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Abstract

Security protocols, such as TLS or Kerberos, and security devices such as the Trusted

Platform Module (TPM), Hardware Security Modules (HSMs) or PKCS#11 tokens, are

central to many computer interactions. Yet, such security critical components are still

often found vulnerable to attack after their deployment, either because the specification

is insecure, or because of implementation errors.

Techniques exist to construct machine-checked proofs of security properties for abstract

specifications. However, this may leave the final executable code, often written in lower

level languages such as C, vulnerable both to logical errors, and low-level flaws.

Recent work on verifying security properties of C code is often based on soundly ex-

tracting, from C programs, protocol models on which security properties can be proved.

However, in such methods, any change in the C code, however trivial, may require one

to perform a new and complex security proof.

Our goal is therefore to develop or identify a framework in which security properties

of cryptographic systems can be formally proved, and that can also be used to soundly

verify, using existing general-purpose tools, that a C program shares the same security prop-

erties.

We argue that the current state of general-purpose verification tools for the C language,

as well as for functional languages, is sufficient to achieve this goal, and illustrate our

argument by developing two verification frameworks around the VCC verifier.

In the symbolic model, we illustrate our method by proving authentication and weak

secrecy for implementations of several network security protocols.

In the computational model, we illustrate our method by proving authentication and

strong secrecy properties for an exemplary key management API, inspired by the TPM.
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Chapter 1

Introduction

1.1 Problem Statement

Security protocols, such as SSL, TLS or Kerberos, and security devices such as the Trusted Platform

Module (TPM), Hardware Security Modules (HSMs) or PKCS#11 tokens, are central to many com-

puter interactions, from providing a secure environment when booting a computer to ensuring the

confidentiality of credit card and private information in e-commerce or online banking applications.

Yet, these security critical components are still often found vulnerable to unauthorized interactions

after their deployment, either because the specification itself is insecure [CVE, 2009; Bruschi, Cav-

allaro, Lanzi, and Monga, 2005, for example], or because of flaws introduced when implementing a

specification [CVE, 2012, for example].

It is therefore essential to develop methods and tools to formally define and reason about the security

properties of such cryptographic systems and their implementations. In recent years, techniques

have been developed to construct machine-checked, or even automated, proofs of security properties

for security protocols and devices. Most of these proof techniques focus on specifications, with a

more recent shift towards performing the proofs on executable specifications, for example written

in ML. However, this may leave the final executable code, often written in lower level languages

such as C, vulnerable both to logical errors (when the code does not implement its specification), and

low-level bugs (such as buffer or integer overflows).

Some attention has been given to the verification of cryptographic security properties directly on C
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1. INTRODUCTION

code.

• Some of the considered approaches to the problem aim at dynamically checking for security

flaws [Godefroid and Khurshid, 2002; Godefroid, Klarlund, and Sen, 2005; Jeffrey and Ley-

Wild, 2006], and do not in general provide formal security guarantees for whole programs.

• Many of the static approaches focus on extracting verifiable models from C programs, some

as Horn clauses [Goubault-Larrecq and Parrennes, 2005], some as programs in some process

calculus [Aizatulin, Gordon, and Jürjens, 2011b, 2012]. If extraction is a promising approach,

we believe that it is insufficient on its own. First, any change in the C implementation, however

trivial, may cause changes in the extracted model that force the entire security proof to be

done from scratch. Second, fully automated techniques are often not very adaptable to new

constructs (either on the program side or the security side), as they require changes in the tool

itself to cover them, and provide very little control to the end user.

• One particular tool, Pistachio [Udrea, Lumezanu, and Foster, 2008] focuses on proving that a

given C program follows a rule-based description of its intended behaviour, extracted from an

RFC document. However, RFC documents are often very complex and informal, and provide

no formal security guarantees. In addition, the verification tool itself makes unsound abstrac-

tions of the C program to improve automation.

Independently of these specialised developments in proving security properties of C code, tools and

techniques have been developed that allow the verification of safety and functional properties of real-

world C programs [Cohen, Dahlweid, Hillebrand, Leinenbach, Moskal, Santen, Schulte, and Tobies,

2009a; Correnson, Cuoq, Puccetti, and Signoles, 2010]. Such general-purpose tools have recently been

shown to be applicable to real-world systems, from avionics [Delmas and Souyris, 2007] to operating

systems [Baumann, Beckert, Blasum, and Bormer, 2009; Klein, Elphinstone, Heiser, Andronick, Cock,

Derrin, Elkaduwe, Engelhardt, Kolanski, Norrish, Sewell, Tuch, and Winwood, 2009; Shi, He, Zhu,

Fang, Huang, and Zhang, 2012] and virtual machine hypervisors [Leinenbach and Santen, 2010].

Their applications to security, however, has so far always stopped where cryptography starts.

Our goal is therefore to develop frameworks in which security properties of cryptographic systems

can be formally proved, and that can also be used to soundly verify that a C program has these same

security properties. Initially, we focus on performing those security proofs in the symbolic model of

2



cryptography, and later move on to the computational model of cryptography, providing, for the first

time, verification techniques to prove imperfect (probabilistic) observational equivalence properties

of C programs.

1.1.1 Thesis and Contributions

Our thesis is that the current state of general-purpose verification tools for the C language, as well

as for functional languages, is sufficient to achieve this goal. We illustrate this argument with a

particular C verification tool, VCC, used in combination with the Coq proof assistant (for proofs in

the symbolic model), and the F7 refinement type-checker for F# (for proofs in the computational

model). Both of the verification methodologies presented in this dissertation are designed to allow

sharing of the security proof between several implementations, by first proving security on some

form of specification (depending on the chosen model of cryptography) and then using a general-

purpose verifier to prove that the C implementation follows the specification.

We make the following original contributions:

• We generalise and formalise in Coq the notion of invariants on cryptographic structures [Bharga-

van, Fournet, and Gordon, 2010]. Our formalisation is modular, reducing the symbolic security

of classes of protocols to simple inductive properties on their use of cryptography.

• We show how symbolic security proofs in this framework can be used, in combination with

an existing general-purpose verifier to soundly prove secrecy and integrity properties of C

programs, applying it in particular to sample security protocols.

• We define a notion of program simulation for (discrete) probabilistic programs, and show how

it can be proved with an existing general-purpose verifier. Our notion of simulation allows a

tool designed for functional verification to prove probabilistic program equivalence properties.

• By combining existing techniques to prove computational security properties of functional pro-

grams with our notion of simulation and a C verification tool, we develop a methodology to

prove, for the first time, computational security properties (including equivalence-based prop-

erties) of branching, stateful C programs.

• We apply our technique to an exemplary key management system, inspired by the upcoming

3



1. INTRODUCTION

Trusted Platform Module (TPM) standard, which includes a reference implementation in C.

Additionally, all code, annotations and formal proofs discussed in this dissertation are available on

demand. Some updates may be made to keep the proofs up to date with VCC development and bug

fixes.

1.2 Organization of the Dissertation

The rest of this introduction (Chapter 1) is devoted to a brief overview of the verification tools for

imperative and functional languages that we rely upon in later Chapters.

In the first part of this dissertation (Chapters 2 and 3), we present techniques that can be used to

prove symbolic security properties, under strong assumptions on the cryptographic primitives used.

Chapter 2 starts with an overview of symbolic security, including existing models and verification

techniques for specifications and implementation, and ending with a novel formalization of symbolic

security that permits modular proofs of security on implementations in various languages. Chapter 3

presents the challenges of verifying symbolic security for C programs, and explains how the VCC

verifier can be used to prove symbolic security properties of C protocol implementations.

The second part of this dissertation (Chapters 4 and 5) is dedicated to proving security of C programs

in the computational model of security, in which cryptographic primitives are no longer assumed to

be perfect, and secrecy is information-theoretic rather than formulated logically. In Chapter 4, we

present the computational model of cryptography, the associated notions of security, and common

proof techniques and tools, and adapt them to systems written in the C language. In Chapter 5, we

show how the VCC verifier can be used, in conjunction with the F7 refinement type-checker for F#, to

prove security properties, in the computational model of cryptography, of a C program implement-

ing an exemplary key management system. That system, the Device, is intended to exemplify the

upcoming TPM’s standard cryptographic key management functionalities.

A companion archive containing all code and proofs mentioned in this dissertation is available on

demand. An appendix to this dissertation contains code samples that are central to our arguments

but are too large to be displayed comfortably within the main text.

4



1.3 Verification Tools

Since our goal is to use existing program verification techniques and tools, and not to develop our

own, we only give here an informal overview of the tools we use, introducing their syntax and

discussing what it means for a program to be verified. We do not review all existing general-purpose

verification tools.

1.3.1 Type Systems

Type systems are often used to prove or infer properties of functional programs, from basic memory-

safety properties (for example, ML’s basic type system, due to Hindley, Milner and Damas [Damas

and Milner, 1982; Hindley, 1969; Milner, 1978], to functional verification using refinement types [Free-

man and Pfenning, 1991], to full-fledged reasoning in higher-order logic using dependent types (such

as the Calculus of Inductive Construction (CiC) implemented in Coq [The Coq development team,

2004]).

In this dissertation, we use Coq in Chapter 2, and the F7 refinement type system for F# [Bhargavan,

Fournet, and Gordon, 2008] in Chapters 4 and 5. We briefly and informally discuss their syntax and

semantics below.

The Coq Proof Assistant

Although Coq has many features, we only make use of its ability to express and prove theorems on

inductive datatypes and predicates in a modular way.

Coq does not distinguish between terms and types, but rather sorts them into two categories. The

Prop sort contains well-formed propositions, which are guaranteed to be true, by Coq’s semantics,

and predicates (any function that returns a Prop) can be defined inductively (using the Inductive

keyword), or by abstraction (using the Definition keyword). The Type sort contains datatypes and

mathematical structures, which can be defined inductively using the Inductive keyword. (Other

possibilities exist to define mathematical structures, but we do not use them in this dissertation).

Proving a theorem τ is done by constructing, with the help of tactics, a term of type τ, thereby proving

that τ has kind Prop.

5



1. INTRODUCTION

Coq provides a strong module system permitting the parameterisation of definitions and theorems

with a set of definitions and proofs, abstracted as simple types, and introduced, in the module signa-

ture, using the Parameter keyword.

F7: First-Order Refinement Types

Refinement types, in F7, are standard F# types augmented with a first-order refinement formula,

given between braces, that constrain the type depending on the values of some program variables.

For example, the type of non-negative integers can be defined as the subtype of the type of integers

n such that n is non-negative. In F7 notation, this definition is written type nat = n: int { 0 <= n }.

The refinement formula is an arbitrary first-order formula (with quantifiers), and can also call logical

functions and predicates, which are declared using the function or predicate keyword, and must be

specified using axioms.

In addition, the F7 semantics assume the existence of an implicit global shared log of assumptions

collected during the execution of the program, and is used to specify some security properties.

Successful type-checking of a function val f: x:τ { C }→ res:τ′ { C’ } implies, by soundness of the type

system, that whenever function f is called and terminates on an argument x of type τ on which the

refinement formula C holds in the current log, then it returns a value res of type τ′ on which the

refinement formula C’ (in which both x and res are bound) holds.

For example, the type for addition in nat can be written as follows val plus: nat→ nat→ nat. When

given an implementation of plus, F7 checks that the result is non-negative whenever the arguments

are also non-negative, which can then be assumed when type-checking code that calls plus.

1.3.2 Verification of C Programs

If type systems are particularly well-suited to reasoning about functional programs, the lack of ab-

straction in imperative languages, especially in low-level languages such as C, makes them difficult

to apply. In this dissertation, we use the VCC verification tool, which supports a very large subset of

the C language, including concurrency. We believe the approaches and techniques described here are

applicable to other verification tools such as VeriFast [Jacobs and Piessens, 2008] and Frama-C [Cor-

renson et al., 2010]. Although we make use of some VCC-specific constructs, and in particular its

6



concurrency model, that may not be directly available in other tools, their use is restricted to the

implementation and is often related to practical gains, either in speed or in reducing the number of

annotations. We assume the reader is familiar with C syntax, and introduce only novel VCC concepts

in the overview below.

The VCC Verifier

VCC is a verification condition generator (VCG) for the C language, soundly abstracting concurrent

C programs into a logical model, and using an automatic theorem prover to statically check cor-

rectness properties of C code. The correctness properties are expressed in specification, written as

function contracts, type invariants and intermediate assertions. The tool is based on a precise model

of multithreaded, shared-memory executions of C programs. In this section, we describe the func-

tional specification language, and then discuss the memory model and annotation language used to

express and prove properties of C code. We expect the reader is familiar with C syntax.

VCC extends the C syntax with annotations and contracts wrapped in a macro, (...) that gets stripped

away at compile-time, and is checked not to modify the behaviour of the physical code (for exam-

ple, it cannot write into physical memory locations, or cause any non-termination). As in F7, the

specification language is first-order logic with quantification, making use of C’s syntax whenever

possible.

The VCC Specification Language We start by presenting VCC’s specification language, which can

be used to describe first-order logic formula, declare uninterpreted function symbols and constrain

them with axioms, define mathematical functions and prove theorems. We illustrate this by devel-

oping a short library of abstract bytestring operations.

VCC: Bytestrings
(record \Bytes {

\Byte bytes[\natural];
\natural length; })

(def \bool isBytes(\Bytes s)
{ return ∀\natural i; s.length <= i⇒s.bytes[i] == (\Byte) 0; })

We start by defining a type \Bytes of bytestrings,

as a record containing an unbounded array of

bytes and a length. One can also define induc-

tive datatypes, or declare abstract types that can

later be instantiated, as in F#, with a datatype or a record type.

The type \Byte is an alias for the concrete type of unsigned bytes.
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1. INTRODUCTION

We use maps to model unbounded arrays, and later use them to model sets (as boolean maps). Map

types are declared with a syntax similar to that of fixed-length arrays, but using the type of their

domain in place of the length, and can be defined using λ expressions, as illustrated in the Empty

function below. In our case, the bytes field is a map from naturals to bytes, which we restrict, in the

refinement predicate isBytes() to be everywhere 0 except within the bytestring’s bounds.

In the absence of type refinements in VCC, we use such refinement predicates in function contracts

as required. For example, we display below the code for some basic functions on bytestrings, anno-

tated with some simple preconditions, introduced with the requires keyword, and postconditions,

introduced with the ensures keyword. Preconditions restrict the function’s domain, and are proved

to hold whenever the function is called, whereas postconditions restrict its codomain, and are proved

to hold whenever control is returned to the caller.

VCC: Basic Functions on Bytestrings
(def \natural Length(\Bytes bs)
{ return bs.length; })

(def \Byte Select(\Bytes bs,\natural i)
{ return bs.bytes[i]; })

(def \Bytes Update(\Bytes bs,\natural i,\Byte b)
(requires isBytes(bs))
(requires i < Length(bs))
(ensures isBytes(\result))
{ bs.bytes[i] = b;

return bs; })

(def \Bytes Empty()
(ensures isBytes(\result))
{ return (\Bytes) {

.length = 0,

.bytes = λ\natural i; (\Byte) 0 }; })

In postconditions, the keyword \result is used

to refer to the return value. Quantifiers (and the

λ) are followed by a list of variable declarations

that serve as bindings, and an expression of the

appropriate type (boolean for quantifiers, and

the map’s return type for lambdas). Boolean for-

mulas are expressed using C syntax for conjunc-

tion (&&), disjunction (||) and negation (!), aug-

mented with implication and equivalence. As

in C, equality tests are denoted with a double

equal sign, and the single equal is used for assignment.

The Empty function illustrates the basic syntax for defining record values inline, by listing field-value

bindings.

Many more programming constructs (if statements, switch-based pattern-matching for inductive

datatypes) are available in this specification language. However, loops are prohibited and should be

replaced with induction.

VCC: Logical Form of Length
(abstract \natural Length l(\Bytes bs))
(axiom ∀\Bytes bs; Length l(bs) == bs.length)

VCC automatically proves that def functions are

pure (and deterministic), total on the domain

described by their precondition (this includes
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statically enforcing that pattern-matchings are exhaustive), and terminating. The tool then trans-

lates their body into a logical expression, which is passed on to the prover as an axiom, quantified

over the function’s arguments. For example, the Length() function is translated by VCC into a dec-

laration for the function symbol, along with an axiom defining it, as displayed above in a simplified

notation (record operations and pattern matches are internally turned into function calls).

In addition to def functions, this small language can be used to define mathematical functions that

are not inlined, using the abstract keyword. The same proof obligations are discharged, but the

function’s body is not axiomatised. This is particularly useful for defining abstract interfaces meant

to hide implementation details whilst still allowing advanced properties to be used outside of the

translation unit.

For example, the contract displayed below can be seen as a lemma, stating that equality on byte

strings (on which the refinement predicate holds) is equivalent to equality on their defined domain.

Providing a verified implementation of such a function is equivalent to asking VCC to prove that the

postcondition is always true.

VCC: An Example Theorem
(abstract \bool thm BytesEquality()

(ensures ∀\Bytes bs1,bs2;
isBytes(bs1)⇒isBytes(bs2)⇒
(bs1 == bs2 <⇒
(Length(bs1) == Length(bs2) &&
∀\natural i;

i < Length(bs1)⇒
Select(bs1,i) == Select(bs2,i))))

(returns \true)
{ return ∀\Bytes bs; \natural i; Select(bs,i) == bs.bytes[i]; })

In this case, we need to give VCC a hint, in

the form of a non-trivial return expression that

VCC proves true, letting it unwrap the axioma-

tised definition for Select. When used in con-

junction with abstract function definitions, this

ability to export theorems and lemmas as well

as programming constructs provides a functionality very close to those of Coq modules (without

certification, higher-order or polymorphism).

The full semantics of the VCC specification language has not been formalised, apart from its im-

plementation in VCC as a translation into the Boogie intermediate verification language. The types

and functions displayed here may be used with slightly different names in code in the rest of this

dissertation.

Terminology for Concurrent Physical Code Memory blocks are arrays of bytes, but a typed view is

imposed in order to simplify reasoning while catering for idiomatic C and standard compilers. The

verifier attempts to associate a type with each pointer dereferenced by the program, and imposes
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the requirement that distinct pointers reference separate parts of memory. For example two integers

cannot partially overlap. Structures may nest as fields inside other structures, in accord with the

declared structure types, but distinct values do not otherwise overlap. Annotations can specify,

however, the re-interpretation of an integer as an array of bytes, changing the typestate of a union,

and so forth.

The declaration of a structure type can be annotated with an invariant: a formula that refers to fields

of an instance \this of the structure. (We often say “invariant” for what are properly called “type

invariants”.) Invariants need not hold, for example, of uninitialized objects or objects being modified

so there is a boolean ghost field that designates whether the object is open or closed: in each reachable

state, every closed object should satisfy the invariant associated with its type. Ghost state is disjoint

from the concrete state that exists at runtime; syntactic restrictions ensure that it cannot influence

concrete state.

Useful invariants often refer to more than one object, but the point of associating invariants with ob-

jects is to facilitate local reasoning: when a field is written, the verifier only needs to check the invari-

ants of relevant objects, owing to admissibility conditions that VCC imposes on invariants. Invariants

and other specifications designate an ownership hierarchy: if object o1 owns o2 then the invariant of

o1 may refer to the state of o2 and thus must be maintained by updates of o2. The state of a thread

is modeled by a ghost object. An object is wrapped if it is owned by the current thread (object) and

closed. The owner of an object is recorded in a ghost field \owns. VCC provides notations \unwrap

and \wrap to open/close an object, with \wrap also asserting the invariant.

Ownership makes manifest that the invariant for one object o1 may depend on fields of another

object o2, so the VCG can check o1’s invariant when o2 is updated. Since hierarchical ownership is

inadequate for shared objects like locks, VCC provides another way to make manifest that o1 depends

on the state of o2: it allows that o1 maintains a claim on o2—a ghost object with no concrete state but

an invariant that depends on o2. Declaring a type to be claimable introduces implicit ghost state used

by the VCG to track outstanding claims. The ghost code to create a claim or store it in a field is part

of the annotation provided by the programmer.

The term invariant encompasses two-state predicates for the before and after states of a state transition.

In this way, invariants serve as the rely conditions in a form of rely-guarantee reasoning (see Jones

[1981], an early formulation of this concept). Usually two-state invariants are written as ordinary
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formulas, using the keyword \old to designate expressions interpreted in the before state. We say an

invariant is one-state to mean that it does not depend on the before state.

A thread can update an object that it owns, using \unwrap and \wrap. However, in many cases

such as locks, having a single owner is too restrictive, and another mechanism is needed to allow

multiple threads to update the object concurrently. VCC interprets fields marked volatile as being

susceptible to update by other threads, in accord with the interpretation of the volatile keyword

by C compilers. An atomic step is allowed to update a volatile field without opening the object,

provided that the object is proved closed and the update maintains the object’s two-state invariant

(that being the interference condition on which interleaved threads rely). The standard idiom for

locks is that several threads each maintain a claim that the lock is closed, so they may rely on its

invariant; outstanding claims prevent even the owner from unwrapping the object. Atomic blocks

are explicitly marked as such. An atomic block may make at most one concrete update, to be sound

for C semantics, but may update multiple ghost fields. We do not use assume statements in atomic

blocks.

Informal VCC Semantics

Several research papers [Cohen et al., 2009a; Cohen, Moskal, Schulte, and Tobies, 2010] document

the VCC system but there is no formal model of its semantics of programs and specifications aside

from the VCG itself. To be able to formulate a precise specification of the program properties (in

particular security properties) verified by VCC, we sketch a conventional operational semantics, in

terms of which we specify what we assume about the verifier.

Leaving aside annotations, a program consists of type and function declarations. The body of a

function is a sequence of commands including concurrency primitives: thread fork, send, and receive

on named channels (all channels being visible to the adversary and under her complete control).

Local variables and function parameters (and returns) have declared types. Although VCC provides

facitilities to reason about type casts [Cohen, Moskal, Tobies, and Schulte, 2009b], they complicate

proofs greatly, and are not strictly necessary to write programs in C. We exclude them from our

theoretical model for simplicity, and rely on VCC to soundly reason about type casting operations

when they occur in an implementation.

An execution environment consists of a self-contained collection of type and function declarations. For
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a given execution environment, a runtime configuration takes the form (h, ts, qs) where h is the heap,

ts is the thread pool, and qs is a map from channel names to message queues. A thread state consists of

a command (its current continuation) and a local store (that is, a mapping of locals and parameters to

their current values); a thread pool is a finite list of thread states. Thus threads share the heap and the

message queues (which hold messages sent but not yet received). A run is a series of configurations

that are successors in the transition relation.

The only unusual feature of the operational semantics is our treatment of assumptions, which are

usually only given an axiomatic semantics. If there is any thread poised to execute the command

assume p, and the condition p does not hold in the current configuration, then there is no transition—

we say there is an assumption failure. The only blocking configurations are those where every thread

is blocked waiting on an empty channel, or where there is an assumption failure.

Execution of assume p (when p holds) or assert p (even if p does not hold) are no-ops in our seman-

tics. Assertions are effectively labelled skips, in terms of which we formulate correctness.

Definition 1 (Safe Command). An assertion failure is a run in which there is a configuration where some

thread’s active command is assert p for some p that does not hold in that configuration, and there is no

assumption failure at that point. A configuration is safe if none of its runs is an assertion failure. A command

c is safe under precondition p if for states satisfying p, the configuration with that initial state and the single

thread c is a safe configuration.

Given our treatment of assumptions, safety means that there is no assertion failure unless and until

there is an assumption failure.

VCC works in a procedure-modular way: it verifies that each function implementation satisfies its

contract, under the assumption of specified contracts for all functions directly called in the body. We

describe this in terms of program fragments, for which we use names ending in .c or .h for code or

interface texts, as mnemonic for usual file names; but which may in fact be concatenations of multiple

files.

Definition 2 (Verifiable). We write api.h ` p.c q.h to mean there exists p′.c that instruments p.c with

additional ghost code (but no assumptions, and no other changes), and q′.h that may extend q.h with contracts

for additional functions (but not alter those in q.h) and type invariants, such that VCC successfully verifies

the implementation of each function f in p′.c against the contract for f in q′.h, under hypotheses api.h and

q′.h; moreover admissibility holds for all the type invariants.

The most common additions to p.c are assertions that serve as hints to guide the prover, but claims
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and other ghost code can be added. Assumptions would subvert the intended specifications and

could even be unsound. The most common additions to q.h are contracts, as q.h may only provide

contracts for functions of interest such as main, whereas the code p.c may include other functions,

which for modular reasoning must have contracts.

Note that, given headers p.h and api.h and a program p.c, VCC never successfully verifies p.c against

p.h with api.h unless p.c successfully compiles and links against p.h with api.h, which in particular

means that p.h · api.h are a closed collection of declarations. An immediate consequence of Defini-

tion 2 is the following, where the · operator stands for concatenation (for header files) or linking (for

code files).

Corollary 1 (VCC Modularity). If p.h ` q.c  q.h and p.h · q.h ` r.c  r.h then p.h ` q.c · r.c  

q.h · r.h.

main.h
void main()
(requires \program entry point())
(writes \everything());

The VCC methodology supports verification

conditions for sound modular reasoning, but it

is not easy to give a VCC-independent seman-

tics for the verifiability judgement p.h ` q.c  q.h. Fortunately, for our purposes, it is enough

to consider soundness for complete concurrent programs. (We consider modular soundness for se-

quential programs in Section 4.3.) A complete program is verified as ∅ ` m.c main.h, where main.h

is the header displayed on the right.

The \program entry point() precondition means that all global objects exist and are owned by the

current thread at the beginning of this function, as it is the first function that is called when the

process is started. Additionally, the main function is allowed to write in the process’s entire memory

space.

Assumption 1 (VCC Soundness). If ∅ ` m.c  main.h then the body of function main in m.c is safe for

the precondition in main.h.

If the soundness of the VCC methodology has been studied extensively [Cohen et al., 2009b, 2010],

its implementation may contain flaws that make it unsound. However, we believe this soundness

assumption is reasonable as a first approximation, as VCC is being used extensively, and the rare

soundness bugs in its implementation are usually found and corrected rapidly.

Since our techniques are independent from the verifier used, we also believe that current efforts [Ap-
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pel, 2011; Paul, 2012; Robert and Leroy, 2012] in providing certified or verified static analysers and

verifiers for C programs could, when they are ready, be used to increase confidence in our verification

results.
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Chapter 2

Formalising Symbolic Security

To prove symbolic security properties of C code, we use the notion of invariants on cryptographic

structures from Bhargavan et al. [2010], and adapt their type-based techniques to a contract-based

verifier. After a brief overview of our symbolic model of cryptography (Section 2.1), this chapter

presents a novel modular formalization of the notion in Coq, composed of a protocol-independent

framework (Section 2.2), and protocol-specific definitions that can be automatically generated from a

high-level description of a class of protocols in a domain-specific language (Section 2.3). We end this

chapter with a discussion of existing work on proving symbolic security of models and high-level

implementations (Section 2.4), comparing it to Bhargavan et al. [2010]’s techniques and ours.

2.1 Symbolic Models of Cryptography

Symbolic models of cryptography, as initially introduced by Dolev and Yao [1983], model crypto-

graphic messages as elements in a cryptographic algebra whose constructors are the cryptographic

primitives and a pairing operator.

Symbolic Cryptographic Terms
Inductive term: Type :=
| Literal (bs: bytes)
| Pair (a: term) (b: term)
| HMac (k: term) (p: term)
| SEnc (k: term) (p: term)
| Sign (k: term) (p: term)
| Enc (k: term) (p: term).

In the first part of this dissertation, we model

cryptography using the algebra displayed right.

Messages can be built from atomic byte strings

using the Literal constructor, and then induc-

tively from other messages by using an injective

pairing operation Pair and four primitive keyed cryptographic operations.
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2. FORMALISING SYMBOLIC SECURITY

Cryptographic Primitives HMac and SEnc are known as symmetric cryptographic primitives, since

the key to compute them and reverse them (where applicable) is the same.

Symmetric HMACs (Hash-based Message Authentication Codes, modelled as the HMac constructor)

are used to prove the origin of a message (authentication), by providing evidence of knowledge of a

shared secret used as key. Neither the message nor the key are generally extractable from an Hmac

term and its validity is checked by comparing the received MAC to a freshly computed one.

Symmetric encryption (SEnc) is meant to protect the secrecy of a message whilst allowing principals

who know the encryption key to retrieve the message by decrypting its encryption. In this model,

we assume that encryption also provides authentication guarantees (this is discussed further in Sec-

tion 2.4).

Asymmetric signature and encryption (Sign and Enc, respectively) provide the same functionalities,

but use key pairs, one public key for checking the signature or encrypting plaintexts, and one private

key for producing a signature or decrypting ciphertexts. We assume that private and public part of

asymmetric key pairs are related using a relation AsymPair that allows us to express the fact that the

correct verification/decryption key is used.

Cryptographic Properties and Adversary Model We first need to circumscribe what actions the

aversaries we consider can perform. We give them full control over the network (including reorder-

ing, rerouting, erasing or injecting messages), let them create new principals, and schedule runs of

the protocol between selected principals. In addition, we let the adversary derive new messages

from messages she has previously observed over the network.

The adversary can build a new term from any two terms she has previously observed, but we limit

the information she can obtain on the subterms of a constructed term she observes. For example,

no information can be derived from a HMac or Sign term, and we only let the adversary derive the

plaintext from a SEnc or Enc term if she knows a decryption key (that is, the encryption key in the

case of symmetric encryption, and any key k’ such that AsymPair(k’,k), where k is the encryption key

used to produce the ciphertext, in the case of asymmetric encryption).

Security Protocols and Security Properties Security protocols are structured sequence of messages

between several principals (usually two or three), whose goal is to securely exchange some informa-
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tion. “Securely”, however, may have different meanings depending on the protocol’s security goals.

In this first part, we are concerned with two different security goals:

Authentication expresses that a message believed to be from a principal a was indeed produced by

principal a;

Secrecy, or weak secrecy, expresses that a message (or part of a message) is never derivable by the

adversary.

To reason formally about these security properties, we turn to the literature.

2.1.1 Invariants on Cryptographic Structures

Bhargavan et al. [2010] introduce invariants for cryptographic structure as a method to reason about

security properties. Progress through a protocol is recorded using a log of events, similar to the event

predicates used by Paulson [1998] or Blanchet [2001], or the history predicates used by Cohen [2003].

Log-dependent predicates indicate whether cryptographic structures, or terms, can appear in the

system, or may be known to the adversary. Event correspondences, as introduced by Woo and Lam

[1993], can be used to express integrity, proving that end events happen after a corresponding begin

event. Secrecy properties can be expressed as correspondences, either by making sure that the begin

event is never logged (therefore preventing the end event from happening), or using the begin event

to model a compromise action by the adversary.

Events that can be logged include key creation for a particular purpose, and application events such

as, say, the fact that principal a intends to send a term x to principal b. Invariants then relate the

log-dependent predicates to the presence of particular events in the log. For example, an invariant

could say that, if k is a key shared only between principals a and b (we assume unidirectional keys

in this description), and it happens that the term HMac k x is seen in the system, then it must be that

a intended to send message x to b.

To benefit from these invariants when verifying a program, log-dependent predicates are used to

define pre and postconditions on the cryptographic primitives, ensuring that they can only be used

by honest protocol participants in ways that preserve the declared invariants. For example, to ensure

that the invariant informally described above is maintained by the HMac operation, this function is
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annotated with a precondition stating that there are principals a and b such that the key used in the

function call is shared between a and b, and a intends to send the message passed as argument to b.

Similarly, pre and postconditions on network operations guarantee that protocol participants never

violate the invariants by sending non-public terms to the adversary.

The fact that these ideas have already been used to prove security properties of executable code,

albeit in F#, makes them a good candidate for our goals. However, many other techniques exist for

verifying security protocols, and indeed even for implementations. We discuss them in Section 2.4.

2.2 A Coq Framework for Symbolic Cryptographic Invariants

In this section, we formalize in Coq our protocol-independent theory of cryptographic invariants.

The protocol-specific definitions are in this section abstracted as module interfaces, that need to be

instantiated before the full Coq proof for a given protocol can be checked. An example of such

instantiations is shown and discussed in Section 2.3.

2.2.1 Usages and Events

Signature: Protocol Usages and Events
Module Type ProtocolDefs.

Parameter nonce usage: Type.
Parameters hmac usage senc usage: Type.
Parameters sign usage enc usage: Type.
Parameter pEvent: Type.

End ProtocolDefs.

The general framework is first parameterised by

protocol-specific declarations for cryptographic

usages, that indicate how a key or nonce can be

used by the protocol, and protocol events that

record progress through the protocol. These are expected to provide the module interface shown

right, requiring a collection of primitive usages for each cryptographic primitive, as well as for

nonces, and a collection of protocol events.

The primitive usage declarations are then augmented with an AdversaryGuess usage for public atoms.

This usage models principal names, protocol constants and adversary-chosen values. A distinction

is made between private and public keys that share the same primitive usage type.

Similarly, the type of protocol events is augmented with a New event, registering that a given term

is meant to be used with a specific usage (either an adversary guess or a primitive usage); and an

AsymPair event, registering that two terms are part of the same asymmetric key pair (this dynamically

builds the relation discussed previously as key pairs are generated).
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General Usages and Events
Module Defs (PD: ProtocolDefs).

Include PD.

Inductive usage: Type :=
| AdversaryGuess
| Nonce (nu: nonce usage)
| HmacKey (hu: hmac usage)
| SEncKey (eu: senc usage)
| SignKey (su: sign usage)
| VerfKey (su: sign usage)
| EncKey (eu: enc usage)
| DecKey (eu: enc usage).

Inductive event: Type :=
| New (t: term) (u: usage)
| AsymPair (pk: term) (sk: term)
| ProtEvent (pe: pEvent).

Definition log: Type := set event.
Definition Logged (e: event) (L: log): Prop := set In e L.
Definition LoggedP (e: pEvent) (L: log): Prop := Logged (

ProtEvent e) L.
Definition leq log (L L’: log): Prop := ∀ e, Logged e L → Logged

e L’.

Definition Stable (P: log → Prop) := ∀ L L’,
leq log L L’ → P L →
P L’.

Definition WF log (L: log): Prop :=
(∀ t u u’,

Logged (New t u) L →
Logged (New t u’) L → u = u’) ∧

(∀ pk sk,
Logged (AsymPair pk sk) L →
((∃ su,

Logged (New pk (VerfKey su)) L ∧
Logged (New sk (SignKey su)) L) ∨

(∃ eu,
Logged (New pk (EncKey eu)) L ∧
Logged (New sk (DecKey eu)) L))).

End Defs.

In addition to augmenting the protocol-specific

definitions, the functor displayed right also de-

fines a type for event logs, here as simple sets

of events, as well as shorthand notations for log

membership, the inclusion order on logs, and a

notion of stability of log-dependent predicates

under addition of events to the log (that is, pro-

tocol progress). Finally, it also provides a gen-

eral well-formedness condition stating that any

given term can have at most one usage, and that

the components of asymmetric keypairs must

have the same primitive usage, and use the ap-

propriate usage constructor.

2.2.2 Invariants

Given these generalised and parameterised def-

initions for log operations, the user can now

define protocol-specific invariants on logs and

terms, which include:

1. an additional well-formedness invariant on the log, LogInvariant, meant to represent conditions

enforced by the key management infrastructure (for example, unidirectionality of keys),

2. a release condition primComp for each kind of primitive usage, and proofs that the release con-

ditions are stable, and

3. a payload condition canPrim for each kind of primitive key usage (excluding nonces), also

equipped with proofs of stability.

The simplified module signature shown below formalizes those requirements for symmetric cryp-

tography. (Asymmetric cryptography is treated in the same way.)
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Signature: Protocol Invariants

Module Type ProtocolInvariants (PD: ProtocolDefs).
Include Defs PD.
Parameter LogInvariant: log → Prop.

(∗ Nonce Predicate ∗)
Parameter nonceComp: term → log → Prop.
Parameter nonceComp Stable: ∀ t, Stable (nonceComp t).

(∗ HMAC Predicates ∗)
Parameter hmacComp: term → log → Prop.
Parameter hmacComp Stable: ∀ t, Stable (hmacComp t).

Parameter canHmac: term → term → log → Prop.
Parameter canHmac Stable: ∀ k p, Stable (canHmac k p).

(∗ SEnc Predicates ∗)
Parameter sencComp: term → log → Prop.
Parameter sencComp Stable: ∀ t, Stable (sencComp t).

Parameter canSEnc: term → term → log → Prop.
Parameter canSEnc Stable: ∀ k p, Stable (canSEnc k p).

End ProtocolInvariants.

The Level predicate

Our security invariants are expressed using a Level predicate, that encodes both the Pub and Bytes

originally used by Bhargavan et al. [2010]. Although we use the words low and high, they should not

be interpreted as integrity or confidentiality levels, as this Level predicate in fact encodes the deriv-

ability rules that are often used to describe how cryptography can be used by honest and dishonest

protocol participants. We say that a term t is Low in log L (denoted Level Low t L) whenever it may be

made known to the adversary without compromising the protocol’s security objectives. We say that

a term t is High in log L whenever it can be derived by any honest or dishonest protocol participant

(including the adversary). Intuitively, a term is truly secret if it is not Low in the current log. In Chap-

ter 3, we explain in more details how the security of an implementation can be proven essentially by

guaranteeing that only Low terms are in fact made available to the adversary.

From the informal definition above, it is clear that we want both Level Low t and Level High t to be

stable under log growth (terms, once constructed or given to the adversary, cannot be removed from

the system), and that we want, in all logs, any Low term to be High (since the adversary cannot

discover terms without their being constructed first). The inductive definition of the Level predicate

is broken down below to ease its presentation.

Level Predicate: AdversaryGuess
(∗ AdversaryGuesses are always Low ∗)
| Level AdversaryGuess: ∀ l bs L,

Logged (New (Literal bs) AdversaryGuess) L →
Level l (Literal bs) L

Base Cases: Level for Literals The simplest

base case expresses the fact that adversary

guesses (terms that have been registered with

the AdversaryGuess usage) are Low (and therefore also High) since they may become known to the

adversary at any time.
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Level Predicate: Nonces and Keys
(∗ Nonces are Low when nonceComp holds ∗)
| Level Nonce: ∀ l bs L nu,

Logged (New (Literal bs) (Nonce nu)) L →
(l = Low → nonceComp (Literal bs) L) →
Level l (Literal bs) L

(∗ HmacKeys are Low when hmacComp holds ∗)
| Level HmacKey: ∀ l bs L hu,

Logged (New (Literal bs) (HmacKey hu)) L →
(l = Low → hmacComp (Literal bs) L) →
Level l (Literal bs) L

(∗ SEncKeys are Low when sencComp holds ∗)
| Level SEncKey: ∀ l bs L su,

Logged (New (Literal bs) (SEncKey su)) L →
(l = Low → sencComp (Literal bs) L) →
Level l (Literal bs) L

(∗ SigKeys are Low when signComp holds ∗)
| Level SigKey: ∀ l bs L su,

Logged (New (Literal bs) (SignKey su)) L →
(l = Low → sigComp (Literal bs) L) →
Level l (Literal bs) L

(∗ VerfKeys are always Low ∗)
| Level VerKey: ∀ l bs L su,

Logged (New (Literal bs) (VerfKey su)) L →
Level l (Literal bs) L

(∗ EncKeys are always Low ∗)
| Level EncKey: ∀ l bs L eu,

Logged (New (Literal bs) (EncKey eu)) L →
Level l (Literal bs) L

(∗ DecKeys are Low when encComp holds ∗)
| Level DecKey: ∀ l bs L eu,

Logged (New (Literal bs) (DecKey eu)) L →
(l = Low → encComp (Literal bs) L) →
Level l (Literal bs) L

Keys and nonces are always High, and can only

become Low when their release condition holds,

or if they are given a public key usage (asym-

metric encryption key, or asymmetric signature

verification key). These base rules do not apply

to constructed terms that may be used as keys

or nonces.

Protocols can still make use of such non-atomic

keys (the level of which is determined using the

appropriate inductive rule as defined below), at

the cost of potentially more complex protocol-

specific proofs. This point is discussed further

in Sections 2.3 and 3.1.3.

Constructed Terms We now discuss the def-

inition of Level for constructed terms, starting

with pairs and moving on to cryptographic primitives excluding asymmetric operations, for which

the rules are very similar to the symmetric cases. The full definition for the Level predicate is dis-

played in Appendix A, along with the other definitions and signatures for the general framework.

Level Predicate: Pairing
(∗ Pairs are as Low as their components ∗)
| Level Pair: ∀ l t1 t2 L,

Level l t1 L →
Level l t2 L →
Level l (Pair t1 t2) L

As expected, a pair is Low (resp. High) if and

only if both of its components are Low (resp.

High). Both cases can be folded into a single one,

universally quantified over the level, as shown

right.

Level Predicate: HMACs
(∗ Honest Hmacs are as Low as their payload ∗)
| Level Hmac: ∀ l k m L,

canHmac k m L →
Level l m L →
Level l (HMac k m) L

(∗ Dishonest Hmacs are Low ∗)
| Level Hmac Low: ∀ l k m L,

Level Low k L →
Level Low m L →
Level l (HMac k m) L

For terms resulting from the application of a

keyed primitive, we consider two cases, the first

when the term is built by honest protocol par-

ticipants, and therefore follows the protocol’s

specification; and the second when it is built by

the adversary, who can apply the constructor to
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any two terms it knows. In the first case, and since HMACs do not necessarily provide secrecy, the

rule states that the HMAC term is as low as its payload, provided the payload condition holds. In

the second case, any two Low terms can be used to compute an HMAC at any level.

Level Predicate: Sym. Encryption
(∗ Honest SEncs are Low ∗)
| Level SEnc: ∀ l l’ k p L,

canSEnc k p L →
Level l’ p L →
Level l (SEnc k p) L

(∗ Dishonest SEncs are Low ∗)
| Level SEnc Low: ∀ l k p L,

Level Low k L →
Level Low p L →
Level l (SEnc k p) L

Similarly, for symmetric encryptions, two cases

need to be distinguished. The first case, mod-

elling encryptions performed by honest partic-

ipants, require the payload conditions to hold,

and turns a plaintext of any level into a cipher-

text that can be safely given to the adversary,

and therefore has both level Low and level High. The second case, again, computes a ciphertext

of any level from a Low plaintext and a Low key. The case for asymmetric encryption is also omitted

from this detailed description: although it differs somewhat from the symmetric case, it is still very

similar.

Generic Invariants

From this definition of the Level predicate, and without knowing more about the protocol-specific

invariants than what is expressed in the protocol invariant signature, some simple but powerful

general invariants can be proved to hold.

Generic Invariants: Low ⊆ High
Theorem Low High: ∀ t L,

Level Low t L → Level High t L.

The simplest of these invariants is the fact that

all Low terms are also High. In other words, all

the terms that the adversary can produce by ap-

plying its deduction rules can also be produced by applying the adversary rules augmented with

the rules for honest protocol participants. In previous versions of the methodology, the fact that Pub

implied Bytes on all terms was a rule in the system, but the Level predicate is set up in such a way

that this becomes a theorem.

Generic Invariants: Level is stable
Theorem Level Stable: ∀ l t L L’,

leq log L L’ → Level l t L →
Level l t L’.

A second natural invariant is that the Level pred-

icate is in fact positive in the log. This is ob-

viously desirable, since we want that all terms

known to any principal in the system are High at any time (and all terms known to the adversary are

Low), and we assume that the principals have perfect memory.

22



Generic Invariants: Level inversion
Theorem LowHmacKeyLiteral Inversion: ∀ L k hu,

GoodLog L →
Logged (New (Literal k) (HmacKey hu)) L →
Level Low (Literal k) L →
hmacComp (Literal k) L.

Theorem HMac Inversion: ∀ L l k p,
Level l (HMac k p) L →
canHmac k p L ∨ Level Low k L.

Finally, the basic structural constraints on the

Level predicate give rise to strong general inver-

sion properties which, when considered in con-

junction with stronger protocol-specific invari-

ants, are central in proving security properties.

For example, the LowHmacKeyLiteral Inversion

theorem displayed right states that any Low literal term that is used as an HMAC key in a well-

formed log has to be compromised. Similarly, seeing an HMAC term at any level indicates that the

MAC was built either by an honest protocol participant, in which case the payload condition must

hold; or by the adversary, in which case the key must be Low (as well as the payload).

2.3 Protocol-Specific Invariants

The framework presented above is parameterised by protocol-specific definitions, encoding the var-

ious usages made of nonces and cryptographic primitives in runs of a protocol. In this section, we

give an example of such a protocol-specific theory, before presenting a small language for giving

higher-level description of protocol-specific usages and invariants and generating ready-to-prove

skeletons for the corresponding Coq theories.

2.3.1 Example: Authenticated RPC

We now show the usage type and usage predicate definitions for a small Authenticated Remote Pro-

cedure Call (Authenticated RPC) protocol, shown below. In this protocol, the client a and server b

are assumed to pre-share a secret symmetric key kab, only used for sessions where a is the client and

b is the server. The client sends a request req, paired with the HMAC of req under kab. Upon receiv-

ing the request and checking its MAC, the server runs its application service on the req, producing a

response resp, and replies with resp, paired with the HMAC of the pair (req, resp) under kab. Unique

tags are used to prevent the use of response messages as requests. The desired authentication proper-

ties are expressed below as event correspondences, where an assertion only succeeds if the asserted

event has been logged along the current execution trace.
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Protocol Example: an Authenticated RPC Protocol
a : Log(Request(a, b, req))
a→ b : req | hmac(kab, Literal([TagRequest])| req)
b : assert(Request(a, b, req))
b : Log(Response(a, b, req, resp))
b→ a : resp | hmac(kab, Literal([TagRequest])| req | resp)
a : assert(Response(a, b, req, resp))

A-RPC: Additional Parameters
Parameter TagRequest: byte.
Parameter TagResponse: byte.
Parameter TagsDistinct: TagRequest <> TagResponse.

We parameterise the entire protocol descrip-

tion and its invariants by the request and re-

sponse tags, additionaly requiring a proof that

whichever values are used to instantiate the variables are distinct, as shown on the left. In practice,

we can automatically discharge this obligation in VCC when providing the concrete tag values to the

implementation (see Section 3.3).

Primitive Usages and Protocol Events

A-RPC: Primitive Usages and Protocol Events
Module RPCDefs <: ProtocolDefs.

Definition nonce usage := False.
Definition senc usage := False.
Definition sign usage := False.
Definition enc usage := False.

Inductive hmac usage’ :=
| U KeyAB (a b: term).

Definition hmac usage := hmac usage’.

Inductive pEvent’ :=
| Request (a b req: Term.term)
| Response (a b req resp: Term.term)
| Bad (p: term).

Definition pEvent := pEvent’.
End RPCDefs.

Our Authenticated RPC protocol only uses the

HMAC primitive, with a unique key usage, pa-

rameterised by the two principals that share it

(we choose to have them appear in client-server

order). The protocol specification shown above

uses two events, Request and Response to model

protocol progress, and we add a third, Bad,

to model principal compromise, adding partial

compromise clauses to the asserted events. The Coq type definitions shown right formalize these re-

marks, and are proved, using the <: module type annotation, to correctly provide all the definitions

expected by our general framework.

Log Invariant

A-RPC: Log Invariant
Definition LogInvariant L :=
∀ t u, Logged (New t u) L → (∃ bs, t = Literal bs).

For simplicity in this example, we require that

only literals are used as keys, turning this sim-

ple condition into the log invariant displayed

right.
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Usage Conditions

A-RPC: Key usage test
Definition KeyAB a b k L :=

Logged (New k (HmacKey (U KeyAB a b))) L.

For brevity of later definitions, we first define,

for each primitive usage, a log predicate testing

whether a given term is associated with that us-

age. For example, the predicate KeyAB a b k L, displayed right, tests whether the term k has usage

HmacKey (U KeyAB a b) in log L.

A-RPC: Release Condition
Definition KeyABComp a b L :=

LoggedP (Bad a) L ∨ LoggedP (Bad b) L.

Definition hmacComp k L :=
∃ a, ∃ b, KeyAB a b k L ∧ KeyABComp a b L.

We want the shared keys to only be released to

the adversary if one of the principals that share

it is compromised (recorded using the Bad pro-

tocol event). This primitive release condition is

easily generalized to the generic HMAC usage by existentially quantifying over the primitive usage,

as shown on the left.

A-RPC: Payload Condition
Definition KeyABPayload a b p L :=

(∃ req,
p = Pair (Literal (TagRequest::nil)) req ∧
LoggedP (Request a b req) L) ∨

(∃ req, ∃ resp,
p = Pair (Literal (TagResponse::nil)) (Pair req resp) ∧
LoggedP (Response a b req resp) L).

Definition canHmac k p L :=
∃ a, ∃ b, KeyAB a b k L ∧ KeyABPayload a b p L.

The payload conditions are slightly more com-

plicated to infer from the protocol narration. In

this case, the shared keys can be used in two dif-

ferent ways by honest principals:

• to compute MACs of tagged requests, on

which the Request event holds;

• to compute MACs of tagged request-response

pairs, on which the Response event holds.

All primitive payload conditions we have encountered so far have had a similar shape, that can be

divided into a log-independent format (here the pairing condition), and a log-dependent circumstance

(here the fact that Request or Response is in the log). The primitive payload conditions are generalized

to generic HMAC usages in the same way as release conditions.

For the authenticated RPC protocol, all other usage conditions are trivially False.

Stability theorems and proofs are omitted from this illustration, but need to be provided for the proof

to go through: the proofs in this case simply involve unrolling the definitions, and instantiating the

quantifiers until the log inclusion can be applied.
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Security theorems

Once the Level predicate instantiated with the protocol-specific definitions shown above, we can

prove the following security theorems.

A-RPC: Request Correspondence Theorem
Theorem RequestCorrespondence: ∀ a b k req L,

GoodLog L → KeyAB a b k L →
Level Low (HMac k (Pair (Literal (TagRequest::nil)) req)) L →
LoggedP (Request a b req) L ∨
LoggedP (Bad a) L ∨ LoggedP (Bad b) L.

Whenever a valid MAC is observed for a

request-tagged message, and the term used to

verify the MAC is known to be a valid shared

key, we know that either the Request event has

been logged on the message (and the MAC was computed by an honest participant), or one of the

two principals sharing the key is compromised (and the MAC was computed by the adversary).

A-RPC: Response Correspondence Theorem
Theorem ResponseCorrespondence: ∀ a b k req resp L,

GoodLog L → KeyAB a b k L →
Level Low (HMac k (Pair (Literal (TagResponse::nil)) (Pair req

resp))) L →
LoggedP (Response a b req resp) L ∨
LoggedP (Bad a) L ∨ LoggedP (Bad b) L.

Whenever a valid MAC is observed for a

response-tagged pair, and the term used to ver-

ify the MAC is known to be a valid shared key,

we know that eiter the Response event has been

logged on the pair (and the MAC was computed by an honest participant), or one of the two princi-

pals sharing the key is compromised (and the MAC was computed by the adversary).

A-RPC: Key Secrecy Theorem
Theorem KeySecrecy: ∀ a b k L,

GoodLog L → KeyAB a b k L → Level Low k L →
LoggedP (Bad a) L ∨ LoggedP (Bad b) L.

Whenever a term known to be a valid shared

HMAC key becomes Low, it must be that one of

the two principals sharing it is compromised. In

cases, such as this one, when the log invariant constrains keys and nonces to be bytestring literals,

this theorem is a trivial consequence of Level’s inductive definition.

Keyed HMAC Inversion Theorem
Theorem KeyedHMac Inversion: ∀ hu k p L,

GoodLog L → Logged (New k (HmacKey hu)) L → Level High (
HMac k p) L →

canHmac k p L ∨ hmacComp k L.

In addition, when this constraint is added to the

log invariant, the theorem displayed on the left

becomes true, and can be used to greatly sim-

plify other proofs. Its importance is highlighted further in Chapter 3, where it becomes central to

providing general cryptographic contracts for the verification of protocol code.

2.3.2 A High-Level Protocol Description Language

The requirement to fulfill several distinct module signatures separately, and in particular the fact that

the definition of each cryptographic usage needs to be spread between its declaration as a constructor
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in the corresponding primitive usage type, and its proper definition as compromise and payload

conditions makes it difficult to develop protocol specifications directly in the formalism presented

above. To facilitate this task, we design a small domain-specific language embedded in F#, and

presented here under the name T3, the syntax of which is shown below.

T3 Syntax
t, k ::= terms

x term variable
Literal bs bytestring constant
Pair t t pair
Hmac t t keyed hash
SEnc t t symmetric encryption
Sig t t public key signature
Enc t t public key encryption

F ::= logical formulas
true true constant
false false constant
t = t term equality
!F negation
F && F conjunction
F || F disjunction
F⇒ F implication
forall (fun x→ F) universal quantification
exists (fun x→ F) existential quantification
f t . . . t predicate application
f t . . . t k symmetric key type test
pubKey (f t . . . t) k public key type test
prvKey (f t . . . t) k private key type test
keypair t t keypair test
Logged ev log membership test

U ::= nonce and key usages
nonceLiteral (fun n→ F) nonce usage
hmacKey (fun k→ F) (fun m→ F) hmac usage

sencKey (fun k→ F) (fun m→ F) s. enc. usage
sigKeyPair (fun k→ F) (fun m→ F) sig. usage
encKeyPair (fun k→ F) (fun m→ F)enc. usage

D ::= declarations
let f x1 . . . xn = F; predicate macro
let f x1 . . . xn = U; key usage

l ::= security levels
Low | High

T ::= security theorems
[< Valid >] let f x1 . . . xn = C; theorem declaration
where C is F augmented
with the following constructions

C ::= derived log predicates
Level l t security level testing
primComp t release condition
canPrim t t payload condition
where prim is one of the crypto primitives.

P ::= type event =
| ev1(n1) . . . | evn(nn);

D . . . D
[< LogInvariant >] let f = F;
T . . . T

protocol description

A T3 protocol description consists of a declaration of protocol events, followed by a list of predicate

and key usage declarations, and ends with a log invariant definition and a list of security theorems.

Predicate and key usage declarations are distinguished by the head symbol: key usages are intro-

duced using one of the five predicate transformers, which take compromise and payload conditions

and return a predicate testing whether a term has the defined usage in the current log (for asymmet-

ric keys, the returned predicate tests whether a given term pair has the defined keypair usage in the

current log), whereas predicates are simple formulas. The distinction also appears in the types of

these expressions, and our embedding in F# forbids ill-typed descriptions where, for example, the
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pubKey type test is applied to a symmetric key usage.

Formulas themselves are quantified first-order logic formulas extended with stateful predicates, in-

cluding the key type tests defined by application of the predicate transformers, a keypair test on

terms that check whether two terms are part of the same keypair according to the current log, and a

log membership test for user-defined protocol events. We also add a stateless equality test on terms,

where terms are members of the same term algebra defined in the Coq framework, but can also be

referred to using variables.

The basic type-checking is provided by F#, but is not sufficient to guarantee the desired properties

of protocol-specific definitions, as specified in the Coq module signatures shown previously (Sec-

tion 2.3). In particular, when generating the protocol-specific Coq modules, we also generate proof

obligations, in the form of theorems, not only for all declared theorems in the protocol description,

but also for all the necessary proof obligations. We also gather all primitive usages, release conditions

and payload conditions into their general counterparts and generate the corresponding monotonicity

theorems, for the user to prove in Coq.

The following protocol description corresponds to the Authenticated RPC protocol discussed above.

T3 Input for Authenticated RPC

type event =
| Request of term ∗ term ∗ term
| Response of term ∗ term ∗ term ∗ term
| Bad of term

let KeyABComp a b =
Logged (Bad a) || Logged (Bad b)

let KeyABPayload a b m =
(exists (fun req→

m = Pair (Literal [|TagRequest|],req) &&
Logged (Request(a,b,req)))) ||

(exists2 (fun req resp→
m = Pair (Literal [|TagResponse|],Pair(req,resp)) &&
Logged (Response(a,b,req,resp))))

let KeyAB a b =
hmacKey

(fun k→KeyABComp a b)
(fun m→KeyABPayload a b m)

[< LogInvariant >]
let LogInvariant =

forall2 (fun t (u: usage)→
u t⇒ exists (fun bs→ t = Literal bs))

[< Valid >]
let KeyedHMAC Inversion =

forall4 (fun a b p k→
GoodLog⇒KeyAB a b k⇒
Level High (HMac(k,p))⇒
canHmac k p || hmacComp k)

[< Valid >]
let RequestCorrespondence =

forall4 (fun a b k req→
GoodLog⇒KeyAB a b k⇒
Level Low

(HMac(k,Pair(Literal [|TagRequest|],req)))⇒
Logged (Request(a,b,req)) ||
(Logged (Bad a) || Logged (Bad b)))

[< Valid >]
let ResponseCorrespondence =

forall5 (fun a b k req resp→
GoodLog⇒KeyAB a b k⇒
Level Low

(HMac (k,Pair(Literal [|TagResponse|],Pair(req,
resp))))⇒

Logged (Response(a,b,req,resp)) ||
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(Logged (Bad a) || Logged (Bad b)))

[< Valid >]
let KeySecrecy =

forall3 (fun a b k→
GoodLog⇒KeyAB a b k⇒ Level Low k⇒
Logged (Bad a) || Logged (Bad b))

This description can easily be translated into a Coq theory implementing the module signatures for

the protocol-specific definitions, at the cost of some unpleasant variable names.

Events and Usages

The event type is directly translated as the pEvent type definition in Coq.

Key usage declarations are grouped by the predicate transformer used, and the primitive usage types

are automatically generated: at this stage, only the name and arity of the declared key usages is used,

to directly declare constructors in the corresponding usage type (for example, a key usage declared

in T3 using the hmacKey predicate transformer gives rise to a constructor in the hmac usage type in

Coq).

Invariants

Predicates are translated directly as definitions, adding a log argument when they use one of the

stateful constructs (log membership test and key usage tests).

The primComp predicate can then be defined as a disjunction where each disjunct is a conjunction of

a key test and the corresponding release condition, with all parameters other than the key and log

existentially quantified.

The canPrim predicate is defined in a similar way, as a disjunction where each disjunct is a conjunc-

tion of a key test and the corresponding payload condition, with all parameters other than the key,

payload and log existentially quantified.

The primComp Stable and canPrim Stable theorems are automatically declared, but not automatically

proved. However, their proof is fairly systematic in all our examples, and heavily relies on the well-

formedness condition on logs, that terms can be given at most one usage, allowing us to select the

disjunct to be proved in each branch of the hypothesis.
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2.3.3 Other Examples

We discuss here some more example protocols, displaying their narration and T3 descriptions, and

commenting on their security properties. Not all these protocols are provided with verified imple-

mentations in C, but all the stated theorems are proved in Coq.

Encrypted RPC

The following protocol is a variant for the RPC protocol that relies on authenticated encryption in-

stead of pure HMACs to also guarantee some level of secrecy on the requests and responses. The

authentication goals, indicated as logging actions and assertions in the following description, are

identical to those of the authenticated RPC protocol described in detail above.

Encrypted RPC Protocol Narration
a : Log(Request(a, b, req))
a : k = keygen()
a→ b : senc(kab, req | k)
b : assert(Request(a, b, req))
b : Log(Response(a, b, req, resp))
b→ a : senc(k, resp)
a : assert(Response(a, b, req, resp))

This protocol requires two different usages for symmetric encryption keys: one for long term keys,

pre-shared between the principals (kab above), and one for session keys, which the client generates

for each request. This latter fact is encoded by parameterising the session key usage with the request

as well as the principals, and allows us to prove the desired linking property between request and

response in the second correspondence. In addition, we consider two nonce usages, one for requests

and another for responses. This is so we can prove some conditional secrecy properties: if the ap-

plication treats requests and responses as nonces (in particular, if the corresponding plaintext spaces

are large enough), then this protocol guarantees that they remain secret unless one of the principals

involved is compromised.

All these properties are summarized in the following T3 protocol description.

T3 Input for Encrypted RPC

type event =
| Request of term ∗ term ∗ term
| Response of term ∗ term ∗ term ∗ term
| Bad of term

let RequestNComp a b =
Logged (Bad a) || Logged (Bad b)

let RequestN a b =
nonceLiteral (fun n→RequestNComp a b)
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let ResponseNComp a b req =
Logged (Bad a) || Logged (Bad b)

let ResponseN a b req =
nonceLiteral (fun n→ResponseNComp a b req)

let SessionKeyComp a b req =
Logged (Bad a) || Logged (Bad b)

let SessionKeyPayload a b req m =
Logged (Response(a,b,req,m))

let SessionKey a b req =
sencKey (fun k→ SessionKeyComp a b req) (fun m

→ SessionKeyPayload a b req m)

let KeyABComp a b =
Logged (Bad a) || Logged (Bad b)

let KeyABPayload a b m =
exists2 (fun req k→

m = Pair (req,k) &&
SessionKey a b req k &&
Logged (Request (a,b,req)))

let KeyAB a b =
hmacKey

(fun k→KeyABComp a b)
(fun m→KeyABPayload a b m)

[< LogInvariant >]
let LogInvariant =

forall2 (fun t (u: usage)→
u t⇒ exists (fun bs→ t = Literal bs))

[< Valid >]
let KeyedHMAC Inversion =

forall4 (fun a b p k→
GoodLog⇒KeyAB a b k⇒
Level High (HMac(k,p))⇒
canHmac k p || hmacComp k)

[< Valid >]
let RequestCorrespondence =

forall5 (fun a b kab req k→
GoodLog⇒KeyAB a b kab⇒
Level Low (SEnc(kab,Pair(req,k)))⇒
(Logged (Request(a,b,req)) &&
SessionKey a b req k) ||

(Logged (Bad a) || Logged (Bad b)))

[< Valid >]
let ResponseCorrespondence =

forall5 (fun a b k req resp→
GoodLog⇒ SessionKey a b req k⇒
Level Low (SEnc (k,resp))⇒
Logged (Response(a,b,req,resp)) ||
(Logged (Bad a) || Logged (Bad b)))

[< Valid >]
let KeyABSecrecy =

forall3 (fun a b k→
GoodLog⇒KeyAB a b k⇒ Level Low k⇒
Logged (Bad a) || Logged (Bad b))

[< Valid >]
let SessionKeySecrecy =

forall4 (fun a b req k→
GoodLog⇒ SessionKey a b req k⇒ Level Low k⇒
Logged (Bad a) || Logged (Bad b))

Otway-Rees

Our third example protocol is a variant of the three-party Otway-Rees key exchange protocol by Abadi

and Needham [1996]. We assume that keys are created for a fixed purpose. The three parties involved

are the initiator i, the responder r, and a trusted key server s, with whom both i and r share a long-term

key (ki and kr, respectively). Here again, encryption is assumed to be authenticated.

Otway-Rees(-Abadi-Needham) Protocol Narration
i : ni = fresh()
i→ r : i | ni
r : nr = fresh()
r→ s : i | r | ni | nr
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s : kir = keygen()
s : Log(Initiator(i, ni, kir, r))
s : Log(Responder(r, nr, kir, i))
s→ r : senc(ki, i | r | kir | ni)| senc(kr, i | r | kir | nr)
r : Log(Responder(i, nr, kir, r))
r→ i : senc(ki, i | r | kir | ni)
i : assert(Initiator(i, ni, kir, r))

There are two distinct uses for the long-term keys shared with the trusted server: one when the

principal is acting as initiator, and the other when the principal is acting as responder. Since nothing

in the message format allows to distinguish the two usages, the responder and the trusted server

both check that the initiator and responder are distinct principals, which we encode in the usage. In

the following T3 description, we fix the usage for the freshly exchanged key, choosing to generate

keys that can be used in the authenticated RPC protocol discussed above. Composition of protocols,

protocol descriptions, and security proofs is discussed briefly in Section 2.4.

T3 Input for Otway-Rees

type event =
| Request of term ∗ term ∗ term
| Response of term ∗ term ∗ term ∗ term
| Initiator of term ∗ term ∗ term ∗ term
| Responder of term ∗ term ∗ term ∗ term
| Bad of term

let KeyABComp a b =
Logged (Bad a) || Logged (Bad b)

let KeyABPayload a b m =
(exists (fun req→

m = Pair(Literal [|TagRequest|],req) &&
Logged (Request(a,b,req)))) ||

(exists2 (fun req resp→
m = Pair(Literal [|TagResponse|],Pair(req,resp)) &&
Logged (Response(a,b,req,resp))))

let KeyAB a b =
hmacKey

(fun k→KeyABComp a b)
(fun m→KeyABPayload a b m)

let PrinKeyComp p k =
Logged (Bad p)

let PrinKeyPayload p m =
(exists3 (fun b np kpb→

p <> b &&
(m = Pair(p,Pair(b,Pair(kpb,np)))) &&
KeyAB p b kpb &&
Logged (Initiator(p,np,kpb,b)))) ||

(exists3 (fun a np kap→
p <> a &&
(m = Pair(a,Pair(p,Pair(kap,np)))) &&
KeyAB a p kap &&
Logged (Responder(p,np,kap,a))))

let PrinKey p =
sencKey

(fun k→PrinKeyComp p k)
(fun m→PrinKeyPayload p m)

[< LogInvariant >]
let LogInvariant =

forall2 (fun t (u: usage)→
u t⇒ exists (fun bs→ t = Literal bs))

(∗ Omitting aRPC theorems ∗)

[< Valid >]
let InitiatorCorrespondence =

forall5 (fun a b ka na kab→
GoodLog⇒ (a <> b)⇒PrinKey a ka⇒
Level Low (SEnc(ka,Pair(a,Pair(b,Pair(kab,na)))))⇒
KeyAB a b kab || Logged (Bad a))

[< Valid >]
let ResponderCorrespondence =

forall5 (fun a b kb nb kab→
GoodLog⇒ (a <> b)⇒PrinKey b kb⇒
Level Low (SEnc(kb,Pair(a,Pair(b,Pair(kab,nb)))))

⇒
KeyAB a b kab || Logged (Bad b))
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[< Valid >]
let KeyABSecrecy =

forall3 (fun a b kab→
GoodLog⇒KeyAB a b kab⇒
Level Low kab⇒
Logged (Bad a) || Logged (Bad b))

2.4 Discussion and Related Work

The Inductive Approach Paulson’s inductive approach [Paulson, 1998] relies on the protocol being

encoded as inductive rules describing how protocol traces can be constructed by building and pub-

lishing new terms from previously observed messages. Security properties are expressed in the same

way as ours, as correspondences on a log of event predicates (in his case, the entire trace). However,

since we wish to separate security concerns from low-level protocol and implementation details, we

prefer a proof technique that provides more abstraction from the protocol and security goal.

For example, the TAPS tool (Cohen [2003]) relies on first-order invariants very similar to ours, in

order to prove security properties of protocols. Cohen’s techniques rely on making as much of the

proof as possible protocol-independent, and reducing his central secrecy invariant, which states that

only messages that are meant to be published are ever published, to simple mathematical properties

of derived predicates.

Bhargavan et al. [2010] push these ideas further and even abstract from the protocol itself, only mod-

elling the use of cryptography, therefore modularizing the approach, and making it applicable to the

verification of implementations. Cohen’s secrecy invariants correspond to Bhargavan et al. [2010]’

precondition on network writes, that the sent message is Low. By abstracting the protocol further, we

expect to enable some modular reasoning about the protocol itself (and not only its implementation),

allowing, for example, to reason soundly about protocol composition. However, we have not yet

experimented with this and currently repeat the proofs for Authenticated RPC when using it with

keys established by Otway-Rees.

Process Calculi and ProVerif The use of process calculi for the verification of security protocols

goes back to Lowe’s famous use of the CSP process calculus to find attacks, and prove security

[Lowe, 1996]. Since then, similar techniques have been applied to various process calculi.
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For example, ProVerif [Blanchet, 2001] takes protocol descriptions written in a variant of the ap-

plied π-calculus, translating them into Horn clauses describing the principals’ knowledge and prov-

ing correspondence properties on this abstract model of the protocol. These later tools refine the

free algebra model of cryptography we discussed with equational theories, allowing much more

realistic protocols to be analysed, and in particular permitting the use of non-authenticated encryp-

tion and arbitrary message formatting. In addition, ProVerif also supports a stronger, observational

equivalence-based notion of secrecy, which we discuss further in Section 3.5.

Strand Spaces Strand spaces were introduced by Fábrega [1999] to reason about security protocols

in more general terms than the usual goals of trying to prove security, or finding flaws. In par-

ticular, they can produce a so-called complete characterisation of protocols, that is described all the

execution traces that can occur from a given starting configuration (that is, a set of roles). CPSA

[Doghmi, Guttman, and Thayer, 2007] and Scyther [Cremers, 2008] are automated tools that work

in this model. Although Scyther can also produce complete characterisations, it is mostly focused

on proving security properties, but allows more flexible adversary models than previous protocol

verification tools (for example, adversaries with access to some of the protocol’s internal state, useful

for refining and classifying attacks on key exchange protocols).

Computationally Complete Symbolic Attackers In more recent work, Bana and Comon-Lundh

[2012] introduced a new kind of symbolic models, based simply on declaring function symbols and

constraining them with axioms. The soundness of the approach is ensured by properties of each

individual axiom, allowing the model to be built primitive by primitive. However, this approach has

not so far been automated, and has only been applied by hand to small protocols.
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Chapter 3

Verifying Symbolic Security of C Code

The goal of this chapter is to show how our chosen C verification tool can be used to prove that

a given C programs uses cryptography in a way that preserves a set of cryptographic invariants,

including secrecy and authentication properties, such as those described in Chapter 2. To do so,

• we encode the T3 protocol description as VCC ghost specification data and code (Section 3.1.1);

• we provide generic annotations and verified ghost instrumentation on the cryptographic li-

braries, that enforce the assumptions of our symbolic model, the payload conditions when

using cryptography, and the fact that data sent over the network is Low (Section 3.1.2);

• we model network adversaries as syntactically restricted C programs (Section 3.2);

• and we explain how the resulting verification conditions can be discharged, and guarantee the

desired security properties, by stepping through the authenticated RPC example (Section 3.3).

Section 3.4 summarizes our experiments on some of the example protocols formalised in Section 2.3.3,

and Section 3.5 discusses our contributions and their limitations, in view of related work.

Term Algebra in VCC
(datatype term {

case Literal(bytes)
case Pair(term,term)
case Hmac(term,term)
case SEnc(term,term)
case Sign(term,term)
case Enc(term,term) })

In this chapter, we work in the symbolic model

discussed in Chapter 2, where cryptographic

terms are members of a free algebra with no

equational theory introducing additional equal-

ities. We can make use of VCC’s inductive

datatypes for specifiying this, as shown right.
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3. VERIFYING SYMBOLIC SECURITY OF C CODE

3.1 A VCC Framework for Symbolic Cryptography

3.1.1 Symbolic Cryptographic Invariants

If Bhargavan et al. [2010] treat the cryptographic log as an implicit set of all assumed formulas, we

choose to keep it as an explicit set of events in ghost state, and turn F7 assume statements into explicit

ghost state updates. The definitions in this Chapter mimic the Coq descriptions from Chapter 3.

Usages and Events Declarations in VCC
(type nonce usage)
(type hmac usage)
(type senc usage)
(type sign usage)
(type enc usage)

(datatype usage {
case AttackerGuess()
case Nonce(nonce usage)
case HmacKey(hmac usage)
case SEncKey(senc usage)
case SignKey(sign usage)
case VerfKey(sign usage)
case EncKey(enc usage)
case DecKey(enc usage) })

(type pEvent)

(datatype event {
case New(term,usage)
case AsymPair(term,term)
case ProtEvent(pEvent) })

Usages and events are declared in the same

way as they are defined in the Coq model,

using inductive declarations for the general

datatypes, and declaring the types of protocol-

specific events and primitive usages forward of

their use. These abstract types can be instanti-

ated where necessary using either datatypes or

functional record types. In the same way, func-

tion symbols with contracts can be declared be-

fore being defined, and left abstract for the pur-

pose of general proofs, which is useful to ex-

press desired properties of the declared symbols (for example, stability lemmas), in the same way

that Coq module signatures let us declare theorems.

Event Logs in VCC
(typedef \bool log[event])

(def \bool leq log(log L1, log L2)
{ return ∀event e; L1[e]⇒L2[e]; })

(def \bool LoggedP(pEvent e, log L)
{ return L[ProtEvent(e)]; })

(def \bool WF log(log L)
{ return

(∀ term t; usage u1, u2;
L[New(t,u1)]⇒L[New(t,u2)]⇒
u1 == u2) &&

(∀ term pk,sk;
L[AsymPair(pk,sk)]⇒
((∃ sign usage su;

L[New(sk,VerfKey(su))] &&
L[New(pk,SignKey(su))]) ||

(∃ enc usage eu;
L[New(sk,EncKey(eu))] &&
L[New(pk,DecKey(eu))]))); })

Event logs are modelled using a boolean map-

based encoding of sets. Testing set membership

is done by applying the map, and union and in-

tersection can simply be expressed as lambda

expressions combining the two maps by dis-

junction and conjunction (respectively). We de-

fine the same well-formedness condition on logs

as in the Coq definitions. Some of the short-

hand notations from the Coq formalisation of

the framework are omitted from its VCC encod-

ing, since they are actually longer than the direct notation.
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VCC Signature for Protocol-Specific Invariants
(abstract \bool LogInvariant(log L))

(abstract \bool nonceComp(term n, log L))

(abstract \bool nonceComp Stable()
(ensures ∀term t; log L1, L2;

leq log(L1,L2)⇒nonceComp(t,L1)⇒
nonceComp(t,L2))

(returns \true))

The VCC framework, just like its Coq formalisa-

tion, is parameterised by protocol-specific pred-

icate definitions, as well as the types mentioned

above, that are expected to follow some simple

stability theorems. In Coq, both the predicates

and the theorems were expressed as typed symbols in a module signature. Similarly, in VCC, we

write function prototypes with contracts for the predicates, and use special forms of function proto-

types to express the theorems that are expected to hold on the predicates, as illustrated on the right

and briefly discussed in Chapter 1. In this dissertation, we choose to express theorems as constantly

true boolean functions whose postcondition is the desired property.

Level in VCC
(def \bool GoodLog(log L)
{ return

WF log(L) &&
LogInvariant(L); })

(datatype level {
case Low()
case High() })

(abstract \bool Level(level,term,log))

(rule(Level AttackerGuess)
∀level l; bytes bs; log L;

L[New(Literal(bs),AttackerGuess())]⇒
Level(l,Literal(bs),L))

(rule(Level Hmac)
∀level l; term k,m; log L;

canHmac(k,m,L)⇒
Level(l,m,L)⇒
Level(l,Hmac(k,m),L))

(theorem(Pair Level)
∀level l; term t1,t2; log L;

Level(l,Pair(t1,t2),L)⇒
Level(l,t1,L) && Level(l,t2,L))

In the current version of the framework, the

Level predicate is not encoded directly as an in-

ductive predicate, but is instead given to VCC

as a set of axioms, one per inductive case and

some for useful inversion theorems. Although

it may be possible to give its definition as an

inductive predicate, its formal definition does

not translate well into the VCC specification lan-

guage, and the current framework has shown

good enough performance on various forms of

programs and protocols. Some of the rules and

theorems (both keywords are in fact shorthands

for the VCC axiom, that ignore the name argument) are shown right, illustrating that they are direct

syntactic translations of the Coq rules into VCC.

3.1.2 The Representation Table

Our symbolic model of cryptography assumes that two distinct symbolic terms are represented as

two distinct byte strings, and that fresh literals cannot be guessed by an adversary (enforced by the

log invariant, and the fact that guesses made by the adversary are given an AdversaryGuess usage).

However, the C programs we verify use concrete cryptographic libraries that manipulate finite byte
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strings. Even if C and VCC provided enough type abstraction to hide this fact, the underlying cardi-

nality mismatch between the infinite set of cryptographic terms and the finite set of bytestring values

the concrete program can manipulate is an obstacle to any soundness argument, as it introduces a

logical inconsistency in the model of the program.

To solve this issue, we instrument the program with specification code that maintains a representation

table, which tracks the correspondence between concrete byte strings and symbolic terms. We inter-

cept all calls to cryptographic functions with ghost code to update the representation table. We say a

collision occurs when the table associates a single byte string with two distinct symbolic terms.

Bytestring Term

k Literal k

x Literal x

y Literal y

h Hmac k x

For example, suppose x and y are two distinct

bytestrings that have the same HMAC, h, under

a key k. After the first call to hmac() the table is,

for example, as shown. When computing the sec-

ond HMAC, our instrumented hmac() function

attempts to insert the freshly computed h and the corresponding term Hmac k y in the table, but

detects that h is already associated with a distinct term Hmac k x.

Representation tables in VCC
(record table {
\bool DefinedB[bytes];
term B2T[bytes];

\bool DefinedT[term];
bytes T2B[term]; })

(def \bool valid table(log L,table T)
{ return

(∀ bytes b;
T.DefinedT[Literal(b)]⇒T.T2B[Literal(b)] == b) &&

(∀ term t;
T.DefinedT[t]⇒Level(High(),t,L)) &&

(∀ bytes b;
T.DefinedB[b]⇒T.T2B[T.B2T[b]] == b) &&

(∀ term t;
T.DefinedT[t]⇒T.B2T[T.T2B[t]] == t) &&

(∀ bytes b;
T.DefinedB[b]⇒T.DefinedT[T.B2T[b]]) &&

(∀ term t;
T.DefinedT[t]⇒T.DefinedB[T.T2B[t]]); })

(def \bool leq table(table T1,table T2)
{ return

(∀ bytes b;
T1.DefinedB[b]⇒T2.DefinedB[b]) &&

(∀ bytes b;
T1.DefinedB[b]⇒T1.B2T[b] == T2.B2T[b]) &&

(∀ term t;
T1.DefinedT[t]⇒T2.DefinedT[t]) &&

(∀ term t;
T1.DefinedT[t]⇒T1.T2B[t] == T2.T2B[t]); })

We make the absence of such collisions an ex-

plicit hypothesis in our specification by assum-

ing, via an assume statement in the ghost code

updating the table, that a collision has not oc-

curred. This removes from consideration any

computation following a collision, as was made

precise in Section 1.3.2. We treat the event of

the adversary guessing a non-public value in a

similar way; we assume it does not happen, us-

ing an assume statement. In this way we prove

symbolic security properties of the C code. A

separate argument may be made that such col-

lisions only happen with low probability, and is

further discussed in Section 3.5.

Like the log, we define the table as a ghost ob-

38



ject that is part of the program state and can be directly manipulated in ghost code, this time as

a functional record, containing two maps that store the partial bijection between byte strings and

terms, and two boolean maps encoding the domain on which the bijection is defined. The predicate

valid table expresses that the B2T and T2B maps of a table do indeed represent a bijection, and also

states that all terms that appear in that table (that is, all terms manipulated by the implementation so

far) are in fact High in the current log. We also define an order on tables, which is the pointwise order

on pairs of partial functions.

Before interfacing these ghost objects with concrete C code, we provide a global wrapper allowing

us to manipulate the log and table concurrently.

Global cryptographic state
(ghost (claimable) struct cryptoState s
{

volatile log L;
volatile table T;

(invariant WF log(L) && LogInvariant(L)) // Hint: unroll
those defs

(invariant GoodLog(L))
(invariant leq log(\old(L),L))

(invariant valid table(L,T))
(invariant leq table(\old(T),T))

} CS;)

The two fields are made volatile, and the struc-

ture is initially closed to ensure that

1. the one-state invariant, that states that the

current log is always good, holds on the

initial state; and
2. all updates have to follow the two-state in-

variants, which states that the log and ta-

ble grow monotonically over all transitions.

3.1.3 The Hybrid Wrappers

We want to ensure that all cryptographic operations are used in ways that preserve the cryptographic

state’s invariants. We provide hybrid wrappers around the concrete library functions; wrappers are

not only verified to maintain the table’s invariants but also serve to give symbolic contracts to a

cryptographic interface working with concrete bytes.

A type for byte strings
typedef struct {

unsigned char ∗ptr;
unsigned long len;

(ghost bytes value)
(invariant \mine((unsigned char[len]) ptr))
(invariant value == from array(ptr,len))

} bytes c;

To simplify the sample code in this dissertation,

and focus on the security aspects of the verifi-

cation effort, we write the hybrid wrappers to

manipulate a structure type bytes c, displayed

right, containing all information pertaining to a

byte array: its address and its length, but also the value of the buffer’s current contents, as a byte

string.
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Idiomatic C code would manipulate the beginning address and length separately. The sample code

studied in Aizatulin et al. [2011a] does not use the bytes c type and manipulates raw byte arrays, and

also illustrates how the hybrid instrumentation can be inlined in cases where the application requires

it (for example, if some formatting is inlined for performance).

As an example, here is the full contract of our hybrid wrapper for the hmac sha1() cryptographic

function.

Hybrid interface for hmacsha1()
int hmacsha1(bytes c ∗k, bytes c ∗b, bytes c ∗res

(ghost \claim c))
// Claim property

(always c, (&CS)−>\closed)
// Properties of input byte strings

(maintains \wrapped(k))
(maintains \wrapped(b))
// Properties of out parameter

(writes \extent(res), c)
(ensures !\result⇒\wrapped(res))
// Cryptographic contract

(requires CS.T.DefinedB[k−>value])
(requires CS.T.DefinedB[b−>value])
(ensures !\result⇒CS.T.DefinedB[res−>value])

// Cryptographic properties on input terms
(requires

canHmac(CS.T.B2T[k−>value],CS.T.B2T[b−>value],CS.L)
|| (Level(Low(),CS.T.B2T[k−>value],CS.L) &&

Level(Low(),CS.T.B2T[b−>value],CS.L)))
// Cryptographic properties on output term

(ensures !\result⇒
CS.T.B2T[res−>value] ==

Hmac(CS.T.B2T[k−>value],CS.T.B2T[b−>value]));

To ensure that the log and table are kept stable

during the call, as well as to allow concurrent

updates to the cryptographic states, we pass

in, as a ghost parameter, a claim c guarantee-

ing that the global container CS remains closed

whenever the claim is closed. All other desired

properties (monotonic growth and validity, in

particular) are consequences of this simple fact

and the invariants on the cryptographic state,

and can be derived by VCC. The next lines of

the contract deal with memory-safety concerns,

in this case expressing the fact that the arguments are wrapped at call-site and return-site, and that

the (typed) memory location pointed to by the third argument is written to by the function, and is

wrapped on successful return from the function. The claim c is added to the list of objects that may

be written by the function in case it is necessary to strengthen the claimed property to help the proof

go through.

The first three lines under “Cryptographic contract” deal only with the table, stating that the input

byte strings should appear in the table, and that, upon successful return from the function, the output

byte string appears in the table. Finally, we require as a precondition that either canHmac holds on

the input parameters in the current cryptographic state (catering for an honest participant’s calling

conditions), or both the key and payload are Low (catering to calls by the adversary).

On successful return, we guarantee in the postcondition that the output byte string is associated, in

the table, with the term obtained by applying the Hmac constructor to the terms associated with the

input byte strings.
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A hybrid wrapper for hmacsha1()
int hmacsha1(bytes c ∗k, bytes c ∗b, bytes c ∗res

(ghost \claim c))
{ (ghost term tb,tk,th)

(ghost \bool collision = \false)
(assert Level(High(),Hmac(CS.T.B2T[k−>value],CS.T.B2T[b−>

value]),CS.L))
(ghost \claim c0 = \make claim({ c }, (&CS)−>\closed &&

GrowsCS))

res−>len = 20;
res−>ptr = (unsigned char∗) malloc(res−>len);
if (res−>ptr == NULL)

return 1;
sha1 hmac(k−>ptr, k−>len, b−>ptr, b−>len, res−>ptr);

(ghost res−>value = from array(res−>ptr,res−>len))
(ghost \wrap((unsigned char[res−>len]) res−>ptr))
(ghost \wrap(res))
(ghost (atomic c0, &CS) {

tb = CS.T.B2T[b−>value];
tk = CS.T.B2T[k−>value];
th = Hmac(tk,tb); // Compute the symbolic term

if ((CS.T.DefinedB[res−>value] &&
CS.T.B2T[res−>value] != th) ||

(CS.T.DefinedT[th] &&
CS.T.T2B[th] != res−>value))

collision = \true;
else
{

CS.T.DefinedT[th] = \true;
CS.T.T2B[th] = res−>value;
CS.T.DefinedB[res−>value] = \true;
CS.T.B2T[res−>value] = th;
}
})

(assume !collision) // Our symbolic crypto assumption

return 0; }

An honest client, when calling this function, will

establish that canHmac() holds on the terms as-

sociated with the input byte arrays. We re-

call that the definition of canHmac is in gen-

eral a disjunction of clauses of the form “k has

HMAC key usage u, and m fulfills the pay-

load condition for u in the log”. In the partic-

ular case of our authenticated RPC protocol, an

honest participant will know that u is indeed

U KeyAB(a,b) for some a and b, and will at-

tempt to prove that the payload is either a well-

formatted request on which the Request event

has been logged for a and b, or a well-formatted

response on which the Response event has been

logged for a and b.

A typical hybrid wrapper implementation first

performs the concrete operation on byte strings

(for instance, by calling a cryptographic library) before performing updates on the ghost state to

ensure the cryptographic postconditions, whilst maintaining the log and table invariants. To do so,

it first computes the expected cryptographic term by looking up, in the table, the terms associated

with the input byte strings and applying the suitable constructor. Once both the concrete byte string

and the corresponding terms are computed, the implementation can check for collisions, and in case

there are none, update the table (and the log) as expected. In case a collision happens, an assume

statement expresses that our symbolic cryptography assumptions have been violated.

Such wrappers can only be verified once the protocol-specific definitions are known and given to

the C verifier. For example, without definition for the LogInvariant predicate, VCC cannot be ex-

pected to prove that the atomic update preserves log validity (since the LogInvariant could forbid

that particular update).

Also of particular note is the fact that our wrappers for signature and HMAC verification only verify

when the log invariant implies that only literal terms are used as keys and nonces (in fact, whenever
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the log invariant by itself ensures that nonces and keys only become Low if their release condition

holds). As discussed in Chapter 2, protocols that use non-literals as nonces or keys require more

complex protocol-specific proofs, which will be reflected in the wrapper’s contract.

Transitive closure of crypto state stability
#define GrowsCS\

(leq log(\when claimed(CS.L),CS.L) &&\
leq table(\when claimed(CS.T),CS.T))

We use the GrowsCS macro, defined below,

which is claimed on the cryptographic state (log

and table), to guide VCC through the proof by

transitively expanding the stability invariant on cryptographic states: the cryptographic state at the

program point where the claim is created is smaller than the cryptographic state at any program

point afterwards.

Since the cryptographic state is shared, and its fields marked volatile, all reads and writes from and

to the log and table need to occur in atomic blocks guarded by a claim c ensuring, at least, that

the global CS object is closed. To strengthen the claim c, we simply create a claim c0 on c, whose

property immediately follows from the log and table invariants, and guarantees their monotonic

growth despite interference from other threads, by making use of the transitivity argument explained

above.
Contract for the toString() wrapper
int toString(unsigned char ∗in, unsigned long inl, bytes c ∗res

(ghost \claim c))
(maintains \thread local array(in,inl) && inl != 0)
(requires \disjoint(\array range(in,inl),\extent(res)))
(writes \extent(res))
(ensures \result⇒\mutable(res))
(ensures !\result⇒\wrapped with deep domain(res))
(always c, (&CS)−>\closed)
(ensures !\result⇒CS.T.DefinedB[res−>value])
(ensures !\result⇒Level(Low(),CS.T.B2T[res−>value],CS.L))
(ensures !\result⇒res−>value == \old(from array(in,inl)))
(ensures !\result⇒CS.T.B2T[res−>value] == Literal(res−>

value));

We also provide a function toString() (whose

contract is shown right), converting an ordinary

string pointer to a bytes c, the input type for

functions like hmacsha1(). It logs a New event

with usage AdversaryGuess and assumes the

guessed literal does not collide with any other

term already in the table.

Finally, we provide a function bytescmp, that compares two bytes c objects, and pair and destruct

functions that marshal and unmarshal bytes c objects into and from injective pairs.

As mentioned previously, and illustrated in Aizatulin et al. [2011a], the ghost instrumentation can

in fact be pulled out of the wrappers entirely, and added in by hand after each call. In this case,

soundness of the approach is maintained by placing proper preconditions on the instrumentation

code, at a slight cost in performance due to the additional proof obligations.
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3.2 Attack Programs

Adversaries in the symbolic model can intercept messages on unprotected communication links

(such as the Internet) and send messages constructed from parts of intercepted messages, as speci-

fied by the term algebra. We model the set of all possible attacks, each attack being represented by

an attack program (or just “attack”) which is C code of a particular form.

Adversary interfaces
T ::= type

bool | unsigned char∗ | X∗
µ ::= entry in an interface

typedef X; type declaration
T f (T1 x1, . . . , Tn xn) function prototype
void f (T1 x1, . . . , Tn xn) procedure prototype

I ::= µ1 . . . µn interface (n ≥ 0)

We define attack programs relative to protocol-

specific adversary interfaces. The grammar for ad-

versary interfaces is displayed on the right. Such

an interface provides some “opaque” type decla-

rations together with some function signatures;

these include message send/receive, standard

cryptographic operations, and protocol-specific

actions for, for example, creating sessions and initiating roles on principals. For an annotated in-

terface p.h, we let erase(p.h) be the adversary interface obtained by deleting annotations and the

bodies of type declarations.

An adversary interface: erase(RPCshim.h)
typedef bytespub;

bytespub∗ att toBytespub(unsigned char∗ ptr, unsigned long
len);

bytespub∗ att pair(bytespub∗ b1, bytespub∗ b2);
bytespub∗ att fst(bytespub∗ b);
bytespub∗ att snd(bytespub∗ b);

bytespub∗ att hmacsha1(bytespub∗ k, bytespub∗ b);
bool att hmacsha1Verify(bytespub∗ k, bytespub∗ b, bytespub∗m);

void att channel write(channel∗ chan, bytespub∗ b);
bytespub∗ att channel read(channel∗ chan);

typedef session;

session∗ att setup(bytespub∗ cl, bytespub∗ se);

void att run client(session∗ s, bytespub∗ request);
void att run server(session∗ s);

bytespub∗ att compromise client(session∗s);
bytespub∗ att compromise server(session∗s);

channel∗ att getChannel client(session∗ s);
channel∗ att getChannel server(session∗ s);

The protocol-specific shim provides a network

adversary interface including generic cryptog-

raphy and network operations as well as proto-

col specific functions. For example, we display

below the shim for the authenticated RPC pro-

tocol, that gives the adversary access to all the

constructors and destructors (on byte strings),

and lets him setup new sessions (which gener-

ates the shared keys and creates the network

sockets), run the client and server roles associ-

ated with a session, compromise one of the prin-

cipals associated with a session (which returns

the shared key), and hijack the communication channels.

Type bytespub is critical: its invariant constrains its values to be concrete byte arrays that correspond
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to Low terms. Verifying the implementation of this adversary interface therefore provides a proof

that the set of Low terms is closed under adversary actions. The function contracts (not shown here)

are similar to the hybrid wrappers in Section 3.1.3 but oriented to Low data. They are also more

complicated, due to memory safety annotations dealing with thread fork and messaging, though

that is mostly protocol-independent, and not relevant to the security of the system. An example

shim contract appears in Section 3.3.

Attack programs against a given adversary interface are straight-line C programs that are syntacti-

cally limited to behave like network adversaries, in particular by syntactically preventing them from

breaking the necessary memory abstraction. More importantly, those syntactic restrictions are meant

to guarantee that attack programs are verifiable by VCC, although this depends on the chosen ad-

versary interface and cannot be proved in general. Rather, we sketch a proof of the verifiability of

attack programs for the authenticated RPC shim in Section 3.3.

The syntactic restrictions we place on attack programs are detailed below.

Attack Programs on I
T ::= Type

bool | unsigned char∗
t∗ where t is declared in I

D ::= T v; Local variable declaration
C ::= Command

v = f(v1,...,vn); where v, v1, . . . , vn are variables names and f is declared in I
f(v1,...,vn); where v1, . . . , vn are variables names and f is declared in I
v = s; where v is a variable name and s is a string literal

P ::= void main(){D1 . . . Dn C1 . . . Cm}

where:

1. A variable is assigned to at most once, and every variable men-
tioned in C1 . . . Cm is declared in D1 . . . Dn.

2. For each function or procedure call, each argument variable is
assigned to earlier in the sequence of commands.

3. In each call to a function or procedure f, each argument variable
in the call has declared type identical to that of the correspond-
ing parameter of f.

4. In a function call assignment v = f(...);, the declared type of v is
the result type of f.

5. In a string assignment v = s; the declared type of v is
unsigned char∗.

Displayed on the right is an example attack program, describing the “attack” that runs an instance

of the RPC protocol to completion, passing the messages around correctly. After declaring all the

necessary variables, and initialising some literals for prinipal names and the payload, the adversary

starts an authenticated RPC session between the two principals, retrieves their channels and starts
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both roles, passing the chosen request to the client. The adversary then reads the request message

from the client’s channel and writes it onto the server’s channel, and performs the opposite operation

for the response message, routing it back from the server channel to the client channel.

Attack program for RPCshim.h
void main()
{ unsigned char ∗a,∗b,∗r;

bytespub ∗alice,∗bob,∗arg,∗req,∗resp;
channel ∗clientC,∗serverC;
session ∗s;

a = ”Alice”; alice = att toBytespub(a,5);
b = ”Bob”; bob = att toBytespub(b,3);
r = ”Request”; arg = att toBytespub(r,7);
s = att setup(alice,bob);
clientC = att getChannel client(s);
serverC = att getChannel server(s);
att run server(s);
att run client(s,arg);
req = att channel read(clientC);
att channel write(serverC,req);
resp = att channel read(serverC);
att channel write(clientC,resp);}

It is fairly easy to see that the syntactic re-

strictions do not prevent any of the standard

symbolic operations, including control over the

scheduling of the roles, full control over the net-

work (including the ability to delay or otherwise

stop messages), as well as all the standard sym-

bolic cryptographic constructors and destruc-

tors.

3.3 An Example Security Theo-

rem: authenticated RPC

Given the framework from Section 3.1, and the adversary model described in Section 3.2, proving

security theorems about a C implementation breaks down into several different tasks:

1. Write the protocol-specific definitions (log invariant, and payload and release conditions) in

VCC, and verify the hybrid wrappers with respect to them;

2. Annotate the protocol code with event logging and event assertions expressing the authentica-

tion properties;

3. Write the adversary shim and prove that all attack programs against that shim are verifiable in

VCC.

Although it is currently done manually, Task 1 can be automated, generating the VCC definitions for

a T3 protocol description at the same time as the Coq theory gets produced, and verifying the hybrid

wrappers in a single run of VCC (as mentioned above, this verification may be made more complex,

or require a rewrite of some of the signature-checking hybrid wrappers, when using non-standard

log invariants).
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Annotated RPC client code
void client(bytes c ∗alice, bytes c ∗bob, bytes c ∗kab, bytes c ∗req,

channel∗ chan (ghost \claim c))
(maintains \wrapped(alice) && \wrapped(bob) &&

\wrapped(kab) && \wrapped(req))
(always c, (&CS)−>\closed)
(writes c)
(requires CS.T.DefinedB[alice−>value] &&

CS.T.DefinedB[bob−>value] &&
CS.T.DefinedB[kab−>value] &&
CS.T.DefinedB[req−>value])

(requires Level(Low(),CS.T.B2T[alice−>value],CS.L) &&
Level(Low(),CS.T.B2T[bob−>value],CS.L) &&
Level(Low(),CS.T.B2T[req−>value],CS.L) &&
Level(High(),table.B2T[kab−>value]),CS.L)

(requires
RPCKeyAB(CS.T.B2T[alice−>value],

CS.T.B2T[bob−>value],
CS.T.B2T[kab−>value],
CS.L));

{ (ghost \claim c0 = createRunningClaim(c))
bytes c ∗toMAC1, ∗mac1, ∗msg1;
bytes c ∗msg2, ∗resp, ∗toMAC2, ∗mac2;
// Event
(ghost { (atomic c, &CS)

CS.L[ProtEvent(Request(CS.T.B2T[a−>value],
CS.T.B2T[b−>value],
CS.T.B2T[req−>value]))] = \true; })

// Build and send request message
(ghost refreshCryptoState(c0))
if ((toMAC1 = malloc(sizeof(∗toMAC1))) == NULL) return;
if (request(req, toMAC1 (ghost c))) return;

(ghost refreshCryptoState(c0))
if ((mac1 = malloc(sizeof(∗mac1))) == NULL) return;
if (hmacsha1(kab, toMAC1, mac1 (ghost c))) return;

(ghost refreshCryptoState(c0))
if ((msg1 = malloc(sizeof(∗msg1))) == NULL) return;
if (pair(req, mac1, msg1 (ghost c))) return;

(ghost refreshCryptoState(c0))
if (channel write(chan, msg1 (ghost c))) return;

// Receive and check response message
(ghost refreshCryptoState(c0))
if ((msg2 = malloc(sizeof(∗msg2))) == NULL) return;
if (channel read(chan, msg2 (ghost c))) return;

(ghost refreshCryptoState(c0))
if ((resp = malloc(sizeof(∗resp))) == NULL) return;
if ((mac2 = malloc(sizeof(∗mac2))) == NULL) return;
if (destruct(msg2, resp, mac2 (ghost c))) return;

(ghost refreshCryptoState(c0))
if ((toMAC2 = malloc(sizeof(∗toMAC2))) == NULL) return;
if (response(req, resp, toMAC2 (ghost c))) return;

(ghost refreshCryptoState(c0))
if (!hmacsha1Verify(kab, toMAC2, mac2 (ghost c))) return;

// Correspondence assertion
(assert \active claim(c0))
(assert LoggedP(Response(CS.T.B2T[alice−>value],

CS.T.B2T[bob−>value],
CS.T.B2T[req−>value],
CS.T.B2T[resp−>value]),CS.L)

|| LoggedP(Bad(CS.T.B2T[a−>value]),CS.L)
|| LoggedP(Bad(CS.T.B2T[b−>value]),CS.L)); }

Task 3 is very costly in verification time due to

the highly concurrent nature of, for example,

the code that forks new threads to run individ-

ual roles. However, it can be verified once and

for all once the adversary’s capabilities and the

protocol code’s interface have been fixed, and

could in fact be a good first sanity check of the

protocol interface with respect to the protocol’s

expected invariants. This verification task does

not involve very much security-specific reason-

ing and could therefore be performed by a non-

security specialist, with a good understanding

of VCC’s concurrency model.

Finally, Task 2 is the central part of the protocol-

specific proof. We discuss it in the context of the

RPC example, before briefly tackling the proof

that all attack programs against the authenti-

cated RPC shim are verifiable.

3.3.1 Verifying Protocol Code

The code displayed on the right shows a slightly

simplified version of the annotated code for the

client role, where the Request event is logged

by the atomic assignment and the final corre-

spondence is asserted as a disjunction of events

taking into account the potential compromise of

one of the principals involved.

When verifying this code, VCC proves that each

of the function calls happens in a state where

the function’s precondition holds. In particular,
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the call to the channel write() function yields a proof obligation that the term corresponding to the

second argument is Low in the current cryptographic state. The return statements are for various

kinds of failure, effectively aborting the client in such cases.

As in the hybrid wrappers, we use a local claim c0 (with the same claimed property) to encode the

fact that the log and table grow with time. The reference cryptographic state for the transitivity

argument is updated, by simply re-claiming the same property in a new state, between all calls to

hybrid wrappers.

To prove that the correspondence assertion holds, VCC uses the postconditions of hmacsha1Verify(),

stating that a zero return value implies that either canHmac() holds on the key and payload, or

the key used for verifying the MAC is Low. In addition, kab is known to correspond to a term that

has usage U KeyAB(a,b) (from the precondition), toMAC2 is known to have a correct reponse format

(from the postcondition to the response() function), and mac2 itself is Low, since it is part of a message

read from the network. These facts in combination allow VCC to prove the correspondence assertion

by unfolding the definitions of canHmac() and inverting the fact that the key is Low to cover the

second and third disjunct.

3.3.2 Verifiability of the Adversary Shim

An attack program for the authenticated RPC protocol is a program that relies only on the inter-

face we call RPCshim.h, and for which a contract-free version was previously shown. To form an

executable, it needs to be combined with System, which we define to be the catenation crypto.c ·

RPChybrids.c · RPCprot.c. Here crypto.c is the library of cryptographic algorithms (and we let it

subsume OS libraries, e.g., for memory allocation and sockets), which is used in RPChybrids.c and

RPCprot.c.

Before providing the formal results, we informally describe a key property on which soundness of

our approach rests. Consider any attack program M.c and any run of the program System · RPCshim.c ·

M.c. It is an invariant that at every step of the run, the representation table holds every term that has

arisen by cryptographic computation or by invocation of the toBytesPub() function which an attack

must use to convert guessed bytestrings to type bytespub, as needed to invoke the other functions

defined in RPCshim.c. This is not an invariant that we state in the program annotations; its only role
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is to justify our use of assumptions. The only assumptions used are in RPCshim.c and RPChybrids.c,

where collisions are detected. In light of the key invariant, this means that in any run that reaches an

assumption failure, the sequence of terms computed includes a hash collision or an adversary guess

of a term that is not public according to our symbolic model of cryptography. In short, assumptions

are used only to express the Dolev-Yao assumption.

Example contract from RPCshim.h
bytespub∗ att hmacsha1(bytespub∗ k, bytespub∗ b (ghost \claim c

))
(maintains \wrapped(k))
(maintains \wrapped(b))
(writes k,b,c)
(always c, (&CS)−>\closed)
(ensures \wrapped(\result));

The contracts in RPCshim.h all follow a similar

pattern; we give one (shown right) for reference

in the following proof sketch.

Attack programs were carefully defined in or-

der to both argue that all symbolic attacks can

be written as attack programs, and show that their behaviours are among those of interfering threads

encompassed by the verification conditions VCC imposes on protocol code. By soundness Assump-

tion 1, this will be a consequence of the following verifiability result.

Lemma 1. If M.c is an attack program for erase(RPCshim.h), then RPCshim.h ` M.c main.h.

We cannot prove this result under the “pragmatic interpretation” that RPCshim.h ` M.c  main.h

means M.c is verifiable by the VCC tool. There are infinitely many attack programs, most of which

are too large to even fit in storage much less be processed by the tool. Instead, we consider the

“mathematical interpretation”; that is, we show that the verification conditions are valid. Some parts

of the proof can still be performed using the verification tool.

Proof. (Sketch) According to Definition 2 we have to show admissibility of the type invariants in

RPCshim.h; this we have checked using VCC. It remains to prove verifiability of an arbitrary attack

program against main.h.

Since the contract in main.h does not impose a postcondition and its write specification is vacuous,

we just need to show that invariants are established and maintained. Let M.c be void main(){D C}.
In accord with Definition 2 we will show verifiability of code C′, that augments the statements of C

with two sorts of instrumentation. The first is simply to prefix C with ghost code that initializes the

representation table and log.

This code is defined as a ghost function init(), whose contract and body are shown below, where

maps are defined using VCC’s λ notation, and the constants TagRequest() and TagResponse() are

separately defined to be the values of type bytes representing the 1-byte byte strings whose byte is a

binary 1 and a binary 2, respectively. We use VCC to verify the body of init(), which serves as proof
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that the validity invariants are indeed true on the initial cryptographic state (composed of the empty

log, and the table containing only protocol constants, marked as adversary guesses).

The function returns, as an out-parameter, a claim c on the global cryptographic state, that guarantees

that it can never be opened during execution, so its invariants (including two-state invariants) are

maintained even in the presence of interference from interleaved threads. Thus, the second sort of

instrumentation in C′ passes the claim c as ghost parameter to each function and procedure call in C,

in accord with their contracts in RPCshim.h. For example:

The init() function
(ghost void init(out \claim c)

(writes \extent(&CS))
(ensures \wrapped(&CS))
(ensures \wrapped(c) && \active claim(c))
(ensures \claims(c, (&CS)−>\closed))
{

// Initialize to empty log and table
CS.L = λevent e; \false;
CS.T.DefinedB = λbytes b; \false;
CS.T.DefinedT = λterm t; \false;

// Add protocol constants (tags) to log as attacker
guesses

CS.L[New(Literal(TagRequest()),AttackerGuess())] = \true;
CS.L[New(Literal(TagResponse()),AttackerGuess())] = \true;

// Add protocol constants (tags) to table as Literalss
CS.T.DefinedB[TagRequest()] = \true;
CS.T.B2T[TagRequest()] = Literal(TagRequest());
CS.T.DefinedT[Literal(TagRequest())] = \true;
CS.T.T2B[Literal(TagRequest())] = TagRequest();

CS.T.DefinedB[TagResponse()] = \true;
CS.T.B2T[TagResponse()] = Literal(TagResponse());
CS.T.DefinedT[Literal(TagResponse())] = \true;
CS.T.T2B[Literal(TagResponse())] = TagResponse();

// Establish invariant and state claim
\wrap(&CS);
c = \make claim({ &CS }, \true);
})

att run server(s (ghost c));

To help us explain why verification goes through,

preceding each procedure call f(v) and function

call v = f(v) in C′ we assert a conjunction of the

form

\wrapped(v0)&& . . . && \wrapped(vj)

where v0, ... , vj are the pointer variables that

have been assigned to up to this point. By in-

duction on the length of C, we argue that each

of these assertions holds, and moreover the type

invariants are maintained. An assignment, say

v = f(v0,...,vn);, satisfies the preconditions of f ow-

ing to the added claim, the requirement that v0,

..., vn were previously assigned, and the asser-

tion inserted assertion. By inspection of the con-

tracts for each f in RPCshim.h (for example, att hmacsha1()

given above), that is all that is needed. The postcondition of f ensures that results are wrapped, so in

particular x is wrapped at the next assertion (and the claim maintained).

Theorem 1. Assume ∅ ` crypto.c  crypto.h. For any attack program M.c against the interface

erase(RPCshim.h), the program System · RPCshim.c · M.c is safe.

Proof. We have verified with VCC that:

crypto.h ` (RPChybrids.c · RPCprot.c · RPCshim.c) RPCshim.h

By assumption ∅ ` crypto.c crypto.h and Lemma 1 we get

∅ ` (crypto.c · RPChybrids.c · RPCprot.c · RPCshim.c) RPCshim.h
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That is, we have ∅ ` (System · RPCshim.c) RPCshim.h by definition of System. By Lemma 1, since

M.c is an attack program for erase(RPCshim.h), we get RPCshim.h ` M.c main.h. Hence by Lemma 1

we get

∅ ` (System · RPCshim.c · M.c) main.h

So by Assumption 1 the program System · RPCshim.c · M.c is safe.

This theorem admits the following informal corollary: For all applications A verified against RPCprot.h

and the rest of the API (excluding RPCshim.h), A · RPCprot.c · RPChybrids.c · crypto.c is safe in the

presence of any active network adversary (in the symbolic model of cryptography).

3.4 Summary of Empirical Results

In this section, we summarize our experimental results on implementations of RPC and of the variant

of the Otway-Rees protocol presented by Abadi and Needham Abadi and Needham [1996].

3.4.1 Results

We prove authentication properties of the implementations using non-injective correspondences, ex-

pressed as assertions on a log of events, by relying on weak secrecy properties, which we prove

formally as invariants of the log. The adversary controls the network, can instantiate an unbounded

number of principals, and can run unbounded instances of each protocol role —but can never cause

a correspondence assertion to fail and can never break the secrecy invariants, unless the Dolev-Yao

assumption (no collisions or lucky guesses) has already been violated. In particular, we prove the

following properties about our sample protocol implementations.

RPC

Our implementation of RPC does not let the server reply to unwanted requests, and does not let

the client accept a reply that is not related to a previously sent request. Moreover, their shared key

remains secret unless either the client or the server is compromised by the adversary.
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Otway-Rees

The initiator and responder only accept replies from the trusted server that contain a freshly gener-

ated key for their specific usage, and this key remains secret unless either the initiator or the respon-

der is compromised.

As both a consequence and a requirement to using a general purpose verifier, we also prove memory

safety properties of our implementations. This can significantly slow verification, especially in parts

of the code that handle the building of messages by catenation, and is a large part of the annotation

burden.

3.4.2 Performance

Table 3.1 shows verification times, as well as lines of code (LoC) and lines of annotation (LoA) esti-

mations for various implementation files, and offers a comparison of annotation burden and verifi-

cation time between the original implementation of the methodology as described by Dupressoir

et al. [2011] and the one described in this dissertation, that leverages more recent VCC features

and performance improvements to provide a more general presentation. Times are given as over-

approximations of the verification time (on a mid-end laptop), in seconds. The number of lines of

annotation includes the function contracts, but not earlier definitions. For example, when verifying

a function in hybrids.c, all definitions from symcrypt.h can be used but are not counted towards the

total. The shim and sample attack programs are verified, as part of the proof of the security theorem,

but they are not part of the protocol verification and so are omitted here. However, the significant

speedup observed on the protocol code is also observable on the shim and attack code (all functions

in the RPC shim verify under 1 second except for the att run client() function that performs many

copy operations on public byte arrays, having to prove at each step that all invariants are preserved).

The current version of the Otway-Rees shim assumes, for simplicity, a special semantics for some

function calls, as the threads running the initiator and responder role should be able to return a

value to the adversary, which requires some more glue code in C. It is possible to write and verify

this glue code using VCC, but it makes the code that much more complex to understand and is not

relevant to the protocol’s security.

The built-in support for induction in VCC, including the stronger type-checking that comes with
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Preliminary Version
Dupressoir et al. [2011]

Present Version

File/Function LoC LoA Time (s) LoA Time (s)
symcrypt.h - 50 ≤ 1 5 -
table.h - 50 ≤ 15 30 ≤ 1
RPCdefs.h - 250 ≤ 15 200 ≤ 5
hybrids.c 150 300 ≤ 300 200 ≤ 30

destruct() 20 40 ≤ 300 20 ≤ 5
hmacsha1() 20 20 ≤ 10 20 ≤ 5
RPCprot.c 130 80 ≤ 900 130 ≤ 60*

client() 40 20 ≤ 300 30 ≤ 30*
server() 40 10 ≤ 600 30 ≤ 30*
ORprot.c 300 100 ∼ 6000 100 ≤ 200*

initiator() 40 15 ≤ 300 18 ≤ 30*
responder() 100 100 ⊥ (out of memory) 30 ≤ 140*
server() 40 15 ∼ 1800 30 ≤ 40*

Table 3.1: Comparison showing changes in number of lines of annotation and improvements in ver-
ification times between a preliminary version of our system [Dupressoir et al., 2011] and the version
presented here, for the same C implementations of Authenticated RPC and Otway-Rees.

it, allows the verifier to heavily optimize the background axiomatization for the inductive types.

It also allows a much more succinct and clear definition of the security model, leading to smaller

background axiomatizations, and facilitates debugging by making error messages more informa-

tive. Additionally, the number of memory-safety-related function contracts has been dramatically

reduced by a recent overhaul of the internal axiomatization of the memory model, leading to similar

(if not better) verification times with less annotations. The verification times marked with a * above

were obtained by passing non-standard options to VCC, changing Z3’s case splitting heuristics. Ver-

ification times without this option still show significant improvement over the previous figures (the

authenticated RPC client then verifies in 60 seconds).

3.5 Related Work and Discussion

We conclude the first part of this dissertation by discussing the results obtained in Chapters 2 and 3

in light of existing and related work on proving symbolic security properties of implementations in

low-level languages. We conclude with a discussion on extending our work to more flexible and

more realistic models of cryptography.
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3.5.1 Performance Improvements and Extensions to Stateful Systems

Polikarpova and Moskal [2012] show that the original version of our methodology [Dupressoir et al.,

2011] can be adapted to verify security properties of stateful devices. They modify this approach

slightly, in that they keep track of subsets of the Level Low and Level High predicates as map-encoded

sets. They then use invariants to encode the inductive definition from the top-down: for example,

when our inductive rule for pairs states that a low pair can be constructed from two low terms,

their invariants would state that if a pair is low, it must be that its two components are low. Since

VCC then quantifies over all states of the maps on which the invariants hold, the two approaches

are theoretically equivalent. However, in practice, the use of invariants instead of axioms gives their

method a significant performance advantage, and a slightly lighter annotation burden, at the cost of

performing in VCC some of the security-specific reasoning, which we prefer to do in a more general

tool, in line with our objective of separating security proof from low-level code and tools.

We have not compared the performance improvements reported here to those reported by Polikar-

pova and Moskal [2012], and in particular have not attempted to directly model and verify stateful

systems in our symbolic framework. However, we do consider stateful systems in Chapters 4 and 5.

3.5.2 Verifying Java Implementations

There are approaches for verifying implementations of security protocols in other widely-used im-

plementation languages, notably Java.

Jurjens [2006] describes a specialist tool to transform a Java program’s control-flow graph to a Dolev-

Yao formalization in FOL which is then verified for security properties with automated theorem

provers such as SPASS.

O’Shea [2008] translates Java implementations into formal models in the LySa process calculus [Bodei,

Buchholtz, Degano, Nielson, and Nielson, 2003] so as to perform a security verification.

The VerifiCard project [Hubbers, Oostdijk, and Poll, 2004] uses the ESC/Java2 static verifier to check

conformance of JavaCard applications to protocol models.

Kusters, Truderung, and Graf [2012] present a framework to prove, in the computational model of

cryptography, strong equivalence-based secrecy properties of Java programs that use cryptography.
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We discuss it further in Chapter 4.

Java and C, as programming languages, are distinct enough that, although some verification issues

are common, most of the challenges encountered in one are fairly easily solved in the other (for

example, aliasing is non-existent in Java, but omnipresent in C, whereas C does not have dynamic

dispatch, which causes issues when verifying Java programs). Therefore, tools for Java cannot triv-

ially solve our problems on the C language, and both languages are widely used for implementing

security systems in different environments. We see the two lines of work as complementary, but

mostly disjoint.

3.5.3 About Code Generation

Mukhamedov, Gordon, and Ryan [2013] perform a formal analysis of the implementation code of

a reference implementation of the TPM’s authorization and encrypted transport session protocols

in F#, and automatically translate it into executable C code. We believe that such an approach is

promising. However, developers of security code often write programs in ways that mitigate, for

example timing and power attacks. As there are currently no formal treatments of such concerns

in program verification (indeed, many parameters that are not fixed in the source language come

into play when considering timing (cache misses, concurrency) or power consumption (hardware

details)), we cannot guarantee that the generated code is resilient to these attacks, and any manual

modification to the code could break security theorems obtained during the code generation.

Still, annotations for the verification of security properties could be generated along with the code,

allowing the developer to re-prove security incrementally as he optimises the program and imple-

ments mitigation measures.

3.5.4 Verifying C Implementations

On Dynamic Bug-Finding Jeffrey and Ley-Wild [2006] present DYC, a C API for symbolic crypto-

graphic protocol messages that can be used to generate executable protocol implementations, which

dynamically generate constraints that a constraint solver can search for attacks. Code is checked by

model-checking a finite state space rather than being fully verified like it is in our approach.

Similarly, white and grey box testing techniques [Godefroid and Khurshid, 2002; Godefroid et al.,
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2005] have been used to partially explore the state space of cryptographic programs, searching it for

vulnerabilities. If such dynamic and test-based techniques constitute good bug-finding tools, they

are not sufficient to prove the absence of vulnerabilities, since they only deal with partial models of

the program.

Extracting Verifiable Models As briefly discussed in Chapter 1, some existing and related work on

proving symbolic security properties of C programs focuses on extracting, from the C code, models

of the implemented protocols on which security-specific tools can be run.

Chaki and Datta [2008] implement a verification framework based on predicate abstraction and

model-checking, and successfully apply it to a stripped down version of OpenSSL. Due to the way

ASPIER uses model-checking, it is limited to bounded numbers of instantiations (in practice 2 or 3)

of the different protocol roles. The authors only describes an abstract process that cannot be applied

directly to C code and requires a substantial amount of manual abstraction. Moreover, the approach

relies on trusted semantic description of subroutines which are not proven and does not appear to be

modular enough to later discharge those assumptions. On the other hand, the use of model-checking

provides much flexibility by providing explicit attack candidates when the proof fails. These can then

be used to refine the abstraction if they are in fact spurious.

Goubault-Larrecq and Parrennes [2005] do so by abstract interpretation, providing a sound transfor-

mation of C code into a decidable subset of first-order logic. The extracted first-order model of the

protocol can then be run through an automated theorem prover and weak secrecy properties can be

proved. This initial technique does not verify the correctness of the needed annotations and does

not support integrity properties. The technique is applied to an implementation of the Needham-

Schroeder protocol, failing to prove secrecy on the original, flawed protocol, and succeeding on the

fixed Needham-Schroeder-Lowe protocol.

Corin and Manzano [2011] extend the KLEE symbolic execution engine to represent the outcome of

cryptographic algorithms symbolically, and other recent work [Aizatulin et al., 2011b, 2012] extracts

verifiable ProVerif (or CryptoVerif) models by symbolic execution of C protocol code. If the former

tool is not applied to protocol code, the latter set of tools is applied to code similar to the code studied

in this Chapter, although only providing security results under the assumption that valid executions

of the protocol follow a single “main” control path through the code. However, Aizatulin et al.
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[2011b, 2012] can go further in this limited case, and in fact provide security guarantees in the, more

realistic, computational model of cryptography.

3.5.5 Symbolic and Computational Models of Cryptography

We believe verification in the symbolic model of cryptography is still relevant: as recent logical flaws

in established protocols and implementations illustrate, no amount of attack finding and patching

will ever eliminate all security flaws. In addition, proving the absence of symbolic flaws eliminates a

vast number of very cheap attacks, forcing a potential intruder to use more advanced techniques to

break the system’s security, increasing the value of assets that it can protect.

However, recent events have shown that adversaries are becoming more powerful, sometimes with

government backing, and can mount more complex attacks that are outside the simple free-algebra-

based adversary model we have considered so far.

To remedy this issue, we could, for example, extend our symbolic model with an equational theory

such as those used in ProVerif [Blanchet, 2001], or indeed the theory of computationally complete

symbolic attackers recently introduced by Bana and Comon-Lundh [2012]. Our early axiomatic en-

coding of cryptography in VCC [Dupressoir et al., 2011], for example, could be used to encode such

models of cryptography. However, reverting to such an encoding would also, at least partially, revert

the performance gain reported here, partly due to VCC’s ability to optimise our inductive axioms for

consumption by Z3. It is also unclear how the generality of the framework can be preserved with

finer-grained models of cryptography, which may therefore cause more security-related proof obli-

gations to bleed into the C verification task.

Even with such fine-grained symbolic models, however, the usual computational notion of secrecy,

which is equivalence-based, cannot be precisely and soundly abstracted symbolically as a trace prop-

erty, and can therefore not be handled directly by existing C verification tools. Still, Klein et al. [2009],

for example, report on work where a notion of forward simulation is used to prove equivalence-based

information-flow properties of C programs using a weakest precondition calculus. In Chapters 4

and 5, we show how a similar notion of simulation can be used to prove security properties of C

programs in the computational model of cryptography, at a cost we believe is comparable to the cost

of proving those same properties in the fine-grained symbolic models discussed above.

56



Chapter 4

Computational Security for C

Programs

In this chapter, we present some standard notions and proof techniques for security properties in the

computational model of cryptography, focusing on recent code-based approaches. We then present

general notations and notions that allow us to express and prove computational security properties

of C programs.

4.1 Computational Models of Cryptography

Computational models of cryptography present the adversary and algorithms as probabilistic poly-

nomial time (p.p.t.) programs. In such models, notions of security must account for the adversary’s

bounded computational power as well as for small probabilities of security failures, even when using

correct algorithms.

4.1.1 Cryptographic Properties

Security and cryptographic properties are often expressed using cryptographic games [Goldwasser

and Micali, 1984], letting a p.p.t. adversary make queries to a set of oracles (abstract probabilistic

functions), and expressing the adversary’s winning condition as an observable event. An algorithm

is said to be secure w.r.t. a given game if the probability of an adversary winning the game is small,
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as a function of some security parameters.

We now informally describe standard games for integrity and secrecy.

An Integrity Game For example, an HMAC primitive is defined as a set of three oracles: a key

generation oracle Gen, an HMAC oracle Mac, and a verification oracle Verify. A standard property

on HMAC schemes is unforgeability under chosen message attack (or INT-CMA), which expresses

the fact that an adversary who is allowed to make a polynomial number of queries to the Mac oracle

for a fixed key can only create a fresh valid MAC (that was not previously returned by the oracle)

with a very small probability.

The CMA game starts with a setup phase, in which the Gen oracle is used to generate the key used

in the rest of the game. The adversary is then allowed to make as many queries to Mac as he desires.

Finally, the adversary produces two bitstrings: a payload t and a MAC m. The adversary wins if

Verify(t, m) returns true, and the pair (t, m) was not produced by one of the oracle calls.

A Secrecy Game If integrity is still in fact a trace property (of an unknown, but restricted, adver-

sary), secrecy in the computational model is often expressed as an equivalence.

We consider encryption schemes that have three oracles: a key generation oracle Gen, an encryp-

tion oracle Enc, and a decryption oracle Dec. The following describes a game modelling the stan-

dard property of indistinguishability under chosen plaintext attacks (IND-CPA), where the adver-

sary is allowed to encrypt a large number of plaintexts before attempting to distinguish between the

real encryption or an ideal version of it (or, equivalently, between encryptions of two equal-length

adversary-provided plaintexts).

In the setup phase, a key is generated using Gen, and a bit b is sampled uniformly at random. The

adversary is then allowed to query the Enc oracle with pairs of plaintexts (m0, m1), and is given in

response the encryption of mb. Finally, the adversary produces a bit b′, and wins if b = b′.

Stronger notions of secrecy also give the adversary the ability to call the decryption oracle.
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4.1.2 Computational Security for F# Programs

If games have historically been used to express security, they are not well-suited to standard tech-

niques for automated reasoning on programs, and although they can be formalised and automated to

some extent [Barthe, Grégoire, and Zanella Béguelin, 2009; Barthe, Grégoire, Heraud, and Béguelin,

2011; Blanchet, 2008], the resulting tools often support only very simple languages that are not di-

rectly executable.

Fournet, Kohlweiss, and Strub [2011] describe a methodology for proving computational security

properties of F# programs by type-checking. If the final security result can be expressed using games,

the proof itself is done by proving that the program considered is almost equivalent to some other

program, the ideal functionality, on which the security property is easy to establish.

Computational Indistinguishability Approximate program equivalence is expressed using the no-

tion of computational indistinguishability [Goldreich, Goldwasser, and Micali, 1986] which we describe

informally here, and define formally in Section 4.3.1.

LetO stand for a set of oracles. We denote withA(t, (qo)o∈O) the set of probabilistic adversaries that

run in time at most t and make at most qo queries to oracle o in O.

Let P be a probabilistic program that implements all oracles inO, and A be inA(t, (qo)o∈O). We write

Pr [(〈M〉 P ·A 〈b〉)] for the probability that A running in conjunction with P in memoryM returns

b.

Given two programs P and P′ that both implement all oracles in O, their distinguishing advantage

is defined as

AdvP′
P
(
t, (qo)o∈O

) def
=

sup
A∈A(t,(qo)o∈O)

(∣∣Pr [(〈M0〉 P ·A 〈0〉)]− Pr
[(
〈M0〉 P′ ·A 〈0〉

)]∣∣) ,

whereM0 is the empty memory.

To enable modular automated reasoning about such properties, Fournet et al. [2011] identify some

typing conditions on programs using a primitive, under which that primitive can be replaced with

its ideal functionality, for some common primitives.
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Ideal Functionalities and Perfect Security by Typing Ideal functionalities are sometimes used in

cryptography as a way to express security goals [Canetti, 2001]. However, when dealing with exe-

cutable programs, even in a languages as clean as F#, the ideal functionalities considered are often

too large and complex to serve directly as a security definition. Instead, Fournet et al. [2011] identify

simple typing conditions that can be used to prove integrity properties (as type-safety with refine-

ment types) and secrecy properties (using relational parametricity).

Security Proofs by Typing Proofs of security for large F# programs [Bhargavan, Fournet, Kohlweiss,

Pironti, and Strub, 2013, for example] can then be conducted by successively proving the typing con-

ditions to replace the cryptographic primitives with their ideal functionalities, obtaining an idealised

program where all cryptography is ideal, and that can be proved perfectly secure by typing.

4.2 Overview

Before giving the details of our method, we discuss the challenges we face in attempting to prove

computational security of C programs, and use them to justify our choices, giving a brief abstract

overview of our techniques.

4.2.1 Challenges

Probabilistic Reasoning To adapt the F7 type system to be sound in the computational model,

Fournet et al. [2011] rely on meta-theorems about a probabilistic semantics of the core RCF language.

However, it is difficult to see how such a meta-theorem could be stated, let alone proven, on a com-

plex language such as C. On the other hand, developing a verification tool to reason probabilistically

about C programs (in the fashion of EasyCrypt [Barthe et al., 2011]) seems intractable, and made even

more difficult by the language’s many unspecified behaviours, which can only be soundly modelled

with possibilistic non-determinism unless assumptions are made on the compilation and run-time

environment.

Equivalence Properties As we’ve seen, secrecy properties in the computational model are ex-

pressed as program equivalence properties. However, all existing general-purpose C verifiers are
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designed to prove safety properties and functional correctness, neither of which is sufficient to ex-

press equivalence-based security properties directly at the level of the C program.

4.2.2 Our Approach

Instead, we choose to perform the security proof on an abstract reference implementation, which can

then be used as a functional specification for a system implementation, which therefore inherits the

same security properties.

Security is proved by reducing the security of a program using a cryptographic library Crypto
c of

concrete primitives to the security of the same program, linked with an ideal cryptographic library

Crypto
i, as described in Section 4.1.

We then define a notion of program simulation, saying that a system program P simulates a reference

program P for some observation function whenever all final configurations of P get observed as

the final configuration of P run on the observation of P’s initial observation. We define this notion

for probabilistic programs by derandomisation, explicitly passing a random tape in as argument.

This allows us to preserve, through the simulation relation, probabilistic properties proved on the

reference implementation.

Therefore, our approach operates on and relates four versions of the program, as described in the

diagram below.

-
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Reference Security theorem, bounding the probability that a probabilistic polynomial time (p.p.t.)

adversary breaks the security property of the concrete reference program Crypto
c · P.

A general-purpose verifier for the system language can then be used to prove that P simulates P

whenever the system cryptographic library simulates the reference cryptographic library, and we can

conclude, after some meta-reasoning about the adversary and the observation functions involved in

the simulation, that the same security properties hold on the system programs.

In the solution presented here, the reference results are proved using the F7 type system as discussed

by Fournet et al. [2011], and the simulation proofs are performed in VCC. However, the general

notion and approach are defined independently of the languages and tools.

We use the rest of this Chapter to formally define the symbols ≈ε and / used in the diagram.

4.3 Probabilistic Program Semantics and Indistinguishability

We introduce notations for probabilistic program semantics, both for C and F7 programs.

4.3.1 Notations for Possibilistic Semantics

All C and F7 programs are seen as relations between initial configurations and final configurations.

We use write P for programs written in an unspecified language, or for mathematical relations, P for

programs written in C, and P for programs written in F#.

We denote with 〈a, S〉 P 〈a′, S′〉 the fact that executing a program P on argument a in initial state

S may return value a′ in final state S′. In the above, we call 〈a, S〉 the initial configuration, whereas

〈a′, S′〉 is the final configuration, and are later often simply denoted 〈C〉 and 〈C′〉. This notation

makes it clear that a program implements a relation between initial and final configurations, which

we call its input-output relation and identify with the program itself, slightly abusing notation.

A contract on a program with argument type τ and return type τ′ is a pair of predicates π ∈ τ ×

State → bool and ρ ∈ τ× State × τ× State → bool, and write {π} P {ρ} when P has argument type τ

and return type τ′ and whenever π (a, S) and 〈a, S〉 P 〈a′, S′〉, we have ρ (a, S, a′, S′). In the following,

we consider that 〈C〉 P 〈C′〉 only when P’s precondition holds on 〈C〉, that is, programs block when

run on configurations where their preconditions do not hold.
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We extend these notations to open programs, where some function symbols pi are left to be defined.

We write {pi := Pi}i ` 〈C〉 P 〈C′〉 to express the fact that program P, when using program Pi as

definition for symbol pi, may take initial configuration C to final configuration C′. We denote with

P ·Q the program obtained by using the definitions in P for free symbols in Q, modelling C linking,

or F# module composition.

This modularity also extends smoothly to contracts, and we write {{πi} pi {ρi}}i ` {π} P {ρ}

whenever for any family (Pi)i such that {πi} Pi {ρi} for all i, for any C such that π(C), and for any

C′ such that {pi := Pi}i ` 〈C〉 P 〈C′〉, we have ρ(C, C′). Intuitively, this expresses the fact that P

fulfills its contract whenever each of the pi is defined as a program that fulfills its contract.

4.3.2 Observational Determinism

Before we can define a simple notion of probabilistic execution that is amenable to automated rea-

soning, we restrict the set of programs we are interested in, not to fully deterministic programs, but

to programs that appear deterministic with respect to a certain observation function α (for example,

a set of observable memory locations).

Definition 3 (Observational Determinism). Given an observation function α from final configurations

(with value type τ), we say that a program P is α-deterministic iff whenever 〈C〉 P 〈C′0〉 and 〈C〉 P 〈C′1〉, we

have α (C′0) = α
(
C′1
)
.

For example, if π1 is the first projection, any program that is π1-deterministic always yields, when

run in the same initial configuration, the same return value, although it can finish in different final

states.

We denote execution up to α with α ◦ ·, defined by composing the observation function, seen as a

relation, with the simple reduction relation. It is easy to see that, if a program P is α-deterministic,

then α ◦ P is in fact a function, by definition.

4.3.3 Derandomized Probabilistic Semantics

In the following, we assume that all configurations contain, in some fixed location, a finite random

tape, of a length l which becomes a parameter of the system, and can be chosen once the full program

is known. For any configuration 〈C〉, let 〈C〉 [r] be the configuration whose random tape contains
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value r, and is everywhere else equal to 〈C〉.

Simply counting the number of random tapes that produce a given final configuration does not give

rise to a well-founded probabilistic semantics, as the reduction relation 〈〉 · 〈〉 is not generally a

function. We thus restrict our definition to programs that are observationally deterministic, which

we check as part of our machine proof (see Lemma 2).

For an α-observation ω, and an α-deterministic program P, the probability of an execution of P on a

in S yielding observation ω is defined by counting the number of random tapes of length l that yield

ω, as follows.

Pr [〈a, S〉 α ◦ P 〈ω〉]
def
=

∣∣∣{r ∈ {0, 1}l
∣∣∣ 〈a, S〉 [r] α ◦ P 〈ω〉

}∣∣∣
2l

In the rest of this paper, we use the word “(α-)deterministic” to describe programs that behave

(α-)deterministically when the random tape is fixed, thus abstracting away all possibilistic non-

determinism but modelling probabilistic behaviours.

4.3.4 Indistinguishability

We can now formally define program indistinguishability for deterministic programs.

Definition 4 (Distinguishing Advantage). Given two deterministic programs P and Q that implement all

oracles in an interface O, we define the distinguishing advantage for P and Q as

AdvQ
P
(
t, (qo)o∈O

) def
=

sup
A∈A(t,(qo)o∈O)

|Pr [〈M0〉 P ·A 〈0〉]− Pr [〈M0〉 Q ·A 〈0〉]| .

If P and Q are not deterministic, but are observationally deterministic for some observations α and α′ (respec-

tively), then α ◦ P and α′ ◦Q are deterministic, and the definition above applies provided that α ◦ P and α′ ◦Q

fully implement the oracles in O.

4.3.5 VCC and Abstract Contracts

In this and the following chapter, we consider only sequential programs, and only care about prop-

erties of the input-output relation they implement, as opposed to stating our verification goals as
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intermediate assertions, as was the case in Chapter 3.

We can therefore simplify the notations introduced in Section 1.3.2 to align them with those describ-

ing abstract contracts on relations introduced in this Section. In particular, in the case of sequential

programs, the thread pool consists of a single thread (which we recall contains a continuation and a

local store), and, in the absence of network communications, the message queue can be dropped.

These simplifications to VCC’s semantics allow us to simply consider, when stating the theorems, the

simple case where type invariants are irrelevant, and we rely only on function contracts to express

our verification goals.

In this context (and in this context only), whenever we can prove in VCC that P.h ` f  f.h, where

f.h is a single function contract {π} f {ρ} for the function f, we get that {{πi} Pi {ρi}}i ` {π} f {ρ},

where the {πi} Pi {ρi} are the function contracts listed in P′.h.

Intuitively, successful verification for f implies that, for all implementations Pi of f’s dependencies

that fulfill their contracts, the program composed of f linked with the Pi fulfills f’s contract.

Note that this does not prevent the VCC verification itself from making use of VCC’s advanced

features, but only simplifies the theorem statements into simple abstract contracts that can be proved

using VCC.

4.4 Simulation

The purpose of this section is to prove Theorem 7, which states that, for each of the Device’s com-

mands, the C code implements the same observable input-output function as the F7 code, when the

cryptographic libraries they use also behave in the same way.

We define a semantic notion of simulation between a system program P and a reference program P. We

instantiate the building blocks of the simulation relation and demonstrate how simulation can be

proved using VCC. Finally, we apply the methodology to the Device code, proving Theorem 7 by

running VCC.

In the following, we consider programs that can only interact with their random tape through a

restricted interface (our interface currently only allows the code to read linearly from the random

tape), and we consider only observation functions that preserve the random tape. In practice, the C
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programs do not take an explicit random tape, which therefore appears only in ghost code, which

cannot be read or written to by the C code, and the F# programs are written with sampling operations

that prevent the code from interacting directly with the random tape.

4.4.1 Definition of Simulation

Definition 5 (Function Simulation). Given a system program P : τS → τ′S, and a reference program

P : τR → τ′R, initial observation function α ∈ 〈τS × StateS〉 → 〈τR × StateR〉 and final observation function

α′ ∈
(
τ′S × StateS

)
→ (τ′R × StateR), we say that P simulates P for observations α and α′, denoted P /α α′ P,

iff whenever 〈C〉 P 〈C′〉, we have 〈α (C)〉 P 〈α′ (C′)〉.

As with the semantic notations, we write
{
pi /αi α′i

pi

}
i
` P /α α′ P to say that, if it is true for all i that

pi /αi α′i
pi, then it is true that P /α α′ P.

In general, the initial and final observation functions cannot be equal, since the final configuration

may include a return value (that it, τ′S and τS are different). In practice, this becomes particularly

useful when considering C programs where output parameters are passed in by reference. In such

a case, it is often desirable to ignore the output variable in the initial observation, to express the

fact that the final result does not in fact depend on its initial (most likely unknown) value. This

can also be used to ignore the input variables (which are also part of the final configuration) in the

final observation, allowing the C code to modify memory in place. Examples of such observation

functions are given in Section 5.2.2.

4.4.2 Simulation as a Contract

We now show how abstract contracts can be used to express this simulation relation, for a deterministic

terminating reference language. For an program P written in such a deterministic language, the input-

output relation 〈·〉 P 〈·〉 is a total function and we can write P (C) = C′ instead of 〈C〉 P 〈C′〉.

Given a reference program {π′} P {ρ′}, a system program {π} P {ρ}, and appropriately typed initial

and final observation functions α and α′ such that, for all initial (resp. final) system configuration C

(resp. C′) such that π(C) (resp. ρ(C′)), we have π′(α(C)) (resp. ρ′(α′(C′))) P’s contract can be

extended as follows, to prove that P simulates P for α and α′.

{π} · {ρ ∧ α′(Cf ) = P (α (Ci))}
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In the formula above, and in all the following, Ci and Cf are the initial and final configurations

(respectively).

Both of the original system and reference contracts ({π} · {ρ} and {π′} · {ρ′}) are, at this point in the

reasoning, considered part of the program, and not part of the proof. In practice, interfaces given to

the adversary should only have minimal contracts, with preconditions ensuring correct termination

(preventing memory and arithmetic safety violations), and postconditions ensuring that the next

oracle queries succeed.

Lemma 2 (Simulation by Contract). For all reference program P, whenever a system program P is such that{
pi /αi α′i

pi

}
i
` {π} P {ρ∧ α′(Cf ) = P (α (Ci))}, then P is α′-deterministic, and we have

{
pi /αi α′i

pi

}
i
`

P /α α′ P.

Proof. We recall that the reference program P is deterministic, and that both P and P always terminate

on configurations where their preconditions hold, and note that if the condition on contracts and ob-

servation functions mentioned above is not fulfilled, either π′ does not hold on α (Ci) (and P (α (Ci))

is undefined), or ρ′ does not hold on α′(Cf ) , which can therefore not be a final configuration for P.

The hypothesis guarantees that P is α′-deterministic, since on all initial configurations, its result is

α′-observed as the result of the reference function.

The original contract {π} · {ρ} guarantees correct termination, and therefore that there exists a

final configuration Cf for any initial configuration Ci on which π holds. Since P is deterministic,

there is a unique Ĉ′ such that P (α (Ci)) = Ĉ′. The additional postcondition guarantees that any final

configuration Cf is such that α′
(

Cf

)
= P (α (Ci)), and we can conclude that for all final configuration

Cf , we have α′
(

Cf

)
= Ĉ′.

The first conclusion is important since we later want to reason about the probabilistic interpretation

of such programs P, which is only defined for observationally deterministic programs.

4.5 Discussion

The notion of simulation we defined in this chapter does not immediately guarantee that security

properties of the reference implementation hold on the system implementation. This depends in

particular on the adversary model and on the observation functions chosen for the simulation. We

have not identified general conditions on the observations that guarantee this even for standard

adversary models. Instead, we illustrate on an example, in Chapter 5, how observation functions
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and adversary model interact in the final security proofs for the C programs.

The rest of this chapter is dedicated to general discussions about the methodology outlined here, in

relation with existing work.

4.5.1 Related Work

As far as we know, the only prior computational security results for C code are those obtained

by Aizatulin et al. [2011b, 2012], which rely on symbolic execution to automatically extract, from

the C code, a protocol model verifiable using ProVerif (respectively CryptoVerif). The first paper re-

lies on a computational soundness result which prevents its application to many practical examples.

Both papers make a strong assumption on the protocol, forbidding any non-trivial branching (that

is, all executions that leave an execution path identified as the main path are assumed to immedi-

ately terminate with an error). This prevents, in particular, applications to stateful systems such as

the one we study in Chapter 5. In addition, the extraction process to ProVerif and to CryptoVerif is

not shown to soundly preserve equivalence-based security properties, although the security-specific

tools themselves support them.

Kusters et al. [2012] recently presented a framework for proving computational security properties

of Java programs using a general-purpose verification tool. They rely on a tool designed to prove

equivalence-based properties of Java programs (such tools do not exist for C in usable forms), but is

unaware of cryptography. In addition, they do not support the verification of trace-based properties.

4.5.2 Ideal Simulation and Modularity

It would in fact be sufficient, when verifying a whole program, to prove the simulation only on

concrete implementations, instead of proving it both on ideal and concrete implementations, as pre-

sented in Section 4.2. Indeed, the simulation result could then be applied to transfer the security

properties of the concrete reference program to the concrete system program, proving that the latter

is computationally indistinguishable from the ideal reference program. In fact, not all security proofs

make use of ideal functionalities, and proof techniques that do not can still be used in combination

with our notion of simulation to prove security properties of C code.

However, proving ideal simulation allows us to express intermediate indistinguishability results be-
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tween C programs, which may provide some measure of modularity in later work.

Modularity would be greatly helped by the identification of simple criteria on observation functions

that guarantee the preservation of security properties by the simulation. There is some previous

work classifying adversaries against programs according to their observational power, which could

be of some use in developing such general criteria (for example, [Preda, Christodorescu, Jha, and

Debray, 2007] identifies classes of adversaries with the most precise observation they can make on

the state of a system).

4.5.3 Secure Implementations of Primitives

Verifying that the concrete C functions used to implement the cryptographic algorithms are correct

and secure, is beyond the scope of this dissertation. We are not aware of any techniques to prove

security of cryptographic primitives implemented in C, but related work includes producing formal

proofs of computational security for abstract code-based representations of primitives [Barthe et al.,

2009, 2011], and producing proofs of equivalence between a (trusted) naive implementation and an

optimized implementation, both written in C [Barbosa, Sousa Pinto, Filliâtre, and Vieira, 2010]. We

believe that our technique could be applied to proving simulation properties on implementations of

primitives, although we have not yet attempted it.

In combination with a modularity result, this would allow security proofs to be obtained on whole

system implemented in C, reducing their security properties to standard complexity assumptions

usually used in cryptography.

4.5.4 Reference Implementations: From F7 to VCC

As described in Section 4.2, security proofs are performed on F# programs using the F7 type-checker.

However, to prove the simulation using VCC, we need to encode those F# programs as VCC specifi-

cations.

If the core languages are very similar, they still have many small differences. In particular:

• The VCC specification language is not polymorphic, and F7 specifications should therefore

avoid using polymorphism.
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• The VCC specification language can only describe pure functions, and the F7 code should there-

fore avoid using explicit state.

• The F7 type system, even when the code has no explicit state, carries an implicit log of events

(and a random tape) that we model as part of the state in VCC.

Most of these issues can be avoided by writing the F7 specification in a certain style, but doing so

would impede the security proof. On the other hand, if F7 code can be systematically translated into

VCC specifications, these obstacles prevent an automated translation in many cases.

Formally linking the reference languages

In the following chapter, VCC specifications are manually translated from the F7 implementation,

and, in the absence of formal semantics for the VCC specification language, no formal link is made

(that is, we assume that the VCC specification is equivalent to the F7 implementation).

However, the language’s semantics is embodied in its translation into first-order logic, and the re-

sulting axioms could be used as F7 specification to formalise an equivalence proof.

Another solution would be to formalise and improve VCC’s specification language itself to perform

the proofs of security by typing directly on the VCC version of the reference implementation.

4.5.5 Other Uses of Simulation in Software Verification

Notions of simulation have been used in other aspects of program verification. For example, the seL4

project [Klein et al., 2009] proves that a C implementation of a micro-kernel simulates (by forward

simulation) a prototype implementation written in Haskell. The proofs are done by embedding both

C and Haskell semantics in the Isabelle proof assistant, and manually building the simulation proof.

We believe that our notion of simulation may be useful in such a context, and that the automation

provided by recent advances in general-purpose verification tools could be leveraged to produce

proofs similar or larger in scope than those involved in the seL4 project, at the cost of a larger and

more complex TCB which would include VCC.
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4.5.6 Reference Languages for Reference Implementations

The use of F7 in this work is indeed incidental, as it appeared to be the most adapted tool to

produce security proofs on implementations that could easily be turned into VCC specifications.

Cryptography-specific tools, such as CertiCrypt, EasyCrypt [Barthe et al., 2009, 2011], or Cryp-

toVerif [Blanchet, 2008] have languages for describing protocols and primitives that could also be

used as reference languages, with the same lack of formal link with VCC.

More generally, however, we believe that functional languages provide a great platform for exe-

cutable specifications, and that the ready availability of advanced verification tools for them should

be leveraged, along with simulation techniques, to use them as such in safety or security-critical

contexts.
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Chapter 5

Computational Security of a Key

Management System

In this chapter, we apply the verification methodology described in Chapter 4 to an exemplary key

management system, inspired by the TPM [Tru, 2007] and the more recent TPM 2.0 [Tru, 2013].

5.1 The Device

The main goal of our Device is to provide a basic key management and storage functionality.

The Device is a store for a set of objects. An object consists of a fixed-length, public template and a

key, whose length is variable, but bounded by an implementation constant. The template represents

metadata for the key. Its first byte specifies whether the associated object is sensitive; the key of a

sensitive object is only used internally to the Device. Its second byte specifies the length in bytes of

the key. The rest of the template is used only as an identifier that may not be unique (and could also

encode various public parameters for the key).

The Device can generate fresh objects using a key derivation function (KDF), based on a fixed hard-

ware secret, or it can take public bytes from the user and use them, after minor validation steps, as a

non-sensitive key. The internal state of the Device, physically shielded from direct outside observa-

tion and interference, consists of an immutable key seed (for key generation), an immutable top-level

storage key (for the protection of objects offloaded into untrusted memory), and a fixed-size mutable
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array of slots, in which objects can be stored while in use. Objects can be moved from shielded to

untrusted memory using the Unload command, and in the other direction using the Load command.

Once loaded onto the Device, objects are identified using a handle, which is simply an integer index

to the slot in which the object is stored. There is no handle associated with the storage key or the

primary seed, which can therefore not be referred to directly by the user.

The Device processes two kinds of ciphertexts or blobs. The first kind are objects encrypted with the

Device’s storage key; these blobs are produced and consumed by the Unload and Load commands,

respectively. The second kind are user-provided plaintexts encrypted with the keys of protected ob-

jects; these blobs are produced and consumed by the Encrypt and Decrypt commands, respectively.

The Device communicates with the user via an I/O buffer, and by calling specific commands. Upon

receiving a command call, the Device reads and parses the contents of its buffer, according to the

command’s expected inputs. The Device then processes the command, which results in possible

updates to the internal state, and the writing of a return code and a command-specific return value

into the I/O buffer.

5.1.1 Instruction Set

The commands are as follows. (Error codes are not detailed in this description; they are more infor-

mative, and taken in consideration in the security proof.)

Create takes as input a template. The command returns an error code if there is no empty slot on

the Device. Otherwise, the command creates a fresh object associated with the template, stores

it in a free slot, and returns a success code, followed by the handle to the created object.

Import takes as input a template, and a byte array to be interpreted as key. The command returns an

error code if the template is for a sensitive object, if the byte array is not of the length indicated

by the template, or if there is no empty slot on the Device. Otherwise, the command stores the

template and data in a free slot as a new object, and returns a success code, followed by the

handle to the imported object.

Export takes as input a handle. The command returns an error code if the indexed slot is empty, or

if it contains a sensitive object. Otherwise, the command returns a success code together with
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the template and the byte array representation of the key.

Clear takes as input a handle. The command marks the slot as empty (but does not necessarily

overwrite its contents) and returns a success code.

Unload takes as input a handle. The command returns an error code if the indexed slot is empty.

Otherwise, it returns a success code, followed by a blob consisting of the authenticated encryp-

tion of the target object, padded to the block size, under the storage key. For simplicity in this

example, unloading an object does not clear its slot.

Load takes as input an encrypted blob. The command returns an error code if there is no empty slot

on the Device, if decryption of the blob using the storage key fails, or if parsing the successfully

decrypted plaintext fails. Otherwise, the command loads the decrypted object into a free slot

and returns a success code, followed by the handle of the newly loaded object.

Encrypt takes as input a handle and a byte array containing a plaintext (for simplicity, the length of

plaintexts is an implementation constant). The command returns an error code if the handle

points to an empty slot. Otherwise, it returns a success code, followed by a blob consisting of

the authenticated encryption, under the indexed object’s key, of the input plaintext.

Decrypt takes as input a handle and an encrypted blob. The command returns an error code if the

handle points to an empty slot, or if decryption of the blob under the indexed object’s key fails.

Otherwise, it returns a success code, followed by the decrypted plaintext.

5.1.2 Expected Security Properties

General notions of security for key management systems exist [Cachin and Chandran, 2009; Kremer,

Steel, and Warinschi, 2011]. However, we use simpler security notions to keep the security proof as

simple as possible, since the focus of this chapter is to transfer security results from F# to C code.

We expect and prove the following two security properties for the Device and its C implementation,

when the adversary can only call the Device commands, and read and write its I/O buffer.

Load Integrity All sensitive objects stored in the Device internal memory have been created on the

Device; all non-sensitive objects stored in the Device internal memory have either been created

on the Device, or imported onto it.
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Security of Encryption under Sensitive Keys Encryption under sensitive keys guarantees the se-

crecy of the plaintexts and integrity of the ciphertexts.

Integrity properties are expressed using event correspondences: our events for the Device record

key creation (parameterised by the seed and template used, and the resulting key), and key import

(parameterised by the template and key). We can then write an invariant on the store, ensuring that

a correct event has been logged for each stored key, at any point in the execution (in practice, this is

even an invariant on the type of keys).

Secrecy is expressed information theoretically as the fact that, when encrypting under a sensitive key,

no information about the plaintext is contained in the ciphertext.

However, neither of these security properties can in fact hold unconditionally or perfectly on a real

system, since concrete keys and secrets are bounded bitstrings and could be guessed by unrestricted

adversaries. We instead make standard assumptions on the cryptographic primitives used in the

Device, and reduce the security of the Device to the security of its cryptographic primitives.

5.1.3 Cryptographic Assumptions

We use two cryptographic operations as concrete primitives: a key derivation function (KDF [Chen,

2009]) and an authenticated encryption scheme (AE [Bellare and Namprempre, 2000]).

Key Derivation Function

Key Derivation Interface: IRF

type seed

val s0: seed

val KDF: t:template→ s:seed { s = s0 }→ k:(;t) key

To generate encryption keys from the primary

seed and the template, we use a single instance

of a key derivation function KDF. Let RF be the

ideal random function that lazily samples keys

and uses a table to store seed-template-key tuples for lookup when the function is later called with

the same arguments. The distinguishing advantage between KDF and RF is denoted AdvKDFRF (t, qKDF),

for adversaries that make at most qKDF queries to the key derivation oracle with a single seed. (Other

notions may let the adversary generate and use multiple seeds; we do not in this example.) Infor-

mally, the advantage AdvKDFRF (t, qKDF) is meant to be negligible.

The following lemma establishes a typing condition that can be automatically discharged using F7,
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and that guarantees that A uses KDF and RF as required for the advantage to apply (that is, only uses

the key derivation as an oracle). IRF stands for the interface displayed above, parameterised by an

abstract type for derived keys (indexed by the template the key is derived from), and where the type

of seed is made abstract. We do not provide, in this example, a function to generate seeds, but rather

declare, in the interface, a constant seed.

Lemma 3 (Ideal Key Derivation: Typing Conditions). Let K be p.p.t. such that ` K IRF. For all p.p.t.

A such that IRF ` A : bool, we have |Pr [〈〉 K ·A 〈b〉]− Pr [〈〉 RF ·A 〈b〉]| ≤ AdvKRF (t, qKDF), for all b.

Proof. A p.p.t. adversary that is well-typed against IRF can only call the KDF function with the

constant seed declared in the interface. We can therefore represent any such adversary as a p.p.t.

adversary making queries to the random function with a single seed.

Authenticated Encryption

We similarly define the cryptographic assumption on the authenticated encryption scheme, which

provides oracles for key generation, encryption and decryption.

Let AE (E) be the ideal authenticated encryption scheme that uses the concrete encryption scheme E

to encrypt zeroes instead of the plaintext, maintains a table of ciphertext-plaintext pairs and decrypts

ciphertexts by looking up the corresponding plaintext in the table, only successfully decrypting ci-

phertexts that appear in it. Encrypting zeroes ensures that the ciphertexts contain no information

about the plaintext (this is the standard notion of CPA security), and only decrypting ciphertexts

that were previously encrypted ensures the property known as ciphertext integrity (INT-CTXT). The

key generation oracle in the ideal functionality uses P to generate a new key (to be used to encrypt

zeroes), creates an empty ciphertext-plaintext table and returns a unique identifier for it.

Our Device uses three distinct instances of the authenticated encryption library, which are all con-

cretely implemented in the same way, but whose intended usage and cryptographic properties differ.

EtMp, is used to encrypt user-provided plaintexts using non-sensitive keys; EtMs is used to encrypt

user-provided plaintexts using sensitive keys; and EtM, is used to protect objects for offloading in un-

trusted memory. Their distinguishing advantages from the ideal authenticated encryption schemes

are, we recall, denoted Adv
EtMp

AE(EtMs)

(
t, qGENp , qENCp , qDECp

)
, AdvEtMs

AE(EtMs)
(t, qGENs , qENCs , qDECs), and

AdvEtMAE(EtM)
(t, qGEN, qENC, qDEC), where qGENi is the number of calls to the key generation oracle, qENCi

is the number of calls to the encryption oracle, and qDECi is the number of calls to the decryption
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oracle. Informally, the distinguishing advantages for EtMs(AdvEtMs
AE(EtMs)

(t, qGENs , qENCs , qDECs)), and

EtM(AdvEtMAE(EtM)
(t, qGEN, qENC, qDEC)) are meant to be negligible.

Secret Interface for EtMs: IS

type plainrepr = b:bytes { Length(b) = plainSize }
private type plain = plainrepr

function val Repr: plain→ plainrepr

val plain: pr: plainrepr→ p: plain { pr = Repr(p) }

We recall the typing conditions, on programs

using an authenticated encryption scheme E,

that need to be proved in order to substitute

the ideal functionality AE(E) for the concrete

scheme E. This result is proved as Theorem 12

by Fournet et al. [2011], and we reproduce it below, using our notation for ideal functionalities (we

denote AE(E) the module composition E · FEae).

We use the interface IS (where the S stands for “secrets”) as secret interface (in place of their IPLAIN).

IE is simply the abstract interface declaring the key generation, encryption and decryption function,

as well as an abstract type of keys.

Lemma 4 (Ideal Functionality for AE ([Fournet et al., 2011], Theorem12)). If E is an encryption scheme

such that IS ` E IE, and P is a secret module such that ` P IS, for any p.p.t. A such that IS, IE ` A :

bool, we have |Pr [〈〉 P · E ·A 〈b〉]− Pr [〈〉 P ·AE(E) ·A 〈b〉]| ≤ AdvEAE(E) (t, qGEN, qENC, qDEC) for all b.

Secure Implementations of Primitives

In practice, we implement EtMi using Encrypt-then-MAC with AES-CBC and HMAC-SHA1; the key

derivation function is implemented using the counter mode described in the NIST recommenda-

tion [Chen, 2009] and HMAC-SHA1 as core PRF.

AES-CBC is usually assumed to be a pseudo-random permutation, and HMAC-SHA1 is usually

assumed to be unforgeable, therefore providing the desired IND-CPA and INT-CTXT security on

the Encrypt-then-MAC construction [Bellare and Namprempre, 2000]. HMAC-SHA1 is also usually

assumed to be a good pseudo-random function, justifying its use in the key derivation function.

5.1.4 Concrete Security for the Device

In the same way we expressed the cryptographic assumptions in terms of distinguishing advantage

between a concrete functionality and an ideal functionality that is trivially secure, we aim to estab-

lish security properties of our Device implementation by giving the adversary oracle access to the

Device commands, and letting him attempt to distinguish between the concrete system Device and
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its idealization. We call A(t, (qc,l)c∈Cmd,l∈{0,1}) the set of all p.p.t. adversaries running in time t and

making qc,l oracle calls to command c, on an object with sensitive attribute l.

Such adversaries can be written, with the same complexity, as C programs that use the interface dis-

played below. This interface gives consumer code full control over the I/O buffer and the scheduling

of the Device commands. Arguments and results are passed by side-effect on the I/O buffer (an array

IOB, of static length IOBLEN) before calling the chosen command.

External Interface for the Device
extern BYTE IOB[IOBLEN];

void Create(void);
void Import(void);
void Export(void);
void Clear(void);
void Load(void);
void Unload(void);
void Encrypt(void);
void Decrypt(void)

We indiscriminately write A for all implementa-

tions of an adversary that have the same com-

plexity (for example, the adversary interacting

with the F# code and the one interacting with

the C code).

Modelling Security for the Device

Following the approach outlined in Chapter 4, we study four different implementations of the De-

vice, which we introduce and name below.

The verified C code, when linked against a concrete cryptographic library, forms the concrete system

implementation of the Device, which we denote Devicec. The same verified C code, when linked

against an ideal cryptographic library forms an ideal system implementation, denoted Devicei. Sim-

ilarly, we expect our reference implementations in F# to be executable when linked against concrete

cryptographic libraries, forming a concrete reference implementation denoted Device
c. The same

reference code, linked against ideal cryptographic libraries, constitutes an ideal reference implemen-

tation denoted Device
i.

Concrete Security The security of the Device is expressed using two games, one to express the

Load Integrity property, and the other to express Security of Encryption under Sensitive Keys.

Integrity Game I(D). Given a program D that implements the Device commands, we call I(D) the

game that gives the adversary oracle access to all commands, and where the adversary wins when-

ever a query to the Load oracle succeeds on a buffer whose cipherSize first bytes (where cipherSize is

the size of ciphertexts, fixed by the implementation) were not previously returned by a successful
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query to Unload.

Secrecy Game S(D). Given a program D that fully implements the Device commands, we call Dev(D)

the functionality obtained by filtering queries to D as follows:

• when receiving an Encrypt query with a handle pointing to a sensitive key, query D for an

encryption of zero using the same handle; using the original plaintext and the used key’s tem-

plate, log the triple template-plaintext-ciphertext in a global table (if the query to D was suc-

cessful); return D’s reply to the adversary.

• when receiving a Decrypt query with a handle pointing to a sensitive key, locate in the table a

triple whose template and ciphertext components match the query; if it exists, use the logged

plaintext for the decryption, otherwise, return an error.

The filter also needs to maintain a partial map from handles to sensitive templates, which can be

done easily by recording calls to Create, Load, Unload and Clear.

Let S(D) be the game that lets the adversary interact either with D, or with Dev(D), depending on a

uniformly sampled bit b, and where the adversary wins if she returns a b′ such that b′ = b.

Theorem 2 (Concrete Security). The probability that an adversary A inA(t, (qc,l)c∈Cmd,l∈{0,1}) wins either

I(Devicec) or S(Devicec) is bounded by

AdvDevice
i

Devicec

(
t, (qc,l)c∈Cmd,l∈{0,1}

)
≤

AdvEtMAE(EtM) (
P (t) , 1, qUnload, qLoad) +

AdvKDFRF
(
P′ (t) , qCreate,s + qCreate,p

)
+

AdvEtMs
AE(EtMs)

(
P′′ (t) , qCreate,s, qEncrypt,s, qDecrypt,s

)
,

where P, P′ and P′′ are polynomials that take into account the (linear) running time of the command code

leading up to the cryptographic oracle queries, as well as the running time (linear in each qo) of all queries to

oracles not involved in the current cryptographic game (for example, calls to the RF do not appear in P′, but

appear in P and P′′).

Perfect Security

In Section 5.2.3, we prove the following theorem, stating that the ideal system Device is perfectly

secure.
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Theorem 3 (Perfect System Security). Any adversary A in A(t, (qc,l)c∈Cmd,l∈{0,1}) has a zero probability

of winning either of I(Devicei) or S(Devicei).

This ensures that the ideal system implementation provides perfect Load Integrity (since no adver-

sary can win I(Devicei)), and perfect Security of Encryption under Sensitive Keys (since no adver-

sary can win S(Devicei)).

Security Reduction

In Section 5.2.3, we prove that the concrete system Device can only be distinguished from the ideal

system Device inasmuch as the underlying cryptographic primitives can themselves be distinguished.

This is formally expressed by explicitly bounding the probability of a p.p.t. adversary distinguishing

the two systems.

Theorem 4 (Reduction of System Security to Primitive Security).

The probability that a p.p.t. adversary inA(t, (qc,l)c∈Cmd,l∈{0,1}) distinguishes between the concrete and ideal

system Devices is bounded by

AdvDevice
c

Devicei

(
t,
(
qc,l
)

c∈Cmd,l∈{0,1}

)
≤

AdvEtMAE(EtM) (
P (t) , 1, qUnload, qLoad) +

AdvKDFRF
(
P′ (t) , qCreate,s + qCreate,p

)
+

AdvEtMs
AE(EtMs)

(
P′′ (t) , qCreate,s, qEncrypt,s, qDecrypt,s

)
.

We can then conclude the proof of Theorem 2 by transitivity and the triangle inequality.

5.2 Proving Computational Security Properties of the Device

We summarise all theorems involved in the proof of Theorem 2 in the figure below, placing them in

relation to the two abstraction axes introduced in Section 4.2.

81



5. COMPUTATIONAL SECURITY OF A KEY MANAGEMENT SYSTEM

-

6

Concrete Cryptographic
Idealization

Ideal

Sy
st

em
(C

)
M

em
or

y
A

bs
tr

ac
ti

on
R

ef
er

en
ce

(F
7)

Devicec

/

Thm. 7

Device
c ≈ε

Reduction
Thm. 6

Device
i Perf. Sec.

(Thm. 5)

/

Thm. 7

Devicei
Perf. Sec.
(Thm. 3)

Reduction
Thm. 4
≈ε

Theorem 7 is proved in Section 5.2.2. Theorems 5 and 3, asserting perfect security of the ideal ref-

erence and system implementations (respectively), are proved in Section 5.2.3. Theorems 6 and 4,

reducing the security of the concrete reference and system implementations to their ideal counter-

parts, are proved in Section 5.2.3.

5.2.1 Security of the Reference Implementation

To describe the proof, we need to present the structure of the reference implementation, composed

of the following modules.

• T (for Template), defines constants of the Device and operations on templates (reading at-

tributes, checking validity).

• Secrets, declares an abstract type for the user-provided plaintexts for commands Encrypt and

Decrypt.

• EtMs, instantiates authenticated encryption using sensitive keys.

• EtMp, instantiates authenticated encryption using non-sensitive keys.

• KDF declares the type of keys as the disjoint union of sensitive and public keys; declares that

abstract type of seeds and the key derivation function.

• Store, declares the type of entries and the type of the store, along with the formatting and

parsing functions for entries; the type of entries is declared as abstract to prove secrecy of the
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following encryption module.

• EtM, instantiates authenticated encryption using the root storage key to encrypt store entries.

• Device, declares the types of the input/output buffer and of the internal state, and implements

the commands. We divide it in two modules, a concretely-typed module API, that parses the

input buffer, validates inputs and formats the output buffer, and a module Device− whose

functions may operate on abstract or refined types, and implements the core of the commands.

In the proof and in the ideal Device functionality, we make use of a variant of the RF functionality that

uses two disjoint tables, respectively indexed by sensitive and non-sensitive templates. This func-

tionality is perfectly indistinguishable from RF (since the two domains considered form a partition

of RF’s domain). We call it RF2s.

Perfect Security

We use the methodology described by Fournet et al. [2011] to prove perfect security of ideal reference

code, written in F7. Perfect secrecy is proved by parametricity and perfect integrity is proved by

refinement type-safety.

We prove the following theorem on the ideal F7 Device, mirroring the desired perfect security theo-

rem for the C implementation.

Theorem 5 (Perfect Reference Security). For all adversary A in A(t,
(
qc,l
)

c∈Cmd,l∈{0,1}), the probability

of A winning either I(Devicei) or S(Devicei) is null.

Proof. We prove that the probability of winning each of the game is 0 for the considered adversaries.

1. For integrity, we log an event Unloaded(entry,blob) whenever a store entry is Unloaded as blob.

We then typecheck with F7 that, if the ideal reference implementation of the Load command

succeeds on a blob, then the event must have been logged previously for some object. In our

proof, we use the ideal authenticated encryption’s lookup table to register the event.

2. For secrecy, we need to prove that, for all adversary A in A(t,
(
qc,l
)

c∈Cmd,l∈{0,1}), we have

Device
i ·A ≈ Device

i · F ·A, where F is the filter informally described above.

The key observation is that the table kept by F in the right program contains the same entries as

the table kept by the ideal authenticated encryption module in the left program. (We need only

consider sensitive Encrypt queries to prove this.) Indeed, when a sensitive Encrypt query is
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received on the left, the internal ideal AE samples an IV uniformly at random, encrypts zeros,

and logs the plaintext-ciphertext pair in the log corresponding to the key used before returning

the ciphertext. On the right, such a query is replaced with a query to encrypt zeros by the filter,

which, given the same random tape, yields the same ciphertext and the same entry in the table.

When a sensitive Decrypt query is received on the left, the internal ideal AE’s table allocated

for the object’s template is used to lookup the plaintext; on the right, the filter’s table is used.

Since they are always equal, Decrypt queries always return the same result.

All other queries are untouched (apart from monitoring code that does not modify the Device’s

behaviour) by the filter.

This argument can be made more formal using parametricity at the cost of some code refactor-

ing.

Security Reduction

The security reduction for the concrete reference implementation follows the methodology presented

by Fournet et al. [2011], replacing the concrete cryptographic modules with their ideal counterparts

one by one.

Theorem 6 (Reference Security Reduction).

AdvDevice
c

Device
c

(
t,
(
qc,l
)

c∈Cmd,l∈{0,1}

)
≤

AdvEtMAE(EtM) (
P(t), 1, qUnload, qLoad) +

AdvKDFRF
(

P′(t), qCreate,s + qCreate,p
)
+

AdvEtMs
AE(EtMs)

(
P′′(t), qCreate,s, qEncrypt,s, qDecrypt,s

)
.

Proof. The proof comprises the following sequence of game-hopping steps, true for all p.p.t. adver-

sary A.

T · Secrets · EtMs · EtMp · KDF · Store · EtM · Device ·A

≈ε1 T · Secrets · EtMs · EtMp · KDF · Store ·AE(EtM) · Device ·A (5.1)

≈ε2 T · Secrets · EtMs · EtMp · RF · Store ·AE(EtM) · Device ·A (5.2)

≈ T · Secrets · EtMs · EtMp · RF2s · Store ·AE(EtM) · Device ·A (5.3)

≈ε4 T · Secrets ·AE(EtMs) · EtMp · RF2s · Store ·AE(EtM) · Device ·A (5.4)

where ≈εi stands for indistinguishability with the advantages detailed below.
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Step (5.1) follows with advantage AdvEtMAE(EtM) (P(t), 1, qUnload, qLoad). Under the assumption that the

formatting and parsing functions for store entries are such that applying the parsing to a for-

matted entry returns the original entry, we can establish by automated type-checking that, for

P′ = (T · Secrets · EtMs · EtMp · KDF · Store) and Device
i · A = P′ · EtM · Device · A, we have a

secret interface IStore such that ` P′  IStore, and IStore, IEtM ` Device IDevice. Thus we have

IStore, IEtM ` Device · A : bool and we conclude using Lemma 4. The formatting hypothesis is

discharged later, as Lemma 6.

Step (5.2) follows with advantage AdvKDFRF (P′(t), qCreate,1) by type-checking and Lemma 3.

Step (5.3) follows from rewriting the lazy random function, first so that it uses separate tables for

public and sensitive keys (since their templates are disjoint), then so that, for sensitive keys,

RF2s calls EtMs.GEN (defined as random sampling) instead of direct random sampling. This is

just program rewriting.

Step (5.4) follows with advantage AdvEtMs
AE(EtMs)

(
P′′(t), qCreate,1, qEncrypt,1, qDecrypt,1

)
since we can estab-

lish by automated type-checking that we have, for P′ = (T · Secrets), Devicei ·A = P′ · EtMs ·
(EtMp · KDF · Store ·AE(EtM) · Device ·A), and we have a secret interface IS such that ` P′  IS,

and IS, IEtMs ` (EtMp · KDF · Store ·AE(EtM) · Device) IDevice. Thus we have Secrets, IEtMs
`

(EtMp · KDF · Store ·AE(EtM) · Device ·A) : bool and we conclude using Lemma 4.

This concludes the security proof for the reference Device implementation. We now prove, by simu-

lation, that the same security properties hold on the system implementation.

5.2.2 Observations and Simulation

We start by defining the initial and final observation functions for the cryptographic primitives, and

the corresponding simulation contracts. We then define the observation function for the Device com-

mands, expressing the simulation theorem, and briefly discussing the VCC proof. Finally, we show

how VCC can be used to prove other theorems, in particular proving that the contracts on Device

commands do not prevent adversaries from calling them, and the formatting condition assumed in

the proof for the reference Device (Lemma 6).

To express simulation as a contract as presented in Chapter 4, we need to provide an abstract in-

terface for the reference cryptographic primitives, which we use to express the assumption that the
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5. COMPUTATIONAL SECURITY OF A KEY MANAGEMENT SYSTEM

system cryptography is correctly implemented, and make the reference implementation of the De-

vice available as logical specifications in VCC. We write the abstract interface in such a way that it

is met by both the ideal and concrete cryptographic implementations, so that a single run of VCC

proves both required program simulations modularly.

The VCC specification language is the simplest notation to express mathematical functions on C

program states, and we therefore use it to describe the observation functions, whose definition is

central to the final simulation statement and the security proof.

Abstract Reference Interface for EtMs (excerpt)
// Abstract Types
(type \EtMsKey)
(abstract \bool isEtMsKey(\Bytes t,\EtMsKey)

(requires isTemplate(t)))

// Abstract State
(type \EtMsState)
(abstract \bool isEtMsState(\EtMsState))

(abstract \bool leq(\EtMsState S1,\EtMsState S2)
(requires isEtMsState(S1))
(requires isEtMsState(S2)))

// Encryption
(record \EtMsENCIn {
\EtMsState S; \Bytes t;
\EtMsKey k; \plain p; })

(def \bool isEtMsENCIn(\EtMsENCIn i)
{ return isEtMsState(i.S) &&

isTemplate(i.t) && sensitive(i.t) &&
isEtMsKey(i.t,i.k) && isPlain(i.p); })

(record \EtMsENCOut { \EtMsState S; \Bytes c; })
(def \bool isEtMsENCOut(\EtMsENCOut o)
{ return isEtMsState(o.S) && isEtMsCipher(o.c); })

(abstract \EtMsENCOut EtMsENC(\EtMsENCIn i)
(requires isEtMsENCIn(i))
(ensures isEtMsENCOut(\result))
(ensures leq(i.S,\result.S)))

// Decryption
(record \EtMsDECIn {
\EtMsState S; \Bytes t;
\EtMsKey k; \Bytes c; })

(def \bool isEtMsDECIn(\EtMsDECIn i)
{ return isEtMsState(i.S) &&

isTemplate(i.t) && sensitive(i.t) &&
isEtMsKey(i.t,i.k) && isEtMsCipher(i.c); })

(typedef \plainOption \EtMsDECOut)
(def \bool isEtMsDECOut(\EtMsDECOut o)
{ return isPlainOption(o); })

(abstract \EtMsDECOut EtMsDEC(\EtMsDECIn i)
(requires isEtMsDECIn(i))
(ensures isEtMsDECOut(\result)))

For the argument to make sense, we also display

some of the type and function declarations for

the reference implementation in VCC. As dis-

cussed at the end of Chapter 4, reference imple-

mentations in VCC need to be written in store-

passing style and are therefore quite verbose.

Authenticated Encryption under Sensitive and

Non-Sensitive Keys

We discuss the simulation assumption for the

authenticated encryption operations used in the

Encrypt and Decrypt commands.

Abstract Interface On the right, we display

the abstract interface, in VCC’s specification

language, for the module performing authenti-

cated encryption using sensitive keys. The EtMp

module, performing authenticated encryption

using non-sensitive keys, has the same interface,

where all instances of the word “secret” are re-

placed with the word “public’, every instance of

the predicate sensitive is replaced with its nega-

tion, and the abstract type \plain of plaintexts to
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encrypt under sensitive keys is replaced with a concrete type for plaintexts to be encrypted under

non-sensitive keys. They also share a concrete implementation, but we never idealise encryption

using non-sensitive keys.

First, we declare an abstract type for keys, along with its refinement predicate. The refinement pred-

icate takes as argument a template that constrains the length of the key, intuitively meaning that the

key is a valid sensitive key for a particular template (in our case, this means that the key has the

correct length and sensitive attribute).

Second, we declare an abstract type for this module’s cryptographic state. In the concrete implemen-

tation, this state will simply contain the random tape, but in the ideal implementation, it will also

contain the cryptographic log, encoded using maps. As always, we also define a refinement predi-

cate; in addition, we also equip states with an order relation leq, used to allow VCC to reason about

chronology of events.

We can then declare the encryption and decryption functions. In the absence of unnamed tuple

types in VCC, we need to declare record types (which are simply named tuples, and use structure-

like syntax) whenever a function is meant to return several values. To simplify later discussions, we

also make sure that the inputs to all cryptographic functions are passed in as a tuple, allowing the

result of observation functions to be passed directly into the encryption functions, as expressed in

the abstract contracts from Chapter 4.

This gives rise to record types \EtMsENCIn and \EtMsENCOut for encryption (and similarly for

decryption), which we also equip with refinement predicates. Those types are fixed and do not vary

between ideal and concrete implementation and can be fully defined instead of being kept abstract.

To express random sampling as a mathematical function, we need it to modify the random tape

(for example, by keeping track of the read index on the tape). Since encryption samples the IV at

random, we pass the state in, and get a modified copy of the state out (in store-passing style). (In

the ideal implementation, the state is also updated by logging the plaintext-ciphertext pair for later

decryption.)

Decryption, simply reads the state and does not need to pass it back out. However, it may fail and

therefore returns an option type, either reporting a decryption error, or returning a plaintext.

The entire module is parameterised by an abstract type \plain, declared in the secret interface.
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Simulation Contract for Encryption
(def \EtMsENCIn EtMsENCIn(
\EtMpState,\EtMsState S, \Bytes t,
BYTE∗ k, UINT8 k len,
BYTE∗ p, UINT8 p len,
BYTE∗)

(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(requires k len == keylength(t))
(requires p len == plainSize())
(ensures isEtMsENCIn(\result))
{ return (\EtMsENCIn) {

.S = S, .t = t,

.k = EtMsKey(t,from array(k,k len)),

.p = plain(from array(p,p len)) }; })

(def \EtMsENCOut EtMsENCOut(
\EtMpState,\EtMsState S,\Bytes t,
BYTE∗, UINT8, BYTE∗, UINT8,
BYTE∗ c)

(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(ensures isEtMsENCOut(\result))
{ return (\EtMsENCOut) {

.S = S,

.c = from array(c,cipherSize()) }; })

void (assume correct) ENC(
(ghost \EtMpState pS) (ghost \EtMsState sS)
(ghost \Bytes t) BYTE∗ k,UINT8 k len,

BYTE∗ p,UINT8 p len,
BYTE∗ buffer
(out \EtMpState pSOut) (out \EtMsState sSOut))

(decreases 0) // Termination Measure
// Reference Contract
(requires isEtMpState(pS))
(requires isEtMsState(sS))
(ensures isEtMpState(pSOut) && leq(pS,pSOut))
(ensures isEtMsState(sSOut) && leq(sS,sSOut))
(requires isTemplate(t))

// Writes Clause
(writes \array range(buffer,(size t) cipherSize()))

// Simulation when sensitive
(ensures sensitive(t)⇒

EtMsENCOut(pSOut,sSOut,t,k,k len,p,p len,buffer) ==
EtMsENC(\old(EtMsENCIn(pS,sS,t,k,k len,p,p len,buffer))))

(ensures sensitive(t)⇒pSOut == pS)
// Simulation when non−sensitive
(ensures !sensitive(t)⇒

EtMpENCOut(pSOut,sSOut,t,k,k len,p,p len,buffer) ==
EtMpENC(\old(EtMpENCIn(pS,sS,t,k,k len,p,p len,buffer))))

(ensures !sensitive(t)⇒sSOut == sS);

Observation Functions and Simulation Con-

tracts For the C code to remain realistic, we

use a single function for encryption using sen-

sitive and non-sensitive keys, equipped with a

double simulation contract. The system func-

tion takes several concrete arguments: pointer

and length for a buffer containing the key,

pointer and length for a buffer containing the

plaintext, and a pointer to a buffer large enough

to contain the resulting ciphertext. In addition,

we pass the necessary cryptographic states to

the function as ghost parameters, along with the

key’s template, used to decide which simulation

contract applies. The cryptographic states that

are modified by the reference functions are also

passed back out as out parameters (introduced

using the out keyword). Additional pre and

postconditions refining the cryptographic states

are added to ensure that the observation func-

tions are well-defined, and we define them as

expected.

For example, the specification code displayed

right shows the initial and final (EtMsENCIn/Out(), respectively) observation functions for encryp-

tion using sensitive keys.

The initial observation ignores the non-sensitive key-related cryptographic state and the output

buffer, and simply preserves the sensitive key-related cryptographic state (including its random tape)

and the template, and observes the contents of the key and plaintext buffers, abstracting away from

their exact location in memory, before injecting them into the corresponding abstract types.

The final observation similarly ignores the non-sensitive key-related cryptographic state, but this

time also ignores the key and plaintext buffers (for example, allowing them to be overwritten with
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intermediate results, or performing encryption in place (by passing the same buffer as plaintext and

ciphertext buffer)), and simply observes the contents of the ciphertext buffer.

In the previous chapter, observation functions were defined on configurations, but we here define

them only on the program’s arguments. However, since their body reads from memory, VCC inter-

nally passes in an additional argument containing the entire program memory, effectively giving our

observation functions the expected type.

With the observation functions defined, we can now write the simulation contract on the system

encryption function ENC.

The first line of the contract provides VCC with a termination measure to prove that the function

terminates. In this case, the trivial termination measure suffices (it is sufficient for most non-recursive

functions).

We then refine the cryptographic states, and the witness template. These preconditions are the same

as those on the reference function, and therefore do not restrict the simulation result in any way (as

we further argue in Lemma 5).

The following line lets VCC know that the function, during its execution, may write into the cipher-

text buffer (excluding all distinct memory locations).

Finally, we state the two simulation postconditions, the first expressing the simulation when the key

is sensitive, and the second expressing it when the key is public, exactly as defined in Chapter 4.

These state that observing the final configuration (using the out parameters for cryptographic state)

is equal to running the reference implementation on the observation of the initial configuration (ob-

tained by evaluating the observation function in the initial memory using the \old keyword).

The observation functions for the module performing encryption using non-sensitive keys, as well

as the simulation contracts for decryption are similar and not shown here.

We call HEtMEnc
the simulation hypothesis embodied in the contracts for the system encryption and

decryption functions.

Key Derivation
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Abstract Reference Interface for KDF (excerpt)
// Cryptographic State
(type \SeedState)
(abstract \bool isSeedState(\SeedState S))
(abstract \bool leq(\SeedState S1,\SeedState S2)

(requires isSeedState(S1))
(requires isSeedState(S2)))

// Type for Keys
(type key)
(abstract \bool isKey(\seedState S,\Bytes t,\key)

(requires isSeedState(S))
(requires isTemplate(t)))

(record \KDFIn {
\EtMsState EtMs S; \EtMpState EtMp S;
\SeedState S; \Bytes t; \seed s; })

(def \bool isKDFIn(\KDFIn i)
{ return isEtMsState(i.EtMs S) && isEtMpState(i.EtMp S) &&

isSeedState(i.S) && isTemplate(i.t) && isSeed(i.s); })

(record \KDFOut {
\EtMsState EtMs S; \EtMpState EtMp S;
\SeedState S; \key k; })

(def \bool isKDFOut(\Bytes t,\KDFOut o)
(requires isTemplate(t))
{ return isEtMsState(o.EtMs S) && isEtMpState(o.EtMp S) &&

isSeedState(o.S) && isKey(o.S,t,o.k); })

(abstract \KDFOut KDF r(\KDFIn i)
(requires isKDFIn(i))
(requires i.s == getPrimarySeed())
(ensures isKDFOut(i.t,\result))
(ensures leq(i.EtMs S,\result.EtMs S))
(ensures leq(i.EtMp S,\result.EtMp S))
(ensures leq(i.S,\result.S)))

Abstract Reference Interface We use an ab-

stract type \key for Device keys, indexed by the

key’s template, and use the template to distin-

guish between sensitive and non-sensitive keys.

Again, we display the abstract reference inter-

face on the right, briefly discussed below.

The abstract type for cryptographic states,

\seedState is empty in the concrete implemen-

tation (no random tape is used), and contains

the lookup tables and event log in the ideal im-

plementation. Again, we declare a refinement

predicate and an order relation (both trivially

true in the concrete implementation).

As mentioned above, we declare an abstract

type for keys, whose refinement predicate is in-

dexed by a template, determining not only the

length of the key (as was the case of the encryption module), but also its sensitivity. In addition, the

cryptographic state appears in the index, since the ideal refinement on keys expresses the fact that

they have been derived on the Device or imported onto it, both of which are logged as events in the

state.

Finally, we declare the input and output types for the KDF, as well as the KDF itself. Since the

ideal KDF, a random function, samples the key uniformly at random to generate it, the underlying

encryption libraries’ cryptographic states are passed in and out so the correct random tape can be

read according to the type of key meant to be derived.

Observations All simulation contracts have the same form, and we therefore only display, from

now on, the observation functions.

The concrete KDF takes as arguments a pointer and length for a buffer containing the template, a

pointer and length for a buffer containing the seed, a pointer to a buffer large enough to contain a key,

and a pointer to an integer whose final value is the length of the derived key, and is unspecified in the
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initial configuration (for example, it may contain the actual size of the allocated key buffer to perform

additional memory-safety checks). In addition, we pass in the cryptographic states and an abstract

template as ghost parameters, and pass the cryptographic states back out as out parameters. The

abstract template contains the initial contents of the template buffer; although not strictly necessary,

it makes it easier to express the final observation in cases where the template buffer is overwritten.

Observations for Key Derivation
(def \KDFIn KDFIn(
\EtMsState EtMs S, \EtMpState EtMp S,
\SeedState S, \Bytes t, BYTE∗, UINT8,
BYTE∗ s, UINT8 s len,
BYTE∗ buf, UINT8∗ buf len)

(requires isEtMsState(EtMs S) && isEtMpState(EtMp S))
(requires isSeedState(S) && s len == seedSize())
(requires isTemplate(t))
{ return (\KDFIn) {

.EtMs S = EtMs S, .EtMp S = EtMp S,

.S = S, .t = t, .s = seed(from array(s,s len)) }; })

(def \KDFOut KDFOut(
\EtMsState EtMs S, \EtMpState EtMp S,
\SeedState S, \Bytes t,
BYTE∗ tb, UINT8 t len,
BYTE∗ s, UINT8 s len,
BYTE∗ buf, UINT8∗ buf len)

(requires isEtMsState(EtMs S) && isEtMpState(EtMp S))
(requires isSeedState(S))
(requires isTemplate(t))
(requires ∗buf len == keylength(t))
(ensures isKDFOut(t,\result))
{ return (\KDFOut) {

.EtMs S = EtMs S, .EtMp S = EtMp S,

.S = S, .k = key(S,t,from array(buf,∗buf len)) }; })

Both initial and final observation functions pre-

serve the cryptographic states (including the

random tapes). In addition, the initial obser-

vation function observes the contents of the

seed buffer and injects it into the abstract type

of seeds, and observes the abstract template,

which is separately restricted to be equal to the

contents of the template buffer. In the final ob-

servation, the buffer containing the freshly de-

rived key is observed and its contents injected

into the type of keys, with the correct state and

template indexes.

We call HKDF the simulation hypothesis that the system KDF simulates the reference KDF for the

observation functions described above.

Authenticated Encryption under the Storage Key

Finally, we discuss the simulation hypothesis for the authenticated encryption primitive as used in

the Load and Unload commands. This primitive is in fact concretely the same as the one used in

Encrypt and Decrypt, composed with formatting and parsing functions that pad template-key pairs

to an implementation-constant size.

Abstract Reference Interface The secret interface for this module is in fact the module that defines

the internal key store and store entries. Store entries are defined as an abstract type \entry equipped

with a constructing function makeEntry() that takes a seed state, a template and a key and produces

an entry (the seed state is only used to refine the type of stored keys).
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Abstract Reference Interface for EtM (excerpt)
// Keys
(type \EtMKey)
(abstract \bool isEtMKey(\EtMKey))

// Cryptographic State
(type \EtMState)
(abstract \bool isEtMState(\SeedState sS,\EtMState)

(requires isSeedState(sS)))
(abstract \bool leq(\SeedState sS,\EtMState S1,\EtMState S2)

(requires isSeedState(sS))
(requires isEtMState(sS,S1))
(requires isEtMState(sS,S2)))

// Decryption
(record \EtMDECIn {
\SeedState seedS; \EtMState S;
\Bytes t; \EtMKey k; \Bytes c; })

(def \bool isEtMDECIn(\EtMDECIn i)
{ return isSeedState(i.seedS) && isEtMState(i.seedS,i.S) &&

isEtMKey(i.k) && isEtMCipher(i.c); })

(typedef \entryOption \EtMDECOut)
(def \bool isEtMDECOut(\SeedState S,\EtMDECOut o)

(requires isSeedState(S))
{ return isEntryOption(S,o); })

(abstract \EtMDECOut EtM DEC(\EtMDECIn i)
(requires isEtMDECIn(i))
(ensures isEtMDECOut(i.seedS,\result)))

For brevity, we only show the interface for the

reference decryption function, displayed on the

right. Cryptographic states for this module are

refined by cryptographic states for the KDF mod-

ule, since plaintexts (that appear in the ideal

lookup table) are entries, that are refined by the

seed state.

Apart from this complication, the interface is the

same as for the other instances of the authenti-

cated encryption library (EtMs and EtMp), replac-

ing the plaintexts with entries. In particular, the

functions take in all the necessary cryptographic

states and pass back out those it modifies (in this

case, the decryption function does not modify any state, but its ideal implementation reads from the

log to perform decryption).

Observations for EtM (excerpt)
(def \EtMDECIn EtMDECIn(
\SeedState Seed S,\EtMState S,
BYTE∗ k,UINT8 kl,
BYTE∗ c,UINT8 cl,
slot t∗)

(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(requires kl == EtMKeySize())
(requires cl == EtMCipherSize())
(ensures isEtMDECIn(\result))
{ return (\EtMDECIn) {

.seedS = Seed S, .S = S,

.k = EtMKey(from array(k,kl)),

.c = from array(c,cl) }; })

(def \EtMDECOut EtMDECOut(
\SeedState S,\EtMState,
BYTE∗,UINT8,
BYTE∗,UINT8,
slot t∗ p,int res)

(requires isSeedState(S))
(requires res == 0⇒\inv(p) && p−>tmpl[0] < 2)
(ensures isEtMDECOut(S,\result))
{ if (res == 0)

return SoEntry(makeEntry(S,p−>t,key(S,p−>t,p−>kr)));
return NoEntry(); })

Observations The system function takes as ar-

guments a pointer and length for a buffer whose

contents are used as key, a pointer and length

for a buffer containing the ciphertext, and a

pointer to one of the Device’s internal memory

slots. We also add ghost arguments to pass in a

seed state and a storage state.

Internally, after decrypting the ciphertext, the

resulting plaintext is parsed into a template-key

pair and stored into the indicated memory slot.

The plaintexts are meant to be padded with ze-

ros to a fixed size. However, since we use au-

thenticated encryption, we do not need to check the padding when parsing the decrypted plaintext

into a structured object.
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The initial observation preserves the cryptographic states and observes the key and ciphertext buffers.

The final observation preserves the cryptographic states, and observes the return value. In case

of success (when the return value is 0), the memory slot is observed, and its components used to

construct an abstract entry. In case of failure (when the return value is non-null), the observation

returns the reference failure value.

We callHEtM the simulation hypothesis that the system implementation of the Encode-then-Encrypt

described here simulates the reference implementation for these observation function.

Device Commands

So far, all the simulation contracts we have seen are hypotheses in our simulation theorem, and can

be interpreted as universal quantifications over all reference implementations that typecheck against

the reference interface and all system implementations that verify against the simulation contracts

for the chosen reference implementation. However, in the case of the Device commands, we wish

to prove that the system implementation simulates the particular reference implementation that we

proved secure in Section 5.2.1.

Reference Implementations As discussed in Chapter 4, we currently assume that the typechecked

F7 code and our VCC specification describe the same mathematical functions. As an example, we

display the Create command in both notations below. The Create cmd r function is typed with strong

refinements and performs all operations on the internal state, whereas Create r simply parses the

input buffer, calls Create cmd r and formats its result, implementing the separation between the

Device− and API modules. We make use of several distinct error codes for various error sources,

since real-world systems often need to offer detailed feedback to consumer code, or to the user,

when errors occur. Since error messages have been known to be a source of security flaws, we see

them as a necessary part of the system description when performing security proofs.

Create cmd r takes a template and a Device state which includes, implicitly in F7 and explicitly

in VCC, abstract cryptographic states for all the modules. After finding the first empty slot (and

returning a “store full” error (code 255) in case there are no empty slots), the KDF is called with

the primary seed and the template, and the resulting object is placed in the computed slot. The

side effects on the cryptographic states (reads from random tape and event logging) are modelled as
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updates to the cryptographic states in VCC. The function, when successful, returns the index to the

freshly filled slot, along with the new state.

F7 Notation for the Create Command

type Create RET r =
| CreateError of rcode

| CreateSuccess of handle ∗ state

let Create cmd r S t =
match firstFree S with
| None→ CreateError 255
| Some h→

let s0 = getPrimarySeed()
let k = KDF t s0

let store’ =
update S.store h (Some (makeEntry t k))

let S’ =
{ stKey = S.stKey; store = store’ }
CreateSuccess(h,S’)

let Create r (S,b) =
match unmarshal Create IN r b with
| Some t→

match Create cmd r S t with
| CreateError rc→

let buf = bcons (int2byte rc) (sub b 1 (ioblen −
1))

S,buf

| CreateSuccess C→
let (S’,h) = C

let buf = bcons (0uy) (bcons (int2byte h) (sub b

2 (ioblen − 2)))
S’,buf

| None→
let buf = bcons (254uy) (sub b 1 (ioblen − 1))
S,buf

VCC Notation for the Create Command

(datatype Create RET r {
case CreateError(RCODE)
case CreateSuccess(Handle r res,state S) })

(def Create RET r Create cmd r(state S,Create IN r t)
(requires isState(S))
(requires isCreate IN r(t))
{

switch (firstFree(S.Seed S,S.store)) {
case NoNat():

return CreateError(RC STORE FULL);
case SoNat(i):
\seed s0 = getPrimarySeed();
\KDFIn in = (\KDFIn) { .t = t, .s = s0,

.EtMs S = S.EtMs S, .EtMp S = S.EtMp S, .S = S.Seed S };
\KDFOut s = KDF r(in);
\store newStore =

update(S.store,i,SoEntry(makeEntry(s.S,t,s.k)));
state S0 = S / { .Seed S = s.S, .EtMs S = s.EtMs S,

.EtMp S = s.EtMp S, .store = newStore };
return CreateSuccess((Handle r) i, S0); } })

(def \configuration Create r(\configuration in)
(requires isConfiguration(in))
(ensures isConfiguration(\result))
{ switch (unmarshal Create IN r(in.b)) {

case SoCArgs(t):
Create RET r res = Create cmd r(in.S,t);
switch (res) {

case CreateError(rc):
\Bytes oBuf = Bcons(rc,Substring(in.b,1,IOBLEN − 1));
return in / { .b = oBuf };

case CreateSuccess(res,S):
\Bytes oBuf = Bcons(RC SUCCESS,Bcons(res,Substring(

in.b,2,IOBLEN − 2)));
return (\configuration) { .S = S, .b = oBuf }; }

case NoCArgs():
\Bytes oBuf = Bcons(RC UNMARSHAL,Substring(in.b,1,

IOBLEN − 1));
return (\configuration) { .S = in.S, .b = oBuf }; } })

Create r takes and returns a configuration, composed of a Device state and an I/O buffer. It first

parses the input buffer (in a command-specific way), returning an “unmarshalling” error (code 254)

in case parsing fails (in this case, if the buffer does not start with a valid template). The Create cmd r

function is then called on the Device state and the parsed template, and its return value analysed. In

case of error, the error code is copied into the first byte of the output buffer and control is returned

to the adversary (no updates are made to the internal state). When successful, the success code 0 is

written to the first byte of the output buffer, and the returned handle is written to the second byte of
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the output buffer. In this implementation, we choose to leave the irrelevant parts of the I/O buffer

untouched. Other implementations may set it to 0, or fill it with randomness; however, whatever

behaviour is chosen needs to be fully specified in the reference implementation, as the I/O buffer’s

contents are directly given to the adversary.

Apart from the differences due to the store-passing transformation (for example, makeEntry reads

the Seed module’s state directly in F7, whereas it is taken as an argument in VCC notation), some

syntactic differences exist between the two languages. For example, in F7, bytes and integers are two

different types and casts need to be made explicit, whereas VCC handles them automatically (and

automatically discharges the proof obligations to check that any natural number used as a byte is

less than 256, for example). In F7, n-ary functions are curried, and we make use of the polymorphic

option type, whereas these are not supported in VCC syntax.

Despite those differences, we believe that these two programs are in fact two notations for the same

mathematical functions from configurations to configurations.

Observation Functions and Simulation Contracts Our system implementations take no arguments

and return no results, instead reading their input and writing their output by side-effect on global

variables. Therefore, system configurations for the Device are simply C program states that contain

a global buffer BYTE IOB[IOBLEN], and a global state struct store s store, where the structure type

struct store s is displayed right.

In addition to the system state (a primary seed, a storage key and an array of memory slots), we give

the system state a ghost field containing a copy of the reference state.

The observation function on configurations works by retrieving the cryptographic states from the

stored copy of the reference state, building a reference store by observing the internal memory slot

by slot, and observing the system seed and storage key. Additional invariants are used to improve the

performance of the verification, but are not displayed or discussed here for clarity, and do not change

the final verification result, since the observation function used is the same as the one displayed.

Memory slots are considered empty if their template field’s first byte is neither 0 nor 1 (the only valid

first bytes for templates), and otherwise get observed as expected.

All top-level simulation contracts are similar. For all Device commands, we prove (trivial) termi-
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nation and simulation (for the appropriate reference command). In addition, we prove sufficient

memory-safety to sequentially compose calls to the commands, which includes proving that all in-

variants on the global store hold at function boundaries.

Observation and Simulation for Device
struct store s {

BYTE pSeed[SEEDSIZE];
BYTE k[STORAGEKEYSIZE];
slot t store[STORE SIZE];

// Abstract State
(ghost state S) } store;

(def \entryOption entry(\SeedState S, slot t e)
(requires isSeedState(S))

{ if (e.tmpl[0] == 2) return NoEntry();
else return SoEntry(makeEntry(S,e.t,key(S,e.t,e.kr))); })

(def \configuration configuration()
(requires \wrapped(&store))
(requires \mutable array(IOB,IOBLEN))
(ensures isConfiguration(\result))

{ state S = store.S / {
.store = λ\natural i;

(i < storeSize()) ?
entry(store.S.Seed S,store.store[i]) :
NoEntry(),

.stKey = EtMKey(from array(store.k,EtMKeySize())),

.pSeed = seed(from array(store.seed,seedSize())) };
return (\configuration) {

.buffer = from array(IOB,IOBLEN), .S = S }; })

void Create(void)
(decreases 0) // Termination
(updates &store) // State Invariants
(writes \array range(IOB,IOBLEN)) // Writes clause
(ensures \mutable array(IOB,IOBLEN))// Memory−safety
(ensures configuration() == Create r(\old(configuration())));

We only displayed a sample of the observation

functions. As they are central to the statement

of the simulation theorem, and later central to

the security proof, we display them fully in Ap-

pendix B.

We have now reduced the problem of proving

simulation to a simple functional verification

problem, and can state the corresponding the-

orem.

Theorems

We prove several theorems relating the C imple-

mentation of the Device and its reference imple-

mentation in F#.

Device Simulation Our first theorem states

that whatever reference implementation Crypto

of the cryptographic primitives that provides the desired functionalities, and whatever system im-

plementation Crypto of these same cryptographic functionalities that is such that Crypto / Crypto,

where the observation functions for each function are those listed above, the reference program

Crypto · Device, is simulated by the system program Crypto · Device with the configuration() ob-

servation function.

Theorem 7 (Device Simulation). The following property holds, where simulation on modules is short for

simulation with the same observation functions for all functions in the module.

{
HEtMEnc ,HKDF,HEtM

}
` Device /configuration() configuration() Device

Proof. Using VCC, we prove that each of the system Device commands fulfills its contract under the
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assumption that the system cryptographic library simulates the reference cryptographic library with

the appropriate observation functions, as described above. We conclude by Lemma 2, which, we

recall, states that the simulation contract implies semantic simulation.

VCC is only semi-automated, and many intermediate lemmas, invariants and definitions may be

needed to complete the simulation proof. However, given the hypotheses and conclusions in con-

tract form, this constitutes a problem in pure verification, and does not involve any cryptographic

expertise.

Robust Device Simulation The theorem above may still place strong preconditions on the com-

mands, and it may seem unreasonable to assume all adversaries to respect them. However, we show

that all adversaries with oracle access to the Device commands can in fact be written as verified C

programs, therefore showing that the simulation result holds even in the presence of an adversary

(and in particular a p.p.t. adversary).

Lemma 5 (Robust Device Simulation). Any p.p.t. adversary A in A(t,
(
qc,l
)

c∈Cmd,l∈{0,1}) can be written

as a C program JAK such that
{
Device /configuration() configuration() Device

}
` {True} JAK {True}.

In addition, for all intermediate configuration Ĉ obtained during the execution of the reference program

Device · A in an initial configuration where all slots are empty and the storage key and seed are initialised

at random, there exists a system configuration C such that Ĉ = configuration(C).

Proof. The first result is proved by verifying in VCC a program that loops indefinitely, filling the

input buffer and running a command non-deterministically (see Appendix C). All p.p.t. adver-

saries with oracle access to the commands are clearly refinements of such a program (replacing non-

deterministic choice with some local probabilistic computation).

The second result is proved by induction on adversary traces, which are finite in length. By verifica-

tion, we prove that any such initial reference state is the result of observing an initial system state with

the same key and seed. (It should be noted that non-empty initial states can easily be dealt with by

adding code to the initialisation function we verify to prove this base case.) The adversary, between

oracle queries, can only affect the reference configuration by writing into the I/O buffer, on which

the observation function is onto (any reference buffer are the observation of a system buffer con-

taining it). During oracle queries, since we know by induction hypothesis that the initial reference

configuration is the result of an observation, the simulation contract applies, and the final system

configuration (which exists by termination) is observed as the final reference configuration.
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Entry Formatting Lemma Finally, we prove the formatting lemma on entries, which we recall is

used the security reduction proof for the reference Device (Section 5.2.3).

Lemma 6 (Plaintext Side-Condition). Parsing a formatted store entry yields the original store entry.

Proof. By verifying in VCC the reference im-

plementation of the displayed function, where

format and parse are the def encodings of the

F# formatting and parsing functions for unload-

ing and loading objects. The SoEntry option con-

structor is required since parsing is partial. (The

seedState needs to be passed in since ideal refine-

ments on entries make use of the Created and

Imported predicates.)

Parsing and Formatting of Store Entries
(abstract \bool lemma parse format ID()

(ensures ∀\seedState S; \entry e;
isSeedState(S)⇒isEntry(S,e)⇒
parse(S,format(S,e)) == SoEntry(e))

(returns \true))

5.2.3 Security of the System Implementation

In this section, we prove Theorems 3 and 4, and conclude the proof of security for the system imple-

mentation of the Device.

Perfect Security for Ideal C Code

We first prove Theorem 3, which we recall states that the ideal system implementation of the De-

vice is perfectly indistinguishable from the idealized reference functionality Device
i. This entails, by

transitivity and Theorem 5, that no adversary can break the security properties (load integrity and

security of encryption under sensitive keys) of the ideal system implementation. The proof works by

replacing adversary calls to the ideal C implementation of the Device with queries to the ideal refer-

ence oracles, using the verified simulation relation to show that there are no observable differences

between the two programs.

Proof of Theorem 3. Given an adversary A inA(t,
(
qc,l
)

c∈Cmd,l∈{0,1}) running with Device
i. Each query

that A makes to an oracle in some configuration Ĉ can be replaced with a query to the same oracle in

α ◦Devicei in any configuration C such that Ĉ = α(C) without changing the full program’s behaviour.

Since this is true for each random tape, and our observation function preserves the random tapes,

this is also true for the probabilistic program.
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System Security Reduction

We prove Theorem 4, which we recall claims that the advantage of an adversary trying to distinguish

the ideal and concrete system Device implementations is bounded by a polynomial function of the

distinguishing advantages for the cryptographic primitives. We prove that the same bound applies

between the system implementations as between the reference implementations (as established in

Theorem 6). The adversary-interface-specific proof is similar to that of Theorem 3.

Proof of Theorem 4. Given an adversary A inA(t,
(
qc,l
)

c∈Cmd,l∈{0,1}) running with Device
c. Each query

that A makes to an oracle in some configuration Ĉ can be replaced with a query to the same oracle

in α ◦ Devicec in any configuration C such that Ĉ = α(C) without changing the full program’s be-

haviour. Since this is true for each random tape, and our observation function preserves the random

tapes, this is also true for the probabilistic program.

Concrete Security for the System Device

Finally, we can prove the concrete security theorem for the system Device.

Proof of Theorem 2. Theorem 3 states that no adversary in A(t,
(
qc,l
)

c∈Cmd,l∈{0,1}) can ever win either

I(Devicei) or S(Devicei), that is, no adversary can break either Load Integrity or Security of En-

cryption under Sensitive Keys of the ideal system Device.

Theorem 4 states the following bound on the distinguishing advantage for the ideal and concrete

system Devices

AdvDevice
c

Devicei

(
t,
(
qc,l
)

c∈Cmd,l∈{0,1}

)
≤

AdvEtMAE(EtM) (
P (t) , 1, qUnload, qLoad) +

AdvKDFRF
(
P′ (t) , qCreate,s + qCreate,p

)
+

AdvEtMs
AE(EtMs)

(
P′′ (t) , qCreate,s, qEncrypt,s, qDecrypt,s

)
.

By definition of the distinguishing advantage, and of the winning conditions for I(Devicec) and

S(Devicec), we conclude that the probability of any adversary winning either one of these games is

bounded by the distinguishing advantage AdvDevice
c

Devicei

(
t,
(
qc,l
)

c∈Cmd,l∈{0,1}

)
.

Informally, we can conclude that, if the distinguishing advantages on the secure primitives are neg-

ligible, then the probability of the adversary winning either of the security games is also negligible.
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5.3 Discussion

The table below summarises the verification effort involved for our exemplary Device, in terms of

lines of code (LoC, counts only executable code), lines of specification (LoS, counts observation func-

tions and reference implementations in VCC notation), and lines of annotations (LoA, denotes con-

tracts, invariants and intermediate assertions inserted for completeness or performance reasons), as

well as verification times (shown in seconds, and obtained on a mid-end laptop).

File LoC LoS/LoA Time (s)

template.fs7 - 20 -

template.fs 10 - 5

template.vcc.h - 30 1

secrets.fs7 - 10 -

secrets.fs 5 - 4

secrets.vcc.h - 30 -

secrets.vcc.c - 10 1

EtMs.fs7 - 25 -

EtMs.vcc.h - 120 1

EtMs.ideal.c - 100 5

EtMs.concrete.c - 70 5

EtMp.fs7 - 20 -

EtMp.vcc.h - 120 1

EtMp.ideal.c - 100 5

EtMp.concrete.c - 70 5

EtM Enc.h 4 100 -

File LoC LoS/LoA Time (s)

seed.fs7 - 42 -

seed.fs 90 - 6

seed.vcc.h - 200 1

seed.h 4 100 -

store.fs7 - 50 -

store.fs 55 - 5

store.vcc.h - 200 1

marshal.h 10 200 -

marshal.c 120 20 10

EtM.fs7 - 25 -

EtM.vcc.h - 150 1

EtM.h 4 20 -

device.fs7 - 20 -

device.fs 100 - 6

api.fs 200 - 6

device.vcc.c 200 - 10

device.c 500 30 900

In the table, files with extensions .concrete.c and .ideal.c are not in fact part of the proof, but serve

as sanity checks for the abstract reference interfaces. By providing ideal and concrete implemen-

tations to the abstract reference interfaces, we prove that the simulation theorem (which we recall

is quantified over all implementations of the reference interface) is not vacuously true, and we can

additionally argue that it captures the intended ideal and concrete interfaces, although this latter

argument is necessarily informal.

As expected, most of the difficulty resides in proving the simulation for the Device commands (simu-

lation for the marshalling function is almost immediate). However, most commands in fact take less

than 20 seconds to verify, except for the Create cmd (500s) and Import cmd (200s) commands. The

slowdown appears to be due to imprecisions in the memory safety and coupling invariants, which

we have yet to identify. We believe that the verification times for these two functions can also be
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brought down to under 20 seconds with enough engineering work.

Without counting the cryptographic library’s implementations (not shown in the table), the C imple-

mentation of the Device consists of 700 lines of C code, that are fully verified. The F# implementation

is composed of 500 lines of F# code, which are denoted, along with 200 lines of type annotations, into

1100 lines of VCC specifications, counting only the abstract interfaces for cryptographic primitives.

This explosion in the size of the specification, and the current reliance on several tools, highlight some

of the shortcomings of our methodology. We now discuss them, and discuss potential solutions to

the underlying problems.

5.3.1 On the Size of Specifications and Systems

In many cases, we expect the C code to be the most precise specification of the system to prove secure.

This is for example, the case for the new TPM standard, whose normative implementation, written

in C, counts 30,000 lines of code [Tru, 2013, Part3]. Manually extracting an F# implementation on

which to perform the security proof for such a large system is not reasonably feasible. On the other

hand, automated extraction techniques such as those recently presented by Aizatulin et al. [2011b,

2012] can automatically produce almost full specifications of a system from the C code.

We do not believe that automated proofs of security on these extracted models is a viable option on its

own, since minor changes in the C code would require the security proof to be restarted from scratch.

However, such models could be structured and translated into a VCC specification useful for proving

simulation, and transferring any security results obtained on the model to the C implementation.

Changes to the C code that do not change the specification could then be dealt with without changing

the security proof, and changes to the C code that do affect the specification could be dealt with at

a much smaller cost, by incrementally modifying the specification instead of running the extraction

process anew.

Finally, if going from C to F# is difficult, in particular when attempting to structure the F# code to

facilitate a security proof by typing, we believe that it would be feasible to generate C code from a

structured F# specification (as was done by Mukhamedov et al. [2013]), along with a VCC specifica-

tion that could be used to prove simulation. Optimisations and mitigation measures could then be

implemented manually on the C code, incrementally updating the simulation proof without having
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to redo the security proof itself.

5.3.2 Security for Under-Specified Systems

In the discussed example, we specify the Device fully. However, we only really need to specify

enough of the system that all its unspecified behaviours can be hidden by the observation functions.

For example, if the Device used randomly sampled integers as handles, internally keeping a table

mapping handles to memory addresses, the actual memory allocation mechanism could be kept

completely unspecified, as its behaviour would be hidden from any adversary with oracle access to

the Device commands (we would still have to prove its memory safety properties, and perhaps more

precise functional properties to enable the simulation proof for the rest of the system). However, this

would require the use of finer-grained observation functions and, in the absence of a simple criterion

on observation functions that guarantees the transfer of security properties, would make the proof

of Theorems 3 and 4 more complex.

Note that our observation functions already hide unspecified behaviour of this sort, since it does

not let the adversary observe the memory addresses of any of the variables manipulated, be they

global or local. In this sense, the use of array indices as addresses already provides some abstrac-

tion from low-level details. However, the resulting observation functions are still very simple, and

intuitively correspond to an adversary with oracle access to the system, in particular if the Device is

implemented in hardware rather than software.
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Chapter 6

Conclusion

We discuss the contributions outlined in Chapter 1 in the light of their presentation in Chapters 2

to 5.

In Chapter 2, we described a protocol description language that we use to generate Coq theories

in which symbolic security properties of the described protocol can be used in a general, modular

way. We have shown that the security proof can in fact be organised such that protocol-specific

proof obligations are simple, and some of the security proof can be discharged independently of the

protocol.

In Chapter 3, we show how such protocol descriptions can be used, within a general-purpose C

verifier, to soundly prove security properties of C programs in the symbolic model of cryptography.

In particular, we develop a framework that reduces security properties of C programs to a set of

verification tasks that we argue can be performed without security expertise.

Further, in Chapter 4, we define a notion of program simulation, that we show is provable using

general-purpose verifiers, and that we use, in Chapter 5, to prove security properties of a C pro-

gram in the computational model of security. Although some security-specific arguments remain

to be made once the program simulation property is proved by verification, the process of proving

simulation does not require any security expertise.

These results are a step towards using general-purpose C verification to prove security properties

of C programs in the symbolic and computational models of security. However, much work is still

needed in order for them to be applicable to real-world software.
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6. CONCLUSION

6.1 From Secure Model to Usable Specification

First and foremost, the transition from T3 and F# code to pure VCC specifications was, during the

course of this research, done by hand and trusted. In both cases, the syntactic similarities between the

source and target language, along with some simple proof obligations that we discharge automati-

cally on the VCC side serve to reinforce the trust. However, the process of turning a formal model

into a VCC specification that can be used to verify C code is expensive and is an obvious impediment

to scalability.

It would be easy to automatically generate VCC definitions and axioms from a T3 model in a provable

way (given formal semantics for the VCC specification language). However, the transition from F#

to VCC is a bit more involved, as it also includes a state-passing transform to make all accesses to

the cryptographic state explicit, and also an effects-tracking type system to simplify the resulting

specification by ensuring that the states are only mentioned where necessary and therefore avoid

unnecessary proof obligations.

The technique demonstrated in Chapter 5 is geared towards proving both concrete and ideal simu-

lation, but such a strong notion of simulation is not in fact necessary: it would be sufficient to prove

that the concrete system code simulates the concrete reference code to obtain a concrete bound on the

probability that an adversary breaks the security of the concrete system code. In fact, this simplified

scenario would also yield much lighter VCC specifications, since the cryptographic state is only used

for sampling randomness in the concrete code, and very few operations rely on it. Another advan-

tage of this simpler notion of simulation is that only programs need to be translated from F# to VCC,

and not abstract typed interfaces.

6.2 Threat Models, Shims and Observation Functions

In both the symbolic and computational model, most of the difficulty was in giving a reasonable

formal definition of what constitutes an adversary. In the symbolic model, we write an application-

specific adversary shim to check that standard symbolic adversaries are captured by our model,

whereas in the computational model, we use carefully crafted observation functions to represent

adversaries that have limited access to the system. In addition, both shims and observation functions
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are specific both to the protocol or device under study, and to the threat model considered. For

example, the configuration observation function considered in Chapter 5 would not be sufficient to

guarantee concrete security in a model where the adversary runs in the same address space as the

device code.

Defining good shims and observations for various threat models will need to take into account real

attack scenarios. On a device, for example, timing and power channels should be modelled. For

a cryptographic library, meant to be run in the same address space as its adversary, not much se-

curity could be obtained without formalizing properly, as started by Abadi and Plotkin [2012] and

Abadi and Planul [2013], widely deployed operating system countermeasures such as Address Space

Layout Randomization or stack canaries.

6.3 On Usability and Applicability

In this first step towards using general-purpose verification tools to prove cryptographic security

properties, we did not measure the amount of effort needed to obtain the desired formal security

guarantees. In particular, we only looked at small examples, for which we developed the specifi-

cation, security proof, C code and functional verification in parallel. We expect that, assuming a

translation from provable specifications to VCC specifications as discussed in Section 6.1, it should

also be possible to use our techniques starting from a high-level specification (for example in T3, F#

or EasyCrypt’s pWhile language) and then generating both the VCC specification, the C code and an

initial simulation proof that can be updated whenever changes are made to the C code.

As shown in the Device example (Chapter 5), inductive specifications are used as invariants to prove

simulation on loops, and it is therefore the case that a single C function simulates the composition

of several specification functions. It would be difficult, and perhaps impossible without considering

intermediate levels of specifications, to prove simulation in the inverse situation, where a single

specification function is simulated by the composition of several C functions. In the computational

model, we therefore recommend that the specification be written using small functions, to make the

C code less rigid and give more liberty to the engineer in the final phases of development.

If the technique we developed for the symbolic model has been shown to be applicable with only

minor changes to both protocols ([Dupressoir et al., 2011]) and stateful devices ([Polikarpova and
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Moskal, 2012]), this is much less clear for our simulation-based techniques. In particular, we do not

yet know how to prove simulation in the presence of dynamic memory allocation (that introduces

observable non-determinism unless it can be proven that allocation never fails), and even less so in

the presence of concurrency, as is often the case with protocols.

Both of these issues, along with the threat model issues mentioned above are interesting research

challenges.
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Appendix A

Full Coq Framework for Symbolic

Cryptography

From file common.v, we display the Coq definitions for the full framework.

Full Coq Framework

Module Type ProtocolDefs.
Parameter nonce usage: Type.
Parameters hmac usage senc usage: Type.
Parameters sign usage enc usage: Type.
Parameter pEvent: Type.

End ProtocolDefs.

Module Defs (PD: ProtocolDefs).
Include PD.

Inductive usage: Type :=
| AdversaryGuess
| Nonce (nu: nonce usage)
| HmacKey (hu: hmac usage)
| SEncKey (eu: senc usage)
| SignKey (su: sign usage)
| VerfKey (su: sign usage)
| EncKey (eu: enc usage)
| DecKey (eu: enc usage).

Inductive event: Type :=
| New (t: term) (u: usage)
| AsymPair (pk: term) (sk: term)
| ProtEvent (pe: pEvent).

Definition log: Type := set event.
Definition Logged (e: event) (L: log): Prop := set In e L.
Definition LoggedP (e: pEvent) (L: log): Prop := Logged (

ProtEvent e) L.
Definition leq log (L L’: log): Prop := ∀ e, Logged e L → Logged

e L’.

Definition Stable (P: log → Prop) := ∀ L L’,
leq log L L’ → P L →
P L’.

Definition WF log (L: log): Prop :=

(∀ t u u’,
Logged (New t u) L →
Logged (New t u’) L → u = u’) ∧

(∀ pk sk,
Logged (AsymPair pk sk) L →
((∃ su,

Logged (New pk (VerfKey su)) L ∧
Logged (New sk (SignKey su)) L) ∨

(∃ eu,
Logged (New pk (EncKey eu)) L ∧
Logged (New sk (DecKey eu)) L))).

End Defs.

Module Type ProtocolInvariants (PD: ProtocolDefs).
Include Defs PD.

Parameter LogInvariant: log → Prop.

(∗ Nonce Predicate ∗)
Parameter nonceComp: term → log → Prop.
Parameter nonceComp Stable: ∀ t, Stable (nonceComp t).

(∗ HMAC Predicates ∗)
Parameter hmacComp: term → log → Prop.
Parameter hmacComp Stable: ∀ t, Stable (hmacComp t).

Parameter canHmac: term → term → log → Prop.
Parameter canHmac Stable: ∀ k p, Stable (canHmac k p).

(∗ SEnc Predicates ∗)
Parameter sencComp: term → log → Prop.
Parameter sencComp Stable: ∀ t, Stable (sencComp t).

Parameter canSEnc: term → term → log → Prop.
Parameter canSEnc Stable: ∀ k p, Stable (canSEnc k p).

(∗ Signature Predicates ∗)
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Parameter sigComp: term → log → Prop.
Parameter sigComp Stable: ∀ t, Stable (sigComp t).

Parameter canSign: term → term → log → Prop.
Parameter canSign Stable: ∀ k p, Stable (canSign k p).

(∗ Enc Predicates ∗)
Parameter encComp: term → log → Prop.
Parameter encComp Stable: ∀ t, Stable (encComp t).

Parameter canEnc: term → term → log → Prop.
Parameter canEnc Stable: ∀ k p, Stable (canEnc k p).

End ProtocolInvariants.

Module CryptographicInvariants (PD: ProtocolDefs) (PI:
ProtocolInvariants PD).

Include PI.

Definition GoodLog (L: log): Prop :=
WF log L ∧ LogInvariant L.

Inductive level := Low | High.

Inductive Level: level → term → log → Prop :=

(∗ AdversaryGuesses are always Low ∗)
| Level AdversaryGuess: ∀ l bs L,

Logged (New (Literal bs) AdversaryGuess) L →
Level l (Literal bs) L

(∗ Nonces are Low when nonceComp holds ∗)
| Level Nonce: ∀ l bs L nu,

Logged (New (Literal bs) (Nonce nu)) L →
(l = Low → nonceComp (Literal bs) L) →
Level l (Literal bs) L

(∗ HmacKeys are Low when hmacComp holds ∗)
| Level HmacKey: ∀ l bs L hu,

Logged (New (Literal bs) (HmacKey hu)) L →
(l = Low → hmacComp (Literal bs) L) →
Level l (Literal bs) L

(∗ SEncKeys are Low when sencComp holds ∗)
| Level SEncKey: ∀ l bs L su,

Logged (New (Literal bs) (SEncKey su)) L →
(l = Low → sencComp (Literal bs) L) →
Level l (Literal bs) L

(∗ SigKeys are Low when signComp holds ∗)
| Level SigKey: ∀ l bs L su,

Logged (New (Literal bs) (SignKey su)) L →
(l = Low → sigComp (Literal bs) L) →
Level l (Literal bs) L

(∗ VerfKeys are always Low ∗)
| Level VerKey: ∀ l bs L su,

Logged (New (Literal bs) (VerfKey su)) L →
Level l (Literal bs) L

(∗ EncKeys are always Low ∗)
| Level EncKey: ∀ l bs L eu,

Logged (New (Literal bs) (EncKey eu)) L →
Level l (Literal bs) L

(∗ DecKeys are Low when encComp holds ∗)
| Level DecKey: ∀ l bs L eu,

Logged (New (Literal bs) (DecKey eu)) L →
(l = Low → encComp (Literal bs) L) →
Level l (Literal bs) L

(∗ Pairs are as Low as their components ∗)
| Level Pair: ∀ l t1 t2 L,

Level l t1 L →
Level l t2 L →
Level l (Pair t1 t2) L

(∗ Honest Hmacs are as Low as their payload ∗)
| Level Hmac: ∀ l k m L,

canHmac k m L →
Level l m L →
Level l (HMac k m) L

(∗ Dishonest Hmacs are Low ∗)
| Level Hmac Low: ∀ l k m L,

Level Low k L →
Level Low m L →
Level l (HMac k m) L

(∗ Honest SEncs are Low ∗)
| Level SEnc: ∀ l l’ k p L,

canSEnc k p L →
Level l’ p L →
Level l (SEnc k p) L

(∗ Dishonest SEncs are Low ∗)
| Level SEnc Low: ∀ l k p L,

Level Low k L →
Level Low p L →
Level l (SEnc k p) L

(∗ Honest Sigs are as Low as their payload ∗)
| Level Sig: ∀ l k m L,

canSign k m L →
Level l m L →
Level l (Sign k m) L

(∗ Dishonest Sigs are Low ∗)
| Level Sig Low: ∀ l k m L,

Level Low k L →
Level Low m L →
Level l (Sign k m) L

(∗ Honest Encryptions are Low ∗)
| Level Enc: ∀ l k p L,

canEnc k p L →
Level High p L →
Level l (Enc k p) L

(∗ Dishonest Encryptions are Low ∗)
| Level Enc Low: ∀ l k p L,

Level Low k L →
Level Low p L →
Level l (Enc k p) L.

Theorem Low High: ∀ t L,
Level Low t L → Level High t L.

Theorem Level Stable: ∀ l t L L’,
leq log L L’ → Level l t L →
Level l t L’.

Theorem AbsurdDistinctUsages: ∀ P L t u u’,
GoodLog L →
u <> u’ →
Logged (New t u) L →
Logged (New t u’) L →
P.

Theorem LowNonce Inversion: ∀ L n nu,
GoodLog L →
Logged (New (Literal n) (Nonce nu)) L →
Level Low (Literal n) L →
nonceComp (Literal n) L.

Theorem LowHmacKeyLiteral Inversion: ∀ L k hu,
GoodLog L →
Logged (New (Literal k) (HmacKey hu)) L →
Level Low (Literal k) L →
hmacComp (Literal k) L.
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Theorem HMac Inversion: ∀ L l k p,
Level l (HMac k p) L →
canHmac k p L ∨ Level Low k L.

Theorem SEnc Inversion: ∀ L l k p,
Level l (SEnc k p) L →
canSEnc k p L ∨ Level Low k L.

Theorem Sign Inversion: ∀ L l k p,
Level l (Sign k p) L →
canSign k p L ∨ Level Low k L.

Theorem Enc Inversion: ∀ L l k p,
Level l (Enc k p) L →
(canEnc k p L ∧ Level High p L) ∨ Level Low k L.

End CryptographicInvariants.
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Appendix B

Observation Functions and Simulation

Contracts - Unabridged

This appendix lists the full observation functions for all four cryptographic libraries, and the simu-

lation contracts for the three corresponding system primitives. The aim is to make precise the three

simulation hypotheses from Theorem 7.

We do not list the simulation contracts for the Device commands, that are exactly identical except

for the reference function they call. We recall that the observation function for configurations was

shown in Section 5.2.2.

B.1 Encryption of User-Provided Plaintexts

We display the observation functions for modules EtMs and EtMp (none are needed for the key gener-

ation oracle, used only in the ideal random function), and the simulation contracts for the common

system encryption function. Together, they form the hypothesis we calledHEtMEnc
.

Observation Functions for Authenticated Encryption using Sensitive Keys (EtMs)
// Encryption
(def \EtMsENCIn EtMsENCIn(\EtMpState,\EtMsState S,\Bytes t,BYTE∗ k,UINT8 k len,BYTE∗ p,UINT8 p len,BYTE∗)

(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(requires k len == keylength(t))
(requires p len == plainSize())
(ensures isEtMsENCIn(\result))
{ return (\EtMsENCIn) {

.S = S, .t = t,

.k = EtMsKey(t,from array(k,k len)),

.p = plain(from array(p,p len)) }; })
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(def \EtMsENCOut EtMsENCOut(\EtMpState,\EtMsState S,\Bytes t,BYTE∗,UINT8,BYTE∗,UINT8,BYTE∗ c)
(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(ensures isEtMsENCOut(\result))
{ return (\EtMsENCOut) { .S = S, .c = from array(c,cipherSize()) }; })

// Decryption
(def \EtMsDECIn EtMsDECIn(\EtMpState,\EtMsState S,\Bytes t,BYTE∗ k,UINT8 k len,BYTE∗ c,UINT8 c len,BYTE∗)

(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(requires k len == keylength(t))
(requires c len == cipherSize())
(ensures isEtMsDECIn(\result))
{ return (\EtMsDECIn) {

.S = S, .t = t,

.k = EtMsKey(t,from array(k,k len)),

.c = from array(c,c len) }; })

(def \EtMsDECOut EtMsDECOut(\EtMpState,\EtMsState S,\Bytes t,BYTE∗,UINT8,BYTE∗,UINT8,BYTE∗ p,UINT8 res)
(requires isEtMsState(S))
(requires isTemplate(t) && sensitive(t))
(ensures isEtMsDECOut(\result))
{ if (res == 0)

return SoPlain(plain(from array(p,plainSize())));
return NoPlain();
})

Observation Functions for Authenticated Encryption using Non-Sensitive Keys (EtMp)

// Encryption
(def \EtMpENCIn EtMpENCIn(\EtMpState S,\EtMsState,\Bytes t,BYTE∗ k,UINT8 k len,BYTE∗ p,UINT8 p len,BYTE∗)

(requires isEtMpState(S))
(requires isTemplate(t) && !sensitive(t))
(requires k len == keylength(t))
(requires p len == plainSize())
(ensures isEtMpENCIn(\result))
{ return (\EtMpENCIn) {

.S = S, .t = t,

.k = EtMpKey(t,from array(k,k len)),

.p = from array(p,p len) }; })

(def \EtMpENCOut EtMpENCOut(\EtMpState S,\EtMsState,\Bytes t,BYTE∗,UINT8,BYTE∗,UINT8,BYTE∗ c)
(requires isEtMpState(S))
(requires isTemplate(t) && !sensitive(t))
(ensures isEtMpENCOut(\result))
{ return (\EtMpENCOut) {

.S = S, .c = from array(c,cipherSize()) }; })

// Decryption
(def \EtMpDECIn EtMpDECIn(\EtMpState S,\EtMsState,\Bytes t,BYTE∗ k,UINT8 k len,BYTE∗ c,UINT8 c len,BYTE∗)

(requires isEtMpState(S))
(requires isTemplate(t) && !sensitive(t))
(requires k len == keylength(t))
(requires c len == cipherSize())
(ensures isEtMpDECIn(\result))
{ return (\EtMpDECIn) {

.S = S, .t = t,

.k = EtMpKey(t,from array(k,k len)),

.c = from array(c,c len) }; })

(def \EtMpDECOut EtMpDECOut(\EtMpState S,\EtMsState,\Bytes t,BYTE∗,UINT8,BYTE∗,UINT8,BYTE∗ p,UINT8 res)
(requires isEtMpState(S))
(requires isTemplate(t) && !sensitive(t))
(ensures isEtMpDECOut(\result))
{ if (res == 0)

return SoBytes(from array(p,plainSize()));
return NoBytes();
})
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Simulation Contracts for the Encryption and Decryption of User-Provided Plaintexts (EtMEnc.h)
//Encryption
void (assume correct) ENC( (ghost \EtMpState EtMp S) (ghost \EtMsState EtMs S) (ghost \Bytes t) BYTE∗ k,UINT8 k len, BYTE∗ p,

UINT8 p len, BYTE∗ buffer (out \EtMpState EtMp O) (out \EtMsState EtMs O))
(decreases 0)
(requires isEtMpState(EtMp S))
(requires isEtMsState(EtMs S))
(ensures isEtMpState(EtMp O) && leq(EtMp S,EtMp O))
(ensures isEtMsState(EtMs O) && leq(EtMs S,EtMs O))
(requires isTemplate(t))
(writes \array range(buffer,(size t) cipherSize()))
// Simulation when sensitive

(ensures sensitive(t)⇒
EtMsENCOut(EtMp O,EtMs O,t,k,k len,p,p len,buffer) ==
EtMs ENC(\old(EtMsENCIn(EtMp S,EtMs S,t,k,k len,p,p len,buffer))))

(ensures sensitive(t)⇒EtMp O == EtMp S)
// Simulation when public

(ensures !sensitive(t)⇒
EtMpENCOut(EtMp O,EtMs O,t,k,k len,p,p len,buffer) ==
EtMp ENC(\old(EtMpENCIn(EtMp S,EtMs S,t,k,k len,p,p len,buffer))))

(ensures !sensitive(t)⇒EtMs O == EtMs S);

// Decryption
UINT8 (assume correct) DEC( (ghost \EtMpState EtMp S) (ghost \EtMsState EtMs S) (ghost \Bytes t) BYTE∗ k,UINT8 k len, BYTE∗ c,

UINT8 c len, BYTE∗ buffer)
(decreases 0)
(requires isEtMpState(EtMp S))
(requires isEtMsState(EtMs S))
(requires isTemplate(t))
(writes \array range(buffer,(size t) plainSize()))
// Simulation when sensitive

(ensures sensitive(t)⇒
EtMsDECOut(EtMp S,EtMs S,t,k,k len,c,c len,buffer,\result) ==
EtMs DEC(\old(EtMsDECIn(EtMp S,EtMs S,t,k,k len,c,c len,buffer))))

// Simulation when public
(ensures !sensitive(t)⇒

EtMpDECOut(EtMp S,EtMs S,t,k,k len,c,c len,buffer,\result) ==
EtMp DEC(\old(EtMpDECIn(EtMp S,EtMs S,t,k,k len,c,c len,buffer))));

B.2 Key Derivation

We display the observation functions for module Seed, and the simulation contracts for the system

key derivation function. Together, they form the hypothesis we calledHKDF.

Observation Functions for Key Derivation (Seed)
(def \KDFIn KDFIn(\EtMsState EtMs S, \EtMpState EtMp S, \SeedState S, \Bytes t, BYTE∗, UINT8, BYTE∗ s, UINT8 s len, BYTE∗ buf,

UINT8∗ buf len)
(requires isEtMsState(EtMs S))
(requires isEtMpState(EtMp S))
(requires isSeedState(S))
(requires isTemplate(t))
(requires s len == seedSize())
(ensures isKDFIn(\result))
{ return (\KDFIn) {

.EtMs S = EtMs S, .EtMp S = EtMp S,

.S = S, .t = t, .s = seed(from array(s,s len)) }; })
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(def \KDFOut KDFOut(\EtMsState EtMs S, \EtMpState EtMp S, \SeedState S, \Bytes t, BYTE∗, UINT8, BYTE∗ s, UINT8 s len, BYTE∗ buf,
UINT8∗ buf len)

(requires isEtMsState(EtMs S))
(requires isEtMpState(EtMp S))
(requires isSeedState(S))
(requires isTemplate(t))
(requires ∗buf len == keylength(t))
(ensures isKDFOut(t,\result))
{ return (\KDFOut) {

.EtMs S = EtMs S, .EtMp S = EtMp S,

.S = S, .k = key(S,t,from array(buf,∗buf len)) }; })

Simulation Contracts for Key Derivation (seed.h)
void (assume correct) KDF( (ghost \EtMsState EtMs S) (ghost \EtMpState EtMp S) (ghost \SeedState S) (ghost \Bytes tmpl) BYTE∗

t, UINT8 t len, BYTE∗ s, UINT8 s len, BYTE∗ buf, UINT8∗ buf len (out \EtMsState EtMs SOut) (out \EtMpState EtMp SOut) (out
\SeedState SOut))

(decreases 0) // Termination
(maintains \thread local array(t,t len)) // Mem
(maintains \thread local array(s,s len)) // Mem
(ensures \mutable array(buf,∗buf len)) // Mem
(requires isTemplate(tmpl) && tmpl == from array(t,t len))
(writes \array range(buf,(size t) keylength(tmpl)), buf len) // Writes
(ensures ∗buf len == keylength(tmpl))
(ensures

KDFOut(EtMs SOut,EtMp SOut,SOut,tmpl,t,t len,s,s len,buf,buf len) ==
KDF r(\old(KDFIn(EtMs S,EtMp S,S,tmpl,t,t len,s,s len,buf,buf len))));

B.3 Encryption of Device Objects

We display the observation functions for module EtM, and the simulation contracts for the system

function used for formatting and encrypting (and decrypting and parsing) Device objects. Together,

they form the hypothesis we calledHEtM.

Observation Functions for the Protection of Device Objects (EtM)
// Key Generation
(def \EtMGENIn EtMGENIn(BYTE∗ b,\SeedState Seed S,\EtMState S)

(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(ensures isEtMGENIn(\result))
{ return (\EtMGENIn) { .seedS = Seed S, .S = S }; })

(def \EtMGENOut EtMGENOut(BYTE∗ b,\SeedState Seed S,\EtMState S)
(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(requires \mutable array(b,(size t) EtMKeySize()))
(ensures isEtMGENOut(Seed S,\result))
{ return (\EtMGENOut) { .S = S, .k = EtMKey(from array(b,EtMKeySize())) }; })

// Encryption
(def \EtMENCIn EtMENCIn(\SeedState Seed S,\EtMState S,BYTE∗ kb,UINT8 kl,slot t∗ plain,BYTE∗ b)

(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(requires kl == EtMKeySize())
(requires \inv(plain) && plain−>tmpl[0] < 2)
(ensures isEtMENCIn(\result))
{
\Bytes t = from array(plain−>tmpl,templateSize());
\Bytes kr = from array(plain−>data,keylength(t));
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\key k = key(Seed S,t,kr);
return (\EtMENCIn) { .seedS = Seed S, .S = S,

.k = EtMKey(from array(kb,kl)),

.p = makeEntry(Seed S,t,k) }; })

(def \EtMENCOut EtMENCOut(\SeedState Seed S,\EtMState S,BYTE∗,UINT8,slot t∗,BYTE∗ b)
(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(ensures isEtMENCOut(Seed S,\result))
{ return (\EtMENCOut) { .S = S, .c = from array(b,EtMCipherSize()) }; })

//Decryption
//Begin Simulation
(def \EtMDECIn EtMDECIn(
\SeedState Seed S,\EtMState S,
BYTE∗ k,UINT8 kl,
BYTE∗ c,UINT8 cl,
slot t∗)

(requires isSeedState(Seed S))
(requires isEtMState(Seed S,S))
(requires kl == EtMKeySize())
(requires cl == EtMCipherSize())
(ensures isEtMDECIn(\result))
{ return (\EtMDECIn) {

.seedS = Seed S, .S = S,

.k = EtMKey(from array(k,kl)),

.c = from array(c,cl) }; })

(def \EtMDECOut EtMDECOut(
\SeedState S,\EtMState,
BYTE∗,UINT8,
BYTE∗,UINT8,
slot t∗ p,int res)

(requires isSeedState(S))
(requires res == 0⇒\inv(p) && p−>tmpl[0] < 2)
(ensures isEtMDECOut(S,\result))
{ if (res == 0)

return SoEntry(makeEntry(S,p−>t,key(S,p−>t,p−>kr)));
return NoEntry(); })

//End Simulation

Simulation Contracts for the Protection of Device Objects (EtM.h)
void (assume correct) GEN( (ghost \SeedState Seed S) (ghost \EtMState S) BYTE∗ buffer (out \EtMState outS))
(decreases 0)
(writes \array range(buffer,(size t) EtMKeySize()))
(ensures EtMGENOut(buffer,Seed S,outS) ==

EtM GEN(\old(EtMGENIn(buffer,Seed S,S))));

void (assume correct) slotENC( (ghost \SeedState Seed S) (ghost \EtMState S) BYTE∗ key,UINT8 keylen, slot t∗ plain, BYTE∗ buffer (
out \EtMState SOut))

(decreases 0) // Termination
(writes \array range(buffer,(size t) EtMCipherSize()))
(requires \wrapped(plain) && plain−>tmpl[0] < 2)
(ensures EtMENCOut(Seed S,SOut,key,keylen,plain,buffer) ==

EtM ENC(\old(EtMENCIn(Seed S,S,key,keylen,plain,buffer))));

int (assume correct) slotDEC( (ghost \SeedState Seed S) (ghost \EtMState S) BYTE∗ key,UINT8 keylen, BYTE∗ cipher,UINT8 cipherlen,
slot t∗ res)

(decreases 0)
(updates res)
(requires isEtMCipher(from array(cipher,cipherlen)))
(ensures \result != 0 <⇒ res−>tmpl[0] == 2)
(ensures EtMDECOut(Seed S,S,key,keylen,cipher,cipherlen,res,\result) ==

EtM DEC(\old(EtMDECIn(Seed S,S,key,keylen,cipher,cipherlen,res,))));
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Appendix C

Over-Approximating P.P.T.

Adversaries with Non-Determinism

The following code display is fully verified in VCC, proving that all its refinements (including p.p.t.

refinements) call the Device commands only in configurations where their preconditions hold.
Non-Deterministic Adversary Over-Approximation

void main(void)
(requires \program entry point())
(writes \array range(IOB,IOBLEN))
(writes \extent(&store))
(writes \extent(&EtMp S))
(writes \extent(&EtMs S))
(writes \extent(&Seed S))
(writes \extent(&EtM S))
{

// Initialise the configuration and
// establish the initial observation
deviceInit();

// All p.p.t. adversaries are refinements of
// the following non−deterministic loop
while(1)

(writes &store)
(writes \array range(IOB,IOBLEN))
(invariant \wrapped(&store))
(invariant \mutable array(IOB,IOBLEN))

{ int i = 0;
int r;
// Fill the buffer non−deterministically
while (i < IOBLEN)

(invariant i <= IOBLEN)
(writes \array range(IOB,IOBLEN))
(invariant \mutable array(IOB,IOBLEN))

{ unsigned char c;
IOB[i] = c;
i++; }

// Choose the command to run non−deterministically
switch (r)
{ case 0:

Create();
break;

case 1:
Import();
break;

case 2:
Export();
break;

case 3:
Clear();
break;

case 4:
Load();
break;

case 5:
Unload();
break;

case 6:
Encrypt();
break;

case 7:
Decrypt();
break;

default:
// Use this to let the adversary skip a turn

} } }
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fication platform for cryptographic software. In Proceedings of the Fourth International Workshop on

Foundations and Techniques for Open Source Software Certification, volume 33 of Electronic Communi-

cations of the Euroepan Association for the Study of Science and Technology. EASST, 2010. 69
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