149 research outputs found

    Language-Based Data Sharing in Web Applications

    Get PDF
    Cloud development and virtualization of applications is crucially becoming the common practice in the software engineering industry. Many systems and database tools are available to support applications with many instances and views, but all the orchestration of data and functionality in the so-called multi-tenant applications comes with a high development and maintenance cost. Due to the high costs of developing and maintaining such applications, there is an increasing need for languages and tools that support the gradual development of software for a highly shared environment, at the developer and user level. We extend a typed, reactive and incremental programming environment and language with parameterized modules that increase application modularity, with lenses that provide a (filtered) data sharing mechanism between modules, and the (dynamic) verification of module access conditions to implement data privacy. The combination of these mechanisms is a safe and powerful mechanism to design and evolve cloud and web applications. We present a pragmatic programming language supported by a deployed prototype where several examples of applications illustrate this new programming paradigm. We also provide a largerweb application example as a means of showing how the combination of the introduced mechanisms allows for the development of multi-tenant applications, and to compare it against implementations in modern frameworks

    Owl: Compositional Verification of Security Protocols via an Information-Flow Type System

    Get PDF
    Computationally sound protocol verification tools promise to deliver full-strength cryptographic proofs for security protocols. Unfortunately, current tools lack either modularity or automation. We propose a new approach based on a novel use of information flow and refinement types for sound cryptographic proofs. Our framework, Owl, allows type-based modular descriptions of security protocols, wherein disjoint subprotocols can be programmed and automatically proved secure separately. We give a formal security proof for Owl via a core language which supports standard symmetric and asymmetric primitives, Diffie-Hellman operations, and hashing via random oracles. We also implement a type checker for Owl along with a prototype extraction mechanism to Rust, and evaluate it on 14 case studies, including (simplified forms of) SSH key exchange and Kerberos

    SDN Access Control for the Masses

    Full text link
    The evolution of Software-Defined Networking (SDN) has so far been predominantly geared towards defining and refining the abstractions on the forwarding and control planes. However, despite a maturing south-bound interface and a range of proposed network operating systems, the network management application layer is yet to be specified and standardized. It has currently poorly defined access control mechanisms that could be exposed to network applications. Available mechanisms allow only rudimentary control and lack procedures to partition resource access across multiple dimensions. We address this by extending the SDN north-bound interface to provide control over shared resources to key stakeholders of network infrastructure: network providers, operators and application developers. We introduce a taxonomy of SDN access models, describe a comprehensive design for SDN access control and implement the proposed solution as an extension of the ONOS network controller intent framework

    Towards a formally designed and verified embedded operating system: case study using the B method

    Get PDF
    The dramatic growth in practical applications for iris biometrics has been accompanied by relevant developments in the underlying algorithms and techniques. Along with the research focused on near-infrared images captured with subject cooperation, e orts are being made to minimize the trade-o between the quality of the captured data and the recognition accuracy on less constrained environments, where images are obtained at the visible wavelength, at increased distances, over simpli ed acquisition protocols and adverse lightning conditions. At a rst stage, interpolation e ects on normalization process are addressed, pointing the outcomes in the overall recognition error rates. Secondly, a couple of post-processing steps to the Daugman's approach are performed, attempting to increase its performance in the particular unconstrained environments this thesis assumes. Analysis on both frequency and spatial domains and nally pattern recognition methods are applied in such e orts. This thesis embodies the study on how subject recognition can be achieved, without his cooperation, making use of iris data captured at-a-distance, on-the-move and at visible wavelength conditions. Widely used methods designed for constrained scenarios are analyzed
    • …
    corecore