In step 4, there are two different cuts: cut\ = {10} and cut2

= {12} both with OR = 0 and OL = 0. In step 5, stable models is generated as fol-

lows: For the cut cutx, the iterated fixed point model of RULE — cut\ = {11,12,13}

is N\ = {nbird, aM}. By considering the set REM = {2,3} of removed rules, P has

a stable model Mi = {canary, nfly, nbird, ab3}. Similarly, for the cut cut2, P has

157

Figure 8.3: The dependency graph of P

another stable model M2 = {canary, nfly, bird, ab2}. •

Example 8.2: Consider the following general logic program Pi

1. a <— not b,

2. b «— noi c,

3. c not a,

4. b <— not a,

5. c <— not b.

In step 1, the corresponding dependency graph G of P is constructed, which is shown

in Figure 8.3. In step 2, since T = 0 and each node in V has non-zero indegree and

outdegree, P is already in the simplified form. In step 3, there are two even negative

loops in ELOOP:

loop,. = {(a ,6 , - ,4) , (6, o, —,1)},

loop2 = {(6, c , - ,5) , (c, 6,—,2)},

and one odd negative loop in OLOOP:

loop3 = {(a,c,—,3), (c,b,~, 2), (6, a, —, 1)}.

Here, RULE = {1,2, 4, 5} is the set of rules occurring in ELOOP. In step 4, there

are four possible cuts:

158

cuti = {1,2} with OL = 0 and OR = {3},

cut2 = {1,5} with OL = 0 and OR = {2,3},

cuts = {2,4} with OL = 0 and OR = {1,3},

cuti = {4,5} with OR = {loop3} and OR = 0.

In step 5, it is easy to see that both cuti and cut2 generate the same stable model

Mi = {b, c} of P, and cut3 generates a stable model Mi = {a, c} of P. Now, consider

the case of cut cut4. The iterated fixed point model of the set RULE — cut± = {1,2}

is N = {b}. Then, since b is in N, the arcs (c, b, - , 2) and (6, a, - , 1) in the negative

loop loops are deleted, and oddcut becomes {1,2} and Q becomes {1,2,3}. Now, the

set RULE U Q — (cut U oddcut) = {3} has the iterated fixed point model M3 = {c},

which is not a stable model of P. Therefore, P has two stable models Mi and M2. •

8.4. Computing Answer sets

As assumed in [34], an extended logic program II can be regarded as a finite

set of ground clauses. In this section, an algorithm of computing answer sets of an

extended logic program II is sketched below.

(1) Using the renaming procedure to transform II into a general logic program II*

(in Section 8.1).

(2) Computing the stable models of II* (in Section 8.2).

(3) For each stable model M* of II*, if M* is consistent (i.e., it does not contain

any pair of propositions of the forms p and nojp), then M is an answer set of

n.
(4) If M* is inconsistent and M* — Lit*, then M is an answer set of II.

CHAPTER 9

CONCLUSION AND FUTURE RESEARCH

The major contribution of this dissertation is to investigate how extended logic

programs recently proposed by Gelfond and Lifschitz [34] can be used as a powerful

knowledge representation tool to formalize commonsense reasoning. In this investiga-

tion, we first use extended logic programs to formalize an important knowledge struc-

ture in semantic networks called inheritance hierarchies with exceptions by adopting

McCarthy's simple abnormality formalism [71] to express uncertain knowledge. In

addition, we also proposed a new network representation based on Etherington and

Reiter's network notation [28, 26, 27]. In our formalization, not only the conventional

credulous reasoning [28, 124] can be performed but also the ambiguity blocking in-

heritance [50, 51] and the ambiguity propagating inheritance [126, 120] in the newly

proposed skeptical reasoning [50] are simulated.

Stimulated by the anomalous extension problem of the famous YSP, we inves-

tigate the intuition behind commonsense reasoning and discover that commonsense

reasoning performed by human being is a kind of forward reasoning. Its common

inference pattern is reasoning from given information to derive some intuitive conclu-

sions or properties. Thus, commonsense reasoning can be viewed as a reasoning of

intuitive expectation. One important property of this reasoning is its unidirectional

nature of inference as observed by Morris [86]. We then examine several proposals

of reformulations of the YSP to exclude the anomalous extension and find out that

these proposals are all based on this property.

Since in commonsense reasoning, some conclusions are assumed by default, but

159

160

almost, every formalization of nonmonotonic reasoning does not distinguish this dif-

ference. We first identify the defeasible conclusions of our formalization just based

on the simple syntax of extended logic programs and then apply similar idea to other

formalizations to achieve this purpose.

As mentioned earlier, commonsense reasoning can be viewed as a reasoning of

intuitive expectation. However, sometimes it may happen that a new fact contradicts

what we expect. In this case, our formalization and the reformulations mentioned

above cannot deal with this situation. Along the line of Giordano and Martelli [42],

we propose the generalized answer set semantics to resolve conflicts by capturing the

idea of dependency-directed backtracking in TMSs [21]. Also, similar approaches are

applied to the above reformalizations to resolve conflicting information.

Although we adopt McCarthy's abnormality formalism to express uncertain

knowledge, we discover that this formalism may have the semantic inconsistency

problem in interpreting conclusions and propose a simple way to fix it. We then ex-

plore an interesting property in commonsense reasoning called "unless" semantics and

enhance the generalized answer set semantics to incorporate this important property.

It turns out that a clause in an extended logic program can be transformed into one of

other four forms depending on the given information, and the transformed programs

become more coherent and their conclusions become more reasonable.

Because the definition of answer sets of an extended logic program is a gener-

alization of that of stable models of a general logic program, both of them are not

constructive. We first present a new approach to compute stable models of a general

logic program. Then, we propose a method to compute answer sets based on the com-

putation of stable models. In this way, the formalization of commonsense knowledge

based on extended logic programs becomes more practical.

It is noted that our formalization of commonsense knowledge is based on the new

161

knowledge representation tool of extended logic programs. Note that each clause in

an extended logic program is an inference rule. In our approach, it takes advantage of

the unidirectional nature of clauses in extended logic programs to exclude anomalous

extensions. However, it cannot have the full power of first-order logic. In order to

increase the inference ability of extended logic programs, we can make the following

extension: A clause containing negation-as-failure not in its body is really an inference

rule because it will generate a defeasible conclusion by assumption, whereas a clause

not containing not can be regarded as a first-order axiom because it represents a piece

of certain information. In this case, each clause containing not can be transformed

into a default in default logic [34], and each clause not containing not can be viewed

as an axiom in first-order logic. Thus, an extended logic program can be transformed

into a default theory to have full power of first-order logic reasoning ability. For

example, suppose a given commonsense knowledge contains a piece of information

"dogs are mammals" which can be expressed by the clause

mammal (X) <— dog(X).

If we later come to know that Tweety is not a mammal, then we cannot derive that

Tweety is not a dog by regarding the above clause as an inference rule, but we can

derive this conclusion through contraposition by viewing the above clause as a first-

order axiom.

In the following, we would like to highlight the issues of possible future research.

• As discussed above, extended logic programs can be transformed into a class of

default theories. It is interesting to investigate whether any default theory can

also be transformed into an extended logic program.

• In previous developments, we see that there exists a rough correspondence be-

tween the nonmonotonic operators not (in extended logic programs), out (in

TMSs), ~>L (in AEL), and M~> (in default logic). This correspondence reveals

162

that these formalizations have some closed connections. It is interesting to find

the relationships between these formalizations.

• It is known that Yang's deduction graph (DG) [48, 136, 137] is a powerful

inference tool and is successfully applied to database and logic query processing

[134, 135], better relational database schemes design [136], integrity constraint

checking [49], probabilistic reasoning [61, 62], abductive reasoning [61], and

default reasoning [88]. In future research, we want to investigate how DGs can

also be used to perform commonsense reasoning based on our formalization.

• As we can see, the head of a clause in extended logic programs only allow to

contain a literal. Similar to disjunctive logic programs [6,7,69, 79,100,101,121]

which are a generalization of general logic programs by allowing a disjunction

of atoms in the head of a clause, in future research, we also want to extend

extended logic programs to allow a disjunction of literals in the head of a clause.

BIBLIOGRAPHY

1. American Association for Artificial Intelligence, Proceedings of the Fifth National
Conference on Artificial Intelligence, Philadelphia, PA (1986).

2. American Association for Artificial Intelligence, Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, WA (1987).

3. Apt, K.R., Blair, H.A., and Walker, A., Towards a theory of declarative knowl-
edge, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic Pro-
gramming (Morgan Kaufmann Publishers, Los Altos, CA, 1988) 89-148.

4. Apt, K.R. and van Emden, M.H., Contributions to the theory of logic program-
ming, Journal of the ACM 29 (3) (1982) 841-862.

5. Baker, A.B. and Ginsberg, M.L., A theorem prover for prioritized circumscrip-
tion, in: Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, MI (1989) 463-467.

6. Baral, C., Lobo, J., and Minker, J., Generalized disjunctive well-founded seman-
tics for logic programs: Procedural semantics, in: Proceedings of the Fifth Inter-
national Symposium on Methodologies for Intelligent Systems (North-Holland,
New York, 1990) 456-464.

7. Baral, C., Lobo, J., and Minker, J., Generalized disjunctive well-founded seman-
tics for logic programs: Declarative semantics, in: Proceedings of the Fifth In-
ternational Symposium on Methodologies for Intelligent Systems (North-Holland,
New York, 1990) 465-473.

8. Bidoit, N. and Froidevaux, C., General logical databases and programs: Default
logic semantics and stratification, Information and Computation 91 (1) (1991)
15-54.

9. Bobrow, D. and Winograd, T., An overview of KRL, a knowledge representation
language, Cognitive Science 1 (1) (1977) 3-46.

10. Brachman, R.J. and Schmolze, J., An overview of the KL-one knowledge repre-
sentation system, Cognitive Science 9 (2) (1985) 171-216.

11. Brachman, R.J., I lied about the trees, or defaults and definitions in knowledge
representation, The AI Magazine 6 (3) (1985) 80-93.

12. Cercone, N. and Schubert, L., Toward a state based conceptual representation,
in: Advance Papers of the Fourth International Joint Conference on Artificial
Intelligence, Tbilisi, Georgia, USSR (1975) 83-90.

13. Chandra, A.K. and Harel, D., Horn clause queries and generalizations, Journal

163

164

of Logic Programming 2 (1) (1985) 1-15.

14. Charniak, E., Riesbeck, C.K., and McDermott, D.V., Artificial Intelligence Pro-
gramming (Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ, 1980).

15. Charniak, E., A common representation for problem-solving and language-com-
prehension information, Artificial Intelligence 16 (1981) 225-255.

16. Clark, K.L., Negation as failure, in: H. Gallaire and J. Minker (Eds.), Logic and
Data Bases (Plenum Press, New York, 1978) 293-322.

17. Clark, K.L., Predicate logic as a computational formalism, Research Report
DOC 79/59, Department of Computing, Imperial College (1979).

18. Colmerauer, A., Kanoui, H., Roussel, P., and Pasero, R., Un Systeme de Com-
munication Homme-Machine en Franqais, Groupe de Recherche en Intelligence
Artificielle, Universite d'Aix-Marseille, Marseille, France (1973).

19. Decker, H., Integrity enforcement on deductive databases, in: Proceedings of
the First International Conference on Expert Database Systems, Charleston, SC
(1986) 271-285.

20. de Kleer, J., An assumption-based TMS, Artificial Intelligence 28 (1986) 127-
162.

21. Doyle, J., A truth maintenance system, Artificial Intelligence 12 (1979) 231-272.

22. Dung, P.M., On the strong completion of logic programs, in: Proceedings of the
Second International Conference on Algebraic and Logic Programming, LNCS
463 (Springer-Verlag, Berlin, 1990) 158-172.

23. Dung, P.M. and Kanchanasut, K., On the generalized predicate completion of
non-Horn program, in: Logic Programming: Proceedings of the North American
Conference 1989 (MIT Press, Cambridge, MA, 1989) 587-603.

24. Enderton, H.B., A Mathematical Introduction to Logic (Academic Press, New
York, 1972).

25. Eshghi, K., Computing stable models by using the ATMS, in: Proceedings of the
Eighth National Conference on Artificial Intelligence (MIT Press, Cambridge,
MA, 1990) 272-277.

26. Etherington, D.W., Formalizing nonmonotonic reasoning systems, Artificial In-
telligence 31 (1987) 41-85.

27. Etherington, D.W., Reasoning with Incomplete Information (Pitman Publishing,
London, 1988).

28. Etherington, D.W. and Reiter, R., On inheritance hierarchies with exceptions,
in: Proceedings of the National Conference on Artificial Intelligence, Washing-
ton, DC (1983) 104-108.

165

29. Fahlman, S., NETL: A System for Representing and Using Real-World Knowl-
edge (MIT Press, Cambridge, MA, 1979).

30. Fahlman, S.E., Touretzky, D.S., and van Roggen, W., Cancellation in a parallel
semantic network, in: Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, Vancouver, BC, Canada (1981) 257-263.

31. Fujiwara, Y. and Honiden, S., Relating the TMS to autoepistemic logic, in: Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence,
Detroit, MI (1989) 1199-1205.

32. Gelfond, M., Autoepistemic logic and formalization of commonsense reasoning:
Preliminary report, in: Proceedings of the Second International Workshop on
Non-Monotonic Reasoning, LNAI 346 (Springer-Verlag, Berlin, 1989) 176-186.

33. Gelfond, M. and Lifschitz, V., The stable model semantics for logic program-
ming, in: Logic Programming: Proceedings of the Fifth International Conference
(MIT Press, Cambridge, MA, 1988) 1070-1080.

34. Gelfond, M. and Lifschitz, V., Classical negation in logic programs and disjunc-
tive databases, New Generation Computing 9 (3,4) (1991) 365-385.

35. Gelfond, M. and Przymusinska, H., Negation as failure: Careful closure proce-
dure, Artificial Intelligence 30 (1986) 273-287.

36. Gelfond, M., Przymusinska, H., and Przymusinski, T., The extended closed
world assumption and its relationship to parallel circumscription, in: Proceed-
ings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, Cambridge, MA, (1986) 133-139.

37. Gelfond, M., Przymusinska, H., and Przymusinski, T., On the relationship be-
tween circumscription and negation as failure, Artificial Intelligence 38 (1989)
75-94. '

38. Genesereth, M.R. and Nilsson, N.J., Logic Foundations of Artificial Intelligence
(Morgan Kaufmann Publishers, Los Altos, CA, 1987).

39. Ginsberg, M.L., Multivalued logics: A uniform approach to reasoning in artificial
intelligence, Computational Intelligence 4 (1988) 265-316.

40. Ginsberg, M.L., A circumscriptive theorem prover: Preliminary report, in: Pro-
ceedings of the Seventh National Conference on Artificial Intelligence, St. Paul,
MN (1988) 470-474.

41. Ginsberg, M.L., A circumscription theorem prover, Artificial Intelligence 39
(1989) 209-230.

42. Giordano, L. and Martelli, A., Generalized stable models, truth maintenance
and conflict resolution, in: Logic Programming: Proceedings of the Seventh In-
ternational Conference (MIT Press, Cambridge, MA, 1990) 427-441.

166

43. Goldstein, I. and Roberts, R.B., Nudge: A knowledge-based scheduling pro-
gram, in: Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, Cambridge, MA (1977).

44. Hanks, S. and McDermott, D., Default reasoning, nonmonotonic logics, and the
frame problem, in: Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, PA (1986) 328-333.

45. Hanks, S. and McDermott, D., Nonmonotonic logic and temporal projection,
Artificial Intelligence 33 (1987) 379-412.

46. Hayes, P.J., The logic of frames, in: D. Metzing (Ed.), Frame Conception and
Text Understanding (Walter de Gruyter, Berlin, 1980) 46-61.

47. Hill, R., LUSH-resolution and its completeness, DCL Memo 78, Department of
Artificial Intelligence, University of Edinburg (1974).

48. Horng, W.B. and Yang, C.C., A shortest path algorithm to find minimal deduc-
tion graphs, Data and Knowledge Engineering 6 (1) (1991) 27-46.

49. Horng, W.B. and Yang, C.C., An application of deduction graphs to integrity
constraint checking in deductive databases, Technical Report #N-91-001, De-
partment of Computer Science, University of North Texas, Denton, TX (1991).

50. Horty, J.F., Thomason, R.H., and Touretzky, D.S., A skeptical theory of inheri-
tance in nonmonotonic semantic networks, in: Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, WA (1987) 358-363.

51. Horty, J.F., Thomason, R.H., and Touretzky, D.S., A skeptical theory of in-
heritance in nonmonotonic semantic networks, Artificial Intelligence 42 (1990)
311-348.

52. Hou, B.H., Togashi, A., and Noguchi, S., Generalized predicate completion and
its relation to circumscription, Journal of Japanese Society for Artificial Intelli-
gence 5 (3) (1990) 343-353.

53. Kleene, S.C., Introduction to Metamathematics (Van Nostrand, New York, 1952).

54. Konolige, K., On the relation between default and autoepistemic logic, Artificial
Intelligence 35 (1988) 343-382.

55. Kowalski, R.A., Predicate logic as a programming language, in: Information
Processing: Proceedings of the IFIP-74, Stockholm, North Holland (1974) 569-
574.

56. Kowalski, R.A., Algorithm = logic + control, Communications of the ACM 22
(7) (1979) 424-436.

57. Kowalski, R.A., Logic for Problem Solving (North-Holland, Amsterdam, 1979).

58. Kowalski, R.A. and Sadri, F., Logic programs with exceptions, New Generation

167

Computing 9 (3,4) (1991) 387-400.

59. Levesque, H.J., All I know: An abridged report, in: Proceedings of the Sixth
National Conference on Artificial Intelligence, Seattle, WA (1987) 426-431.

60. Levesque, H.J., All I know: A study in autoepistemic logic, Artificial Intelligence
42 (1990) 263-309.

61. Li, H.L. and Yang, C.C., Abductive reasoning by constructing probabilistic de-
duction graphs for solving the diagnosis problem, Decision Support Systems 7
(1991) 121-131.

62. Li, H.L., Yang, C.C., and Horng, W.B., Probabilistic deductive and abductive
reasoning by using probabilistic deduction graphs and integer programming, in:
Proceedings of the Fourth International Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems, Kauai, Hawaii (1991)
618-627.

63. Lifschitz, V., Computing circumscription, in: Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, Las Angeles, CA (1985)
121-127.

64. Lifschitz, V., Pointwise circumscription: Preliminary report, in: Proceedings of
the Fifth National Conference on Artificial Intelligence, Philadelphia, PA (1986)
406-410.

65. Lifschitz, V., Between circumscription and autoepistemic logic, in: Proceedings
of the First International Conference on Principles of Knowledge Representation,
Toronto, Ontario, Canada (1989) 235-244.

66. Lin, F., Reasoning in the presence of inconsistency, in: Proceedings of the Sixth
National Conference on Artificial Intelligence, Seattle, WA (1987) 139-143.

67. Lloyd, J.W., Foundations of Logic Programming (Springer-Verlag, Berlin, 1987).

68. Lobo, J., Minker, J., and Rajasekar, A., Weak completion theory for non-Horn
programs, in: Logic Programming: Proceedings of the Fifth International Con-
ference (MIT Press, Cambridge, MA, 1988) 828-842.

69. Lobo, J., Minker, J., and Rajasekar, A., Extending the semantics of logic pro-
grams to disjunctive logic programs, in: Logic Programming: Proceedings of the
Sixth International Conference (MIT Press, Cambridge, MA, 1989) 255-267.

70. McCarthy, J., Circumscription—A form of non-monotonic reasoning, Artificial
Intelligence 13 (1980) 27-39.

71. McCarthy, J., Applications of circumscription to formalizing common-sense knowl-
edge, Artificial Intelligence 28 (1986) 89-116.

72. McDermott, D., Nonmonotonic logic II: Nonmonotonic modal theories, Journal
of the ACM 29 (1) (1982) 33-57.

168

73. McDermott, D. and Doyle, J., Non-monotonic logic I, Artificial Intelligence 13
(1980) 41-72.

74. Michalski, R.S., A theory and methodology of inductive learning, in: R.S.
Michalski et al. (Eds.), Machine Learning (Tioga Publishing, Palo Alto, CA,
1983) 83-129.

75. Minker, J., On indefinite databases and the closed world assumption, in: Pro-
ceedings of the Sixth Conference on Automated Deduction, LNCS 138 (Springer-
Verlag, Berlin, 1982) 292-308.

76. Minker, J., Deductive databases: An overview of some alternative theories, in:
Z.W. Ras and M. Zemankova (Eds.), Proceedings of the Second International
Symposium on Methodologies for Intelligent Systems, Charlotte, NC (North-
Holland, Amsterdam, 1987) 148-158.

77. Minker, J. (Ed.), Foundations of Deductive Databases and Logic Programming
(Morgan Kaufmann Publishers, Los Altos, CA, 1988).

78. Minker, J., Perspectives in deductive databases, Journal of Logic Proqramminq
5 (1) (1988) 33-60.

79. Minker, J., Toward a foundation of disjunctive logic programming, in: Logic
Programming: Proceedings of the North American Conference 1989 (MIT Press,
Cambridge, MA, 1989) 1215-1235.

80. Minker, J. and Perlis, D., Applications of protected circumscription, in: Proceed-
ings of the Seventh International Conference on Automated Deduction, LNCS
170 (Springer-Verlag, Berlin, 1984) 414-425.

81. Minker, J. and Perlis, D., Protected circumscription, in: Proceedings of AAAI
Workshop on Non-Monotonic Reasoning, New Paltz, NY (1984) 337-343.

82. Minker, J. and Perlis, D., Computing protected circumscription, Journal of Logic
Programming 2 (4) (1985) 235-249.

83. Minsky, M., A framework for representing knowledge, in: P.H. Winston (Ed.),
The Psychology of Computer Vision (McCraw-Hill Book Company, New York,
1975) 211-277.

84. Moore, R.C., Semantical considerations on nonmonotonic logic, Artificial Intel-
ligence 25 (1985) 75-94.

85. Morris, P.H., Curing anomalous extensions, in: Proceedings of the Sixth National
Conference on Artificial Intelligence, Seattle, WA (1987) 437-442.

86. Morris, P.H., The anomalous extension problem in default reasoning, Artificial
Intelligence 35 (1988) 383-399.

87. Morris, P.H., Autoepistemic stable closures and contradiction resolution, in:
Proceedings of the Second International Workshop on Non-Monotonic Reason-

169

ing, LNAI 346 (Springer-Verlag, Berlin, 1989) 60-73.

88. Munoz, R.A. and Yang, C.C., Using normal deduction graphs in default reason-
ing, in: Proceedings of the Sixth International Symposium on Methodologies for
Intelligent Systems (North-Holland, New York, 1991).

89. Nilsson, N.J., Probabilistic logic, Artificial Intelligence 28 (1986) 71-87.

90. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference (Morgan Kaufmann Publishers, San Mateo, CA, 1988).

91. Perlis, D., Autocircumscription, Artificial Intelligence 36 (1988) 223-236.

92. Pimentel, S.G. and Cuadrado, J.L., A truth maintenance system based on stable
models, in: Logic Programming: Proceedings of the North American Conference
1989 (MIT Press, Cambridge, MA, 1989) 274-290.

93. Plumer, L., Termination Proofs for Logic Programs (Springer-Verlag, Berlin,
1990).

94. Poole, D., A logical framework for default reasoning, Artificial Intelligence 36
(1988) 27-47.

95. Przymusinska, H. and Przymusinski, T.C., Weakly perfect model semantics for
logic programs, in: Logic Programming: Proceedings of the Fifth International
Conference (MIT Press, Cambridge, MA, 1988) 1106-1120.

96. Przymusinski, T.C., An algorithm to compute circumscription. Artificial Intel-
ligence 38 (1989) 49-73.

97. Przymusinski, T.C., Non-monotonic formalisms and logic programming, in: Logic
Programming: Proceedings of the Sixth International Conference (MIT Press,
Cambridge, MA, 1989) 655-674.

98. Quilian, R., Semantic memory, in: M. Minsky (Ed.), Semantic Information
Processing (MIT Press, Cambridge, MA, 1968) 216-270.

99. Rajasekar, A., Lobo, J., and Minker, J., Weak generalized closed world assump-
tion, Technical Report CS-TR-1992, Department of Computer Science, Univer-
sity of Maryland, College Park (1987).

100. Rajasekar, A., Lobo, J., and Minker, J., Skeptical reasoning and disjunctive
programs, in: Proceedings of the First International Conference on Principles
of Knowledge Representation and Reasoning, Toronto, Ontario, Canada (1989)
349-356.

101. Rajasekar, A. and Minker, J., A stratification semantics for general disjunctive
programs, in: Logic Programming: Proceedings of the North American Confer-
ence 1989 (MIT Press, Cambridge, MA, 1989) 573-586.

102. Raphael, B., SIR: A computer program for semantic information retrieval, in:

170

M. Minsky (Ed.), Semantic Information Processing (MIT Press, Cambridge,
MA, 1968) 33-134.

103. Reinfrank, M., Dressier, O., and Brewka, G., On the relation between truth
maintenance and autoepistemic logic, in: Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, Detroit, MI (1989) 1206-1212.

104. Reinfrank, M. and Freitag, H., Rules and justifications: A uniform approach to
reason maintenance and non-monotonic inference, in: Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems 1988, Tokyo, Japan
(1988) 439-446.

105. Reiter, R., On closed world data bases, in: H. Gallaire and J. Minker (Eds.),
Logic and Data Bases (Plenum Press, New York, 1978) 55-76.

106. Reiter, R., A logic for default reasoning, Artificial Intelligence 13 (1980) 81-132.

107. Reiter, R., Nonmonotonic reasoning, in: Annual Review of Computer Science,
volume 2 (Annual Reviews Inc., Palo Alto, CA, 1987) 147-186.

108. Reiter, R., and Criscuolo, G., Some representational issues in default reasoning,
Journal of Comput. Math. Appl. 9 (1983) 1-13, (Special Issue on Computa-
tional Linguistics).

109. Roberts, R.B. and Goldstein, I.P., The FRL manual, Technical Report AI Memo
409, MIT?, Cambridge, MA (1977).

110. Robinson, J. A., A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM 12 (1) (1965) 23-41.

111. Rodi, W., A new algorithm for truth maintenance, in: AI Systems in Govern-
ment (1989).

112. Roussel, P., PROLOG: Manuel de Reference et d'Utilization, Groupe d'Intelligence
Artificielle, Universite d'Aix-Marseille, Marseille, France (1975).

113. Schubert, L.K., Extending the expressive power of semantic networks, Artificial
Intelligence 7 (1976) 163-198.

114. Shepherdson, J.C., Negation as failure: A comparison of Clark's completed data
base and Reiter's closed world assumption, Journal of Logic Programming 1 (1)
(1984) 51-79.

115. Shepherdson, J.C., Negation as failure II, Journal of Logic Programming 2 (3)
(1985) 185-202.

116. Shepherdson, J.C., Negation in logic programming, in: J. Minker (Ed.), Founda-
tions of Deductive Databases and Logic Programming (Morgan Kaufmann Pub-
lishers, Los Altos, CA, 1988) 19-88.

117. Shoham, Y., Chronological ignorance: Time, nonmonotonicity, necessity and

171

causal theories, in: Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, PA (1986) 389-393.

118. Shvarts, G., Autoepistemic modal logics, in: Proceedings of the Third Conference
on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA (1990)
97-109.

119. Stallman, R. and Sussman, G.J., Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis, Artificial Intelli-
gence 9 (1977) 135-196.

120. Stein, L.A., Skeptical inheritance: Computing the intersection of credulous ex-
tensions, in: Proceedings of the Eleventh International Joint Conference on Ar-
tificial Intelligence, Detroit, MI (1989) 1153-1158.

121. Subrahmanian, V.S. and Minker, J., Completion semantics for general and dis-
junctive logic programs, in: Proceedings of the Fifth International Symposium on
Methodologies for Intelligent Systems (North-Holland, New York, 1990) 545-552.

122. Togashi, A., Hou, B.H., and Noguchi, S., Generalized predicate completion,
in: Proceedings of the International Conference on Knowledge Based Computer
Systems, LNAI 444 (Springer-Verlag, Berlin, 1989) 286-295.

123. Togashi, A. and Noguchi, S., Prioritized predicate completion, in: Pacific Rim
International Conference on Artificial Intelligence '90, Nagoya, Japan (1990).

124. Touretzky, D.S., Implicit ordering of defaults in inheritance systems, in: Pro-
ceedings of the National Conference on Artificial Intelligence, Austin, TX (1984)
322-325.

125. Touretzky, D.S., The Mathematics of Inheritance Systems (Pitman Publishing,
London, 1986).

126. Touretzky, D.S., Horty, J.F., and Thomason, R.H., A clash of intuitions: The
current state of nonmonotonic multiple inheritance systems, in: Proceedings of
the Tenth International Joint Conference on Artificial Intelligence, Milano, Italv
(1987) 476-482.

127. Ullman, J.D., Principles of Database and Knowledge-based Systems, volume I
(Computer Science Press, Rockville, MD, 1988).

128. van Emden, M.H. and Kowalski, R.A., The semantics of predicate logic as a
programming language, Journal of the ACM 23 (4) (1976) 733-742.

129. Van Gelder, A., Negation as failure using tight derivations for general logic
programs, in: J. Minker (Ed.), Foundations of Deductive Databases and Logic
Programming (Morgan Kaufmann Publishers, Los Altos, CA, 1988) 149-176.

130. Van Gelder, A., Ross, K., and Schlipf, J.S., Unfounded sets and well-founded
semantics for general logic programs: Extended abstract, in: Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

172

Systems, Philadelphia, PA (1989) 221-230.

131. Woods, W.A., What's in a link: Foundations for semantic networks, in: D.G.
Bobrow and A. Collins (Eds.), Representation and Understanding: Studies in
Cognitive Science (Academic Press, New York, 1975) 35-82.

132. Yahya, A. and Henschen, L.J., Deduction in non-Horn databases, Journal of
Automated Reasoning 1 (1985) 141-160.

133. Yang, C.C., Relational Databases (Prentice-Hall, Englewood Cliffs, NJ, 1986).

134. Yang, C.C., An algorithm for logically deducing Horn clauses and processing
logic queries, International Journal of Pattern Recognition and Artificial Intel-
ligence 1 (1) (1987) 157-168.

135. Yang, C.C., Extending deduction graphs for inferring and redundancy-checking
function-free rules, in: The Second International Symposium on Methodologies
for Intelligent Systems, Charlotte, NC (1987) presented at the Colloquial Pro-
gram.

136. Yang, C.C., Deduction graphs: An algorithm and applications, IEEE Transac-
tions on Software Engineering 15 (1) (1989) 60-67.

137. Yang, C.C., Chen, J.J.Y., and Chau, H.L., Algorithms for constructing min imal
deduction graphs, IEEE Transactions on Software Engineerinq 15 (6) (1989)
760-770. W V '

138. You, J.H. and Li, L., Supported circumscription and its relation to logic program-
ming with negation, in: Logic Programming: Proceedings of the North American
Conference 1989 (MIT Press, Cambridge, MA, 1989) 291-309.

139. Zadeh, L.A., PRUF—A meaning representational language for natural languages,
in: E.H. Mamdani and B.R. Gaines (Eds.), Fuzzy Reasoning and Its Applications
(Academic Press, New York, 1981) 1-66.

140. Zadeh, L.A., The role of fuzzy logic in the management of uncertainty in expert
systems, Fuzzy Sets and Systems 11 (1983) 199-227, also in: M.M. Gupta et al.
(Eds.), Approximate Reasoning in Expert Systems (North-Holland, Amsterdam,
1985) 3-31.

141. Zadeh, L.A., Commonsense and fuzzy logic, in: N. Cercone and G. McCalla
(Eds.), The Knowledge Frontier: Essays in the Representation of Knowledqe
(Springer-Verlag, Berlin, 1987) 103-136.

