
Tiago Delfim Parada Gonçalves Queijo Lopes

Bachelor of Computer Science and Engineering

Language-Based Data Sharing in Web
Applications

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Ricardo Viegas da Costa Seco,
Assistant Professor, NOVA University of Lisbon

Examination Committee

Chairperson: Sérgio Duarte, NOVA University of Lisbon
Raporteur: Francisco Martins, University of Lisbon

Member: João Costa Seco, NOVA University of Lisbon

August, 2017

Language-Based Data Sharing in Web Applications

Copyright © Tiago Delfim Parada Gonçalves Queijo Lopes, Faculty of Sciences and Tech-

nology, NOVA University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this disserta-

tion through printed copies reproduced on paper or on digital form, or by any other

means known or that may be invented, and to disseminate through scientific reposito-

ries and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

I would like to dedicate my dissertation work to my family,
friends, and professors that helped me throughout the last five
years. A special gratitude to my parents Leopoldo and Lurdes

Lopes for their unfailing support and continuous
encouragement, and to my best friend João Augusto for his

friendship over the years.

Acknowledgements

First, I would like to thank my adviser, Prof. João Costa Seco, for his guidance and support

during the elaboration of this thesis. I would also like to acknowledge Nuno Martins,

Bernardo Albergaria, and Guilherme Rito for their contributions to this thesis.

I would like to thank my colleagues, friends, and professors that helped me through-

out the course, and a special thanks to my best friend João Augusto for his continuous

support and friendship.

Finally, I must express my very profound gratitude to my parents for providing me

with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would

not have been possible without them. Thank you.

vii

Abstract

Cloud development and virtualization of applications is crucially becoming the common

practice in the software engineering industry. Many systems and database tools are

available to support applications with many instances and views, but all the orchestration

of data and functionality in the so-called multi-tenant applications comes with a high

development and maintenance cost. Due to the high costs of developing and maintaining

such applications, there is an increasing need for languages and tools that support the

gradual development of software for a highly shared environment, at the developer and

user level.

We extend a typed, reactive and incremental programming environment and lan-

guage with parameterized modules that increase application modularity, with lenses that

provide a (filtered) data sharing mechanism between modules, and the (dynamic) ver-

ification of module access conditions to implement data privacy. The combination of

these mechanisms is a safe and powerful mechanism to design and evolve cloud and web

applications.

We present a pragmatic programming language supported by a deployed prototype

where several examples of applications illustrate this new programming paradigm. We

also provide a larger web application example as a means of showing how the combination

of the introduced mechanisms allows for the development of multi-tenant applications,

and to compare it against implementations in modern frameworks.

Keywords: Multi-tenant Applications, Data Isolation, Data Privacy, Data Sharing, Pro-

gramming Lenses

ix

Resumo

Desenvolvimento na cloud e virtualização de aplicações está, crucialmente, a tornar-se a

prática comum na indústria de engenharia de software. Existem muitos sistemas e ferra-

mentas de bases de dados para suportar aplicações com muitas instâncias e vistas, mas

toda a orquestração de funcionalidade e dados nas chamadas aplicações multi-tenant

tem um preço alto no desenvolvimento das aplicações e nos custos de manutenção, exis-

tindo assim uma crescente necessidade de linguagens e ferramentas que suportem o

desenvolvimento gradual de software para um ambiente altamente partilhado ao nível

do programador e do utilizador.

Estendemos uma linguagem tipificada, reativa, incremental e respetivo ambiente de

programação com módulos parametrizados que aumentam a modularidade das aplica-

ções, com lenses que fornecem um mecanismo (filtrado) de partilha de dados entre mó-

dulos, e com verificação dinâmica de condições de acesso a módulos para implementar

privacidade de dados. A combinação dos mecanismos enunciados é um mecanismo forte

e seguro de desenhar e evoluir aplicações para a cloud e web.

Apresentamos uma linguagem de programação pragmática, suportada por um pro-

tótipo deployed com diversos exemplos de pequenas aplicações para ilustrar este novo

paradigma de programação. Proporcionamos também uma aplicação web de maior di-

mensão com o intuito de mostrar como a combinação dos mecanismos enunciados permi-

tem desenvolver aplicações multi-tenant e comparar com implementações em frameworks
modernas.

Palavras-chave: Aplicações Multi-Tenant, Isolamento de dados, Privacidade de dados,

Partilha de dados, Programação com lentes

xi

Contents

Acronyms xv

1 Introduction 1

1.1 Reactive and Incremental Language . 2

1.1.1 Runtime Support System . 3

1.2 Approach . 5

1.3 Contributions . 7

1.4 Structure of the Document . 7

2 Language-Based Model 9

2.1 Base Language . 9

2.2 Sessions and Authentication . 11

2.3 Modules . 15

2.3.1 Lenses and Imports . 15

2.3.2 Module Parameterization . 22

2.3.3 Access conditions . 25

2.3.4 Inheritance . 26

2.3.5 Module Nesting . 30

2.4 Syntax . 34

3 Implementation Challenges 37

3.1 Language . 37

3.2 Architecture . 38

3.3 IDE . 39

4 Related Work 43

4.1 Basic Session Mechanisms . 43

4.1.1 Cookies and tokens . 43

4.1.2 Authentication . 44

4.1.3 Session Mechanisms . 44

4.1.4 Analysing Session Mechanisms . 46

4.2 Related Frameworks . 46

4.2.1 WebDSL . 47

xiii

CONTENTS

4.2.2 Meteor . 52

4.2.3 Opa Language . 55

4.2.4 Yesod . 57

4.2.5 Data Privacy in Current Frameworks 64

4.3 Programming with Lenses . 65

4.3.1 Boomerang . 66

5 Validation 69

5.1 Authentication . 70

5.2 Simple Wall Application . 70

5.3 TodoMVC Multi-Group . 72

5.4 Conclusions . 73

6 Final Remarks 75

6.1 Future Work . 76

Bibliography 79

Webography 81

A Seed Data for the To-do Application 83

A.1 Users Seed Data . 83

A.2 Groups Seed Data . 84

B Code for Developed Applications 85

B.1 Simple Authentication . 85

B.2 Simple Wall Application in Meteor . 86

B.3 Simple Groups Wall Application in Meteor 88

B.4 Simplified TodoMVC . 90

B.5 TodoMVC for Groups in Meteor . 93

B.6 Full TodoMVC application for groups of users 101

xiv

Acronyms

API Application Programming Interface.

CSS Cascading Style Sheets.

DDP Distributed Data Protocol.

GHC Glasgow Haskell Compiler.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

JS JavaScript.

MTA Multi-Tenant Application.

QQ QuasiQuotes.

QRcode Quick Response Code.

RAM Random Access Memory.

REPL Read–Eval–Print Loop.

REST Representational State Transfer.

SQL Structured Query Language.

SSL Secure Sockets Layer.

TCP Transmission Control Protocol.

TH Template Haskell.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

USID Unique Session Identifier.

xv

C
h
a
p
t
e
r

1
Introduction

Cloud development and virtualization of applications is becoming a crucial common

practice in the software engineering industry [Vel+10; You+11]. Software-as-a-Service

applications have become increasingly popular within the cloud [SR11; Tsa+14]. The de-

velopment of these customizable Mutli-Tenant Applications (MTAs), increases the reuse

of code, but demands developer skills and attention to ensure data separation and pri-

vacy between users and tenants [Bez+10]. There are many tools and frameworks that

work at the system and database levels to help support many instances and views of an

application, as well as share and replicate databases [MK11; Rod+12]. The use of virtu-

alization infrastructures like the Amazon AWS containers [Ama] is widely accepted, and

heavily based on smart system management and virtual configuration tools. However,

application instances are many times separate machines with explicit sharing and coordi-

nation code. The amount of complex hand-written code that keeps data and functionality

separated comes with a high development, testing, validation and maintenance cost. This

long development process is prone to errors, and as the application scales so does the

chance for errors.

It is important to use sophisticated language based approaches in order to validate

data separation between users and tenants. But, more importantly, there is an increas-

ing need for languages and tools that support the gradual development of software for

a highly shared environment, both at the developer and user level. Additionally, there

should be language based mechanisms for defining (and validating) single user applica-

tions and then transform them, by adding only user management code, to a context of a

multi-user application.

In this thesis we build on top of a typed, reactive and gradual programming language

and the corresponding programming environment. The core language allows the defini-

tion of a set of data variables and active expressions associated to public names. It allows

1

CHAPTER 1. INTRODUCTION

for a type safe redefinition of a data variable or method, as well as the redefinition of the

type of an expression. This is obtained by keeping all data dependencies between names

and preventing changes to propagate erroneously through the dependency graph.

We extend the language with a module abstraction to isolate data and functionality

and module mechanisms that map to core language constructs. We introduce module

mechanisms such as: parameterization to index the isolated data and functionality; nest-

ing to create module hierarchies with role based development in mind; guard condition

mechanism to dynamically verify module access conditions and implement data privacy;

and inheritance to give modules full access to inherited modules. Data sharing is sup-

ported by lens [Boh+06; Hof+15; Ste15] based filters and sliced data sharing mechanisms

between modules. With a language-based approach, the incremental and reactive proper-

ties of the core language are still present in the introduced abstractions. The combination

of the mechanisms that are presented in this thesis is a safe and powerful paradigm to

design and evolve cloud and web applications.

We present a pragmatic programming language supported by a deployed prototype

where several examples of applications illustrate this new programming paradigm. We

will show how authentication is easy to achieve, allowing the developer to build authen-

tication mechanisms from scratch and use them throughout the rest of the development

to validate data access dynamically. With this new paradigm we will build a large To-do

list application for groups of users to share tasks, with each user possibly having an ad-

ministrator role in a group. Each user will also be able to filter the tasks to customize

his own view. Traits like role based development, user tailored views, and group shared

information are multi-tenant traits which we want to address with the combination of

the introduced mechanisms. With this application we will show how the introduced

language abstractions speed up development, and simplify code. We will also compare

with modern frameworks with smaller examples to benchmark our solution.

1.1 Reactive and Incremental Language

We start with a reactive and evolvable framework [Mat15] for web and cloud applications.

It provides operations for dealing with data and how it can be displayed, as well as how

the application behaves. Due to the reactive nature of the language [DS15], every change

made to the state of the application is propagated through a graph of dependencies,

giving the developer immediate feedback and keeping the state synchronized. Each

change made to an application is statically verified to guarantee that the application

evolves safely. These changes are automatically integrated with the running application

without disrupting the availability of the application. The combination of the reactive

and incremental aspects allow the developer to build applications in a live environment,

which greatly increases productivity in the development process.

There are three core operations in the language: var, def, and do. The purpose of the

var operation is to declare names that store the application’s persistent state. The def

2

1.1. REACTIVE AND INCREMENTAL LANGUAGE

operation declares named pure data transformations. Finally, the do operation performs

actions that change the state, and it is through this operation that the user interacts with

an application. Actions are introduced with the keyword action.

The reactive nature begins with the def operation, which builds a graph of depen-

dencies to propagate changes made to the state, keeping it always up-to-date. Pure data

transformations (def) are only modified through the propagation of changes, and vari-

ables (var) through actions.

1 var x = 2
2 def square = x * x
3 def setX y = action { x := y }
4 def c a l c =
5 <div>
6 <p>(x ++ "^2 = " ++ square)</p>
7 <input type="number" id=" newValue " value=x />
8 <button doaction =(setX #newValue)>
9 " Calculate square "

10 </button>
11 </div>

Figure 1.1: Square calculator example and the associated data dependencies graph

To help further understand how to use the language, fig. 1.1 illustrates how a simple

square number calculator can be implemented. This example defines four names: x,

setX, square, and calc. x is a state variable initialized with the number 2, and it will

store the number that we wish to square. square is a pure data transformation storing

the result of the square of x. setX creates an action for modifying the state stored by x.

Since square depends on x, changing x updates the value of square, thus reflecting the

desired calculation of the square of a given number. calc defines an Hypertext Markup

Language (HTML) document in which we display the current value stored in x, and the

current value of the square of x stored in square. To provide a new number we create

an input in the document with a specific id, newValue, which we can then use to execute

the setX action with a button. The action is given the argument #newValue which refers

to the input with the corresponding id attribute. Because the document is also a pure

data transformation, it will be updated every time that the state changes in one of the

dependencies.

1.1.1 Runtime Support System

The framework is supported by a runtime system [Mat15] with three main components:

• Interpreter – parses, verifies, evaluates, and executes code;

• Database – stores application data;

• Web Server – provides a Representational State Transfer (REST) Application Pro-

gramming Interface (API) for the interpreter, and pushes updates via WebSock-

ets [Webb]. The three most important routes of the REST API are described in

3

CHAPTER 1. INTRODUCTION

Table 1.1: REST API

Description HTTP Request
Get the value of a name GET /:name/:args

Execute code POST /
data: {

exp: code
}

Do actions PUT /
data: {

action: action,
args: {

arg: {
type: type,
value: value

}
},
env: {

name: value
}

}

Figure 1.2: Runtime Support System architecture [Mat15]

table 1.1.

Figure 1.2 illustrates the interactions between each component. A typical cycle of

interactions with between a client and the system starts with the client subscribing to a

workspace through WebSockets. When a client subscribes, the existing workspace data is

pushed to the client. The client then performs requests to the server REST interface to exe-

cute code in the interpreter, storing any new or updated data in the database. All changes

4

1.2. APPROACH

in the database are pushed back to all subscribed clients through the WebSockets.

1.2 Approach

To tackle the problems that were previously discussed, this thesis seeks to introduce

language abstractions that help design and evolve cloud and web applications that require

data to be shared in, and between, different isolated groups of users.

The development of authentication mechanisms require client identification. The

most common approach to client identification in modern frameworks is a server gen-

erated unique identifier stored on the client side. We adopt the same approach and

introduce a server generated Unique Session Identifier (USID) to enable the runtime sys-

tem to distinguish clients. In the context of the programming language, this identifier is

exposed through the reserved, string typed, keyword usid. The introduced USID allows

the developer to build authentication

Many languages like C [Cmo], and OCaml [Oca] employ a modular approach as a

means of isolating code to manage the complexity of programs, or to hide information.

Keeping in mind the modular approach of these languages, we introduce our module

abstraction as isolated environments where data is shared with all the users. To control

user access to modules we introduce guard conditions that can be defined with modules.

Modules are isolated environments, thus the sate outside of a module is not accessible

from inside the module. Most languages provide an import operation for their modular

approach, typically granting access to an exposed interface of getters and setters to manage

encapsulated data. Thus, we introduce an import operation with which the developer

can create views in a module over states defined in an outside environment. Import

operations are supported by lenses [Boh+06; Hof+15; Ste15], which provide bidirectional

transformations over a concrete state: a get transformation that given a concrete state

produces a view, and a put transformation updates a concrete state with an updated view.

We introduce different kinds of lenses to cover a wide range of filters for an imported

module state.

MTAs need to provide a different state of the same application to each tenant, so that a

tenant can manipulate its own state and not another tenant’s state. With this in mind, we

expand the introduced module abstraction with parameterization, allowing modules to be

defined with a set of parameters. The parameters act as an index for each defined module

state, thus transforming the module into an indexed module. Defined parameters can be

explicitly set as non-indexing parameters. An indexed module provides views of each

module state, with each view being accessed through the module indexing parameters

(index). To provide different views of the same state we apply the lens concept over a map

structure where each entry is a concrete state, and the lens moves to an entry with a given

index to apply the lens transformations. The composition of module parameterization

and module access conditions allow for the definition of strong access control by defining

conditions that depend on indexing parameters.

5

CHAPTER 1. INTRODUCTION

So far, the introduced abstractions provide tools to create authentication mechanisms

and applications that can quickly be transformed to provide an array of different appli-

cation views and states. However, role based development is not yet covered, which is a

very important trait of the MTAs. User roles follow a strict hierarchy of access, and are

commonly implemented in modern frameworks by explicitly defining roles and creating

rules associated with each role. In our approach, we allow modules to be defined inside

other modules as nested modules. Nested modules create a strict hierarchy of access by

inheriting the ancestors conditions and isolating the nested module state from them. Typ-

ically, after the definition of user roles in modern frameworks, the framework provides

a set of operations that helps determine at runtime if a user has a certain role or not. To

this end, we introduce a similar runtime conditional access check operation, that closely

resembles an If-Then-Else statement, called In-Then-Else. This operation checks if a given

user has access to a given module at runtime and depending on the result, either the

branch then or the branch else is evaluated. Combining nested modules, access conditions,

In-Then-Else, and import operations provides a powerful tool in the development of role

based applications, without explicit long hard-written queries for role definition and

access control.

Often, in a modular approach there is a need to access an already defined module

to avoid writing the same code multiple times. Commonly languages with a modular

approach provide some kind of inheritance or extension mechanism to deal with such

needs. In our approach, we introduce module inheritance to also tackle this problem.

Considering that our modular approach introduces module parameterization, to inherit

a module we have to consider that the module can be a parameterized module. With that

in mind, to inherit a module the heir must provide arguments to the inherited module

parameters. When a module inherits another module, the heir gains full access to the

inherited module state. To guarantee that access to the inherited module state is checked

when accessing an inherited state, the module access condition is also inherited.

Our approach is language based, with most of the introduced abstractions mapping

directly to core language constructs, thus keeping the incremental and reactive properties

of the core language. Additionally, our approach needs only a few modifications to the

type system keeping the guarantee of a sound development process, correct code, and

that no errors occur when the application is deployed.

The combination of the introduced abstractions gives the developer the ability to

develop complex reactive cloud and web applications in a live environment, where each

modification made to the application can be used right away. This improves the quality

of the development process with faster feedback and faster development, which would

otherwise be slower and harder in current web frameworks. To help the development

process, we provide a web-based live programming environment to give immediate and

continuous feedback to the developer and to simplify development with the module

abstraction by providing module navigation and inspection tools.

6

1.3. CONTRIBUTIONS

1.3 Contributions

This thesis has three main contributions:

• A set of language abstractions to simplify and speed up the safe development of

complex cloud and web applications that require shared and isolated data between

groups of users:

– Unique session identifiers to distinguish application users and enable authen-

tication;

– A module abstraction to express isolated environments of shared data;

– Module parameterization to allow data to be given in function of a set of

parameters;

– Module guard conditions to restrict user access to data in an environment;

– Module inheritance allowing modules to fully access other modules available

in their environment;

– Module nesting to express hierarchies with modules;

– A set of programming lenses to support an import mechanism that allows data

to be shared across isolated environments with reactive nature;

• A runtime support system capable of handling the new language abstractions that

provides a REST API and WebSockets that push updated data to clients;

• A web-based live programming environment that gives immediate and continuous

feedback, with tools to help development with the introduced language abstrac-

tions;

1.4 Structure of the Document

In this section we present a description of what each chapter in this document discusses.

• chapter 2 presents the detailed solution with the help of a growing example web

application;

• chapter 3 discusses the challenges offered by the implementation of the proposed

model in the extended language;

• chapter 4 studies existing solutions of current frameworks to understand how the

development of complex applications is achieved in those web frameworks;

• chapter 5 provides a benchmark of our implemented solution against an existing

framework, comparing performance, code succinctness, and effort in developing

MTAs;

7

CHAPTER 1. INTRODUCTION

• chapter 6 presents some final remarks about the proposed model and future work

that we believe could improve the work done in the context of this thesis.

8

C
h
a
p
t
e
r

2
Language-Based Model

In this chapter we present our programming language, extending [Mat15], and illustrated

in chapter 1. The fundamental language mechanisms introduced in our development

are session identity, parametric and extensible module introduction, a variety of data

sharing mechanisms, and access conditions to modules. We show how it is possible to

use and combine such mechanisms to create basic authentication features, and to build

different kinds of security layers, including shared, filtered, and isolated environments

in the context of a multi-user web application. In the following sections, we introduce

the syntax, semantics and some implementation details of the language using a running

example. Our example extends the de-facto standard benchmark for web technologies, the

TodoMVC project [Tod]. We add user authentication to the plain to-do list application,

and provide an implementation for sharing and managing task lists among groups of

users.

2.1 Base Language

In this section, we briefly overview the new language mechanisms. In the subsequent

sections, we give a more detailed explanation of each one of the introduced mechanisms

and how their composition can be used to provide more sophisticated patterns.

Session identity The ability to identify users is one of the basic requirements in most

web frameworks, and it is also the foundation on which authentication mechanisms are

built upon. We explicitly introduce this basic mechanism in the language through a

unique identifier for each connecting user (USID). The USID is denoted by the reserved

identifier usid.

9

CHAPTER 2. LANGUAGE-BASED MODEL

1 module Public {
2 var welcome = "Welcome"
3 }
4

5 module User<s t r i n g name , number age> with Public {
6 var msg = welcome@Public ++ " " ++ name
7 var myData = 0
8

9 module Adult when (age >= 18) {
10 import myData as data
11 def inc = action { data := data + 1 }
12 }
13 }

Listing 2.1: Module mechanisms

Module introduction Modules define hierarchical and isolated environments, allowing

for the explicit sharing of data between modules. Modules are defined through the module

definition constructs. For instance, listing 2.1 shows how modules can be defined. In the

example, we define the Adult module nested in the User module to create a hierarchy.

Data Sharing Expressions in a module are defined with relation to an environment,

which includes all definitions of that particular module. Hence, by default, the names in

a module’s outer context are inaccessible. In order to use names defined outside a module,

we can create a surrogate name, via an import operation. In listing 2.1, the Adult module

imports the myData name and uses the local alias data to define the action named inc.

An import operation defines a bidirectional view based on the well established concept

of lenses [Ste15]. The created view is bound to the data name, and is set over the state

variable myData outside the Adult module. Any changes on either end, are propagated

to the opposite end. For instance, the defined action inc increments the value of the

data name, thus any increment on the local alias data is propagated back to the original

myData name.

Module parameterization and access control We introduce module parameters as a

means of indexing a module state with relation to a set of parameters. In listing 2.1,

we define the User module with a set of parameters: name, and age. Thus, for each

combination of the parameters, there is a different associated msg, and myData state.

Accessing a module name is done through the REST API described in sections 1.1.1

and 3.2. For example, accessing the welcome name in the example is done with a GET
request to /Public/msg. To restrict access to a module we also introduce guard conditions

to the module definition constructs. In the example we define such a condition for the

Adult module, where access to the module is only granted for values of age greater than

18.

10

2.2. SESSIONS AND AUTHENTICATION

Module inheritance Module inheritance is introduced to allow modules to fully access

another module. Using names from the inherited module is done through module identi-

fiers, which are names appended to the module name with a @ symbol. The example in

listing 2.1 defines an inheritance of the module Public in the module User, allowing the

expression of msg to use the name welcome from the Public module.

2.2 Sessions and Authentication

Identification refers to the act of being able to state a person or thing’s identity, authentica-
tion is the process of confirming that identity [CC12]. Nowadays most web applications

need to identify devices in order personalize user experience, which they do by creating

sessions between the server and the client. To establish a session, the devices need to

first have an identity. To accomplish this, we introduced the Unique Session ID [Usi].

The USID is a server generated string token given to each unidentified device. Each

device is then responsible for storing the USID and sending it attached in future commu-

nications, thus establishing a session. An Internet browser, for example, uses Hypertext

Transfer Protocol (HTTP) Cookies [Kri01] to store the given USID. In the context of the

programming language, we expose the USID through the reserved keyword usid.

The introduction of the USID enables the server to identify users, thus allowing the

definition of authentication mechanisms in the language.

We want to build a simple username/password authentication mechanism where

each user has a password associated to him. The authentication process will require

the user to provide a name and a password. If the given login information matches

with the stored information the user is authenticated with the given name (assuming the

username/password combination is only known to the user). To build an authentication

mechanism like this, we need a collection of users and a store to register authenticated

users. The listing 2.2 shows the table users where the username/password combinations

are stored, and the table authenticatedUsers to track authenticated users by associating

the token of a user to a name. We populate the user storage with the data found in

appendix A.1.

In listing 2.3 we define our authentication function with two parameters, name and

password, which constitutes a login function. It first performs a selection action over

1 table users {
2 name : string ,
3 password : s t r i n g
4 }
5 table authent icatedUsers {
6 name : string ,
7 token : s t r i n g
8 }

Listing 2.2: Data stores for an authentication process

11

CHAPTER 2. LANGUAGE-BASED MODEL

1 def a u t h e n t i c a t e name password =
2 match
3 get user in users
4 where user . name == name and user . password == password
5 with
6 user : : r e s t =>
7 action {
8 i n s e r t {
9 name : name ,

10 token : usid
11 } into authent icatedUsers
12 }
13 | [] => action { }

Listing 2.3: Authentication process

1 def logout =
2 action {
3 delete user in authent icatedUsers
4 where user . token == usid
5 }
6

7 def authent ica ted id =
8 match
9 get user in authent icatedUsers

10 where user . token == id
11 with
12 user : : r e s t => t rue
13 | [] => f a l s e
14

15 def userFromId id =
16 match
17 get user in authent icatedUsers
18 where user . token == id
19 with
20 user : : r e s t => user . name
21 | [] => " "

Listing 2.4: Authentication page helpers

the users collection to retrieve a user with the given name/password combination, and

matches the result with either a non-empty collection, or an empty one. A non-empty

collection means that a user was found, and so an action associating the user to a token is

returned. If the matched collection is empty then no user was found and an empty action

is returned. The returned action can later be attached to a login button to execute it.

With the authentication mechanism created, we now want to create a reactive page

that shows a login form if the user is not authenticated, otherwise it shows the user name

and allows him to log out. To define this page we require some helper functions as seen

in the listing 2.4 for additional functionality. Respectively, the first provides an action to

create a logout button, the second is a function that checks if a given user is authenticated

and the last one retrieves the name associated with an authenticated user.

With the helper functions, and actions, in place we can create the page shown in

12

2.2. SESSIONS AND AUTHENTICATION

1 def page =
2 <div>
3 (i f not authent ica ted usid then
4 <div>
5 <div>
6 <input type=" t e x t " placeholder=" username " id="name"/>
7 <input type=" password " placeholder=" password " id=" password "/>
8 </div>
9 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>

10 </div>
11 e l s e
12 <div>
13 <h1>("Welcome " ++ userFromId usid)</h1>
14 <button doaction =(logout)> " Logout " </button>
15 </div >)
16 </div>

Listing 2.5: Authentication page

Figure 2.1: User authentication page Figure 2.2: Authenticated user page

listing 2.5. Figures 2.1 and 2.2 show a flow of user authentication in the created applica-

tion 1, where a user is authenticated with a password and the page reacts to the successful

operation by showing a welcome message with the user name.

Even thou the authentication process is successful, the application can only sustain

one authenticated user due to the shared global state in which the application is defined

and the nature of non-delayed expressions. This example is important to show how non-

delayed expressions, like the page, with a stored global value that is only re-evaluated

when a dependency is changed behave in a shared environment. In the example, the

page name depends on the authenticatedUsers collection through the authenticated

function which causes the page dependency on the state of the authenticatedUsers

store. The page evaluates either to a login page (fig. 2.1) or a simple user page (fig. 2.1)

depending on whether the user is authenticated or not when the expression is evalu-

ated. If a user authenticates with the correct credentials the user name is associated with

the given user USID in the authenticatedUsers store, which in turn causes the page

name to be re-evaluated for the user that requested the authenticate action. When,

for example, Alice authenticates with her credentials, the resulting updated state of the

page name will show the view in fig. 2.2 and any other subsequent request for the page

name will return the same stored value of fig. 2.2 for all users. At this point, if the

1The full example can be found at http://live-programming.herokuapp.com/dev/pP4ta, with the
application main page at http://live-programming.herokuapp.com/app/pP4ta/page.

13

http://live-programming.herokuapp.com/dev/pP4ta
http://live-programming.herokuapp.com/app/pP4ta/page

CHAPTER 2. LANGUAGE-BASED MODEL

1 def page token =
2 <div>
3 (i f not authent ica ted token then
4 <div>
5 <div>
6 <input type=" t e x t " placeholder=" username " id="name"/>
7 <input type=" password " placeholder=" password " id=" password "/>
8 </div>
9 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>

10 </div>
11 e l s e
12 <div>
13 <h1>("Welcome " ++ userFromId token)</h1>
14 <button doaction =(logout)> " Logout " </button>
15 </div >)
16 </div>

Listing 2.6: Authentication page through a function

logout action is requested by Alice, then the page will be re-evaluated back to show

fig. 2.1 and the authenticatedUsers store will be empty again. However, if instead of

Alice, a non authenticated user requests the logout action, it will not remove Alice from

the authenticatedUsers store due to the requesting USID not matching Alice’s USID.

Then, because the page still depends on the authenticatedUsers store, the page is re-

evaluated with the non authenticated user USID that requested the logout action, thus

resulting in the login page in fig. 2.1 while Alice remains authenticated according to the

authenticatedUsers store. Alternatively, when the page state is fig. 2.2, suppose the

non authenticated user could authenticate directly through the framework console. This

action would produce the same reaction, updating the authenticatedUsers store by as-

sociating the new authenticated user with his USID and in turn updating the dependent

page name, but in this case the resulting stored view would be similar to fig. 2.2 but with

the new authenticated user name while Alice is still authenticated.

With the behavior demonstrated in the previous example in mind, and since functions

are delayed expressions that store no value after being called, it is possible to define a

function that takes a USID argument and returns an HTML page. The parameter token

will then replace all USID occurrences in listing 2.5 as shown in listing 2.6. With the page

wrapped in a function with the USID as a parameter, when Alice requests the page with

her USID as the argument the page will be evaluated with her USID. If she successfully

authenticates, she will have a unique HTML page value refreshed only with the given

USID to reflect changes on the authenticatedUsers store. As a result of this approach,

only Alice will see the page in fig. 2.2 as expected, other non authenticated users can

call the page function with their own USID to get a unique page value with the view in

fig. 2.1 to be able to authenticate. This behavior duality between delayed expressions and

non-delayed expressions in a shared environment is a recurring, and important, issue

throughout this chapter.

14

2.3. MODULES

This approach 2 can then be applied to the rest of the application as we build it, that

is, every state being in function of the USID and/or other data. However, having users

provide the USID manually to execute a function that returns data is not safe and user

friendly since the user needs to find the Cookie storing the USID, and provide it explicitly.

In order to provide a better way of isolating a state of users and groups of users while

keeping the reactive properties of the language, illustrated in this example, we introduce

the explicit declaration of modules and associated mechanisms in the next sections.

2.3 Modules

All the declarations and data stored in each workspace in the Live Programming frame-

work are accessible to any user. To build web applications where data is shared but also

isolated within groups of users with different access conditions, we first need to express

isolated environments to contain data. We introduce modules as named environments

where the data declared in the module is shared, and all the names outside of a module are

inaccessible inside it. module Public { var x = 1 } defines a module where state variables

and pure data transformations can be declared. After a module is defined, we can add

or redefine names of a module using a module block operation. The module block starts

with the symbol @ followed by the module name. For example, @Public { var x = 2 }

allows names to be added or redefined for the Public module. Module definitions map

directly to var or def operations in the global environment. Each name defined in a

module is transformed by appending the module name with the symbol @. For instance,

the name x in the previous example, would be internally transformed to x@Public and

mapped to a var operation in the global environment.

Sensitive data such as the one used in our authentication example, should not be acces-

sible to every user of the application. Since modules isolate data, it would be safer to keep

the data stores, functions, and actions in the root environment of the work space, while

the application page stays isolated inside a module. But isolation means nothing outside

can be accessed. In order to access outside data, and possibly filter it, we introduced

a familiar mechanism of importing names which is described in detail in the following

sections.

2.3.1 Lenses and Imports

The import operation is used to create views over given named states that are defined

in a parent environment, allowing a module to access its data or filter it. By default the

views are named after the imported name.

Going back to our running authentication example, we can now achieve what was

established in section 2.3, keeping the data stores and functions outside a module while

2Working example of this approach can be found at http://live-programming.herokuapp.com/dev/
Ny7si.

15

http://live-programming.herokuapp.com/dev/Ny7si
http://live-programming.herokuapp.com/dev/Ny7si

CHAPTER 2. LANGUAGE-BASED MODEL

1 / / Data s t o r e s o f listing 2.2 with s e e d s from appendix A.1
2 / / A u t h e n t i c a t i o n f u n c t i o n o f listing 2.3
3 / / He lper f u n c t i o n s and a c t i o n s o f listing 2.4
4

5 module Public {
6 import a u t h e n t i c a t e
7 import authent ica ted
8 import userFromId
9 import logout

10

11 def page =
12 <div>
13 (i f not authent ica ted usid then
14 <div>
15 <div>
16 <input type=" t e x t " placeholder=" username " id="name"/>
17 <input type=" password " placeholder=" password " id=" password "/>
18 </div>
19 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>
20 </div>
21 e l s e
22 <div>
23 <h1>("Welcome " ++ userFromId usid)</h1>
24 <button doaction =(logout)> " Logout " </button>
25 </div >)
26 </div>
27 }

Listing 2.7: Importing outside names

the application page is defined inside a module. Assuming the already defined data

stores, functions, and actions, the listing 2.7 shows the intended result by importing the

four defined functions and actions that manipulate the data stores without exposing the

sensitive information to the module state.

We use an internal mechanism of lenses [Boh+06; Hof+15; Ste15] to support the

import operations. Imports map directly to def operations with the corresponding lens

value. A name defined with a def operation has reactive properties, which means that

the stored import lens retains the reactive properties. Lenses are views over a state that

allow bidirectional transformations between a set of inputs (concrete states), and a set of

outputs (abstract states). A lens is comprised of two main operations as shown in fig. 2.3:

• get: a forward transformation, from the concrete state to the abstract state;

• put: a backwards transformation that takes an old concrete state and updates it

with an updated abstract state;

It is also useful to have an operation that creates a concrete state from a given abstract

state without an original concrete state. This operation is called create. The create

operation can be achieved with the put operation by providing a default concrete state

instead of an old concrete state, and update it with a given abstract state.

16

2.3. MODULES

Figure 2.3: Lens get and put transformations [Dle]

We introduced a number of different kinds of lenses that support the most common

situations of importing and filtering data from a module to another, as well as use the

composition of lenses to build more complex data filters.

In the following sections, we will describe in detail the kind of lenses and lens compo-

sitions operations we adopted and implemented. For each kind of lens we show a small

example of the supported import operations.

2.3.1.1 Simple Lens

We introduce simple lenses to create direct abstract states for given named concrete states.

The original name is stored in the lens, allowing each operation to execute over it. The

available transformations of a simple lens are as follows:

• get: retrieves the current value of the original name;

• put: changes the current value in the original name to a new given value.

The simple lens supports the most basic import operation to view and modify a state

directly. Listing 2.8 shows an example of importing a name and defining an action to

change its state. In the example, the collection data is imported into the module Public,

and given a new name, pubData. If a new name is not given with the keyword as, the

name of the import defaults to the original name. We then define an action to insert a

new value into the imported name. The addData action concatenates the current value

in the data name (retrieved with the get operation) with the given n value. The result is

then stored in the data name with the put operation of the lens. The type system only

accepts lenses over names defined with var/def operations and imported names in the

closest outside environment of the module.

17

CHAPTER 2. LANGUAGE-BASED MODEL

1 var data = [1 , 2 , 3 , 4 , 5]
2

3 module Public {
4 import data as pubData
5

6 var addData n = action { i n s e r t n into pubData }
7 }

Listing 2.8: Simple name import

1 var data = [1 , 2 , 3 , 4 , 5]
2

3 module Public {
4 from n in data where n > 3
5 import n as pubData
6

7 var addData n = action { i n s e r t n into pubData }
8 }

Listing 2.9: Filtered import of a collection

2.3.1.2 Filtered Lens

The filtered lens is introduced to create a filtered abstract state of a given concrete state. In

this particular case, both the concrete state and the resulting abstract state are collections.

The abstract state is a collection consisting of all the elements in the concrete state that

satisfy the given predicate. The available transformations of a filtered lens are as follows:

• get: iterates over the concrete state with an accumulator collection which starts

empty, and each element that satisfies the given predicate is added to the accumu-

lator, which is then returned as the abstract state;

• put: changes the current value in the original name to a new given value.

Listing 2.9 shows an example of a filtering import. First, we define from n in data

to bind the name n to each element when iterating the data collection. The predicate,

where n > 3, matches elements in the data collection greater than 3. import n declares

that we want to import the each element as is.

In listing 2.9, the get operation returns the collection [4,5]. The addData action

produces the result the same way as the action in listing 2.8, which is also stored in the

name data through the put operation. Delete and update actions combine their filter

conditions with the import operation predicate in order to only delete elements pertinent

to the abstract state.

2.3.1.3 Filtered First Lens

The filtered first lens is introduced as an extension of the filtered lens in section 2.3.1.2,

except the resulting abstract state is an element of the original collection instead of a

18

2.3. MODULES

1 var data = [1 , 2 , 3 , 4 , 5]
2

3 module Public {
4 from n in data where n > 3
5 import f i r s t n as pubData
6 default 0
7

8 var changeData i = action { pubData := i }
9 }

Listing 2.10: Import first element of a filtered collection

collection of elements. The abstract state is the first element of the original collection

that satisfies the given predicate. Because of the possibility of no matching element, the

lens requires a given default value of the same type as the original collection elements.

The available transformations of a filtered first lens are as follows:

• get: the same selection as the filtered lens is executed, then if the resulting collec-

tion has elements, the first element is returned. Otherwise, if there is an already

stored value in the lens, the stored value is returned, alternatively the defined de-

fault value is returned;

• put: if the abstract collection is not empty, all the elements that satisfy the predicate

are updated with the new given value. Otherwise, the new value is stored in the

lens.

Listing 2.10 shows how we can import the first element matched in a filtered collection.

As the example shows, the import operation follows the almost the same structure as

the filtered lens in listing 2.9. With the exception being that, instead of importing all

elements matched, we import only the first match with the keyword first.

In listing 2.10, the get operation of the lens would return the value 4 in the example.

The action changeData, when executed, calls the put transformation described above

with the given result value of i. For example, if we execute the action with changeData 6,

the put operation would update all elements greater than 3 to 6. This behavior is due

to the fact that collections are iterated in lens transformations, that is, elements are not

accessed by position in the language, and so we adopted this solution in order to not

produce erroneous behavior. The data collection would be equal to [1,2,3,6,6], and

the get transformation would return the value 6. If, however, the filter was n > 5, the

get operation would return the default value 0 due to no matching elements. The given

default value does not satisfy the predicate because the condition might contain names

which can only be evaluated at run-time (like the USID), thus the lens cannot know if

the default value satisfies it. The adopted solution is safe, but doesn’t keep the user from

defining inconsistent imports with this lens. In this case, the action changeData 6 would

store the value 6 in the lens instead, meaning that subsequent get calls return the stored

19

CHAPTER 2. LANGUAGE-BASED MODEL

1 var data = { name : "App" , s e t t i n g s : [] }
2 var users = [{ name : " Al ice " , points : 18} , { name : " Bob " , points : 3 3 }]
3

4 module Public {
5 / / Simple l e n s c o m p o s i t i o n
6 import data . name as app
7

8 var change n = action { app := n }
9 }

10

11 module Game {
12 / / F i l t e r e d l e n s c o m p o s i t i o n
13 from user in users where user . points > 20
14 import user . name as topPlayers
15 default { name : "Dummy" , points : 21}
16

17 var addPlayer name = action { i n s e r t name into topPlayers }
18 }

Listing 2.11: Record field filtering with composed lenses

value 6. The value 6 is consistent with the predicate, but if we executed the action with the

argument 2, the stored value would be 2 even thou it is inconsistent with the condition.

2.3.1.4 Record Field Lens

In this section we introduce a type of lens to compose with simple and filtered lenses.

This lens makes clear that an import declaration is defined by a lens or composition of

lenses. Depending on the composition, the concrete state can be a record if composed

with a simple lens, or collection of records if composed with a filtered lens. The available

transformations of a record lens are as follows:

• get: first the composed lens get operation provides a result, and then, the record

lens extracts the given field. The extraction process depends on the result of the

composed lens. If the result is a record, the extracted field is returned as the abstract

state. If the result is a collection of records, the returned abstract state is a collection

of extracted fields.

• put: if the concrete state given by the composed lens is an object, then the field is

replaced with the new given value and the put operation of the composed lens is

fed the new object result. Otherwise, if the composed lens produces a collection

of records, then the field of each record is replaced with the given value, and the

resulting updated collection is put back with the put operation of the composed

lens.

Listing 2.11 shows an example of how these compositions can be defined with the

import operation. We defined two compositions with the record lens: a simple lens, and

a filtered lens.

20

2.3. MODULES

Simple lens composition The record lens composition with a simple lens is defined

just as a simple lens import in listing 2.8, but instead of importing the object as is we

import the given name field of the object, as seen in line 6 of listing 2.11. The record

lens concrete state is given by the simple lens abstract state of the record data name. In

the example, the get operation returns the "App" value. The action change calls the put

transformation of the record lens with the given n value, which creates the updated object

that is then given to the put operation of the simple lens.

Filtered lens composition The record lens composition with a filtered lens is defined

just as a filtered lens import in listing 2.9, but instead of importing each matching element

as is, we import the given name field, as seen in line 13 of listing 2.11. Additionally, the

default value{name: "Dummy", points: 21} is defined with the import operation. The

default value is needed when inserting new elements into the lens abstract state in order

to populate the rest of the fields in the new object. The record lens concrete state is given

by the filtered lens abstract state over the users collection, and each object field of the

filtered collection is extracted to build the abstract state. In the example, the imported

topPlayers name returns the collection ["Bob"]. The action addPlayer creates a new

object with the field name assigned the value of the name argument, and populates the

field points with the provided default value 21. The new object is then passed onto the

put transformation of the filtered lens, which inserts the object in the original collection.

2.3.1.5 Indexed Lens

Indexed lenses support the state in module parameterization, a mechanism that is ex-

plained in section 2.3.2. Indexed lenses are set over a map structure where each entry is a

concrete state, and the lens moves to an entry with a given index to apply the lens transfor-

mations. We introduce indexed lenses to index concrete states into as many abstract states

as the indexing key allows. Unlike the previously introduced lenses, indexed lenses store

the produced abstract states as concrete states for each given index, because producing

an undetermined number of abstract states for every get operation is potentially costly.

Each indexed lens is defined with a set of parameters which are used to produce an index

key for an abstract state. An index key is created by concatenating each given argument

into a string to access a unique abstract state, just as a map structure as seen in fig. 2.4.

A concrete state stored in an indexed lens is given by a default expression when defining

the indexed lens. The available transformations of indexed lenses are as follows:

• get: given a set of arguments, the lens combines them into a key, and the associated

abstract state is returned. If the key lookup doesn’t find an abstract state, the create

operation is used to store a new abstract state and return it;

• put: given an abstract state and a set of arguments, the lens combines the arguments

into a key and updates the abstract state in the associated entry;

21

CHAPTER 2. LANGUAGE-BASED MODEL

Figure 2.4: Indexed Lens structure

• create: the default expression, stored in the lens as the concrete state, is evaluated

for a given set of arguments and stored with the composed key in the associated

entry.

2.3.2 Module Parameterization

So far, modules isolate data in a shared environment giving a single state equal to all users.

In this section we introduce a parameterization mechanism to index modules. In an in-

dexed module, each state is indexed with a set of parameters defined with the module.

To index a state, we use the previously introduced indexed lenses in section 2.3.1.5. Each

name defined in a module, is mapped directly to a var, or def, operation as described

in section 2.3, but in an indexed module the value stored for each name is instead an

indexed lens. The concrete state (default expression) of an indexed lens is given by the de-

clared expression of a var, or def, commands and the lens index is given by the indexing

parameters of the module. With this, each declared expression can have different states

for different combinations of arguments. Listing 2.12 shows how module parameters can

be declared. Every parameter requires a type annotation, and only basic types (string,

number and boolean) are valid. A parameter can also be defined as a non-indexing param-

eter with the * character prepended to the parameter name. Non-indexing parameters

are not used to index a module state, thus they are also not used in indexing lenses of the

module. For example, in the module Room in listing 2.12, two users can access the same

room state while providing different names through the parameter name. Due to their

1 module Room<number room , s t r i n g *name> {
2 var message = "Welcome to room " ++ s t r room
3 }

Listing 2.12: Module defined with parameters

22

2.3. MODULES

non-indexing nature, the scope of non-indexing parameters is limited to mechanisms

that will be introduced later in sections 2.3.3 and 2.3.4. In contrast, the scope of indexing

parameters is the whole module.

In listing 2.12, we have a state variable message that depends on the indexing param-

eter room. The expression of the message is stored as the default value of an indexed lens.

When an index is accessed, the expression is evaluated with the provided arguments from

the request to the module state. The value is stored in the given index (formed with the

room argument), resulting in every room having a different message state.

When a dependency of an indexed lens changes, the reactive nature of the language

updates all stored values by re-evaluating the lens default expression for each index.

Because the index is constructed from the module arguments, each index is deconstructed

to populate the module parameters in the evaluation environment.

The USID, being itself an indexation of connecting users, is a prime candidate for

a parameter in modules to index module states for each user. We provide a language

syntactic sugar when defining a USID parameter to omit the type annotation, for example,

module User<string name, usid> { }. In the example we define the module User with

the USID as a parameter, which is internally transformed into a string usid parameter.

This creates an isolated environment for each user in the module User state. For safety,

when accessing a USID indexed module state, the server automatically populates the

module arguments with the user’s USID.

Recalling our running example application last expanded upon in listing 2.7, a prob-

lem was keeping the application from growing. The application wouldn’t allow for

multiple users to authenticate at the same time due to the fact that there was only one

state for the page. Indexing the Public module with the USID parameter provides each

user with an authentication page state with the USID as its index. This produces the

desired authentication application as seen in listing 2.6 where the page function was

made in function of a given token. This new approach keeps the USID safe, and the

page value does not need to be re-evaluated for each request by the same user due to

the nature of the indexed lens. Listing 2.13 redefines the module Public, created in list-

ing 2.7, using the USID as a parameter. The parameterization of the module, allows each

user to see the page evaluated with his own USID even when another user is authenti-

cated. As listing 2.13 shows, we use the lenses introduced in section 2.3.1.4 to replace

the previous userFromId imported function. Instead of using a function, now we import

the authenticated user name as currentUser. The new currentUser import filters the

authenticatedUsers collection with the user’s USID, and takes the name field of the first

record matched. Since the second branch of the page is only evaluated for authenticated

users, we are guaranteed to never show the default value of the currentUser.

With an authentication mechanism implemented 3 in our language we can start the

3A working example can be found in the workspace at http://live-programming.herokuapp.com/dev/
LsT5t with the authentication page at http://live-programming.herokuapp.com/app/LsT5t/Public/

page

23

http://live-programming.herokuapp.com/dev/LsT5t
http://live-programming.herokuapp.com/dev/LsT5t
http://live-programming.herokuapp.com/app/LsT5t/Public/page
http://live-programming.herokuapp.com/app/LsT5t/Public/page

CHAPTER 2. LANGUAGE-BASED MODEL

1 / / Data s t o r e s
2 / / A u t h e n t i c a t i o n f u n c t i o n
3 / / He lper f u n c t i o n s and a c t i o n s
4

5 module Public <usid> {
6 import a u t h e n t i c a t e
7 import authent ica ted
8 import logout
9 from user in authent icatedUsers where user . token == usid

10 import f i r s t user . name as currentUser
11 default { name : " " , token : " " }
12

13 def page =
14 <div>
15 (i f not authent ica ted usid then
16 <div>
17 <div>
18 <input type=" t e x t " placeholder=" username " id="name"/>
19 <input type=" password " placeholder=" password " id=" password "/>
20 </div>
21 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>
22 </div>
23 e l s e
24 <div>
25 <h1>("Welcome " ++ currentUser)</h1>
26 <button doaction =(logout)> " Logout " </button>
27 </div >)
28 </div>
29 }

Listing 2.13: Importing outside names

next step in our To-do list example application mentioned at the start of chapter 2.

24

2.3. MODULES

2.3.3 Access conditions

By default, a module state is accessible by any user. However, in a web application, it is

almost always required to have controlled access to a given state. For example, a user pro-

file is only accessible to an authenticated user, or a group profile to an authenticated user

that has access to the group. To tackle this need, we introduce a mechanism for modules

to test a given access condition and determine whether a user can access a module state

or not. We map this module condition directly to a wrapper delayed expression through

a function which takes a dummy parameter. This allows us to create a delayed expression

which can be evaluated for each request without storing state of the result, just by using

core language constructs.

Our growing To-do application requires controlled access to each group, thus we will

expand upon it as we further explain the access conditions mechanism. In section 2.3.2

we finished a page where the stored users from appendix A.1 can authenticate themselves.

Next, we will expand the application with a user page where the groups he can access are

listed using the group seed data from appendix A.2.

To set a module condition we introduced the when operator to modules, which takes

an expression that must have a boolean type. By default, a module defined without a

condition is given one with the true literal. The condition expression environment is

composed of the module’s parent environment and module parameters. Each request

to a module state must first evaluate its access condition and test if the result is true,

or false. As explained in section 2.3.2, accessing a module state requires the provision

of arguments for the module parameters, which populate the environment in which the

condition is tested. This guarantees that the evaluation of the condition has all the module

parameters in the environment.

Listing 2.14 shows the definition of an indexed module with an access condition, using

the previously declared authenticated function in section 2.2. The defined module User

1 module User<usid> when (authent ica ted usid) {
2 import logout
3 from user in authent icatedUsers
4 where user . token == usid
5 import f i r s t user . name as username
6 default { name : " " , token : " " }
7

8 def page =
9 <div>

10 <h1>(" User : " ++ username)</h1>
11 <button
12 doaction =(logout)
13 data −redirect =(workspace_path ++ " Public /page ")
14 >" Log out " </button>
15 </div>
16 }

Listing 2.14: User module definition

25

CHAPTER 2. LANGUAGE-BASED MODEL

1 @Public {
2 def page =
3 <div>
4 (i f not authent ica ted usid then
5 <div>
6 <div>
7 <input type=" t e x t " placeholder=" username " id="name"/>
8 <input type=" password " placeholder=" password " id=" password "/>
9 </div>

10 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>
11 </div>
12 e l s e
13 <div>
14 <h1>("Welcome " ++ currentUser)</h1>
15 "Go to your page ! "
16 <button doaction =(logout)> " Logout " </button>
17 </div >)
18 </div>
19 }

Listing 2.15: Public module redefinition

is indexed with the USID parameter in order to create an isolated environment for each

user, similar to listing 2.14 in section 2.3.2. Each access to the module User will test

if the authenticated function for a given USID, evaluates to true. With this module,

each authenticated user has a different state. In the new User module we define the

username import, similar to the way we do in listing 2.13, to view the name associated

with an authenticated user. Finally we define an HTML page that displays the username,

and allows the user to log out and be redirected back to the log in page.

In listing 2.15, we redefine the page in the Public module, previously defined in

listing 2.13, and add a link to the user’s page (line 15).

With these modifications, we have a boilerplate for user authentication 4 on which we

will build the rest of our running To-do list application.

2.3.4 Inheritance

In this section, we introduce an inheritance mechanism to the language as a means of

giving a module access to another module. The next step in the development of our

running To-do example application is to add a group environment for authenticated

users to share information, which we will build with the help of module inheritance.

First, we define the state variable groups in the global environment, populated with

the data found in appendix A.2. With the new information stored, we want each user

to have a list of the groups he can access. Listing 2.16 redefines the User module of our

running example application, with the help of a function that determines if a string

is contained in a list of records that have a field name. The function listContains is

4A working example can be found in the work space at http://live-programming.herokuapp.

com/dev/H36KP, with the authentication page at http://live-programming.herokuapp.com/app/H36KP/
Public/page

26

http://live-programming.herokuapp.com/dev/H36KP
http://live-programming.herokuapp.com/dev/H36KP
http://live-programming.herokuapp.com/app/H36KP/Public/page
http://live-programming.herokuapp.com/app/H36KP/Public/page

2.3. MODULES

1 def l i s t C o n t a i n s l i s t name =
2 match
3 get item in l i s t
4 where item . name == name
5 with
6 u : : us => t rue
7 | [] => f a l s e
8

9 @User {
10 import l i s t C o n t a i n s
11 from group in groups
12 where (l i s t C o n t a i n s group . users username)
13 import group as groups
14 }

Listing 2.16: Group listing in the user page

1 module Group<s t r i n g groupName , *usid> with User (usid)
2 when (l i s t C o n t a i n s groups@User groupName) { }

Listing 2.17: Group module definition

imported to help create a view that filters the newly defined groups collection, and

returns the list of all the groups a user can access.

Now consider the module definition Group in listing 2.17 which inherits the module

User. As seen in the example, a module inherits another module through the keyword

with, followed by the inherited module name. If the inherited module has a non empty set

of parameters, the host module (module Group) must provide arguments to the inherited

module parameters when the inheritance is defined. We provide the Group module USID

parameter as the argument expression for the inherited module User USID parameter.

This means that, when a user accesses the Group module, the User module state that is

accessible to the user depends on the given USID parameter. Additionally, because the

User module has an access condition, any access to the Group module must first test the

inherited module condition. Accessing an inherited name inside the host module is done

through the appendage of the inherited module name with the @ symbol to the inherited

name. We also define an access condition for the Group module using the inherited view

name groups@Users, and test if a given groupName parameter is contained in it..

Next, we want each group to keep track of a to-do list, as well as a page to execute

actions over each task. The listing 2.18 defines a simplified, non-styled, example 5 of the

TodoMVC application built on top of our running example application. In the example

we define three actions to manipulate the todos store:

• AddTodo adds a new to-do to the list with a given text

• deleteTodo deletes a to-do, identified with a given id

5A working example can be found in the work space at http://live-programming.herokuapp.

com/dev/gCkg7 with the authentication page at http://live-programming.herokuapp.com/app/gCkg7/
Public/page

27

http://live-programming.herokuapp.com/dev/gCkg7
http://live-programming.herokuapp.com/dev/gCkg7
http://live-programming.herokuapp.com/app/gCkg7/Public/page
http://live-programming.herokuapp.com/app/gCkg7/Public/page

CHAPTER 2. LANGUAGE-BASED MODEL

1 @Group {
2 var todos = [{
3 id : 0 ,
4 t e x t : "Welcome to group " ++ groupName ,
5 done : f a l s e
6 }]
7

8 def s i z e = foreach (todo in todos with y = 0) y+1
9

10 def addTodo t e x t = action {
11 i n s e r t { id : s i ze , done : f a l s e , t e x t : t e x t }
12 into todos
13 }
14

15 def deleteTodo id = action {
16 delete todo in todos
17 where todo . id == id
18 }
19

20 def toggleComplete id = action {
21 update todo in todos
22 with { id : todo . id , done : not todo . done , t e x t : todo . t e x t }
23 where todo . id == id
24 }
25

26 def todoItem todo =
27 <l i >
28 <checkbox type=" checkbox " value =(todo . done)
29 docheck =(toggleComplete todo . id)
30 douncheck=(toggleComplete todo . id)
31 />
32 <label >(todo . t e x t)</ labe l >
33 <button doaction =(deleteTodo todo . id)> " Delete " </button>
34 </ l i >
35

36 def page =
37 <div>
38 <header>
39 <h1>groupName</h1>
40 <input placeholder="What needs to be done ? " onenter =(addTodo) />
41 </header>
42 <sect ion >
43 (map (todo in todos) todoItem todo)
44 </ sect ion >
45 </div>
46 }

Listing 2.18: Simplified, non-styled, TodoMVC application for groups of users

28

2.3. MODULES

Figure 2.5: Alice’s view Figure 2.6: David’s view

Figure 2.7: Group page with footer duality issue

• toggleComplete toggle a to-do completed state

To keep track of how many tasks are in a to-do list, we define size that counts the

elements in the todos collection. We also defined the todoItem function, that, given a

to-do item returns an HTML value displaying the to-do text, a checkbox to change the

completed state of the task, and a button to delete the item. The defined page allows

the user to input a to-do by pressing enter through the attribute onenter. This attribute

takes a function with a string parameter, and when the enter is pressed, the input value

is used as the argument of the function (addTodo). Finally, in the page, we iterate over

the todos storage, and for each to-do we call the todoItem function in order to display

each to-do with an HTML value.

Notice how the example does not make use of any of the inherited names except

in the definition of the module access condition (because it is a delayed expression),

and recall the problematic behavior of non-delayed expressions in a shared environment

previously described in section 2.2, page 13. With the inheritance mechanism introduced

this behavior is now experienced when using inherited names on non-delayed expressions

defined in the host module. To demonstrate this behavior, consider the addition of a

footer in the group page in which we display the authenticated user name associated

with the given USID. Figure 2.7 shows the example with the added footer view with

two authenticated users, Alice and David, where David was the first to authenticate and

access the group page. The group page is a non-delayed expression with a stored value

for each group, and using a name such as the username@User, which depends on the

USID of the requesting authenticated user, causes the group page to evaluate with the

corresponding authenticated user name. This is due to the fact that the Group name is

only indexed by the groupName parameter, while the inherited User module is indexed

by the USID. Furthermore, changing the Group module USID parameter to an indexing

parameter, means that each user has different to-do list, even thou the added footer would

correctly display the value of username for each user. Our goal however, is to have a to-

do list for each group while allowing the free usage of inherited names, and so the next

29

CHAPTER 2. LANGUAGE-BASED MODEL

section introduces a new mechanism that allows us to deal with the recurring non-delayed

expressions behavior in shared environments.

2.3.5 Module Nesting

In this section, we introduce module nesting. Nested modules create a hierarchy, thus,

access to an inner module must first test the access conditions of all outer modules. This

means that, a nested module requires at least the same set of parameters as the outer

modules in order to evaluate any outer conditions that might use parameters. Thus, by

default, a nested module automatically inherits the set of parameters of the closest outer

module, which we will call nesting parameters. However, the nesting parameters can

be overridden for the nested module, meaning we can change a parameter from index-

ing to non-indexing and vice-versa without changing the actual outer module indexing

parameters. New parameters can also be added to the nested module.

Consider the module Group redefinition in listing 2.19, which follows the develop-

ment of our running To-do application. We want to limit the deleteTodo action to ad-

ministrators of each group using module nesting. First, we defined a filtered view of the

groups store to extract the members list of a given group containing all the information

about each member of the group. Then, we define the isAdmin function to test if a given

member is an administrator in the group. To create the administrator role, we define a

nested module in the Group module, and override the nesting parameter groupName to a

1 @Group {
2 from group in groups
3 where group . name == groupName
4 import f i r s t group . users as members
5 default { name : groupName , users : [] }
6

7 def isAdmin name =
8 match
9 get member in members

10 where member . name == name
11 with
12 m: : ms => m. admin
13 | [] => f a l s e
14

15 module Admin<s t r i n g *groupName> when (isAdmin username@User) {
16 import todos
17

18 def deleteTodo id = action {
19 delete todo in todos
20 where todo . id == id
21 }
22 }
23 }

Listing 2.19: Module nesting

30

2.3. MODULES

1 @Group {
2 def todoItem todo =
3 <l i >
4 <checkbox type=" checkbox " value =(todo . done)
5 docheck =(toggleComplete todo . id)
6 douncheck=(toggleComplete todo . id)
7 />
8 <label >(todo . t e x t)</ labe l >
9 (in Admin(groupName , usid) then

10 <button doaction =(deleteTodo todo . id)> " Delete " </button>
11 e l s e)
12 </ l i >
13 }

Listing 2.20: Checked module access with In-Then-Else

non-indexing parameter. We keep the USID nesting parameter as a non-indexed param-

eter since we don’t have any state that needs to be indexed in the Admin module. The

Admin module is also defined with an access condition, with the help of the previously

defined function isAdmin, to only allow access to administrators of the group. Finally,

we import the todos store to redefine the delete action from the Group module inside

the Admin module. The composition of mechanisms illustrated in the example creates

a a non-indexed, isolated, and conditioned environment (the module Admin), inside an

already existing isolated, and indexed environment (the module Group).

Next, we would like to display the administrator actions in the group page defined

in module Group, but only when the user is an administrator. To allow this kind of

checked access to a module defined in another module’s environment, we introduce the

In-Then-Else operation. This new operation is similar to the If-Then-Else statement,

except instead of providing a condition to test, we provide a module name and argu-

ments for each module parameter in order to test the given module access condition.

Listing 2.20 redefines the todoItem function, previously defined in listing 2.18. We use a

In-Then-Else statement with the Admin module as the target, and provide an argument

for each one of the Admin module parameters. In the first branch, where the Admin mod-

ule condition test was positive, we display the delete button for the task. The second

branch simply shows an empty span HTML element.

The composition in the example application6 still does not allow the inherited user

state in any non-delayed expression of the Group module to have the desired result just

as is previously described in section 2.3.4, page 29, and in section 2.2, page 13. Addi-

tionally, because the defined page in the module Group is only indexed by the groupName

parameter each group only has a page value. Thus, for each given groupName, if an ad-

ministrator is the first authenticated user and subsequently the first to request the page

name, the administrator actions will be available to all users due to his USID being used

in the evaluation of the non-delayed expressions to be stored. However, with module

6Working example in the work space at http://live-programming.herokuapp.com/dev/5lYB5, with
the authentication page at http://live-programming.herokuapp.com/app/5lYB5/Public/page

31

http://live-programming.herokuapp.com/dev/5lYB5
http://live-programming.herokuapp.com/app/5lYB5/Public/page

CHAPTER 2. LANGUAGE-BASED MODEL

Figure 2.8: Alice’s view Figure 2.9: David’s view

Figure 2.10: Group page with different indexed states

nesting we can create a different composition in order to express the previous example

without having the undesired behavior of non-delayed expressions. Listing 2.21 shows

this compositions. We define the module Member nested inside the Group module, and

nest the previously defined Admin module inside the module Member. We override the

Member nesting USID parameter so that both the groupName and USID parameters index

the Member module. Since the Admin module now inherits the Member module parameters,

we override both the groupName and the USID parameters as non-indexing parameters.

Then, we redefine all the previously defined module Group names inside the Member mod-

ule, with the exception of the todos store. The todos collection is instead imported from

the Group module.

The composition created in listing 2.21, provides the state of page as an indexed

state by both the groupName and USID parameters of the Member module. The todos is

imported to the Member module, which keeps the original collection indexed only by the

groupName parameter. It is also now possible to use the inherited names from the User

module without the duality issue affecting non-delayed expressions, because the Member

module is indexed with at least the same parameters as the User module (the USID

parameter). For instance, in the redefined page name, we can add a footer to the HTML

page where we show the username value for each user, and a logout button. Additionally,

the definition of the inner module Admin, and use of the In-Then-Else statement, grants

extra actions to some users.

Figure 2.10 illustrates two users, Alice and David, authenticated in different devices

and viewing the to-do list for the family group. Since Alice is an administrator of the

family to-do list group, the delete button is displayed as fig. 2.8 shows. In fig. 2.9 we see

David’s view, and because he is not an administrator the delete button is not displayed.

Figure 2.10 also shows that both views have their respective authenticated user names at

the bottom.

To finish our running application 7, we redefine the user page in the User module to

7Working example in the work space at http://live-programming.herokuapp.com/dev/BluQ1, with

32

http://live-programming.herokuapp.com/dev/BluQ1

2.3. MODULES

1 @Group {
2 module Member<usid> with User (usid) {
3 import todos
4 import isAdmin
5

6 module Admin<s t r i n g *groupName , *usid> when (isAdmin username@User) {
7 import todos
8

9 def deleteTodo id = action {
10 delete todo in todos
11 where todo . id == id
12 }
13 }
14

15 def s i z e = foreach (todo in todos with y = 0) y+1
16

17 def addTodo t e x t = action {
18 i n s e r t { id : s i ze , done : f a l s e , t e x t : t e x t }
19 into todos
20 }
21

22 def toggleComplete id = action {
23 update todo in todos
24 with { id : todo . id , done : not todo . done , t e x t : todo . t e x t }
25 where todo . id == id
26 }
27

28 def todoItem todo =
29 <l i >
30 <checkbox type=" checkbox " value =(todo . done)
31 docheck =(toggleComplete todo . id)
32 douncheck=(toggleComplete todo . id)
33 />
34 <label >(todo . t e x t)</ labe l >
35 (in Admin(groupName , usid) then
36 <button doaction =(deleteTodo todo . id)> " Delete " </button>
37 e l s e
38)
39 </ l i >
40

41 def page =
42 <div>
43 <header>
44 <h1>groupName</h1>
45 <input placeholder="What needs to be done ? " onenter =(addTodo) />
46 </header>
47 <sect ion >
48 (map (todo in todos) todoItem todo)
49 </ sect ion >
50 <footer >
51 <p>(" Logged as : " ++ username@User)</p>
52 <button doaction =(logout@User)
53 data −redirect =(workspace_path ++ " Public /page ")>
54 " Log out "
55 </button>
56 </ footer >
57 </div>
58 }
59 }

Listing 2.21: Member module

33

CHAPTER 2. LANGUAGE-BASED MODEL

1 @User {
2 def page =
3 <div>
4 <h1>(" User : " ++ username)</h1>
5 <button doaction =(logout) data −redirect =(workspace_path ++ " Public /page ")>
6 " Log out "
7 </button>
8 <h2>" Groups " </h2>
9

10 (map (group in groups)
11 <l i >
12
13 (group . name)
14
15 </ l i >
16)
17
18 </div>
19 }

Listing 2.22: User page updated links

update the groups list with new links because the page name in Group module as been

moved to the inner module Member. listing 2.22 redefines the user page.

2.4 Syntax

In this section we provide the language grammar and explain the direct mapping of the

introduced mechanisms to the core language constructs. Most of the grammar remains

unchanged from the language we extend (see section 2.2 of language thesis [Mat15]).

Figures 2.11 and 2.12 shows, respectively, the top-level operations, and expressions of

the language.

The module abstraction given by the module operation maps to a module typed value

that stores all the necessary information about a module: name, set of parameters, ac-

cess condition, inherited module, and inherited module arguments. As described in

section 2.3, each definition is directly mapped to a var, or def, operation with a trans-

formed internal name. If the module is indexed by a set of parameters, the value stored

for each definition is an indexed lens defined with the module set of parameters.

Import operations are mapped into def operations with the same internal trans-

formed name as simple var/def definition in the module, and with the respective lens

value. Because lens store the original name, verifying actions over lenses correctly by

following the reference in a lens to find out if the original name is a var, or a def which

is not allowed in actions by the core language.

The @a module block operation allows for the (re)definition of names in an existing

module. This operation maps directly to the previously, described module operations,

the authentication page at http://live-programming.herokuapp.com/app/BluQ1/Public/page

34

http://live-programming.herokuapp.com/app/BluQ1/Public/page

2.4. SYNTAX

o ::= r Construction Operations
| do e Interaction Operation

r ::= var a = e State Variable
| def a = e Pure Data Transformation
| atomic {r*} Composition of Operations
| module a<param*>

when(e) Module
with a(e*) {i* r*}

| @a {i* r*} Module Block Redefinition
| table a {(x: t)+} Database Table
| delete a Remove Name
| deleteall Remove All Names

i ::= import a as a Import Declaration
| from a in a where e Filtered Import

import first? e as a (default e)?

p ::= usid | t *? a Module Parameters

t ::= number | string | boolean Base Types

Figure 2.11: Operations syntax.

which maps to var, or def, operations, keeping in the extended language the incremental

property of the core language.

The only added expressions to the syntax are: In-Then-Else operation, Access Module
Identifier, and workspace_path. The In-Then-Else is explained in section 2.3.5, and pro-

vides a dynamic runtime module condition check to determine which branch to evaluate.

The Access Module Identifier is how the heir of an inherited module accesses the names

defined in the inherited module, as seen in listing 2.17. Finally, the workspace_path is an

expression that returns the workspace Uniform Resource Locator (URL) when evaluated.

Besides the added module type, the type system remains unchanged, meaning that

with the direct mapping of the introduced mechanisms to core language constructs we

allow the extended language to keep the reactive and incremental nature of the core

language.

35

CHAPTER 2. LANGUAGE-BASED MODEL

e ::= a Names
| b Base Values
| x Variables
| #a Input Names
| a@a Access Module Identifier
| usid Unique Session Identifier
| action {assign*} Action
| <tag attr*>e*</tag> HTML Element
| e op e Binary Operations
| not e Negation
| let x = e in e Scope
| e ? e : e Ternary Operator
| if e then e else e If-Then-Else
| in a then e else e Module If-Then-Else Access
| (x+) => e Function
| e e Function Call
| [e*] Homogeneous Collection
| iter e e e Iterate Collection
| foreach(x in a with y = e) Iterate with Accumulator

e
| map(x in a) e Map Collection
| get x in a where e Query Collection
| match e with x::xs => e | [] => e Match Query
| {(x‘: e)+} Record Literal
| e.x Access Record Field
| linkto a e+ Build URL
| str e Convert to String
| workspace_path Work space base URL

attr ::= attrName = e HTML Attribute

assign ::= a := e Simple Assign
| insert e into a Insert Element
| update x in a with e where e Update Elements
| delete x in a where e Delete Elements

op ::= + | - | * | / | % Arithmetic Operators
| == | != | > | < | >= | <= Comparison Operators
| and | or Logic Operators
| :: Append Element
| ++ String/Array Concatenation

Figure 2.12: Expressions syntax.

36

C
h
a
p
t
e
r

3
Implementation Challenges

In this chapter we list and explain some of the challenges found when implementing the

introduced mechanisms on top of the existing framework [Mat15]. The biggest challenges

of the work done in the context of this thesis were found in the implementation of the

language, architecture, and Integrated Development Environment (IDE). The following

sections describe the challenges of each component and how we tackled those challenges.

3.1 Language

The biggest challenge in introducing a modular approach to the language was designing

module mechanisms that when composed allow for the definition of applications with

multi-tenant traits. Applications such as the one we developed with the TodoMVC [Tod]

project adapted to groups of users in chapter 2. Additionally, the introduced mechanisms

had to support, and keep, the reactive and incremental nature of the core language [DS15].

As language-based abstractions, the mechanisms were designed to map directly to core

language operations in order to keep the described reactive and incrmemental properties.

The duality of delayed vs non-delayed expressions discussed in section 2.3.4, page 29,

and in section 2.2, page 13, was the biggest design challenge. This duality in a global

environment, where all users are seen as one, is explicit and easy to understand when

writing code. However, when user identification is introduced, non-delayed expressions

with user data produce the same stored value for all users. Examples like listing 2.5

expose the challenges of introducing user identification in a global environment, where a

login page has a global state instead of a state for each user.

Designing the module mechanisms with the duality issue in mind was the hardest

challenge in extending the language. We designed each mechanism as base constructs,

each capable of expressing different aspects of an application. But the composition of

37

CHAPTER 3. IMPLEMENTATION CHALLENGES

these mechanisms is what allows users to fully express a multi-tenant applications, with-

out any duality issues, as shown in listing 2.21.

The introduced lens mechanisms also offered challenges when designing and com-

posing different lenses to provide more complex filters. As an internal mechanism that

supports different import operations, it was important that lenses had a simple and com-

mon interface (get, put operations described in section 2.3.1) to allow for the future

addition of more import operations without making changes to the interpreter core code.

This offered a challenge in the transformation of actions into correct assignments, be-

cause the core code of the interpreter should only deal with a common interface without

knowing what type of lens it is. This challenge was made harder when we introduced

lens compositions for the same reasons. Each composition deals with a common interface

and one lens can be composed with multiple lenses.

3.2 Architecture

Although the system architecture remained the same, the introduction of modules to the

language required some modifications to how the REST interface handles requests in

different paths, and how the WebSockets handle updates to page names inside modules.

We decided that the REST API described previously in table 1.1 should keep the same

routes. However, in order to access a module name, we had to modify how the routes

handle other paths besides the root path (/). So, for example, to access the value of a

name x in the global environment the request is GET /x. If the name x is inside a module

named Public, the path to this module is /Public, therefore the request to access the value

of x inside the module is GET /Public/x. Nested modules translate directly into a path,

for example, a module named Member inside a module named Group translates into the

path /Group/Member. When dealing with indexed modules, requesting a name is similar

to requesting a function with arguments. For example, consider a module named User

indexed by a string typed parameter named name with a name f defined inside. To access

the value of f with the index "Alice" the request is GET /User/f/Alice. If f is a function,

for example var f i = i + 1, the arguments of the function come after the arguments of

the module, because first we access the value (a function value), and only then we call the

function. So to call f with the argument 1, the request is GET /User/f/Alice/1.

When a user requests a name with an HTML value, a page subscription is created for

the client in order to keep track of where to push updates for a given HTML page. In

indexed modules, each requested name with an HTML value is associated with a set of

arguments for the module parameters. This means that, when such a name is updated

we need to re-evaluate the page with the set of module arguments with which the client

requested. Even thou the previous implementation of page subscriptions handled the list

of arguments for functions that return HTML values, adding the module arguments to

the same list is not enough, because there is no information in the page subscription about

the module, for example: how many parameters, and what is the type of each parameter.

38

3.3. IDE

Figure 3.1: IDE

In order to keep track of the module arguments a page was requested with, we extended

the WebSockets page subscriptions with information about the module a page is defined

in, as well as the module arguments used to evaluate the requested page.

3.3 IDE

In this section we introduce the browser-based IDE1 for our language. We reworked an

already existing IDE for the extended language [Mat15] in order to support the concept

of modules and paths. The IDE allows a user to develop applications incrementally with

immediate feedback, and use the created applications in the same environment. The

new IDE provides new tools to better navigate the development of an application using

modules and session identifiers.

The IDE is divided in three main areas as indicated in fig. 3.1. Each numbered section

is described as follows:

1. Live Editor – In this re-sizable panel the user can write code and send it to the in-

terpreter, through the server. Errors are shown with a pop up above this panel. The

module path in which the written code runs is indicated above the editor followed

by the symbol @. This path navigator is composed of clickable breadcrumbs which

provides an easier backwards navigation. In fig. 3.1 the current path is /Public.

2. Names Panel – This panel lists all the names in the current path. Each name can

be selected, and always displays his respective expression and/or value. The list of

1IDE available at http://live-programming.herokuapp.com

39

http://live-programming.herokuapp.com

CHAPTER 3. IMPLEMENTATION CHALLENGES

Figure 3.2: IDE with collapsed side bar

names navigated names using the arrow keys, and when a module is selected the

user can open it by pressing enter. Backspace will navigate the user backwards by

one module.

3. Side bar – This panel provides the workspace name, the USID of the user, as well

as a four main sub bars: action bar, module parameters bar, tool bar, and a Quick

Response Code (QRcode) bar. When a name is selected, the side bar is updated to

show all the available options. The action bar gives all names the delete action.

Names with HTML values provide two unique actions: a go to page action that sends

the user to the page in a new window, and an action to open the page directly in the

IDE with a small frame. Names with action values can be executed in the action bar.

Names with function values provide an action to run the function accompanied by

a text box in which the user can write the arguments. When inside a module, each

module parameter has an input available with the respective parameter type, and

ech action from the side bar uses a set of arguments managed by the user. The tool

bar also provides a way to reset the workspace, which restores the workspace to an

empty one. A console can be opened from the tool bar to provide the user with a

Read–Eval–Print Loop (REPL). All executed actions in the side bar are also printed

in the console display. All names generate a QRcode that links to the name directly.

There are other relevant elements in the IDE, such as the search bar located opposite

to the path breadcrumb. The search bar filters names in panel 1 and is a retractable

element, so it can be closed and opened as needed by clicking the icon. The tabs on the

top right of the IDE allow the user to navigate between the JavaScript (JS), Cascading Style

Sheets (CSS), and language editors. The CSS and JS editors are based on the Ace [Ace]

40

3.3. IDE

editor, which provides highlighting support and live syntax checking. It is also possible

to collapse the tool bar (panel 3) as shown in fig. 3.2. Most actions and tools are kept in

the collapsed bar, with the respective icon identifying each one. The About page can be

accessed in the top bar, and contains information about the IDE as well as a list of small

example applications that can be copied to an empty workspace.

41

C
h
a
p
t
e
r

4
Related Work

In this chapter we study existing solutions for the problems we tackle in this thesis and

compare them with our introduced abstractions. We first explore existing basic session

mechanisms used to tackle user identification and authentication. Then, explore modern

web frameworks too study the most common approaches to authentication, access control,

role based development and synchronization in each one. Finally, we study a program-

ming language for writing lenses in order to better understand lens programming.

4.1 Basic Session Mechanisms

In web applications, a session is a semi-permanent interactive data interchange, between

two or more communicating devices, or between a computer and a user [Ses]. A session

is established at a certain point in time, and has an expiration date. An established

session may involve more than one message in each direction. Usually, a session has an

associated state, meaning that at least one of the communicating parts needs to store

session data in order to communicate. Establishing a session is one of the basic steps

to performing a connection-oriented communication. In the next section we will study

some of the session mechanisms used in providing state to communications in stateless

web and Internet protocols.

4.1.1 Cookies and tokens

An HTTP Cookie, or just Cookie, is the most primitive mechanism, embedded into the

HTTP protocol, to store small amounts of information on the user’s browser. Cookies

are designed as a reliable mechanism for websites to persist user’s information on the

browser and recognize the user in a later interaction. The browser sends the Cookies

back to the respective sites every time the user accesses them. Cookies are set in HTTP

43

CHAPTER 4. RELATED WORK

requests (response by a server to a request) through a Set-Cookie header which instructs

browsers to store the data in a Cookie. Afterwards, the cookie data is sent along in every

request made to the same server in the form of a Cookie HTTP header. Additionally, an

expiration date, and restrictions to a specific domain can be specified.

Perhaps the most important function a Cookie performs in the modern web is support-

ing authentication between requests, a form of stateful communication between client

and server. Websites send back to the client some unique user information, usually a

server-generated token, allowing the website to check in future requests if a user is au-

thenticated or not and respond accordingly to the identified user.

4.1.2 Authentication

Authentication is the act of verifying an identity, more precisely in web and cloud appli-

cations, the identity of a user [Aut; CC12]. There are three existing authentication factors

in the process of identifying a user: knowledge factor, ownership factor, and inherent

factor. Knowledge factors include elements that a user knows (e.g. password, security

question). Ownership factors include elements that a user has (e.g. tokens). Inherent

factors include elements that a user is or does (e.g. fingerprint, voice, bio-metrics, sig-

nature). For a positive authentication at least elements from two factors are required.

Authentication in web and cloud applications is commonly performed using a two-factor

authentication with something the user has (e.g. username, id) and something the user

knows (e.g password).

HTTP supports basic schemes for authentication like basic access authentication (pro-

viding a username and a password) and digest access authentication (applies an hash

function before sending the credentials over the network). These mechanisms operate

via challenge-response mechanisms in which servers identify and issue challenges before

answering to requests. HTTP also allows the definition of separate authentication scopes

under one root Uniform Resource Identifier (URI), called authentication realms.

Another approach to authentication in the modern web is authentication using third-

party services, eliminating the need for application developers to build their own ad-hoc

login systems, allowing users to login to multiple unrelated services with possibly the

same identity and credentials. OpenID [Ope] is an open standard for this decentralized

authentication protocol which several large organizations either issue or accept (e.g. Mi-

crosoft 1, Google 2). Users just need to create an account in OpenID by selecting an

identity provider and then sign onto any website that accepts it.

4.1.3 Session Mechanisms

HTTP is the foundation of data communication in the World Wide Web, and is a state-

less protocol [Rfc], which means that, every time a communication between a server and

1https://www.microsoft.com
2https://www.google.com

44

4.1. BASIC SESSION MECHANISMS

a client ends, the information about the session is lost from the communication stack.

Sometimes it is convenient to maintain session related data, for example, to avoid asking

for a password every time a client makes a request to the server, to keep track of a shop-

ping cart over multiple requests to the server. In order to maintain session data there are

two obvious possibilities: Server Side web sessions and Client Side web sessions.

In a Server Side web session implementation, session information is stored on the

server and a token is used to uniquely identify the session. The token is either explicitly

stored in an HTTP Cookie on the client browser or, explicitly sent as a parameter in the

request also known as URL Rewriting. Each request carries the Cookie to the server so it

can match the request with the right session information in the server.

On the other hand, in a Client Side web session implementation, HTTP Cookies are

used to directly store the session information on the client. Cookies are automatically

carried over on each request to give the server all the information needed about the

session.

To show how these two styles are commonly implemented in frameworks we con-

sider the case of Java Servlets 3, which mainly follows a Server Side web session style

through the java interface HttpSession [Httb]. When a client makes a request to a servlet,

the request object (HttpServletRequest java object [Htta]) provides a method (getSession)

that retrieves, or creates, an HttpSession object to manipulate session information on the

server. By default the server maintains the HttpSession objects in a map, meaning that if

the server goes down, all the session information is lost. However, servers can be config-

ured to persist session data to disk. To uniquely identify each HttpSession object in the

map, an HTTP Cookie (named JSESSIONID) containing a unique identifier (generated by

the servlet), is kept on the client. In this way, when a client makes a request with an HTTP

Cookie named JSESSIONID, the HttpSession object that corresponds to that particular

session is returned by the getSession method, and with it the server can manipulate the

session information for that particular client. Additionally, Java Servlets also implements

Client Side web sessions by allowing the creation and manipulation of HTTP Cookies

kept on the client to store any kind of session information.

Aside from Server Side (with or without URL Rewriting) and Client Side web ses-

sions, an alternative, and well known approach for storing session information is also

commonly used. In this approach, hidden fields are inserted in web pages to store session

information related to the client accessing the web page. This technique obviously raises

security concerns, since, even thou they are hidden in the page, the source of the web

page can be inspected to uncover its content. The same concerns apply to HTTP Cookies,

which are stored in the browser but can be viewed manually, or even stolen if given the

required access to the machine. In both HTTP Cookies and hidden field storage of session

data, cryptography can be employed to mitigate these security concerns.

3http://docs.oracle.com/javaee/6/tutorial/doc/bnafd.html

45

CHAPTER 4. RELATED WORK

4.1.4 Analysing Session Mechanisms

While Server Side sessions are usually efficient and secure, in high-availability systems

with no mass storage it becomes difficult to maintain efficiency. Although limiting the

number of clients accessing the server severely weakens the availability of a server, it

makes it possible to reserve a portion of the Random Access Memory (RAM) for storage

of session data to tackle the absence of mass storage. In contrast, Client Side sessions

can mitigate the weight of storing and loading all session information on the server in

high-availability systems, however, as previously mentioned data stored in the client is

vulnerable to tampering. In order to increase security of session data stored on the client,

the server must be the only location to initiate a valid session, as well as the only system

able to interpret and manipulate the data. To guarantee confidentiality and integrity

requirements a variety of cryptography methods can be used. A clear problem of storing

session information on the client is the size of the data being transmitted between the

client and the server with every request, which is aggravated by the limitations that some

browsers impose on the size and number of Cookies each site can store on the client.

To improve efficiency in carrying large amounts of session data and meet the limits of

browsers, servers may compress data before creating a Cookie and decompressing it when

the Cookie is received in a future request.

Many frameworks already provide at least either Server Side sessions or Client Side

sessions in the most basic form without giving too much increased security. While it is

possible to code all the increased security discussed previously, it is an extensive process,

prone to mistakes. To make it simpler and safer to develop applications with sessions, a

framework could infer what information needs to be sent to the client and, be able to tell

when certain security invariants are being broken by knowing what information should

not be sent to the client. The only choices the developer should have to think about are

the configuration choices of the employed mechanisms and perhaps where information

is allowed to flow by explicitly marking data with annotations for security purposes.

However, the underlying mechanisms used by the framework should guarantee all the

confidentiality and integrity requirements without compromising efficiency.

4.2 Related Frameworks

In this section we study some of the existing web frameworks, focusing on the features

relevant to our topic. For each framework, we make a brief introduction highlighting

key aspects of the framework, and give an example on how a simple web application is

built. We explore how several frameworks provide session management, access control,

and synchronization. Finally, we examine how ensuring data privacy in the studied

frameworks is addressed.

46

4.2. RELATED FRAMEWORKS

1 a p p l i c a t i o n example
2

3 e n t i t y Message {
4 author : : S t r i ng
5 t e x t : : Text
6 }
7

8 e n t i t y Wall {
9 posts −> Lis t <Message>

10 }
11

12 var wall := Wall { }
13

14 def ine page root () {
15 t i t l e { " Wall " }
16 navigate (post ()) { " Post " } " "
17 fo r (m: Message in wall . posts) {
18 " Author : " output (m. author)
19 " Message : " output (m. t e x t)
20 }
21 }
22

23 def ine page post () {
24 t i t l e { " Post a new message " }
25 var m := Message { }
26 form {
27 l a b e l (" Input Message : ") { input (m. t e x t) }
28 l a b e l (" Author : ") { input (m. author) }
29 submit (" Post " , ac t ion {
30 m. save () ;
31 wall . posts . add (m) ;
32 message ("New post created . ") ;
33 return root () ;
34 })
35 }
36 }

Listing 4.1: WebDSL example application

4.2.1 WebDSL

WebDSL [Gro+08] is a domain-specific language for developing dynamic web applica-

tions that translates to Java web applications, and has some key features that are relevant

to our topic, such as a rich data model (entities), access control and generation of a syn-

chronization framework. WebDSL applications are organized in _*.app_ files. Modules

in WebDSL can be written in .app files and imported to a main .app file where the ap-

plication header is declared. To show how an application is built in WebDSL, consider

listing 4.1, a very simple example application in which a client can post messages and

view a wall of all of the posted messages. Following the application header, two entities

are declared, an entity representing a message, and an entity representing a wall to store

all the messages in a collection. The Wall variable is instantiated followed by two pages,

one iterates the collection of messages to show a wall of messages, and the other provides

a form in which a client can input a text message to post.

47

CHAPTER 4. RELATED WORK

1 s e s s i o n wall {
2 messages −> Lis t <Message>
3 }

Listing 4.2: WebDSL session entity

1 extend s e s s i o n wall {
2 f r i e n d s −> Lis t <User>
3 }

Listing 4.3: WebDSL session entity extension

1 e n t i t y User {
2 name : : S t r in g
3 password : : S e c r e t
4 }
5 p r i n c i p a l i s User with c r e d e n t i a l s name , password

Listing 4.4: WebDSL principal definition

4.2.1.1 Sessions

WebDSL follows a Server Side web session style where session data is stored on the server

with globally visible variables in the application, also known as session entities [Weba].

Listing 4.2 shows an example of how to define a session entity for a wall of messages. A

session entity object is automatically instantiated when a browser makes a request to a

server, which responds with a cookie named WEBDSLSESSIONID with the identifier for

that client session. Session entities, just like regular entities, can be extended in order to

add new properties to an already existing session entity. In listing 4.3 we add a list of

friends to our wall session entity.

4.2.1.2 Access Control

Access control, in WebDSL, is defined using a sub-language used to define rules over

resources. To allow the creation of rules over an authenticated principal, the sub-language

supports the declaration of a principal using a user defined entity and a set of credentials,

which generates a session entity to hold the currently signed in user. Listing 4.4 shows a

configuration of a principal using the User entity. The generated session entity is show

in listing 4.5. In this declaration two things are introduced, the principal representing

the currently signed in user, and a function to verify whether the principal is signed in

1 s e s s i o n secur i tyContext {
2 p r i n c i p a l −> User
3 loggedIn : : Bool := t h i s . p r i n c i p a l != nul l
4 }

Listing 4.5: WebDSL security context

48

4.2. RELATED FRAMEWORKS

1 a c c es s c o n t r o l r u l e s
2

3 rule page editMessage (m: Message) {
4 m. author == p r i n c i p a l
5 }

Listing 4.6: WebDSL access control rules

1 / / Compiles
2 rule page editMessage (m: Message) {
3 m. author == p r i n c i p a l
4

5 rule action save () {
6 m. author == p r i n c i p a l
7 }
8

9 rule action cancel () {
10 m. author == p r i n c i p a l
11 }
12 }
13

14 / / Does not compi l e
15 rule action save () {
16 m. author == p r i n c i p a l
17

18 rule page editMessage (u : Message) {
19 m. author == p r i n c i p a l
20 }
21 }

Listing 4.7: WebDSL access control constraints

or not. In the current implementation of WebDSL the authentication credentials are not

used, but in the future, the WebDSL developers pretend to derive a default login template

from the given authentication credentials. Additionally, login and logout templates are

generated along side an authenticate function that checks if the given credentials are

correct, and setting the principal property if they are. The auto-generated templates and

function, can be overridden to allow further control of the authentication step. Creating

access control rules becomes very simple after the securityContext is configured, for

example, in listing 4.6 we define a rule stating that only the author of a message can edit it.

The first line states that the following declarations will be access control rules. Rules can

be applied to other resources like templates, page actions, functions or pointcuts, which

will be explained later. In this example, our resource is a page, named editMessage, with

a message as an argument. The securityContext session is available inside the rules,

and by using the principal declaration we can check if the author of the message is the

currently logged user.

Nested rules are allowed for a finer-grained control, but with some constraints as

show in listing 4.7. Pages are parent resources of actions, this implies that a nested rule

is only valid for usage of that resource inside the parent resource. Often, a page resource

49

CHAPTER 4. RELATED WORK

1 rule page editMessage (m: Message) {
2 m. author == p r i n c i p a l
3

4 rule action * (*) {
5 m. author == p r i n c i p a l
6 }
7 }

Listing 4.8: WebDSL unfolded rules

1 pointcut userSec t ion (u : User) {
2 page editUser (u) ,
3 page post (u)
4 }
5

6 rule pointcut userSec t ion (u : User) {
7 u == p r i n c i p a l
8 }

Listing 4.9: WebDSL pointcuts

1 e n t i t y Message {
2 id : : S t r i n g
3

4 synchronizat ion conf igura t ion {
5 t o p l e v e l name property : id
6 }
7 }

Listing 4.10: WebDSL top level synchroinzation

allows all its actions with the same rule for accessing the page, therefore describing a page

rule automatically makes all its actions follow the same rule. For example, listing 4.8

shows the unfolded editMessage page rule. The symbol* states that any action with any

number of arguments will be matched.

Resources can also be grouped into pointcuts in order to apply the same rule to a

group of resources. In listing 4.9 we create rules to control user actions with pointcuts.

4.2.1.3 Synchronization Framework

WebDSL provides generation of code through the WebDSL IDE for a synchronization

framework, which exposes web-services for external applications to use. To generate

the synchronization framework it is required that a WebDSL application, with at least

a complete model, is already in place. Setting up the framework requires a declaration

of a String property that represents the object and enables data partitioning, which is

primarily used to reduce data sent to mobile applications that access the synchronization

webservices. Listing 4.10 defines a synchronization configuration for the Message entity.

The configuration allows for the definition of access control rules over data to control

50

4.2. RELATED FRAMEWORKS

1 e n t i t y Message {
2 id : : S t r i n g
3

4 synchronizat ion conf igura t ion {
5 t o p l e v e l name property : id
6 a c c es s read : true
7 a c c es s wri te : Logedin ()
8 a c c es s c r e a t e : p r i n c i p a l . isAdmin ()
9 }

10 }

Listing 4.11: WebDSL synchronization access control

1 e n t i t y User {
2 name : : S t r in g
3 fullName : : S t r i ng
4

5 synchronizat ion conf igura t ion {
6 r e s t r i c t e d p r o p e r t i e s : fullName
7 }
8 }

Listing 4.12: WebDSL synchronization property restriction

which external sources accessing the data synchronization framework can read, write en-

tities or create instances of those entities. These access control rules can only be written if

a principal is previously defined, which in this case should be for authenticating devices

accessing the framework. In listing 4.11 we define access control rules for the synchro-

nization of the Message entity. Lastly, it allows the configuration of restricted properties,

meaning that the declared properties will not be shared in the synchronization. List-

ing 4.12 defines the property fullName restriction for the User entity synchronization.

After the synchronization framework files are generated, they are imported to the

application to make the web-services available to the applications. The available web-

services are called with POST requests to access the core synchronization functions. The

URL is structured as follows:

http://<websiteurl>/webservice/<webservicename>

The services provided at the URL are:

• getTopLevelEntities

• getTimeStamp

• syncNewObjects

• syncDirtyObjects

• sync

51

CHAPTER 4. RELATED WORK

1 <body>
2 <h1>Post</h1>
3 <form c l a s s="new−message ">
4 <input type=" t e x t " name=" message " placeholder=" Message . . . " />
5 <input type=" t e x t " name=" author " placeholder=" Author " />
6 </form>
7 <h1>Wall</h1>
8
9 { { # each getMessages } }

10 <div>Message : { { message } }</ div>
11 <div>Author : { { author } }</ div>
12 { { / each } }
13 </ ul>
14 </body>

Listing 4.13: Meteor application - HTML

The framework also adds three functions to entities for serializing data, because the values

in the database are not in the format required for transmission through the web-services.

The framework provides a page for each entity where stored data can be browsed.

4.2.2 Meteor

Meteor [Meta] is a JS Web Framework written in Node.js [Nod] which allows for rapid

prototyping and cross-platform code production. One of the key features of Meteor is its

ability to automatically propagate data changes to clients without any additional code

from the developer. The Synchronization process is achieved with the Distributed Data

Protocol (DDP) [Metb] and a publish-subscribe pattern [Xep]. By default, the publish-

subscribe pattern automatically publishes everything (auto-publish package, which should

only be used for fast prototyping), meaning that the entire database is present on the client

without any filtering.

Another very important feature of Meteor is the use of collections. In Meteor, data is

stored in synchronized collections that are available both on the server and on the client.

Although there are several projects to support more database systems, MongoDB [Mon]

is currently the most stable and maintained. On the server, the collection is stored on

a MongoDB database by default, and on the client the collections are managed through

a JS implementation of MongoDB in memory [Metc]. This gives the client access to a

collection without talking to the server. To keep certain fields of the collection values

from being transferred to the client, the publish-subscribe pattern can be customized

for each collection accordingly. Finally, when creating a Meteor collection, a connection

can be fed to the constructor which specifies a server to manage that collection, making

Meteor collections very powerful in multi-server applications.

To show how an application is built in Meteor, consider the simple example appli-

cation in listings 4.13 and 4.14, which a client can post messages and view a wall of all

of the posted messages, live, in the same page. First, we look at the JS code, then the

HTML. In Meteor we can write client and server code in the same file if we want, and

52

4.2. RELATED FRAMEWORKS

1 Wall = new Mongo . C o l l e c t i o n (" wall ") ;
2

3 i f (Meteor . i s C l i e n t) {
4 Template . body . helpers ({
5 getMessages : function () {
6 return Wall . f ind ({ }) ;
7 }
8 }) ;
9

10 Template . body . events ({
11 " keypress . new−message " : function (event) {
12 i f (event . which != 13) return ;
13 var message = event . t a r g e t . parentElement . message ; / / g e t message
14 var author = event . t a r g e t . parentElement . author ; / / g e t author
15 Wall . i n s e r t ({
16 message : message . value ,
17 author : author . value
18 }) ;
19 message . value = " " ; / / c l e a r message
20 author . value = " " ; / / c l e a r author
21 }
22 }) ;
23 }
24

25 i f (Meteor . i s S e r v e r) {
26 Meteor . s tar tup (function () { }) ;
27 }

Listing 4.14: Meteor application - JS

to distinguish client code from server code, two boolean values are available through

the Meteor object: Meteor.isClient and Meteor.isServer. Code written outside these

contexts is ran on both sides. The first thing we declare is a MongoDB collection to store

the messages, which will be available both on the client and on the server as explain be-

fore. On the client, we introduce two new things: template helpers and template events.

Template helpers provide the views on the client with functions or values, in our exam-

ple we implement a function that returns every record in the Wall collection. Template

events are useful to map functions to events that might occur in the template. We map

a keypress event on an element with a class named new-message (in our example the

element is a form) to a function that, in case the pressed key is an Enter, retrieves the

values (message and author) from the inputs and adds a new record to the collection,

that is, a new message. On the server side, it simply starts the server with one function

and a callback. Finally, in the view, we have a simple form with an input field for the

new message, and another for the author name. Bellow the form, we list the collection by

using the template language of Meteor (Spacebars), to iterate over all the messages that

the template helper getMessages returns.

53

CHAPTER 4. RELATED WORK

1 <template name=" main ">
2 <p>Sess ion var has : { { showX } }</p>
3 </ template>

Listing 4.15: Meteor reactive session - HTML

1 Template . main . helpers ({
2 showX : function () {
3 return Sess ion . get (" x ") ;
4 }
5 }) ;
6

7 Sess ion . s e t (" x " , " 1 ") ;
8 / / Page w i l l say " S e s s i o n var s a y s : 1"
9

10 Sess ion . s e t (" x " , " 2 ") ;
11 / / Page w i l l say " S e s s i o n var s a y s : 2"

Listing 4.16: Meteor reactive session - JS

4.2.2.1 Sessions

In Meteor, sessions are accessed through a global object on the client in which the user

can store an arbitrary set of key-value pairs. Sessions are also reactive, when a value for

a session key is set, the change is propagated to the client and the user can see the page

automatically change with the new value. Listings 4.15 and 4.16 defines an example of

a reactive session. The Session keyword is the global object that accesses the session

key-value pairs, and it is where we store the variable x. In the template showX function

we fetch and return the value of x stored in the session. This way, when the value is

changed, the page with the template will update automatically. By default, sessions in

Meteor are not permanent, if a page is refreshed the session object will be a new one.

There are, however, available packages which provide implementations for persistent

sessions, some with Server Side Session others Client Side Session approach.

Meteor provides a package manager [Atma] for developers to publish and distribute

packaged code. To implement user authentication, Meteor provides a set of packages

to manage accounts. The accounts base package uses a Meteor collection to store the

users and keeps the session token in the local storage of the browser to make the session

permanent. Additionally, a package can be added that exposes templates to add login

forms to an application that work out of the box with the base package.

4.2.2.2 Access Control

Meteor provides allow and deny methods for collections which give the developer the

freedom of controlling every action done on a collection, be it an insert, update or remove

operation. For example, listing 4.17 shows how to control who can insert in a collection

of messages. Whenever a client executes such operations, the defined methods are called

to check whether the operation is allowed to continue or not. Although this is a very

54

4.2. RELATED FRAMEWORKS

1 Wall = new Mongo . C o l l e c t i o n (" wall ") ;
2

3 Wall . allow ({
4 i n s e r t : function (user , message) {
5 return (user && message . author === user) ;
6 }
7 }) ;

Listing 4.17: Meteor access control

1 Roles . addUsersToRoles (AliceId , [’ moderator ’] , ’ wall ’)
2 Roles . user I s InRole (AliceId , ’ moderator ’ , ’ wall ’) / / => t r u e
3 Roles . user I s InRole (AliceId , ’ admin ’ , ’ wall ’) / / => f a l s e

Listing 4.18: Meteor roles package

flexible way of creating access control, it requires the developer to create code for every

operation of every collection if he wishes to specify what is allowed.

To simplify the steps in defining access control in Meteor, a package named meteor-
roles offers the ability to attach permissions to the already existing users collection. With

it, the developer can define the permissions for a user inside a domain. Then, those per-

missions can be verified. For example, in listing 4.18 we assign the role of wall moderator
to the user Alice, to check if Alice does indeed have the moderator role, and that she does

not have the admin role. Even thou the developer still needs to address each operation

with this package, it simplifies the aggregation of permissions in a large set of users.

4.2.2.3 Synchronization

Meteor synchronization is achieved with the DDP and publish-subscribe pattern. DDP

is a very simple protocol for fetching structured data from a server, it works like a REST

service but through web sockets, giving live updates when data changes. In Meteor, a

client communicates with the server through this protocol. Note that the protocol works

as a REST interface, meaning that a connection can be made outside a Meteor application,

both server or client side, to receive updates following the DDP. To control what goes

where Meteor uses the publish-subscribe pattern, where the developer can specify what

is published and who subscribes through a couple of methods (publish and subscribe).

4.2.3 Opa Language

The Opa Language is a full-stack web framework language for the development of web

applications [Opaa]. It can be used for both client-side and server-side scripting with

the Opa language, which is then compiled to Node.js on the server and JS on the client.

The database programming is in MongoDB. The Opa language implements strong, static

typing which helps avoid many security issues, for example, Structured Query Language

55

CHAPTER 4. RELATED WORK

1 type Sess ion . i n s t r u c t i o n (s t a t e)=
2 { s e t : s t a t e } /** Carry on with a new value of the s t a t e value . * /
3 { unchanged } /** Carry on with the same s t a t e . * /
4 { stop } /** Stop t h i s s e s s i o n . Any f u r t h e r message w i l l be ignored */

Listing 4.19: Opa Lang session instructions

(SQL) injections or cross-site scripting attacks. One of the biggest features of Opa Lan-

guage is the Power Rows, which are extended JS objects, they have the flexibility of dy-

namic languages but with a type checker that keeps the language safe. Another feature,

and one that we explore, is the slicer that Opa lang uses to determine where each top-level

declaration runs (client side, server side, or both).

4.2.3.1 Sessions

Opa language provides three primitives for communication between clients and servers:

Session, Cell and Network. Network is used to broadcast messages for multiple clients,

and Cell is a two-way, synchronous communication. Session is a one-way asynchronous

communication, and it is the one we will be focusing on.

The Opa standard library description of session says:

“A session is a unit of state and concurrency. A session can be created on a server or

on a client, and can be shared between several servers.”

Sessions in Opa, are supported by encapsulating an imperative state and using mes-

sage passing to communicate with message handlers [Kop11]. Upon receipt of a message

by the handler, the session can be changed, or even terminated, with a set of available

instructions illustrated in listing 4.19.

Creating a session requires an initial state of the session and a message handler, and

returns a channel to which messages can be sent to be processed by the message handler.

Messages can be sent from/to different servers/clients. Listing 4.20 shows an example of

a session that keeps track of a friends list. Here, we define a message handler to change

the state when a message matches the first case by returning the set instruction, and

by default keeping the state intact with the unchanged instruction. The session is then

created with an initial state, an empty list, and the handler previously declared. The

returned value is a channel which we then use to define a function that adds friends in a

session.

4.2.3.2 Slicer

The Opa language can be executed on both the server and the client, and so, it must be

decided, at compile time, where the code actually runs. This decisions are made by the

Opa language slicer [Opab]. With slicing annotations the slicer can be told where each

top-level declaration should run. There are three possible slicing annotations that can be

written before the function keyword: client, server, and both. Each one tells the slicer

56

4.2. RELATED FRAMEWORKS

1 funct ion handleFriends (oldState , m) {
2 match (m) {
3 case { add : user } : {
4 s e t : L i s t . add (user , o l d s t a t e)
5 }
6 defaul t : {
7 unchanged
8 }
9 }

10 }
11

12 f r i e n d s = Sess ion . make ([] , handleFriends)
13

14 funct ion addFriend (user) {
15 Sess ion . send (fr iends , { add : user })
16 }

Listing 4.20: Opa Lang session example

1 number = @sliced_expr ({ se rver : 2 , c l i e n t : 1 })
2 do p r i n t l n (s ide)

Listing 4.21: Opa Lang explicit sliced states

where to run the code, but it does not mean that it is invisible to the other side. When

running on both sides, it either executes the side effects on both sides or it only executes

on the server and shares the results.

When slicing annotations are omitted, the slicer decides to place declarations on the

server if possible, otherwise it places them on the only possible side. Writing a slice

annotation on a module defaults all the declarations inside it to the same annotations,

but they can be overridden with other slice annotations. There are however some rules

due to the simple fact that everything can not be placed on both sides. Primitives declared

on one side can only be placed on that side. If a primitive is sliced server only, it also

means that it is server private. Primitives tagged as server private cannot be called by

the client, and all declarations using it will become server private themselves. There is

however a directive (publish) to stop this propagation of the tag, essentially telling the

client can now see the declaration (e.g release data after an authentication mechanism

succeeds).

Sometimes the developer wants to have different behaviors for a declaration depend-

ing on the side it is running. To this end Opa lang provides a way of this as shown in

listing 4.21.

4.2.4 Yesod

Yesod is a web framework based on the Haskell language [Has] for developing type-safe

REST model based web applications [Yes]. Type safety is the key feature of Yesod, by giv-

ing high-level declarative techniques, the developer can define the expected input types,

57

CHAPTER 4. RELATED WORK

1 −− TH funct ion
2 $ (hamletFi le " template . hamlet ")
3

4 −− QQ funct ion
5 [hamlet |<p>This i s quasi−quoted Hamlet . |]

Listing 4.22: Yesod TH and QQ functions

as well as having the guarantee that the output is also well formed through the process of

type-safe URLs. Yesod provides entity definition in a higher level, with all the necessary

process of persisting and loading data being performed inside so that the developer can

remain ignorant to the details. The Yesod framework also shines performance wise. Using

the Haskell’s Glasgow Haskell Compiler (GHC) as well as allowing HTML, CSS and JS to

be analyzed at compile time, Yesod provides great performance by avoiding disk I/O at

runtime.

Yesod makes good use of Haskell’s features to save time in developing with code

generation. Code generation comes in two forms, scaffolding for starting projects faster,

and libraries. Using the libraries means that the generated code will always be up to date

and everything is taken care of at compile time. All the code can be written manually,

without using library specific code generation, if more control is required.

One such library is the Template Haskell (TH), which essentially generates an Haskell

abstract syntax tree, reducing a boilerplate code in many occasions. QuasiQuotes (QQ) is

a minor extension to the TH library, and an important library. It allows arbitrary content

to be embedded within Haskell source files. Consider listing 4.22, while a TH function

like hamletFile can read the template contents from a file, QQ provides one named

hamlet that reads the contents inline.

In listing 4.23, we defined an example wall application to demonstrate how a small

application is built in Yesod.

1 {−# LANGUAGE EmptyDataDecls #−}

2 {−# LANGUAGE Flex ib leContext s #−}

3 {−# LANGUAGE GADTs #−}

4 {−# LANGUAGE GeneralizedNewtypeDeriving #−}

5 {−# LANGUAGE MultiParamTypeClasses #−}

6 {−# LANGUAGE OverloadedStrings #−}

7 {−# LANGUAGE QuasiQuotes #−}

8 {−# LANGUAGE TemplateHaskell #−}

9 {−# LANGUAGE TypeFamilies #−}

10 {−# LANGUAGE ViewPatterns #−}

11

12 import Control . Appl icat ive ((<$ >) , (<*>))

13 import Data . Text (Text)

14 import Yesod

15 import Yesod . Form . Jquery

16 import Database . P e r s i s t . S q l i t e

17 import Control . Monad . Trans . Resource (runResourceT)

58

4.2. RELATED FRAMEWORKS

18 import Control . Monad . Logger (runStderrLoggingT)

19

20 share [mkPersist s q l S e t t i n g s , mkMigrate " migrateAll "] [persistLowerCase |

21 Message

22 author Text

23 t e x t Text

24 der iv ing Show

25 |]

26

27 data Wall = Wall ConnectionPool

28

29 mkYesod " Wall " [parseRoutes |

30 / WallR GET

31 / post PostR POST

32 |]

33

34 ins tance Yesod Wall

35

36 ins tance RenderMessage Wall FormMessage where

37 renderMessage _ _ = defaultFormMessage

38

39 ins tance YesodPers i s t Wall where

40 type YesodPersistBackend Wall = SqlBackend

41

42 runDB act ion = do

43 Wall pool <− getYesod

44 runSqlPool ac t ion pool

45

46 messageAForm : : AForm Handler Message

47 messageAForm = Message

48 <$> areq t e x t F i e l d " Author " Nothing

49 <*> areq t e x t F i e l d " Message " Nothing

50

51 messageForm : : Html −> MForm Handler (FormResult Message , Widget)

52 messageForm = renderTable messageAForm

53

54 getWallR : : Handler Html

55 getWallR = do

56 wall <− runDB $ s e l e c t L i s t [] []

57 (widget , enctype) <− generateFormPost messageForm

58 defaultLayout [whamlet |

59 <p> Post a new message !

60 <form method=post ac t ion=@{ PostR } enctype=# { enctype }>

61 ^{ widget }

62 <button>Post

63 <p> Messages !

64 $ f o r a l l Ent i ty messageid message <− wall

65 <p>Message : # { messageText message }

66 <p>Author : # { messageAuthor message }

67 |]

59

CHAPTER 4. RELATED WORK

68

69 postPostR : : Handler Html

70 postPostR = do

71 ((r e s u l t , _) , _) <− runFormPost messageForm

72 case r e s u l t of

73 FormSuccess message −> do

74 runDB $ i n s e r t message

75 r e d i r e c t $ WallR

76 _ −> r e d i r e c t $ WallR

77

78 openConnectionCount : : In t

79 openConnectionCount = 10

80

81 main : : IO ()

82 main = runStderrLoggingT $ withSql i t ePool "demo . db3 " openConnectionCount $

83 pool −> l i f t I O $ do

84 runResourceT $ f l i p runSqlPool pool $ do

85 runMigration migrateAll

86 warp 3000 $ Wall pool

Listing 4.23: Yesod Wall application example

At the top, we declared the extensions being used in the application, also known as lan-

guage pragmas, followed by the imported classes required for what we need to build.

The share function generates the code for building the entity representing the mes-

sages as well as the code required for persisting that entity (in our example we use

the SQLite [Sql] library), while the quasi-quote function persistLowerCase converts

a whitespace-sensitive syntax into a list of entity definitions. The data type declared

as Wall represents the foundation data type of the application, and it must be an in-

stance of the Yesod type class as declared afterwards. The foundation data type of an

application can store a variety of things, and in this case it stores the connection pool

for persisting data. Next, we have the route definitions. One route for the main page,

where we will show all the message and a form for posting a new message, and a route

for the form action that inserts new messages. The following defined instances included

in our application are, respectively, used for automatic generation of our Message entity

form, and for persisting data in the application with a function that runs an action in the

connection pool. The following two functions, messageAForm and messageForm, are used

to ultimately build a table with a form for the Message entity. The next two functions,

getWallR and getPostR, respectively handle the requests for the WallR and PostR routes.

In getWallR we first fetch all the messages, then, we generate the widget for the Message

entity for building our form, and finally, we create the page to be returned. In the page

we have the form for posting new messages as well as a list of all the messages, which

are iterated with a forall function given the already fetched list of messages from the

database. For handling the POST requests, the getPostR checks the result of the form, if

it is a success it inserts the new message in the database and redirects to the main page.

60

4.2. RELATED FRAMEWORKS

For simplicity, any other result redirects to the main page. Finally, we declare the number

of possible open connections in the pool, and we define our main function. In it we start a

logger, the connection pool for SQLite, and the Warp Webserver with our Wall foundation

and connection pool.

4.2.4.1 Sessions

Unlike the previously studied frameworks, Yesod by default implements sessions in a

Client Side web session style with a package named clientsession. Data is stored in an

HTTP Cookie using encryption and signatures, which overcomes the security concerns

that rise from using Client Side web sessions. Encryption ensures that the user can’t

inspect the Cookie and understand its contents, and signatures protect the Cookie from

being tampered with. To change the file path for the encryption key for client session

or the session timeout, one can override the makeSessionBackend method in the Yesod

type class. Also, if we want to turn off session handling this method can be overridden

to return Nothing, although Cross-Site Request Forgery protection is also disabled along

side session handling. There are, however, other functions for finer grain control of

session configurations.

The only remaining security concern is that using the client sessions over HTTP brings

the inherent vulnerability of an attacker being able to read the traffic and impersonating

the user by obtaining his Cookie. Secure Sockets Layer (SSL) is the only solution to

this vulnerability, and preventing browsers from accessing the site with HTTP. To run

the entire site over SSL, Haskell has a solution called warp-tls, and to prevent the site

from sending Cookies over insecure connections we can apply transformations to the

makeSessionBackend method. This transformation turns on the Secure bit of Cookies in

order for the browsers not to transmit over HTTP to the domain.

The API for the base session is available through four functions: lookupSession

to retrieve a value (if available) with a given a key, getSession to retrieve all of the

key/value pairs, setSession to set a value for a given key, and deleteSession to clear a

value for a given key. Recalling listing 4.23, in listing 4.24 we set a session value with the

most recent post when it is successfully inserted in the PostR route, and retrieve it when

handling the WallR route.

Yesod also provides a pair of functions to enable the storage of messages in the session

for sending success and failure messages to a redirected page. A setMessage to store a

message in the session, and getMessage to read and clear the previously stored message.

In listing 4.25 we define a success message and error messages to be stored when posting

on the wall, which are then shown in the wall page.

4.2.4.2 Access Control

Authentication in Yesod is supported through third-party authentication systems, like

OpenID [Ope], BrowserID [Bro], and OAuth [Oau]. It also supports the basic and more

61

CHAPTER 4. RELATED WORK

1 getWallR : : Handler Html
2 getWallR = do
3 wall <− runDB $ s e l e c t L i s t [] []
4 (widget , enctype) <− generateFormPost messageForm
5 value <− lookupSession " recentPost "
6 defaultLayout [whamlet |
7 $maybe v <− value
8 <p> Sess ion value : # { v }
9 <p> Post a new message !

10 <form method=post ac t ion=@{ PostR } enctype=# { enctype }>
11 ^{ widget }
12 <button>Post
13 <p> Messages !
14 $ f o r a l l Ent i ty messageid message <− wall
15 <p>Message : # { messageText message }
16 <p>Author : # { messageAuthor message }
17 |]
18

19 postPostR : : Handler Html
20 postPostR = do
21 ((r e s u l t , _) , _) <− runFormPost messageForm
22 case r e s u l t of
23 FormSuccess message −> do
24 runDB $ i n s e r t message
25 s e t S e s s i o n " recentPost " message
26 r e d i r e c t $ WallR
27 _ −> r e d i r e c t $ WallR

Listing 4.24: Yesod sessions

common mechanism of username/password systems. While the latter provides more

control over the application development, adding third-party authentication systems in

Yesod is simple and users don’t have to remember a new set credentials. The package

providing these authentication plugins is called yesod-auth. For each plugin it is required

that users are identified with a unique string, for example, in BrowserID an email address

is used. Despite the mechanisms behind each plugin, at the end of a successful login

process the plugins set a value in the session indicating the user’s AuthId. This is usually

persisted in a table for tracking users. Due to the use of the underlying session mechanism

of Yesod, the stored authentication value is safe with the same encryption, as well as

having the same timeout as the session for the period in which the user is authenticated.

To build an application using on of these plugins, a type class named YesodAuth is

used to specify a number of settings as well as requiring six declarations:

• the AuthId representing the value that is returned when asking whether a user is

logged in or not;

• the getAuthId function for fetching the AuthId which contains the used authenti-

cation backend, the actual identifier, and a list for storing extra information;

• a redirect route for a successful login named loginDest;

• a redirect route for a successful logout named logoutDest;

62

4.2. RELATED FRAMEWORKS

1 getWallR : : Handler Html
2 getWallR = do
3 wall <− runDB $ s e l e c t L i s t [] []
4 (widget , enctype) <− generateFormPost messageForm
5 message <− getMessage
6 defaultLayout [whamlet |
7 $maybe m <− message
8 <p> Message : # {m}
9 <p> Post a new message !

10 <form method=post ac t ion=@{ PostR } enctype=# { enctype }>
11 ^{ widget }
12 <button>Post
13 <p> Messages !
14 $ f o r a l l Ent i ty messageid message <− wall
15 <p>Message : # { messageText message }
16 <p>Author : # { messageAuthor message }
17 |]
18

19 postPostR : : Handler Html
20 postPostR = do
21 ((r e s u l t , _) , _) <− runFormPost messageForm
22 case r e s u l t of
23 FormSuccess message −> do
24 runDB $ i n s e r t message
25 setMessage " Post Success "
26 r e d i r e c t $ WallR
27 _ −> do
28 setMessage " Post Fa i led "
29 r e d i r e c t $ WallR

Listing 4.25: Yesod session messages

• an authPlugins list containing the plugins used in our application;

• an HTTP connection manager for allowing third-party login systems to share con-

nections reducing the cost of restarting Transmission Control Protocol (TCP) con-

nections with each request.

Listing 4.26 sets up an authentication application, and defines a route named AuthR to

support the access to the sub-site for authentication. Defining the route AuthR requires

an additional two parameters, the authentication sub-site, and a function that retrieves

the sub-site value which Yesod automatically provides. If more than one plugin is used,

Yesod automatically unfolds the login hyper links for each plugin and provides the route

with the appropriate sub-site being requested.

Finally, we can query the user’s AuthId with the maybeAuthId function. Listing 4.27

checks if the user is logged in when accessing the main page of the example application.

Now that our application can authenticate users, we can control the access of their

requests. Yesod provides authorization in a simple and declarative manner through

two methods: authRoute and isAuthorized. These methods are added to the Yesod

type class instance. authRoute should point to the login page, which is almost always

AuthR LoginR. The function isAuthorized takes a requested route and a boolean value

63

CHAPTER 4. RELATED WORK

1 import Data . Default (def)
2 import Network .HTTP. Cl ient . Conduit (Manager , newManager)
3 import Yesod
4 import Yesod . Auth
5 import Yesod . Auth . BrowserId
6

7 −− . . .
8

9 data App = App { httpManager : : Manager }
10

11 ins tance YesodAuth App where
12 type AuthId App = Text
13 getAuthId = return . J u s t . credsIdent
14 loginDest _ = WallR
15 logoutDest _ = WallR
16 authPlugins _ =
17 [authBrowserId def]
18 authHttpManager = httpManager
19

20 mkYesod "App" [parseRoutes |
21 / auth AuthR Auth getAuth
22 |]

Listing 4.26: Yesod Authentication

1 getWallR : : Handler Html
2 getWallR = do
3 maid <− maybeAuthId
4 defaultLayout [whamlet |
5 $maybe id <− maid
6 <p>You are logged in as : # { show id }
7 <p> Logout
8 $nothing
9 <p> Go to the log in page

10 |]

Listing 4.27: Yesod logged in status

indicating if the request is anything but a GET, HEAD, OPTIONS, or TRACE request. In

it we can write code, such as accessing the file system or the database. As an example,

consider listing 4.28, in which we define a route AdminR where only the user named admin

is permitted. The AuthenticationRequired value will redirect the user to the login page

as defined by authRoute, and the Authorized value will validate the user.

Although the code we have to write is quite extensive if we want more complex control

over the resources, Yesod provides with a highly customizable authentication solution,

with much of the boilerplate code being generated for the user.

4.2.5 Data Privacy in Current Frameworks

Although each one of the studied frameworks provide the tools to build applications that

require strict logic data isolation and sharing data between groups of users, they involve

extensive hand-written code to do so. This usually leads to security conditions not being

64

4.3. PROGRAMMING WITH LENSES

1 ins tance Yesod App where
2 authRoute _ = J u s t $ AuthR LoginR
3 i sAuthorized AdminR _ = isAdmin
4 i sAuthorized _ _ = return Authorized
5

6 isAdmin = do
7 maid <− maybeAuthId
8 return $ case maid of
9 Nothing −> Authenticat ionRequired

10 J u s t " admin " −> Authorized
11 J u s t _ −> Unauthorized "You must be an admin "

Listing 4.28: Yesod Authorization

met, or simple errors going unnoticed. Consider the Meteor framework for example,

writing the logic for controlling which data from each collection is visible to each client

is very flexible but can become extensive and quite complex. Any mistake in this coding

won’t be detected immediately and can give rise to serious security issues.

There are frameworks that support multi-tenancy in some way, like the Athena frame-

work [Ath]. Athena is an enterprise object-relational mapping framework that allows

the development of applications with a shared schema, by automatically turning single

tenant queries to the database into queries that take into account an organization iden-

tifier to distinguish the tenants. Although Athena makes it easy to map applications to

multi-tenancy, it still requires logic behind each tenant to be written. Additionally, this

mapping is not flexible and doesn’t address our goal of creating other applications of the

same nature with other, custom, views of the application besides tenancy.

4.3 Programming with Lenses

Propagating changes between connected structures (e.g. databases and materialized

views) is usually done in ad-hoc fashion, that is, hand-written transformations from

one structure to another and back. Naturally, when the structures involved are complex

manual management and maintenance of such transformations becomes equally complex.

Writing such bidirectional transformations is a problem in a vast set of domains, including

data converters and synchronizers, picklers and unpicklers (serializing data), structure

editors and constraint maintainers for user interfaces [Hof+15].

Lenses are bidirectional transformations between a set of inputs C (“concrete struc-

tures”) and a set of outputs A (“abstract structures”). A lens l is comprised of three func-

tions:

l.get ∈ C→ A

l.put ∈ A→ C→ C

l.create ∈ A→ C

65

CHAPTER 4. RELATED WORK

1 l e t c : s t r i n g =
2 Alice Lopes , 28 , FCT
3 Bob Lopes , 21 , UCP
4 Charl ie Martins , 21 , FCT

Listing 4.29: Concrete state defined in Boomerang

1 Alice Lopes , 28
2 Bob Lopes , 21
3 Charl ie Martins , 21

Listing 4.30: Abstract state from get transformation in Boomerang

1 l e t NAME : regexp = [A−Za−z]+
2 l e t AGE : regexp = [0 −9] {2 }
3 l e t COLLEGE : regexp = [A−Z]+

Listing 4.31: Regular expressions in Boomerang

The get function is a forward transformation, a total function from C to A. The put function

takes an old C with an updated A and produces a correspondingly updated C. The create
function works like the put function, except that it only takes an A argument (if the only

available structure is A then defaults are supplied).

4.3.1 Boomerang

In order to illustrate what lenses can do, we show a practical example in Boomerang

[Boh+08], a programming language for writing lenses. Boomerang was developed to op-

erate on ad-hoc, textual data with a set of string lens combinators based on familiar regular

operators (union, concatenation, and Kleene-star), and to address issues in manipulation

of ordered data (dictionary lenses).

Consider that we want write a lens whose get function takes as a concrete state newline-

separated records, like the one defined in listing 4.29, with comma separated data about

students, their age, and college name. We want the returned abstract state in listing 4.30.

First we define the three regular expressions in listing 4.31 to make the writing of the

lens simpler to read. The regular expressions match, respectively, student names, their

age, and the college name. Next we define the lens. The lens is broken down into two

parts for easier comprehension. The first declaration of the lens shows how each record

line chunk is transformed. The second declaration goes over each line applying the first

declaration.

1 l e t compA : lens = key NAME . " , " . AGE . del " , " . del COLLEGE
2 l e t compsA : lens =
3 " " | <d i c t i o n a r y " " : compA> . (newline . <d i c t i o n a r y " " : compA>)*

Listing 4.32: Lens definition in Boomerang

66

4.3. PROGRAMMING WITH LENSES

1 t e s t compsA . get c = ?
2

3 Test r e s u l t :
4 " Alice , 28
5 Bob , 21
6 Charlie , 21"
7

8 l e t a1 : s t r i n g =
9 Bob Lopes , 22

10 Alice Lopes , 28
11 Charl ie Martins , 21
12

13 t e s t compsC . put a1 into c = ?
14

15 Test r e s u l t :
16 " Bob , 22 , UCP
17 Alice , 28 , FCT
18 Charlie , 21 , FCT"

Listing 4.33: Unit testing in Boomerang

1 Test r e s u l t :
2 " Bob , 22 , FCT
3 Alice , 28 , UCP
4 Charlie , 21 , FCT"

Listing 4.34: Effects of no dictionary lens in Boomerang

The lens composition get function uses the del lens to indicate that the college is

to be removed. Note that the concatenation operator ‘.”‘ as well as other operators au-

tomatically promote their arguments, following the sub-typing relationships: string <:

regexp <: lens. The key is an annotation used to indicate which part of the line chuck is

used for alignment, so each line is iterated in an orderly fashion. This is complemented

using a dictionary lens in compsA. Without this dictionary, the alignment would be po-

sitional and we would not get the expected results when the record lines have different

positional alignment. The put function updates the old concrete structure with the given

age updated abstract structure and returns the updated concrete structure.

Listing 4.33 shows how Boomerang allows for unit testing. We use the concrete

structure defined previously to test the get function and an updated abstract structure

a1 (with Bob’s age incremented) to test the put function. As expected, the update to Bob’s

age is propagated to the concrete structure returned by the test. However, the updated

abstract structure a1 has the first two lines swapped in relation to the concrete structure,

meaning that, the update of the concrete structure leads to an unwanted update without

a dictionary lens. If a dictionary lens is not used in the update, the updated concrete

structure will as described in listing 4.34. As the test described result shows, without

a dictionary lens, the college name will be swapped as well, because we are matching in

positional alignment and the first line is different in each structure, thus updating Bob’s

college with Alice’s college and vice versa.

67

C
h
a
p
t
e
r

5
Validation

In this chapter we provide a small benchmark of our implemented language against the

Meteor framework. As presented in section 4.2, Meteor has a synchronization process

which automatically propagates changes with the DDP [Metb] that allows for rapid pro-

totyping and incremental development, closely resembling the reactive and incremental

language that we extend in this thesis. Additionally, Meteor is the most popular [Hot]

and the most code efficient framework out of the ones studied in section 4.2. The target

applications of the benchmark are the MTAs, as they are the target applications of the

work done in the context of this thesis. We host the developed example applications

on Heroku [Her]. The benchmark metrics we use are code succinctness, and develop-

ment costs. We do not, however, compare the performances of both frameworks since

the adopted prototype is visibly slower than Meteor when evaluating and providing an

HTML page after any update. This visible performance discrepancy is due how the proto-

type handles HTML values, which are fully re-evaluated after each change as opposed to

only re-evaluating the relevant parts. The low performance of the prototype is addressed

as future work in the next chapter since it is a major factor in the viability and usability

of any web framework.

First we will address the differences of authentication in a well established framework

like Meteor and our language. Then, we look at a simple wall application where any user

can post a message anonymously, and transform it into a multi-group wall application

thus comparing the efforts required by both frameworks. Next, we take a closer look at

the TodoMVC [Tod] multi-group application developed in both frameworks. Finally, we

end the chapter with some conclusions.

69

CHAPTER 5. VALIDATION

5.1 Authentication

In this section, we focus on the development costs of both frameworks by analyzing

code re-usability and maintenance with the example of authentication mechanisms in

mind. Meteor, as a well established framework, has a package manager which provides

around 590 packages [Atmb] with different implemented and ready to use authentication

mechanisms. In section 2.2 we defined a working simple authentication mechanism in

our language, which is later used in section 2.3.3 to control access to an authenticated

user environment. The full simple authentication example code is listed in appendix B.1.

Even thou our language allows the developer to build authentication from scratch as

well, it lacks security aspects like cryptography to create more secure authentication

mechanisms. Additionally, seeing as authentication mechanisms are at the core of most

common web applications, it is crucial for a faster development that these mechanisms

are easy to re-use and maintain.

Packaging and distributing smaller applications is essential for the faster development

of applications. Our framework, being a prototype, still has no way of packaging and

distributing applications, such as the one we developed in section 2.2. However, re-using

previously written code for a new application in our framework can be simple due to

its ability to receive large chunks of code. Utilizing this simple input of code is a good

basis for a distribution method in the implementation of a future package manager for

the current prototype. With a package manager and more security aspects implemented

into the language, it is then possible to build cryptography modules and authentication

mechanisms, package them and distribute through the package manager.

5.2 Simple Wall Application

The benchmark in this section is focused on understanding the cost of developing an

application and then transforming it into a multi-group application. In listing 5.1 we

define the wall application 1 in our language, where any user can post anonymously. In

appendix B.2 we define the same application 2 in Meteor. The code is visibly a little more

succinct in our prototype than in Meteor due to its file based nature and explicit division

of client and server code.

Next, we want to transform the wall application into a multi-group application where

users access a group wall and post anonymously. In our language, we need only to

wrap the previously defined application with an indexed module. Listing 5.2 transforms

the wall application in listing 5.1 into a multi-group wall application 3. In Meteor, to

develop the same transformation we require the definition of routes, a new collection

for the groups, and some other template helpers. Additionally, in Meteor collections are

1A working example can be found at http://live-programming.herokuapp.com/app/Br1ti/page
2Working application at https://meteor-wall.herokuapp.com/
3Working example at http://live-programming.herokuapp.com/app/aNRZd/Group/page/Family for

a family group wall. Change group by changing the last URL path (Family).

70

http://live-programming.herokuapp.com/app/Br1ti/page
https://meteor-wall.herokuapp.com/
http://live-programming.herokuapp.com/app/aNRZd/Group/page/Family

5.2. SIMPLE WALL APPLICATION

1 var posts = [{
2 id : 0 ,
3 msg : "Welcome to the Wall App! "
4 }]
5

6 def s i z e = foreach (post in posts with y = 0) y+1
7

8 def post t = action {
9 i n s e r t { id : s i ze , msg : t } into posts

10 }
11 def d e l e t e P o s t id = action {
12 delete post in posts where post . id == id
13 }
14

15 def page =
16 <div c l a s s=" conta iner ">
17 <header>
18 <h1>" Wall " </h1>
19 <input type=" t e x t " name=" t e x t " placeholder=" Post something "
20 onenter =(post)/>
21 </header>
22
23 (map (p in posts)
24 <l i >
25 <button c l a s s=" d e l e t e " doaction =(d e l e t e P o s t p . id)> "X" </button>
26 (p . msg)
27 </ l i >)
28
29 </div>

Listing 5.1: Multi-user wall application in our language

1 module Group<s t r i n g group> {
2 / / listing 5.1 a p p l i c a t i o n code
3 }

Listing 5.2: Multi-user wall application in our language

available on both the client and the server, thus we need to specify what information

is published to the client. Appendix B.3 transforms the example wall application in

appendix B.2 into a multi-group wall application 4. The effort, as well as code written,

to make the multi-tenant transformation is evidently greater with Meteor. Furthermore,

since the security rules and routes are all written by hand, there are no guarantees that

they are error free. Testing, as well as writing security rules and routes, require a greater

development effort throughout the evolution of an application. The transformation of an

application to an MTA is visibly more simple and less prone to error in our language.

4Working application at https://wall-groups.herokuapp.com/group/Family for a family group wall.
Change group by changing the last URL path (Family)

71

https://wall-groups.herokuapp.com/group/Family

CHAPTER 5. VALIDATION

5.3 TodoMVC Multi-Group

In modern web frameworks, as an application adds layers of multi-tenant traits, the

effort and possible errors in development grows. The extended TodoMVC application 5

we implemented in chapter 3 involves most of the multi-tenant traits described. The

code for our non styled and simplified TodoMVC for groups of users can be found in

appendix B.4. The code of our styled6 and complete TodoMVC application 7 for groups

of users can be found at appendix B.6. We built the same application in Meteor 8. The

code for the Meteor version can be found in appendix B.5.

Writing the application in Meteor requires slightly more written code, and a more

careful plan to segment group information without any errors. The simplest phase in the

development of the application in Meteor is the use of the package manager to introduce

a packaged authentication mechanism. In our language, we also re-use a previously

defined authentication mechanism but it is not packaged and distributed automatically,

requiring a manual copy of the code to the new application. Although it is quite simple

to manually copy an application in our framework, it is important for the viability of any

web framework to package and distribute applications.

Manually writing routes is a careful process as subscribing to required information

needs to happen before the route delivers the desired result, or else some information

might not be available on the client side when a piece of code requests data, which results

in errors. In our language, data is segmented naturally and automatically with each

module definition, and each segmented data has a route of its own provided through

a REST interface. The automatic segmentation of data is effortless and guarantees the

safe development of applications, as opposed to the possibility of errors in the manual

segmentation of data in Meteor and other similar modern web frameworks.

Even thou there is a package for Meteor to associate roles to authenticated users from

the already used authentication package, the example only required one role for one

action (delete to-dos) which proved simpler to just define a condition through a helper

function. Additionally, the package only creates roles for authenticated users, which

leaves the creation and management of any other types of roles in any other application

to be manual. In our language, creating and managing roles is equally simple but also

guarantees a sound application without broken security rules. Further more roles are

associated with defined nested modules which can represent anything, not just users.

5Working example in the work space at http://live-programming.herokuapp.com/dev/BluQ1, with
the authentication page at http://live-programming.herokuapp.com/app/BluQ1/Public/page

6The TodoMVC CSS can be found at.https://github.com/tastejs/todomvc/blob/gh-pages/
examples/backbone/node_modules/todomvc-app-css/index.css

7Working example at http://live-programming.herokuapp.com/dev/lCBCd, with the main login page
at http://live-programming.herokuapp.com/app/lCBCd/Public/page

8Working example at https://todo-groups.herokuapp.com/ using the same users defined in ap-
pendix A.1

72

http://live-programming.herokuapp.com/dev/BluQ1
http://live-programming.herokuapp.com/app/BluQ1/Public/page
https://github.com/tastejs/todomvc/blob/gh-pages/examples/backbone/node_modules/todomvc-app-css/index.css
https://github.com/tastejs/todomvc/blob/gh-pages/examples/backbone/node_modules/todomvc-app-css/index.css
http://live-programming.herokuapp.com/dev/lCBCd
http://live-programming.herokuapp.com/app/lCBCd/Public/page
https://todo-groups.herokuapp.com/

5.4. CONCLUSIONS

5.4 Conclusions

Meteor produces very efficient applications performance wise, and although our proposed

language can very rapidly transform applications into MTAs, its performance is notice-

ably slower due to many factors, some of which are discussed and listed as future work

in chapter 6. However, Meteor code is also written in JS, an untyped language that gives

no guarantees of a sound application, which can increase the costs in the development

phase when errors occur, moreover, in production there is always the possibility of errors

occurring that were not caught in development. In contrast, the core language in this

thesis is typed and is as code succinct as Meteor. Since our approach maps the introduced

mechanisms to core language operations, the typing system of the language continues

to provide the safe development of applications with guarantees that applications are

sound. Additionally, there is an increased cost in deployment for applications developed

in modern frameworks, which in our framework is cost free with an automatic deploy-

ment, with changes to an application being applied on the running application as soon

as they are verified.

73

C
h
a
p
t
e
r

6
Final Remarks

The work done in the context of this thesis resulted in a reactive and incremental language

targeted at multi-user web applications, a runtime support system, and live development

environment. Because most of the introduced mechanisms are mapped directly to core

language constructs, the existing type system guarantees a safe development of sound

applications. Additionally, for the same reason, the reactive and incremental nature of

the core language carries over to the introduced mechanisms.

The language provides operations to define the three layers of a web application in

different shared and isolated module environments: data scheme, business logic, and

views. The runtime support system provides client identification allowing the devel-

oper to create authentication mechanisms with the language. The developer builds an

application using an incremental approach in a live development environment, where

each modification is statically verified and deployed into the running application without

restarting or stopping the application. The reactive nature that allows for the immediate

and continuous feedback in development is also present in every running web application,

without the explicit effort of the developer.

We believe the introduced client identification mechanism provides the foundation

on which authentication mechanisms can be built. We demonstrated this by developing

our own user authentication from which an application can be built. We also believe

that modules and introduced module mechanisms allow faster definition of sound web

applications with multi-tenant traits, validated by our version of the TodoMVC [Tod]

application1 that provides the same application to multiple groups (tenants). We take the

single user application provided by the TodoMVC project and apply a modular approach

with our introduced abstractions, effectively indexing the same TodoMVC application

1Working example at http://live-programming.herokuapp.com/dev/lCBCd, with the main login page
at http://live-programming.herokuapp.com/app/lCBCd/Public/page

75

http://live-programming.herokuapp.com/dev/lCBCd
http://live-programming.herokuapp.com/app/lCBCd/Public/page

CHAPTER 6. FINAL REMARKS

with a different state for each group. The application provides each group with a dif-

ferent To-do list, and each user with a set of accessible groups. With our boilerplate

authentication, we provide user authentication to the application and allow some users to

have some extra actions over each group. The application shows that in a similar fashion

a registration process for users can be added to the application, and users can also be

granted the ability to create groups and manage them.

The system is not yet complete and ready for production applications due to the lack

of some features which are described as future work in the next section. The overall

performance of the system was improved during the development phase of the extended

language, but there are still some areas in which performance should be revisited. Cur-

rently, the two main impairments of performance in the system are the lack of caching in

lenses, and full re-evaluation of HTML pages when a single dependency changes. How-

ever, we believe that the introduced module mechanisms to the project provide a faster

approach in developing sound web applications, and that more research in this area could

decrease the costs in developing, verifying, and maintaining web applications.

6.1 Future Work

The next paragraphs present some of the possible features and improvements that can be

added to the system in order to increase its performance and usability.

Filtered Lens Caching The current implementation of filtered lenses executes the same

iterations for every get operation, most of the time unnecessarily because no dependency

has changed. A simple cache system can be easily implemented to improve performance.

HTML Re-Evaluation When a dependency of an HTML definition changes, the page is

fully re-evaluated to compare with the current value and find changes. This means that

performance decreases as a page grows, which could be avoided by only re-evaluating

the relevant parts of the page.

JS/CSS Associated with an HTML page The JS and CSS currently is associated with

a workspace, rather than having a JS and CSS for each page to avoid collision of CSS

selectors and JS event handlers.

Operations Queue In the current implementation of the language [Mat15], the opera-

tions are run sequentially. This obviously affects performance when there are multiple

users using the framework. The operations queue should be separate from the interpreter

to allow the system to schedule operations in the best way possible, and possibly execut-

ing different operations in parallel. Such a queue is described in the paper that introduces

the core language [DS15].

76

6.1. FUTURE WORK

Application Clones Currently verified changes to an application are deployed in the

running application immediately. However, sometimes in development we want to try

implemented features before making them available to users. To do achieve this, the

framework could provide with a cloning feature, in which applications are cloned as

if they were Git branches, and later the modifications can be merged with the running

application or discarded. Cloning offers some challenges with merging data used when

testing implemented features in the cloned application.

Improve Queries The available queries when filtering tables is limited to simple con-

ditions with binary operators, but no ordering, grouping, aggregation or projections.

Additionally, these queries need to be optimized in order to not have greater impact on

the overall performance of an application.

Improved IDE The re-invented IDE can still be improved in multiple areas. Indexed

values were originally planned to be displayed as records with easy to use lookup features.

Imported names were also originally planned to show the cached values, but because the

lens caching system wasn’t implemented as described in section 6.1, the cached values

are not displayed in the IDE. Displaying the graph of dependencies on demand for each

name would also be a good development, because in a growing application it becomes

harder to keep track of the already existing code. The language editor can also be changed

to a full fledged text editor, with syntax highlighting, like the JS and CSS editors.

Garbage Collection The hoisting technique described in chapter 2 of previous frame-

work thesis [Mat15] is used to store scopes in separate names. The system currently

doesn’t clean unused hoisted names, which in a long development process of a growing

application can lead to performance issues in wasted disk space with unnecessary names

being persistently stored.

Package Manager A common feature with modern frameworks is package managers.

For example, AtmosphereJS2 for Meteor or RubyGems3 for Ruby. A central registry could

be added to the system, in order to allow developers to publish new modular applications

that could then be used in any application to speed-up the development process. A good

example of such a modular application, is the authentication application we defined in

sections 2.2 and 2.3.3, which could provide developers with an authentication package

for their applications.

Security The current authentication mechanisms that can be built with the prototype

lack security layers such as cryptography which are a fundamental layer for more secure

authentication mechanisms.

2https://atmospherejs.com/
3https://rubygems.org/

77

https://atmospherejs.com/
https://rubygems.org/

CHAPTER 6. FINAL REMARKS

Module Hooks The possibility of defining hooks for module access (similar to route

hooks in modern web frameworks) in order to trigger certain actions can extend the

number of applications that can be expressed in the framework. Additionally, the cur-

rent language does not provide many event hooks for HTML elements when defining

pages, thus a more generic event hook management for HTML pages could improve the

expressiveness of the language.

78

Bibliography

[Bez+10] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t. Hart.

“Enabling Multi-tenancy: An Industrial Experience Report”. In: Proceedings
of the 2010 IEEE International Conference on Software Maintenance. ICSM ’10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–8. isbn: 978-1-

4244-8630-4. doi: 10.1109/ICSM.2010.5609735. url: http://dx.doi.

org/10.1109/ICSM.2010.5609735.

[Boh+06] A. Bohannon, B. C. Pierce, and J. A. Vaughan. “Relational lenses: a lan-

guage for updatable views”. In: Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA. 2006, pp. 338–347. doi: 10.1145/1142351.

1142399. url: http://doi.acm.org/10.1145/1142351.1142399.

[Boh+08] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. “Boomerang:

resourceful lenses for string data”. In: Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San
Francisco, California, USA, January 7-12, 2008. 2008, pp. 407–419. doi: 10.

1145/1328438.1328487. url: http://doi.acm.org/10.1145/1328438.

1328487.

[CC12] N. Chapman and J. Chapman. Authentication and Authorization on the Web
(Web Security Topics). 2012. isbn: 978-0956737052.

[DS15] M. Domingues and J. C. Seco. “Type Safe Evolution of Live Systems”. In:

Workshop on Reactive and Event-based Languages Systems (REBLS 15) (2015).

[Gro+08] D. M. Groenewegen, Z. Hemel, L. C. Kats, and E. Visser. “WebDSL: A Domain-

specific Language for Dynamic Web Applications”. In: Companion to the 23rd
ACM SIGPLAN Conference on Object-oriented Programming Systems Languages
and Applications. OOPSLA Companion ’08. Nashville, TN, USA: ACM, 2008,

pp. 779–780. isbn: 978-1-60558-220-7. doi: 10.1145/1449814.1449858.

url: http://doi.acm.org/10.1145/1449814.1449858.

[Hof+15] M. Hofmann, B. C. Pierce, and D. Wagner. “Symmetric Lenses”. In: Journal
of the ACM (2015). To appear; extended abstract in POPL 2011.

79

https://doi.org/10.1109/ICSM.2010.5609735
http://dx.doi.org/10.1109/ICSM.2010.5609735
http://dx.doi.org/10.1109/ICSM.2010.5609735
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.1145/1142351.1142399
http://doi.acm.org/10.1145/1142351.1142399
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1328438.1328487
https://doi.org/10.1145/1449814.1449858
http://doi.acm.org/10.1145/1449814.1449858

BIBLIOGRAPHY

[Kri01] D. M. Kristol. “HTTP Cookies: Standards, Privacy, and Politics”. In: ACM
Trans. Internet Technol. 1.2 (Nov. 2001), pp. 151–198. issn: 1533-5399. doi:

10.1145/502152.502153. url: http://doi.acm.org/10.1145/502152.

502153.

[Mat15] J. P. C. Mateus. “Runtime Support System for an Incremental and Reactive

Web Programming Language”. MA thesis. Faculdade de Ciências e Tecnologia

- UNL, Dec. 2015.

[MK11] C. Momm and R. Krebs. “A Qualitative Discussion of Different Approaches

for Implementing Multi-Tenant SaaS Offerings”. In: Software Engineering
2011 - Workshopband (inkl. Doktorandensymposium), Fachtagung des GI-Fachbereichs
Softwaretechnik, 21.-25.02.2011, Karlsruhe. 2011, pp. 139–150. url: http:

//subs.emis.de/LNI/Proceedings/Proceedings184/article6330.html.

[Rod+12] J. Rodrigues, A. Leite, J. C. Damasceno, V. C. Garcia, P. Silveira, and S. R. L.

Meira. “An Approach to Developing Multi-tenancy SaaS Using Metaprogram-

ming”. In: Proceedings of the 18th Brazilian Symposium on Multimedia and the
Web. WebMedia ’12. São Paulo/SP, Brazil: ACM, 2012, pp. 207–210.

isbn: 978-1-4503-1706-1. doi: 10.1145/2382636.2382681. url: http:

//doi.acm.org/10.1145/2382636.2382681.

[SR11] B. Sengupta and A. Roychoudhury. “Engineering Multi-tenant Software-as-a-

service Systems”. In: Proceedings of the 3rd International Workshop on Principles
of Engineering Service-Oriented Systems. PESOS ’11. New York, NY, USA: ACM,

2011, pp. 15–21. isbn: 978-1-4503-0591-4. doi: 10.1145/1985394.1985397.

url: http://doi.acm.org/10.1145/1985394.1985397.

[Ste15] A. Steckermeier. “Lenses in Functional Programming”. July 2015. url:

https://www21.in.tum.de/teaching/fp/SS15/papers/17.pdf.

[Tsa+14] W. Tsai, X. Bai, and Y. Huang. “Software-as-a-service (SaaS): perspectives and

challenges”. In: SCIENCE CHINA Information Sciences 57.5 (2014), pp. 1–15.

doi: 10.1007/s11432-013-5050-z. url: http://dx.doi.org/10.1007/

s11432-013-5050-z.

[Vel+10] T. Velte, A. Velte, and R. Elsenpeter. Cloud Computing, A Practical Approach.

1st ed. New York, NY, USA: McGraw-Hill, Inc., 2010. isbn: 0071626948,

9780071626941.

[You+11] A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C. Fox.

“Analysis of Virtualization Technologies for High Performance Computing

Environments”. In: Proceedings of the 2011 IEEE 4th International Conference
on Cloud Computing. CLOUD ’11. Washington, DC, USA: IEEE Computer

Society, 2011, pp. 9–16. isbn: 978-0-7695-4460-1. doi: 10.1109/CLOUD.

2011.29. url: http://dx.doi.org/10.1109/CLOUD.2011.29.

80

https://doi.org/10.1145/502152.502153
http://doi.acm.org/10.1145/502152.502153
http://doi.acm.org/10.1145/502152.502153
http://subs.emis.de/LNI/Proceedings/Proceedings184/article6330.html
http://subs.emis.de/LNI/Proceedings/Proceedings184/article6330.html
https://doi.org/10.1145/2382636.2382681
http://doi.acm.org/10.1145/2382636.2382681
http://doi.acm.org/10.1145/2382636.2382681
https://doi.org/10.1145/1985394.1985397
http://doi.acm.org/10.1145/1985394.1985397
https://www21.in.tum.de/teaching/fp/SS15/papers/17.pdf
https://doi.org/10.1007/s11432-013-5050-z
http://dx.doi.org/10.1007/s11432-013-5050-z
http://dx.doi.org/10.1007/s11432-013-5050-z
https://doi.org/10.1109/CLOUD.2011.29
https://doi.org/10.1109/CLOUD.2011.29
http://dx.doi.org/10.1109/CLOUD.2011.29

Webography

[Ace] Ace Editor. url: https://ace.c9.io/ (visited on 03/22/2017).

[Ama] Amazon Web Services. url: https://aws.amazon.com/ (visited on 03/22/2017).

[Ath] Athena Framework. url: http://athenasource.org/ (visited on 03/22/2017).

[Aut] Authentication. 2016. url: https://en.wikipedia.org/wiki/Authentication

(visited on 03/22/2017).

[Meta] Build Apps with JavaScript. url: http://meteor.com (visited on 03/22/2017).

[Her] Cloud Application Platform | Heroku. url: https://www.heroku.com/ (vis-

ited on 03/22/2017).

[Dle] Distributed Lens Architecture. url: http : / / matrix . ai / 2014 / 12 / 05 /

distributed-lens-architecture/ (visited on 03/22/2017).

[Has] Haskell Language. url: https://www.haskell.org/ (visited on 03/22/2017).

[Rfc] Hypertext Transfer Protocol – HTTP/1.1. url: http://www.w3.org/Protocols/

rfc2616/rfc2616.html (visited on 03/22/2017).

[Htta] Interface HttpServletRequest. url: https://tomcat.apache.org/tomcat-

5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html

(visited on 03/22/2017).

[Httb] Interface HttpSession. url: http://docs.oracle.com/javaee/5/api/

javax/servlet/http/HttpSession.html (visited on 03/22/2017).

[Bro] Introducing BrowserID. url: http://identity.mozilla.com/post/7616727542/

introducing-browserid-a-better-way-to-sign-in (visited on 01/22/2016).

[Kop11] A. Koprowski. OPA Language Documentation. 2011. url: http://blog.

opalang.org/2011/09/sessions-handling-state-communication.html

(visited on 03/22/2017).

[Metb] Meteor Distributed Data Protocol. Jan. 2016. url: http://www.meteor.com/

ddp (visited on 03/22/2017).

[Metc] Meteor Documentation. Jan. 2016. url: http://docs.meteor.com (visited on

03/22/2017).

[Atma] Meteorite Account Packages. url: https://atmospherejs.com/ (visited on

03/22/2017).

81

https://ace.c9.io/
https://aws.amazon.com/
http://athenasource.org/
https://en.wikipedia.org/wiki/Authentication
http://meteor.com
https://www.heroku.com/
http://matrix.ai/2014/12/05/distributed-lens-architecture/
http://matrix.ai/2014/12/05/distributed-lens-architecture/
https://www.haskell.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServletRequest.html
http://docs.oracle.com/javaee/5/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/5/api/javax/servlet/http/HttpSession.html
http://identity.mozilla.com/post/7616727542/introducing-browserid-a-better-way-to-sign-in
http://identity.mozilla.com/post/7616727542/introducing-browserid-a-better-way-to-sign-in
http://blog.opalang.org/2011/09/sessions-handling-state-communication.html
http://blog.opalang.org/2011/09/sessions-handling-state-communication.html
http://www.meteor.com/ddp
http://www.meteor.com/ddp
http://docs.meteor.com
https://atmospherejs.com/

WEBOGRAPHY

[Atmb] Meteorite Account Packages. url: https : / / atmospherejs . com / mrt ? q =

accounts (visited on 03/22/2017).

[Cmo] Modular Programming in C. url: http://www.icosaedro.it/c-modules.

html.

[Oca] Modules - OCaml. url: https://ocaml.org/learn/tutorials/modules.

html.

[Mon] MongoDB. url: https://www.mongodb.com/.

[Nod] Node.js. url: https://nodejs.org/.

[Oau] OAuth Community. url: https://oauth.net/ (visited on 01/22/2016).

[Opaa] OPA Language Documentation. Jan. 2016. url: http : / / github . com /

MLstate/opalang/wiki/A-tour-of-Opa (visited on 03/22/2017).

[Ope] OpenID Foundation. url: http://openid.net/ (visited on 01/22/2016).

[Xep] Publish-Subscribe. url: http://xmpp.org/extensions/xep-0060.html

(visited on 03/22/2017).

[Ses] Session (Computer Science). url: https://en.wikipedia.org/wiki/Session_

(computer_science) (visited on 03/22/2017).

[Usi] Session ID. url: https://en.wikipedia.org/wiki/Session_ID (visited on

03/22/2017).

[Opab] Slicing. Feb. 2016. url: https://github.com/MLstate/opalang/wiki/

Developing-for-the-web#slicing (visited on 03/22/2017).

[Sql] SQLite. url: https://www.sqlite.org/ (visited on 03/22/2017).

[Tod] TodoMVC Project. url: https://todomvc.com (visited on 03/22/2017).

[Hot] Web Frameworks Ranking. url: http://hotframeworks.com/#rankings

(visited on 03/22/2017).

[Weba] WebDSL Manual. Jan. 2016. url: http://webdsl.org/page/Manual (visited

on 03/22/2017).

[Webb] WebSocket. url: https://en.wikipedia.org/wiki/WebSocket (visited on

03/22/2017).

[Yes] Yesod Web Framework Book- Version 1.4. 2016. url: http://www.yesodweb.

com/book (visited on 03/22/2017).

82

https://atmospherejs.com/mrt?q=accounts
https://atmospherejs.com/mrt?q=accounts
http://www.icosaedro.it/c-modules.html
http://www.icosaedro.it/c-modules.html
https://ocaml.org/learn/tutorials/modules.html
https://ocaml.org/learn/tutorials/modules.html
https://www.mongodb.com/
https://nodejs.org/
https://oauth.net/
http://github.com/MLstate/opalang/wiki/A-tour-of-Opa
http://github.com/MLstate/opalang/wiki/A-tour-of-Opa
http://openid.net/
http://xmpp.org/extensions/xep-0060.html
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/Session_(computer_science)
https://en.wikipedia.org/wiki/Session_ID
https://github.com/MLstate/opalang/wiki/Developing-for-the-web#slicing
https://github.com/MLstate/opalang/wiki/Developing-for-the-web#slicing
https://www.sqlite.org/
https://todomvc.com
http://hotframeworks.com/#rankings
http://webdsl.org/page/Manual
https://en.wikipedia.org/wiki/WebSocket
http://www.yesodweb.com/book
http://www.yesodweb.com/book

A
p
p
e
n
d
i
x

A
Seed Data for the To-do Application

A.1 Users Seed Data

1 var users = [{

2 name : " Al ice " ,

3 password : " alpha "

4 } , {

5 name : " Bob " ,

6 password : " bravo "

7 } , {

8 name : " Carol " ,

9 password : " c h a r l i e "

10 } , {

11 name : " David " ,

12 password : " d e l t a "

13 } , {

14 name : " Eve " ,

15 password : " echo "

16 }]

83

APPENDIX A. SEED DATA FOR THE TO-DO APPLICATION

A.2 Groups Seed Data

1 var groups = [{

2 name : " Family " ,

3 users : [{ name : " Al ice " , admin : true } ,

4 { name : " Bob " , admin : true } ,

5 { name : " David " , admin : f a l s e } ,

6 { name : " Eve " , admin : f a l s e }]

7 } , {

8 name : " School " ,

9 users : [{ name : " Carol " , admin : true } ,

10 { name : " Al ice " , admin : true } ,

11 { name : " David " , admin : f a l s e } ,

12 { name : " Eve " , admin : true } ,

13 { name : " Bob " , admin : f a l s e }]

14 } , {

15 name : "Gym" ,

16 users : [{ name : " Bob " , admin : f a l s e } ,

17 { name : " David " , admin : true } ,

18 { name : " Carol " , admin : true }]

19 }]

84

A
p
p
e
n
d
i
x

B
Code for Developed Applications

B.1 Simple Authentication

1 / / Data s t r u c t u r e s in appendices A.1 and A.2

2

3 do action { delete a in authent icatedUsers where t rue }

4

5 def a u t h e n t i c a t e name password =

6 match
7 get user in users

8 where user . name == name and user . password == password

9 with
10 user : : r e s t =>
11 action {

12 i n s e r t {

13 name : name ,

14 token : usid
15 } into authent icatedUsers

16 }

17 | [] => action { }

18

19 def logout = action {

20 delete user in authent icatedUsers

21 where user . token == usid
22 }

23

24 def authent ica ted id =

25 match
26 get user in authent icatedUsers

27 where user . token == id
28 with
29 user : : r e s t => t rue

85

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

30 | [] => f a l s e

31

32 module Public <usid> {

33 import a u t h e n t i c a t e

34 import authent ica ted

35 import logout

36

37 from user in authent icatedUsers where user . token == usid
38 import f i r s t user . name as currentUser

39 default { name : " " , token : " " }

40

41 def page =

42 <div>

43 (i f not authent ica ted usid then
44 <div>

45 <div>

46 <input type=" t e x t " placeholder=" username " id="name"/>

47 <input type=" password " placeholder=" password " id=" password "/>

48 </div>

49 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>

50 </div>

51 e l s e
52 <div>

53 <h1>("Welcome " ++ currentUser)</h1>

54 <button doaction =(logout)> " Logout " </button>

55 </div >)

56 </div>

57 }

B.2 Simple Wall Application in Meteor

1 export const Posts = new Mongo . C o l l e c t i o n (’ posts ’) ;

Listing B.1: posts.js

1 import { Meteor } from ’ meteor /meteor ’ ;

2

3 import { Posts } from ’ . . / posts . j s ’

4

5 Meteor . s tar tup (() => {

6 // code to run on serv er at s tar tup

7 }) ;

Listing B.2: server/main.js

1 <template name=" post ">

2 <l i >

3 <button c l a s s =" d e l e t e ">× ; </ button>

4 { { t e x t }} </ span>

5 </ l i >

86

B.2. SIMPLE WALL APPLICATION IN METEOR

6 </template >

Listing B.3: client/post.html

1 import { Template } from ’ meteor / templating ’ ;

2 import { Posts } from ’ . . / posts . j s ’ ;

3 import ’ . / post . html ’ ;

4

5 Template . post . events ({

6 ’ c l i c k . delete ’ () {

7 Posts . remove (t h i s . _id) ;

8 } ,

9 }) ;

Listing B.4: client/post.js

1 <body>

2 <div c l a s s =" conta iner ">

3 <header>

4 <h1>Wall</h1>

5 <form c l a s s ="new−post ">

6 <input type =" t e x t " name=" t e x t " placeholder =" Post something " />

7 </form>

8 </header>

9

10 { { # each posts } }

11 {{ > post } }

12 { { / each } }

13

14 </div>

15 </body>

Listing B.5: client/body.html

1 import { Meteor } from ’ meteor /meteor ’ ;

2 import { Template } from ’ meteor / templating ’ ;

3 import { Posts } from ’ . . / posts . j s ’ ;

4 import ’ . / body . html ’ ;

5

6 Template . body . helpers ({

7 posts () {

8 return Posts . f ind ({ }) ;

9 } ,

10 }) ;

11

12 Template . body . events ({

13 ’ submit . new−post ’ (event) {

14 // Prevent defau l t browser form submit

15 event . preventDefault () ;

16 // Get value from form element

17 const t a r g e t = event . t a r g e t ;

87

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

18 const t e x t = t a r g e t . t e x t . value ;

19 // I n s e r t a task into the c o l l e c t i o n

20 Posts . i n s e r t ({

21 t e x t

22 }) ;

23 // Clear form

24 t a r g e t . t e x t . value = ’ ’ ;

25 } ,

26 }) ;

Listing B.6: client/main.js

B.3 Simple Groups Wall Application in Meteor

1 import { Meteor } from ’ meteor /meteor ’ ;

2

3 export var Groups = new Mongo . C o l l e c t i o n (’ groups ’) ;

4 export var Posts = new Mongo . C o l l e c t i o n (’ posts ’) ;

5

6 Router . route (’ / group / : name ’ , {

7 ac t ion : funct ion () {

8 var group = Groups . findOne ({ name : t h i s . params . name }) ;

9 var posts = Posts . f ind ({ groupId : group . _id }) ;

10 t h i s . render (’ Group ’ , {

11 data : funct ion () {

12 return {

13 group : group ,

14 posts : posts

15 } ;

16 }

17 }) ;

18 } ,

19 waitOn : funct ion () {

20 Meteor . subscr ibe (’ groups ’ , t h i s . params . name) ;

21 return Meteor . subscr ibe (’ posts ’ , t h i s . params . name) ;

22 }

23 }) ;

Listing B.7: groups.js

1 import { Template } from ’ meteor / templating ’ ;

2 import { Groups , Posts } from ’ . . / groups . j s ’ ;

3 import ’ . / main . html ’ ;

4

5 Template . Group . events ({

6 ’ keypress input ’ (event , ins tance) {

7 var group = t h i s . group ;

8 i f (event . which === 13) {

9 Posts . i n s e r t ({ groupId : group . _id , t e x t : event . t a r g e t . value }) ;

10 event . t a r g e t . value = ’ ’ ;

11 }

88

B.3. SIMPLE GROUPS WALL APPLICATION IN METEOR

12 }

13 }) ;

14

15 Template . Post . events ({

16 ’ c l i c k . delete ’ (event , ins tance) {

17 Posts . remove ({ _id : t h i s . _id }) ;

18 }

19 }) ;

Listing B.8: client/main.js

1 import { Meteor } from ’ meteor /meteor ’ ;

2 import { Groups , Posts } from ’ . . / groups . j s ’ ;

3

4 Meteor . publish (’ groups ’ , funct ion (name) {

5 return Groups . f ind ({ name : name }) ;

6 }) ;

7

8 Meteor . publish (’ posts ’ , funct ion (name) {

9 var group = Groups . findOne ({ name : name }) ;

10 i f (! group) {

11 var groupId = Groups . i n s e r t ({

12 name : name

13 }) ;

14 return Posts . f ind ({ groupId : groupId }) ;

15 } e l s e {

16 return Posts . f ind ({ groupId : group . _id }) ;

17 }

18 }) ;

19

20 Meteor . s tar tup (() => { }) ;

Listing B.9: server/main.js

1 <template name="Group">

2 <body>

3 <div c l a s s =" conta iner ">

4 <header>

5 <h1 >{{ group . name } } Wall</h1>

6 <input type =" t e x t " data−group ={ { group . name } } name=" post " placeholder =" Post something " />

7 </header>

8

9 { { # each posts } }

10 {{ > Post } }

11 { { / each } }

12

13 </div>

14 </body>

15 </template >

Listing B.10: client/main.html

89

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

1 <template name=" Post ">

2 < l i data− id ={ { _id }} >

3 <button c l a s s =" d e l e t e ">× ; </ button>

4 { { t e x t }} </ span>

5 </ l i >

6 </template >

Listing B.11: client/post.html

B.4 Simplified TodoMVC

1 / / Data s t r u c t u r e s in appendices A.1 and A.2

2

3 var authent icatedUsers = [{

4 name : "Dummy" ,

5 token : "Dummy"

6 }]

7

8 do action { delete a in authent icatedUsers where t rue }

9

10 def a u t h e n t i c a t e name password =

11 match
12 get user in users

13 where user . name == name and user . password == password

14 with
15 user : : r e s t =>
16 action {

17 i n s e r t {

18 name : name ,

19 token : usid
20 } into authent icatedUsers

21 }

22 | [] => action { }

23

24 def logout = action {

25 delete user in authent icatedUsers

26 where user . token == usid
27 }

28

29 def authent ica ted id =

30 match
31 get user in authent icatedUsers

32 where user . token == id
33 with
34 user : : r e s t => t rue

35 | [] => f a l s e

36

37 module Public <usid> {

38 import a u t h e n t i c a t e

39 import authent ica ted

90

B.4. SIMPLIFIED TODOMVC

40 import logout

41

42 from user in authent icatedUsers where user . token == usid
43 import f i r s t user . name as currentUser

44 default { name : " " , token : " " }

45

46 def page =

47 <div>

48 (i f not authent ica ted usid then
49 <div>

50 <div>

51 <input type=" t e x t " placeholder=" username " id="name"/>

52 <input type=" password " placeholder=" password " id=" password "/>

53 </div>

54 <button doaction =(a u t h e n t i c a t e #name #password)> " Log In " </button>

55 </div>

56 e l s e
57 <div>

58 <h1>("Welcome " ++ currentUser)</h1>

59 "Go to your page ! "

60 <button doaction =(logout)> " Logout " </button>

61 </div >)

62 </div>

63 }

64

65 def l i s t C o n t a i n s l i s t name =

66 match
67 get item in l i s t

68 where item . name == name

69 with
70 u : : us => t rue

71 | [] => f a l s e

72

73 module User<usid> when (authent ica ted usid) {

74 import logout

75 import l i s t C o n t a i n s

76 from user in authent icatedUsers

77 where user . token == usid
78 import f i r s t user . name as username

79 default { name : " " , token : " " }

80 from group in groups

81 where (l i s t C o n t a i n s group . users username)

82 import group as groups

83

84 def page =

85 <div>

86 <h1>(" User : " ++ username)</h1>

87 <button doaction =(logout)

88 data −redirect =(workspace_path ++ " Public /page ")>

89 " Log out "

91

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

90 </button>

91 <h2>" Groups " </h2>

92

93 (map (group in groups)

94 <l i >

95

96 (group . name)

97

98 </ l i >

99)

100

101 </div>

102 }

103 module Group<s t r i n g groupName , *usid>

104 with User (usid)

105 when (l i s t C o n t a i n s groups@User groupName)

106 {

107 from group in groups

108 where group . name == groupName

109 import f i r s t group . users as members

110 default { name : groupName , users : [] }

111

112 var todos = [{

113 id : 0 ,

114 t e x t : "Welcome to group " ++ groupName ,

115 done : f a l s e

116 }]

117

118 def isAdmin name =

119 match
120 get member in members

121 where member . name == name

122 with
123 m: : ms => m. admin

124 | [] => f a l s e

125

126 module Member<usid> with User (usid) {

127 import todos

128 import isAdmin

129

130 module Admin<s t r i n g *groupName , *usid> when (isAdmin username@User) {

131 import todos

132

133 def deleteTodo id = action {

134 delete todo in todos

135 where todo . id == id
136 }

137 }

138

139 def s i z e = foreach (todo in todos with y = 0) y+1

92

B.5. TODOMVC FOR GROUPS IN METEOR

140

141 def addTodo t e x t = action {

142 i n s e r t { id : s i ze , done : f a l s e , t e x t : t e x t }

143 into todos

144 }

145

146 def toggleComplete id = action {

147 update todo in todos

148 with { id : todo . id , done : not todo . done , t e x t : todo . t e x t }

149 where todo . id == id
150 }

151

152 def todoItem todo =

153 <l i >

154 <checkbox type=" checkbox " value =(todo . done)

155 docheck =(toggleComplete todo . id)

156 douncheck=(toggleComplete todo . id)

157 />

158 <label >(todo . t e x t)</ labe l >

159 (in Admin(groupName , usid) then
160 <button doaction =(deleteTodo todo . id)> " Delete " </button>

161 e l s e

162)

163 </ l i >

164

165 def page =

166 <div>

167 <header>

168 <h1>groupName</h1>

169 <input placeholder="What needs to be done ? " onenter =(addTodo) />

170 </header>

171 <sect ion >

172

173 (map (todo in todos) todoItem todo)

174

175 </ sect ion >

176 <footer >

177 <p>(" Logged as : " ++ username@User)</p>

178 <button doaction =(logout@User)

179 data −redirect =(workspace_path ++ " Public /page ")>

180 " Log out "

181 </button>

182 </ footer >

183 </div>

184 }

185 }

B.5 TodoMVC for Groups in Meteor

1 import { Meteor } from ’ meteor /meteor ’ ;

93

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

2

3 export var Groups = new Mongo . C o l l e c t i o n (’ groups ’) ;

4 export var Todos = new Mongo . C o l l e c t i o n (’ todos ’) ;

5

6 Todos . allow ({

7 i n s e r t (userId , doc) {

8 var group = Groups . f ind ({

9 _id : doc . groupId ,

10 users : {

11 $elemMatch : {

12 username : Meteor . users . findOne ({ _id : userId }) . username

13 }

14 }

15 }) ;

16 return userId && group . count () ;

17 } ,

18 remove (userId , doc) {

19 var group = Groups . f ind ({

20 _id : doc . groupId ,

21 users : {

22 $elemMatch : {

23 username : Meteor . users . findOne ({ _id : userId }) . username

24 }

25 }

26 } , {

27 f i e l d s : {

28 " users . $ " : 1

29 }

30 }

31) ;

32 return userId && group . count () && group . f e t c h () [0] . users [0] ;

33 } ,

34 update (userId , doc , f i e l d s , modif ier) {

35 var group = Groups . f ind ({

36 _id : doc . groupId ,

37 users : {

38 $elemMatch : {

39 username : Meteor . users . findOne ({ _id : userId }) . username

40 }

41 }

42 }) ;

43

44 return userId && group . count () ;

45 }

46 }) ;

Listing B.12: groups.js

1 import { Meteor } from ’ meteor /meteor ’ ;

2 import { Groups , Todos } from ’ . / groups . j s ’ ;

3

94

B.5. TODOMVC FOR GROUPS IN METEOR

4 Router . route (’ / group / : name ’ , {

5 ac t ion : funct ion () {

6 t h i s . render (’ Group ’ , {

7 data : funct ion () {

8 return {

9 name : t h i s . params . name

10 } ;

11 }

12 }) ;

13 } ,

14 waitOn : funct ion () {

15 i f (Meteor . userId ()) {

16 Meteor . subscr ibe (’ todos ’ , t h i s . params . name) ;

17 return Meteor . subscr ibe (’ groups ’ , Meteor . userId ()) ;

18 }

19 } ,

20 onBeforeAction : funct ion () {

21 i f (! (Meteor . userId () | | Meteor . loggingIn ())) {

22 Router . go (’ home . show ’) ;

23 } e l s e {

24 var groups = Groups . f ind ({

25 name : t h i s . params . name ,

26 users : {

27 $elemMatch : {

28 username : Meteor . users . findOne (Meteor . userId ()) . username

29 }

30 }

31 }) ;

32 i f (groups . count ()) {

33 t h i s . next () ;

34 } e l s e {

35 Router . go (’ user . show ’) ;

36 }

37 }

38 } ,

39 name : ’ group . show ’

40 }) ;

41

42 Router . route (’ / ’ , {

43 ac t ion : funct ion () {

44 t h i s . render ("Home ") ;

45 } ,

46 onBeforeAction : funct ion () {

47 i f (Meteor . userId ()) {

48 Router . go (’ user . show ’) ;

49 } e l s e {

50 t h i s . next () ;

51 }

52 } ,

53 name : ’home . show ’

95

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

54 }) ;

55

56 Router . route (’ / user ’ , {

57 ac t ion : funct ion () {

58 t h i s . render (" User ") ;

59 } ,

60 onBeforeAction : funct ion () {

61 i f (! (Meteor . userId () | | Meteor . loggingIn ())) {

62 Router . go (’ home . show ’) ;

63 } e l s e {

64 t h i s . next () ;

65 }

66 } ,

67 waitOn : funct ion () {

68 i f (Meteor . userId ()) {

69 return Meteor . subscr ibe (’ groups ’ , Meteor . userId ()) ;

70 }

71 } ,

72 name : ’ user . show ’

73 }) ;

Listing B.13: routes.js

1 import { Template } from ’ meteor / templating ’ ;

2 import { Sess ion } from ’ meteor / sess ion ’ ;

3 import { Groups , Todos } from ’ . . / groups . j s ’ ;

4 import ’ . / group . html ’ ;

5

6 Sess ion . s e t (’ f i l t e r ’ , ’ a l l ’) ;

7

8 var f i l t e r = {

9 a l l : { } ,

10 a c t i v e : { completed : f a l s e } ,

11 completed : { completed : true }

12 } ;

13

14 Template . Group . events ({

15 ’ keypress . new−todo ’ (event , ins tance) {

16 var group = Groups . findOne ({ name : t h i s . name }) ;

17 i f (event . which === 13) {

18 Todos . i n s e r t ({

19 groupId : group . _id ,

20 todo : event . t a r g e t . value ,

21 completed : f a l s e ,

22 crea ted_at : new Date () . getTime ()

23 }) ;

24 event . t a r g e t . value = " " ;

25 }

26 } ,

27 ’ c l i c k . c lear −completed ’ (event , ins tance) {

28 Todos . f ind ({ completed : true }) . forEach (funct ion (todo) {

96

B.5. TODOMVC FOR GROUPS IN METEOR

29 Todos . remove (todo . _id) ;

30 }) ;

31

32 } ,

33 ’ c l i c k . toggle −a l l ’ (event , ins tance) {

34 var completed = true ;

35 i f (! Todos . f ind ({ completed : f a l s e }) . count ()) {

36 completed = f a l s e ;

37 }

38 Todos . f ind () . forEach (funct ion (todo) {

39 Todos . update (todo . _id , { $ s e t : { completed : completed } }) ;

40 }) ;

41 } ,

42 ’ c l i c k . f i l t e r s > l i > a ’ (event , ins tance) {

43 Sess ion . s e t (’ f i l t e r ’ , event . t a r g e t . id) ;

44 }

45 }) ;

46

47 Template . Group . helpers ({

48 todos : funct ion () {

49 return Todos . f ind (

50 f i l t e r [Sess ion . get (’ f i l t e r ’)] ,

51 { s o r t : { c rea ted_at : 1 } }

52) ;

53 } ,

54 s i z e : funct ion () {

55 return Todos . f ind () . count () ;

56 } ,

57 lef tTodo : funct ion () {

58 return Todos . f ind ({ completed : f a l s e }) . count () ;

59 } ,

60 isAdmin : funct ion () {

61 return Groups . f ind ({ name : t h i s . name }) . f e t c h () [0] . users [0] . admin ;

62 } ,

63 allComplete : funct ion () {

64 return Todos . f ind () . count () == Todos . f ind ({ completed : true }) . count () ;

65 } ,

66 singularTodo : funct ion () {

67 return Todos . f ind ({ completed : f a l s e }) . count () == 1 ;

68 } ,

69 f i l t e r s : funct ion () {

70 return [’ a l l ’ , ’ ac t ive ’ , ’ completed ’] ;

71 } ,

72 clearCompleted : funct ion () {

73 return Groups . f ind ({ name : t h i s . name }) . f e t c h () [0] . users [0] . admin && Todos . f ind ({ completed : f a l s e }) . count () < Todos . f ind () . count () ;

74 } ,

75 f i l t e r S e l e c t e d : funct ion () {

76 return Sess ion . equals (’ f i l t e r ’ , t h i s . valueOf ()) ? " s e l e c t e d " : " " ;

77 }

78 }) ;

97

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

79

80

81 Template . User . helpers ({

82 groups : funct ion () {

83 return Groups . f ind () ;

84 }

85 }) ;

86

87 Template . Todo . events ({

88 ’ c l i c k . destroy ’ (event , ins tance) {

89 Todos . remove (t h i s . _id) ;

90 } ,

91 ’ c l i c k . toggle ’ (event , ins tance) {

92 Todos . update (t h i s . _id , { $ s e t : { completed : ! t h i s . completed } }) ;

93 }

94 }) ;

95

96 Template . Todo . helpers ({

97 isAdmin : funct ion () {

98 return Groups . f ind (t h i s . groupId) . f e t c h () [0] . users [0] . admin ;

99 } ,

100 complete : funct ion () {

101 return t h i s . completed ? " completed " : " " ;

102 }

103 }) ;

Listing B.14: client/main.js

1 import { Meteor } from ’ meteor /meteor ’ ;

2 import { Groups , Todos } from ’ . . / groups . j s ’ ;

3

4 Meteor . publish (’ groups ’ , funct ion (userId) {

5 return Groups . f ind ({

6 users : {

7 $elemMatch : {

8 username : Meteor . users . findOne ({ _id : userId }) . username

9 }

10 }

11 } , {

12 f i e l d s : {

13 name : 1 ,

14 " users . $ " : 1

15 }

16 }

17) ;

18 }) ;

19

20 Meteor . publish (’ todos ’ , funct ion (name) {

21 var group = Groups . findOne ({ name : name }) ;

22 return Todos . f ind ({ groupId : group . _id }) ;

23 }) ;

98

B.5. TODOMVC FOR GROUPS IN METEOR

24

25 Meteor . s tar tup (() => { }) ;

Listing B.15: server/main.js

1 <head>

2 < t i t l e >Welcome! </ t i t l e >

3 </head>

4 <template name="Home">

5 <body>

6 <div>

7 {{ > loginButtons } }

8 </div>

9 </body>

10 </template >

Listing B.16: client/main.html

1 <template name=" User">

2 <body>

3 <div>

4 <h1>{{> loginButtons }} </h1>

5 <h2>Groups</h2>

6

7 { { # each groups } }

8 <l i > { { name}} </ a></ l i >

9 { { / each } }

10

11 </div>

12 </body>

13 </template >

Listing B.17: client/user.html

1 <template name="Group">

2 <body>

3 <s e c t i o n c l a s s ="todoapp">

4 <header c l a s s =" header">

5 <h1 >{{name}} </h1>

6 <input

7 autofocus=true

8 c l a s s ="new−todo "

9 placeholder ="What needs to be done ? "

10 />

11 </header>

12 <s e c t i o n c l a s s ="main">

13 { { # i f s i z e } }

14 { { # i f allComplete } }

15 <input

16 type =" checkbox "

17 checked =" checked "

99

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

18 c l a s s =" toggle − a l l "

19 />

20 { { e l s e } }

21 <input

22 type =" checkbox "

23 c l a s s =" toggle − a l l "

24 />

25 { { / i f } }

26 { { / i f } }

27 <l a b e l f or =" toggle − a l l " >"Mark a l l as complete "</ label >

28 <ul c l a s s =" todo− l i s t ">

29 { { # each todos } }

30 {{ > Todo } }

31 { { / each } }

32

33 </ sect ion >

34 { { # i f s i z e } }

35 <f o o t e r c l a s s =" f o o t e r ">

36

37 {{ lef tTodo }} </ strong >

38 { { # i f singularTodo } }

39 item l e f t

40 { { e l s e } }

41 items l e f t

42 { { / i f } }

43

44 <ul c l a s s =" f i l t e r s ">

45 { { # each f i l t e r s } }

46 <l i > { { t h i s }} </ a></ l i >

47 { { / each } }

48

49 { { # i f clearCompleted } }

50 <button c l a s s =" c lear −completed"> Clear completed </button>

51 { { / i f } }

52 </ footer >

53 { { / i f } }

54 </ sect ion >

55 </body>

56 </template >

Listing B.18: client/group.html

1 <template name="Todo">

2 < l i c l a s s ={ { complete }} >

3 <div c l a s s ="view">

4 { { # i f completed } }

5 <input c l a s s =" togg le " type =" checkbox " checked =" checked " />

6 { { e l s e } }

7 <input c l a s s =" togg le " type =" checkbox " />

8 { { / i f } }

9 <label >{ { todo }} </ labe l >

100

B.6. FULL TODOMVC APPLICATION FOR GROUPS OF USERS

10 { { # i f isAdmin } }

11 <button c l a s s =" destroy "></button>

12 { { / i f } }

13 </div>

14 </ l i >

15 </template >

Listing B.19: client/todo.html

B.6 Full TodoMVC application for groups of users

1 / / Data s t r u c t u r e s in appendices A.1 and A.2

2

3 var authent icatedUsers = [{

4 name : "Dummy" ,

5 token : "Dummy"

6 }]

7

8 do action { delete a in authent icatedUsers where t rue }

9

10 def a u t h e n t i c a t e name password =

11 match
12 get user in users

13 where user . name == name and user . password == password

14 with
15 user : : r e s t =>
16 action {

17 i n s e r t {

18 name : name ,

19 token : usid
20 } into authent icatedUsers

21 }

22 | [] => action { }

23

24 def logout = action {

25 delete user in authent icatedUsers

26 where user . token == usid
27 }

28

29 def authent ica ted id =

30 match
31 get user in authent icatedUsers

32 where user . token == id
33 with
34 user : : r e s t => t rue

35 | [] => f a l s e

36

37 module Public <usid> {

38 import a u t h e n t i c a t e

39 import authent ica ted

101

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

40 import logout

41

42 from user in authent icatedUsers where user . token == usid
43 import f i r s t user . name as currentUser

44 default { name : " " , token : " " }

45

46 def page =

47 <div>

48 (i f not authent ica ted usid then
49 <div>

50 <div>

51 <input type=" t e x t " placeholder=" username " id="name"/>

52 <input type=" password " placeholder=" password " id=" password "/>

53 </div>

54 <button doaction =(a u t h e n t i c a t e #name #password) id=" log ">" Log In " </button>

55 </div>

56 e l s e
57 <div>

58 <h1>("Welcome " ++ currentUser)</h1>

59 "Go to your page ! "

60 <button doaction =(logout) id=" log ">" Logout " </button>

61 </div >)

62 </div>

63 }

64

65 def l i s t C o n t a i n s l i s t name =

66 match
67 get item in l i s t

68 where item . name == name

69 with
70 u : : us => t rue

71 | [] => f a l s e

72

73 module User<usid> when (authent ica ted usid) {

74 import logout

75 import l i s t C o n t a i n s

76 from user in authent icatedUsers

77 where user . token == usid
78 import f i r s t user . name as username

79 default { name : " " , token : " " }

80 from group in groups

81 where (l i s t C o n t a i n s group . users username)

82 import group as groups

83

84 var f i l t e r = 0 / / 0 −> " a l l " | 1 −> " a c t i v e " | 2 −> " co mpl e t e "
85 def a l l F i l t e r = i f f i l t e r == 0 then " s e l e c t e d " e l s e " "

86 def a c t i v e F i l t e r = i f f i l t e r == 1 then " s e l e c t e d " e l s e " "

87 def completedFi l ter = i f f i l t e r == 2 then " s e l e c t e d " e l s e " "

88

89 var c h a n g e F i l t e r f = action { f i l t e r := f }

102

B.6. FULL TODOMVC APPLICATION FOR GROUPS OF USERS

90

91 def page =

92 <div>

93 <h1>(" User : " ++ username)</h1>

94 <button doaction =(logout) id=" log "

95 data −redirect =(workspace_path ++ " Public /page ")>

96 " Log out "

97 </button>

98 <h2>" Groups " </h2>

99

100 (map (group in groups)

101 <l i >

102

103 (group . name)

104

105 </ l i >

106)

107

108 </div>

109 }

110 module Group<s t r i n g groupName , *usid>

111 with User (usid)

112 when (l i s t C o n t a i n s groups@User groupName)

113 {

114 from group in groups

115 where group . name == groupName

116 import f i r s t group . users as members

117 default { name : groupName , users : [] }

118

119 var todos = [{

120 id : 0 ,

121 t e x t : "Welcome to group " ++ groupName ,

122 done : f a l s e

123 }]

124

125 def isAdmin name =

126 match
127 get member in members

128 where member . name == name

129 with
130 m: : ms => m. admin

131 | [] => f a l s e

132

133 module Member<usid> with User (usid) {

134 import todos

135 import isAdmin

136

137 module Admin<s t r i n g *groupName , *usid> when (isAdmin username@User) {

138 import todos

139

103

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

140 def deleteTodo id = action {

141 delete todo in todos

142 where todo . id == id
143 }

144 def clearCompleted =

145 action {

146 delete todo in todos

147 where todo . done

148 }

149 }

150

151 def s i z e = foreach (todo in todos with y = 0) y+1

152 def act iveTodos = get todo in todos where not todo . done

153 def completeTodos = get todo in todos where todo . done

154 def lef tTodo = foreach (todo in activeTodos with y = 0) y + 1

155 def allComplete = leftTodo == 0

156

157 def toggleAllComplete =

158 action {

159 update todo in todos with {

160 id : todo . id ,

161 done : not allComplete ,

162 t e x t : todo . t e x t

163 } where t rue

164 }

165

166 def addTodo t e x t = action {

167 i n s e r t { id : s i ze , done : f a l s e , t e x t : t e x t }

168 into todos

169 }

170

171 def toggleComplete id = action {

172 update todo in todos

173 with { id : todo . id , done : not todo . done , t e x t : todo . t e x t }

174 where todo . id == id
175 }

176

177 def todoItem todo =

178 < l i c l a s s =(i f todo . done then " completed " e l s e " ")>

179 <div c l a s s=" view ">

180 <checkbox

181 c l a s s=" toggle "

182 type=" checkbox "

183 value =(todo . done)

184 docheck =(toggleComplete todo . id)

185 douncheck=(toggleComplete todo . id)

186 />

187 <label >(todo . t e x t)</ labe l >

188 (in Admin(groupName , usid) then
189 <button c l a s s=" destroy " doaction =(deleteTodo todo . id) />

104

B.6. FULL TODOMVC APPLICATION FOR GROUPS OF USERS

190 e l s e
191 <div></div >)

192 </div>

193 </ l i >

194

195 def header =

196 <header c l a s s=" header ">

197 <h1>groupName</h1>

198 <input
199 autofocus=true

200 c l a s s="new−todo "

201 placeholder="What needs to be done ? "

202 onenter =(addTodo)

203 />

204 </header>

205

206 def main =

207 <s e c t i o n c l a s s=" main ">

208 (i f s i z e > 0 then
209 <checkbox

210 value =(allComplete)

211 docheck =(toggleAllComplete)

212 douncheck=(toggleAllComplete)

213 c l a s s=" toggle − a l l "

214 type=" checkbox "

215 />

216 e l s e <div></div >)

217 <l a b e l fo r=" toggle − a l l ">"Mark a l l as complete " </ label >

218 <ul c l a s s=" todo− l i s t ">

219 (i f f i l t e r @ U s e r == 0 then
220 map (todo in todos)

221 todoItem todo

222 e l s e i f f i l t e r @ U s e r == 1 then
223 map (todo in act iveTodos)

224 todoItem todo

225 e l s e
226 map (todo in completeTodos)

227 todoItem todo

228)

229

230 </ sect ion >

231

232 def f o o t e r =

233 (i f s i z e > 0 then
234 <f o o t e r c l a s s=" f o o t e r ">

235

236

237 (lef tTodo)

238

239 (i f (lef tTodo == 1) then " item l e f t " e l s e " items l e f t ")

105

APPENDIX B. CODE FOR DEVELOPED APPLICATIONS

240

241 <ul c l a s s=" f i l t e r s ">

242 <l i >

243 <a c l a s s =(a l l F i l t e r @ U s e r) doaction =(changeFilter@User 0)>

244 " All "

245

246 </ l i >

247 " "

248 <l i >

249 <a c l a s s =(a c t i v e F i l t e r @ U s e r) doaction =(changeFilter@User 1)>

250 " Active "

251

252 </ l i >

253 " "

254 <l i >

255 <a c l a s s =(completedFilter@User) doaction =(changeFilter@User 2)>

256 " Completed "

257

258 </ l i >

259

260 (i f (lef tTodo < s i z e) then
261 in Admin(groupName , usid) then
262 <button c l a s s=" c lear −completed "

263 doaction =(clearCompleted)>

264 " Clear completed "

265 </button>

266 e l s e <div></div>

267 e l s e <div></div >)

268 </ footer >

269 e l s e <div></div >)

270

271 def page =

272 <div id=" conta iner ">

273 <s e c t i o n c l a s s=" todoapp ">

274 header

275 main

276 f o o t e r

277 </ sect ion >

278 <f o o t e r c l a s s=" info ">

279 <p>(" Logged as : " ++ username@User)</p>

280 <button doaction =(logout@User) id=" log "

281 data −redirect =(workspace_path ++ " Public /page ")>

282 " Log out "

283 </button>

284 <p>" Created by "

285 " Tiago Lopes "

286 </p>

287 <p>"To be part of ""TodoMVC" </p>

288 </ footer >

289 </div>

106

B.6. FULL TODOMVC APPLICATION FOR GROUPS OF USERS

290 }

291 }

107

	Acronyms
	Introduction
	Reactive and Incremental Language
	Runtime Support System

	Approach
	Contributions
	Structure of the Document

	Language-Based Model
	Base Language
	Sessions and Authentication
	Modules
	Lenses and Imports
	Module Parameterization
	Access conditions
	Inheritance
	Module Nesting

	Syntax

	Implementation Challenges
	Language
	Architecture
	IDE

	Related Work
	Basic Session Mechanisms
	Cookies and tokens
	Authentication
	Session Mechanisms
	Analysing Session Mechanisms

	Related Frameworks
	WebDSL
	Meteor
	Opa Language
	Yesod
	Data Privacy in Current Frameworks

	Programming with Lenses
	Boomerang

	Validation
	Authentication
	Simple Wall Application
	TodoMVC Multi-Group
	Conclusions

	Final Remarks
	Future Work

	Bibliography
	Webography
	Seed Data for the To-do Application
	Users Seed Data
	Groups Seed Data

	Code for Developed Applications
	Simple Authentication
	Simple Wall Application in Meteor
	Simple Groups Wall Application in Meteor
	Simplified TodoMVC
	TodoMVC for Groups in Meteor
	Full TodoMVC application for groups of users

