
University of Beira Interior

Computer Science Department

Master of Science Thesis

Towards a formally designed and

verified embedded operating

system: case study using the B

Method

by André Brito Passos

Supervisor: Simão Melo de Sousa

Co-supervisor: José Miguel Faria

Coimbra, August 22, 2009

To Marina, my family and friends

Contents

Contents i

List of Figures iv

List of Tables v

1 Introduction 3
1.1 Context . 3

1.1.1 Motivation . 3
1.1.2 The choice of the B Method 4
1.1.3 Cautionary notes about formal methods 5

1.2 Definition of the work . 6
1.2.1 Objectives . 6
1.2.2 Contribution . 6

1.3 Outline . 7

2 Software Engineering and the B Method 9
2.1 System Modeling and Design . 9
2.2 Formal Development Life Cycle . 12
2.3 B Method language . 13

2.3.1 Abstract machines . 14
2.3.2 Refinements and Implementations 15
2.3.3 B Architecture . 15
2.3.4 The B language . 17

2.4 Example . 20
2.5 B tools . 24

2.5.1 ProB . 24
2.5.2 Atelier B . 26
2.5.3 B-Toolkit . 26
2.5.4 Rodin . 27

i

ii CONTENTS

2.5.5 U2B . 27
2.5.6 Brama . 27
2.5.7 Final Remarks . 27

2.6 Summary . 28

3 Secure Partition Kernel 29
3.1 General Overview . 29
3.2 Secure Partitioning kernel Protection Profile 31
3.3 Secure Partitioning Microkernel . 32

3.3.1 Time Partitioning . 35
3.3.2 Space Partitioning . 35
3.3.3 Security Partitioning . 36

3.4 Proposed Solution . 38
3.5 Prex microkernel . 39
3.6 Summary . 43

4 State of the Art 45
4.1 Verified Microkernels . 45
4.2 The B Method in the Verification of Microkernels 53
4.3 Summary . 53

5 Formal Development of a Secure Partitioning Microkernel 55
5.1 General strategy . 55
5.2 Formal specification of the Secure Partitioning microkernel 56

5.2.1 Machine Ctx . 56
5.2.2 Machine CtxMemory . 58
5.2.3 Machine MemoryManagement 59
5.2.4 Machine Clock . 62
5.2.5 Machine Messages . 63
5.2.6 Machine PoolForCommunication 65
5.2.7 Machine KernelCommunication 66
5.2.8 Machine Scheduling FIFO 71
5.2.9 Machine Interface . 72
5.2.10 Animation with ProB . 73

5.3 Partition Information Flow Policy 74
5.3.1 Machine FlowPolicy . 75
5.3.2 Machine Matrix . 77
5.3.3 Machine BASIC IO . 77
5.3.4 Machine FlowPolicy Imp 78
5.3.5 Machine Matrix Imp . 80

5.4 Prex with Partitioning Information Flow Policy 81
5.5 Verification and Validation . 82

CONTENTS iii

5.6 Summary . 84

6 Conclusion 87
6.1 Contribute . 87
6.2 Challenge . 87
6.3 Future Work . 88

Bibliography 89

A B components 95
A.1 Machine Ctx . 95
A.2 Machine CtxMemory . 95
A.3 Machine MemoryManagement . 96
A.4 Machine Clock . 98
A.5 Machine Messages . 99
A.6 Machine PoolForCommunication 101
A.7 Machine KernelCommunication . 102
A.8 Machine Scheduling FIFO . 105
A.9 Machine InterfaceMachine . 106
A.10 Machine FlowPolicy . 111
A.11 Machine Matrix . 112
A.12 Machine BASIC IO . 113
A.13 Machine FlowPolicy Imp . 114
A.14 Machine Matrix Imp . 116

B Example Configuration File 119
B.1 Config File . 119
B.2 Result file . 119

List of Figures

1.1 Diagram with the complete work . 7

2.1 Standard development life cycle and formal development life cycle . . 12
2.2 Abstract machine representation . 14
2.3 Refinement mechanism . 16
2.4 A B project . 16
2.5 Diagram of Balzer’s software life cycle 17

3.1 Evolution of partitioned systems . 30
3.2 Common Criteria certification chain 32
3.3 Mills architecture . 34
3.4 Static scheduler period . 35
3.5 Secure partitioning microkernel architecture 36
3.6 Prex microkernel structure . 39
3.7 Microkernel memory mapping . 40
3.8 Thread states . 41
3.9 Message passing sequence . 42
3.10 Message transfer in Prex . 43

5.1 Architecture of the abstract model for the secure partitioning micro-
kernel . 56

5.2 States and possible transitions for tasks 59
5.3 Example of a possible state for the pool for communication 65
5.4 Behavior of the operation cleanEmptyPorts 72
5.5 Example of ProB animation . 74
5.6 Partition Information Flow Policy Architecture 75
5.7 Prex and Partition Information Flow Policy 81

iv

List of Tables

3.1 CC Evaluation Assurance Levels . 32
3.2 Partition Abstraction . 37
3.3 Least Privilege Abstraction . 38

5.1 Global state of PIFP project . 83
5.2 Possible configurations for two tasks 84

v

Acknowledgements

First of all, I would like to thanks to Professor Simão Melo de Sousa, who always helped

me giving me the precise directions to conclude this work.

In second to Critical Software. It was an extraordinary experience the development of this

thesis in a company like Critical. In particular I would like to thanks to my co-supervisor and

good friend, José Miguel Faria, for all the support, help and freedom of thinking. To the formal

methods team, Pedro and Ricardo, always by my side during the time spent in the developing

of this work. A word to Pedrosa for all the time wasted explaining me some doubts about

operating systems. To all the colleges in Critical Software, I prefer not to say names because all

were outstanding.

To my girlfriend, Marina Taramelo, for all the support and encouragement during these

hard times for both. At last, to my friends and my family, namely my mother, Elisabete and

father, Daniel, who gave me the opportunity of study.

For all of you: Thanks!

1

Chapter 1

Introduction

The formal development of software systems is the subject of this thesis. More precisely,

the development of a verified microkernel using the formal specification language, B Method.

This chapter introduces the main concepts of this work.

1.1 Context

In some contexts formal methods are considered as the best means available for developing

safe an reliable systems. One well-known researcher, Bertrand Meyer, express the necessity and

efficiency of formal methods when he wrote about software engineering: “It is clear to all the

best minds in the field that a more mathematical approach is needed for software to progress

much” [29]. The goal and the results of this work can be seen as an other proof of evidence of

the previous fact.

1.1.1 Motivation

According to R.W. Butler [23], “formal methods refers to mathematically rigorous tech-

niques and tools for the specification, design and verification of software and hardware systems”.

The phrase “mathematically rigorous” means that specifications used in formal methods are

well-formed statements in a mathematical logic and that the formal verifications are rigorous

deductions in that logic (i.e., each step follows from a inference rule and hence can be checked

by a mechanical process). A method is formal if it has a sound mathematic basis, typically given

by a formal specification language. The value of formal methods is that they provide means to

symbolically examine the entire state space of a digital design (whether hardware or software)

and establish a correctness or safety property that is valid for all possible inputs. However, this

is rarely done in practice today (except for the critical components of safety critical systems)

because of the enormous complexity of real systems.

The activities of modeling and formal reasoning are supposed to be performed before under-

taking the effective coding of a computer system, so that the software in question can be correct

by construction. Formal methods can be very helpful at this point. But, why formal methods

are not widely used instead of typically software engineering? Formal methods should be used

by people who have realized that the program development process they using is inadequate,

or in industry when the customer pretend to use such methodology. Another reason that may

3

4 CHAPTER 1. INTRODUCTION

recommend the use of formal methods is that fact that certain standards like Common Criteria

(EAL 5-7), EN 50128 (SIL 4) and DO-178B (Design Assurance Level A and B), recommend or

requires the use of formal methods. At this stage is possible to question why to bother about

formal methods and not use tests and simulation instead. Limitations related to tests, like the

problem of how to exactly define a good test and the representativeness are difficult properties

of achieve. Nevertheless, exhaustiveness for the general case of all the set of possible values is

infinite, so, total coverage is an impossible task. Like W. Dijkstra once said “Program testing

can be a very effective way to show the presence of bugs, but is hopelessly inadequate for showing

their absence”. Software correctness is the holy grail, being chasing for some time. Formal

methods are not the “perfect solution” but can provide an effective help with in the dealing

with bugs.

There are cases where the use of formal methods is a requirement, but which formal method

should we use? The choice of a formal method is not easy. Partly because there are many. To

decide which formal method to use, a number of questions should be posed:

• Is there any theory behind your formal method?

• What kind of language is your formal method using?

• Does there exist any kind of refinement mechanism associated with your formal method?

• What is your way of reasoning with your formal method?

• Do you prove anything when using your formal method?

• Have you got an efficient automatic prover?

These questions should work like a conductive method to help in the quest of the adequate

formal approach. Several other criteria should be analyzed, like for example, the experience

in the use of a specific formal method. Other important criteria is the usage purpose. Some

kind of formal methods have a large and successful experience in specific areas and types of

certification. For example, the B Method is used in the Railway System sector and in the

process of certification SIL 4 (see for instance [37][7]).

1.1.2 The choice of the B Method

Engineering disciplines require tools for engineers to reason about the possible solutions for

their problems. It is very common to see mechanical engineers working with tools to design,

make some measures and experiments before passing to the “real world”. These tools are

mathematical tools that work with models to make measurements about the work. Strangely,

or not, computer science evolution happened very quickly, and some steps were not so well done.

Formal methods provide a large variety of tools to help engineers to reason about the system.

These tools are used to specify a system’s desired behavioral and structural properties, like done

in other engineering disciplines. The reveal of ambiguities, incompleteness and inconsistency

in systems are the main objectives in the usage of such tools. Properties that characterize

well formal methods are: (i)exhaustiveness, the formal reason over the possibly infinite set of

values; (ii)rigor, well established mathematical foundations; and (iii)adequacy, provided tools

and techniques are evaluated as adequate means for providing evidences of reliability. The use

of formal methods to reason about systems is called formal specification.

The existence of a rather large set of tools with different and more or less restricted domain

of application is a convenient property. This means that depending on the purpose of the appli-

cation, one or other formalism can be better applied. In the following sequel some considerations

will be done about the several formalisms. It is not pretended to make a state of the art in the

area, only to give a brief perspective of what exists.

Formal specification can be classified in mostly two families. In algebraic specifications

give more importance to the data being manipulated. This means that the behavior of the

1.1. CONTEXT 5

system is expressed by the data of the system, how this data evolutes along the time, or how

the different data relates to each other. On the other hand, it is possible give more meaning to

the operations of the system. The behavior is expressed by the operations, internal mechanisms

or by the system actions. In this type of formalism, the specification is the modifications that

operations can perform in the internal state this is called a model based specification. Other

types of organization can be given, for example, based on their prime domain of application, i.e.,

either specialized in sequential programs, or focusing on concurrent and distributed systems.

Z, VDM and B are well established and representatives of specifications based on models.

Petri nets, CCS, CSP or event-B are also model based but with their prime domain of application

being concurrent and distributed systems. On the other hand, for algebraic specifications, ACT-

ONE, CLEAR, OBJ, SPECWARE, etc. can be used for sequential programs and LOTOS, etc.

for concurrent and distributed systems.

Temporal requirements plays an important role in some systems. Model based approaches

offers a quite variety of solutions for express temporal requirements. However, transitions be-

tween states change, requiring a temporal requirement for a transition to proceed. Tools that

can be used with this type of formalism are Lustre, Esterel, Scade, UPPAAL, etc..

As previously said, formal methods can be used to achieve correctness. To verify this prop-

erty, normally, desired properties are confronted with the specification of the system/algorithm.

Correctness of a system can be verified by writing proofs by hand or use more or less automatic

tools. Model checkers, Proof systems (also known as theorem provers) and proof assistants are

the main groups used to mechanically verify the correctness of a system.

Proof assistances generally require some user intervention. They can check whether a given

proof is valid, according to the rules of deduction of the logic concerned, or, given a theorem

and its premisses, try to discover a proof such that the theorem follows from that premisses [16].

Examples of proof systems are Coq, HOL, Isabelle and PVS.

Model checking is an alternative to proof systems. They are specially suitable for the analysis

(modeling) of concurrent systems. The properties are expressed in temporal logical formulas

and the verification is performed exploring the possible transitions of the system. Some of the

advantages, comparing with the previous ones, are the automatic demonstration of the properties

without any user intervention and the exhibition of a counter-example. The disadvantages are

the problem of state space explosion and the fact that model checker do not know how to deal

with infinite sets. Examples of model checkers are SMV, SPIN, Kronos, UPPAAL, etc..

Other formalism that in our days is being used for several systems is design-by-contract.

The logical annotation of the program using Hoare Logic. Each function is annotated with a

pre-condition and a post-condition, like a contract. Then, the source code is confronted with the

contract to perform validation. The notion of invariant is also present in this type of formalism,

to express the global properties of the complex components of the system. Usually, this type of

verification is very connected to the language. With C we have Frama-C (with jessie plug-in),

for Java we have JML, for C] we have Spec] and for Ada we have Ada/Spark.

The goal of this work is to start with an high-level abstraction, defining the properties of the

system and them refine only part of the system to be developed. It was pretended a methodology

that covers all the stages of the development process and the B Method is in concordance with

this criteria. Some previous experience and some examples showed that is possible to use the B

language to perform such work [?] [22]. The B Method does not deal well with concurrency and

real time requirements. However, the microkernel to be developed it is not a real time kernel

and the concurrency problems will not be part of the problem to be analyzed.

1.1.3 Cautionary notes about formal methods

Even perfect program verification can only establish that a program meets its spec-

ification. [...] Much of the essence of building a program is in fact the debugging

6 CHAPTER 1. INTRODUCTION

of the specification. [18]

Beware of bugs in the above code; I have only proved it correct, not tried it. By

Donald Knuth.

Formal methods provides a close relationship with requirements. Validation can start sooner

and more easily auditable. This property really strengthens the role of formal methods in the

development process. More sooner the validation starts more quality the final product will have.

A typical problem pointed to formal specification is the fact that an abstraction can be proved

correct. But is this specification really doing what is supposed to do? Are the properties well

defined to that specification? These questions are now, more or less, answered using animators.

This type of tools can give to the person which is specifying the system a certain view and

understanding of the specification. Animators permits to animate, run the specification. So, it

helps solving the problem of what is the specification really doing.

As seen in the previous section 1.1.2, different formalisms can be applied in different fields of

application. A tool that permits to solve in an efficient and satisfactory way all type of problems

is still not known.

1.2 Definition of the work

The aim of this work is to produce a embedded microkernel using the B Method. To perform

this objective the work was divided into three stages. In the first stage it is necessary to provide

a complete requirements analysis and a specification of a secure partitioning microkernel. This

is done using the tool Atelier B and ProB for animation.

The second stage is composed by a complete development of part of the secure partitioning

microkernel. The chosen part was the partitioning information flow policy (PIFP). Starting with

a high level specification, the partition information flow policy is the refined until be possible to

generate automatically code.

The third and final part is the integration of the code generated with a chosen microkernel.

In this part is necessary to perform a verification/testing over the microkernel with the generated

code. Figure 1.1 illustrates the diagram of the three stages of the work.

1.2.1 Objectives

The overall objective is the complete development of a secure partitioning microkernel using

the “correct by construction” paradigm (more precisely the B Method). The other objectives

are:

• Perform a complete specification using the B Method;

• Use and exploration of the B tools (ProB and Atelier B);

• Proof of correctness for the system;

• Reach a level in the development process where it is possible to automatically generate

code;

• Integration of part of the microkernel in a real word system;

• Explore the use of the chosen formalism in the context of microkernel development.

1.2.2 Contribution

The microkernel is the principal part of an operating system. Being the operating system,

the place where applications run, it becomes easy to understand that a special careful in the

1.3. OUTLINE 7

Figure 1.1: Diagram with the complete work

development of a microkernel is very important. It make essential the usage of formal methods

to help in the construction of a microkernel. The contribution of this work is to perform a

complete formal development of the microkernel. As secondary contribution, the transfer of

knowledge from the university to the company Critical Software.

1.3 Outline

This thesis is organized in six chapters. Chapter 1 introduces the main concepts that are

subject of study in this thesis. Chapter 2 gives a brief overview about software engineering with

formal methods and presents the B Method. Chapter 4 gives an overview about the state of

the art involving formal verification for kernels. Chapter 3 presents the work that are to be

developed, giving an overview of what is a secure partitioning microkernel and the proposed

solution. Chapter 5 presents the work developed, a formal model of the secure partitioning

microkernel and the complete development of part. Integration with the target microkernel is

also presented. Chapter 6 concludes this thesis by describing the most relevant conclusions of

the work herein described.

http://www.criticalsoftware.com

Chapter 2

Software Engineering and the B

Method

In this chapter a description of the B language and methodology will be provided (based on

[6]). The aim of this chapter is to prepare the reader for the next following chapters. The goal is

not to give a complete overview of the language but only to illustrate the main concepts. For a

full description of the language, methodology and mathematical foundations it is recommended

to consult [3].

This chapter will be organized in the following way, in the first section a presentation of

what is modeling, how to make a good model and other normal descriptions when dealing with

this type of formalism. Next, in section 2.2, it is described what is the formal development life

cycle, showing the different phases.

After talking about the software development process, it is described the B language (section

2.3). Concepts like abstract machine, refinement and implementation will be explained. The B

methodology also will be presented.

An example for making more clear the concepts around the language is given in section 2.4.

It is a quite simple and easy to understand, but at the same time complete enough for show the

application of the B Method.

In section 2.5 it is presented a description of the tools normally used in the B language. Each

tool has a different utility in the development life cycle, the usage of each one in the different

parts can give a precious help in the development process.

In the end (section 2.6), a summary for the all chapter will be given.

2.1 System Modeling and Design

Computer Science, like other engineering disciplines, requires a complete view of what is

to be done. Engineering design is used to each a complete view and understanding of the

problem.This technique is composed by two concerns. The first one is the world view, how

the system should behave in the real world. Normally in this phase we are thinking about the

system, about its properties. The second one is how to use the technology to achieve a real

world view. In this stage we are already thinking in one possible implementation to solve our

problem. A technique that deals with both concerns is called modeling.

9

10 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

Usually, in the classical approach a very competent domain-expert person whose main source

of inspiration comes from previous systems that he has done is who makes the engineering

design. Preceding experiences brings some strengths but also some weaknesses like old and bad

habits. Validation of such studies is accomplished by a number of tests and reports to see if the

results are consistent with previously decided criteria. An approach that completes the former is

namely based on formal (mathematical) description, refinement techniques, decomposition and

mechanized proofs. In this approaches the requirements document sometimes are not a valid

input because generally it is a mental implementation of the desired system, one good input is

a document with the addition of the expected properties for the system.

The main idea of this new way of study the system consists in using models with a certain

correctness criteria, with which we can use mathematical simulation, which is not very different

from the usual method of tests, except for its exploitation technique. The difference using

mathematical simulation is that we will not look to the result to see if it respects the criteria,

but to prove that the model respects it. Like J.R. Abrial refers [23], this change in the mode of

exploitation of the “simulation” has a number of interesting consequences:

• Rather than using a simulation language in order to build our model under the form of

a simulation program, we are going to use directly a mathematical notation, which will

allow us to represent the model in a way that will be more convenient than a simulation

program (for expressing the statements and for proving them).

• Rather than limiting ourselves to a single simulation program, as is usually the case, we

can very well use a series of embedded models that are supposed to be refinements of

each others. In this way, the various criteria to prove can be accumulated and proved

immediately at their right level of abstraction: the proof process accompany the model

elaboration process.

• Once a model has reached a dangerous level of complexity (so that the proofs might become

cumbersome), it will be possible to decompose it into separate model: the architecture is

born.

So, what is a model? Everyone has a vague idea of what is a model, but is important

to give a precise notion to define a formal construction. Models provide a demonstration of

some properties (mathematical properties) of a system without necessarily building the system.

Modeling requires an abstraction, at a certain level, of the future system. The idea is to put

ourselves mentally above the system and try to imagine what we could observe from there.

Simple properties or laws that sometimes are forgotten became obvious and these are the ones

that we want to catch at a first view. We can now have our first model, a very simple one

dealing only in the basics of the system.

The advantages of modeling in the early stages are quite obvious, mistakes can now be

found sooner, so a lot of time can be spared. Another advantage is that we can reach a point in

our model where we find some inconsistencies, which can tell us that we are not understanding

well the problem possibly because some requirements are missing.

These advantages of modeling are not a surprise inside engineering disciplines. In fact, it

is quite normal for a mechanical engineer to make a first model and then make some measure-

ments over the model to see if the behavior is the expected one before pass to the phase of

building. Models using a mathematical base notation provide us with the capacity of making

measurements. Basically what we want to model using mathematical notation is the important

characteristics of some “thing” that we will next build or implement, to reveal what our “thing”

will look like, to help us understanding how our “thing” will behave, and finally to make sure

that our “thing” achieves the required behavior. The main purpose of modeling is to construct

correct software by construction and this technique is called software modeling.

Software can go wrong and cause very expensive damages. Ariane 5 is a good example

of software failures with expensive results. It took the European Space Agency ten years and

2.1. SYSTEM MODELING AND DESIGN 11

seven billion of Euros to produce Ariane 5, a giant rocket capable of hurling a pair of three-ton

satellites into orbit with each launch and intended to give Europe overwhelming supremacy in

the commercial space business. A research taken by Le Lann concludes that the real causes of the

failure are faults in the capture of the overall Ariane 5 application/environment requirements,

and faults in the design and the dimensioning of the Ariane 5 on-board computing system.

These faults result from not following a rigorous system engineering approach, such as applying

a proof-based system engineering method (for more details see [26]).

In software modeling we are centered only in the expect behavior of the system. Therefore,

we try to achieve an abstraction of the system and focus on what we desire for that system and

not in how we will implement those desired functionalities. Like mentioned before the notion

of abstraction can be seen as observing the system from a higher view. In these observations

we need to have two notions: a notion of objects (static notion) and a notion of movement

(dynamic notion). The first one refers to the state of the model and the second one the events

or operations that may occur and that we are able to observe. The properties connected to the

state of the system are called safety properties and those related to events or operations are

called liveness properties. The two properties need to be proved; they have no reason, a priori,

to be coherent. Software modeling can be differentiated in three phases:

1. Specification: is concerned with what the system should do. There is no requirement

that a specification needs to be executable. Specifications model the user or world view

of the system, not the internal behavior;

2. Refinement or Design: is the process of transforming the specification towards an

implementation. This must be achieved without changing the world view;

3. Implementation: is the final refinement or design step in which we make the model

executable. Implementation is concerned with how the system is to be realized.

In order to clarify the three phases presented it will be used an analogy called the parachute

paradigm. Suppose that we are suspended in the air by a parachute, we are looking to our system

behavior from a upper level. From that view we only see some properties of the system, this

properties need to be proved to see if we are thinking correctly. At this time that we finished

our proves and we have seen all the properties form that level, we can step down a little bit

and thus observe some other interesting things, that is, a more precise properties which we were

not able to distinguish before because we are in a too higher level. New properties (safety and

liveness) will appear and and these new observations should not invalidate the previous ones,

instead they should rather make them more accurate. Now we can step down a little bit more

and so on. This is called the parachute paradigm.

What we have just briefly view here is the notion of what we call refinement of our models

in order to have a gradually more precise view of all the facts of the system. Comparing

with the tree phases of system modeling when we are in the upper level we are dealing with

the specification phase. Every time we make our model more precise, we are refining the

model, making him more accurate. The last step is the when we are in the lower level, the

implementation phase. One import property to stress at this point is that all the properties

that are proved at a certain level remain valid along the path leading gradually to the ground.

An important fact is when we start modeling a certain system, we are at a higher level of

abstraction so is very common to start with a single and very simple model. When we start

refining the model, more properties appear and the model starts becoming complex and large.

This is the right moment to envisage decomposing the model into several sub-models. The role

of the decomposition is clear. Once separated from the main body, a sub-model can be developed

further independently from the rest of the system, which becomes its so-called environment. It

is important to notice that decomposition is the process used here, this does not mean that

composition is impossible, it only means that we cannot compose existing parts without the

12 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

supervision of a decomposition process. This is the only way to ensures that some global laws

are maintained while decomposing parts are working together.

Abstraction problem is the tentative of achieving a good abstraction level. At the very

beginning, when we start modeling, if we are thinking in loops or sequential composition, the

best thing to do is stop and start all again. We are going in the wrong direction, not thinking

correctly in terms of abstraction. The best way to see if we are in the right level of abstraction is

to think about the problem like an interface, this is, do not think in details of how to resolve the

problem but think in what to do. Of course that be in the right abstraction level is a difficult

task and that most people refers as the major art for modeling correctly.

Modeling is an art, and like other arts we can be good at it or not. I truly believe that

getting the write level of abstraction and modeling correctly is a task that, like other, tasks

requires a lot of work not because of its difficulty, but because it is different from what is usually

done. As a result, it is a question of mentality rather than difficulty.

2.2 Formal Development Life Cycle

To build formally developed applications is necessary to follow a precise and formal de-

velopment life cycle, like the one mentioned in [3]. Informal statements should be enriched,

structured and formalized progressively. Each phase of the construction progress is carried out

according to the needs and constraints of the following phases. Results achieved at each phase

can be reused by the next one, which optimizes the process and assures good traceability across

the phases.

Standard development life cycle and the formal development life cycle (Figure 2.1) are ap-

parently similar in their form. However, formal development life cycle is shorter in the number of

steps. The first phases for both the life cycles are the system analysis and the physical modeling.

In this phases, informal requirements are taken into account. The capabilities of the software to

be developed and the constraints are described in this phase. In both life cycles the procedures

are the same. Although, it is recommend that for the formal software development cycle some

requirements should be written in a more formal way. Applying this technique, it becomes more

easy to express, in the next phases, the requirements to the formal specification [23]. Going

Figure 2.1: Standard development life cycle and formal development life cycle

a little deeper, we find the next phase, the software specification. Here are defined abstractly

2.3. B METHOD LANGUAGE 13

which functions the software must perform in order to have the desired capabilities.The way

of dealing in this phase is completely different in the different life cycles. In the formal devel-

opment cycle, the analysis of the problem lead us to define an abstract solution that meet the

requirements. The solution is organized from the most abstract to the most detailed and con-

crete, using a top-down approach. The result is a collection of formal components organized in

an architecture describing the dependencies and a decomposition of functions and data. Using

this methodology, functions are transformed into operations in the specification language. Data

is transformed into variables and operation parameters. Basically, the properties collected from

the requirements are decomposed in several parts over the specification. The invariant plays an

important role in this process. Properties that are pretend to hold through the all development

are specified in the invariant. So, safety and functional requirements are distributed across a

set of invariants. In the standard process, it is frequent to found models in UML to help in the

specification of the problem. UML can be very helpful to understand and achieve the solution

for the problem.[35]

After the specification phase, the objective is the production of an eventual executable

program from an implementation programming language. In the standard development process,

some code obtained from the UML models is re-utilized. The programmer respects the models

generated in UML and implement a solution for the desired functionality. In the formal life

cycle, the executable code of the software is obtained by translating, either automatically or

manually, the models.

For the testing phase, in the standard development cycle, it can be divided in three sub-

phases. It will be described very briefly each one:

• The unit test phase, that checks each procedure of each sub-program;

• The integration tests phase, that checks the cooperation of sub-programs;

• The validation tests phase, that checks the adequacy of the program with respect to the

requirements.

In the formal development cycle, tests are also divided into three sub-phases. Unitary tests

concern exclusively operations of abstract machines not formally refined and implemented and

operations that could not be proved completely. Integration tests concern the integrity of for-

mally and not formally developed modules. As in conventional developments the functional

tests are performed normally.

One particular aspect is the substitution of unit, integration tests and validation tests

by proofs. Validation proofs is carried out at preliminary and detailed design phases by the

validation team. Validation may be based on a number of techniques, the two main ones being

formal proof and model checking. When proving a system (that it follows a given behavior),

the used proof tool can do it automatically or interactively. In both cases a formal proof

is constructed. Tools dedicated to automatic proof construction are called theorem provers.

Interactive proof systems are usually referred as proof assistants. Proof tools can be used a

diferent stages of the development cycle, but their common usage lies in the validation and

design stage where they are used o prove that no erroneous behavior can occur.

2.3 B Method language

At present various formal methods exist and new ones are likely to appear. What is the

best formal method is a question that in the opinion of the author depends on the purpose and

utility of the system. Essentially two approaches have been developed; one is to express the

behavior of a program or a system in an abstract way, a model, and then proof mathematically

the consistency of the system. The second one is to attempt to prove properties using an already

existing code as input. The B Method is based on the first approach.

14 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

B is a tool-supported formal method based on Abstract Machine Notation (AMN), used in

the development of computer software. It was originally developed by Jean-Raymond Abrial in

France and the UK. The B method due to J.R Abrial is a formal method for the incremental

development of specifications and their refinements down to an implementation. The method

of software development based on B is known as the B Method. It is a model-based approach

similar to Z and VDM. At each step of the B development some proof obligations are generated,

enabling the verification of refinement as well that of abstract machine consistency.

AMN provides structuring mechanism which support modularity and abstraction in an

object-based style, making provable correctness a realistic and achievable goal through system

development. The method is based around the concept of layered development, which constructs

larger components from collections of smaller ones.

The B notation is strongly marked by simplicity forcing the user to use well-understood

program statements, so only the simplest programming statements are included within B. Struc-

turing, management and control of large volumes of detail in large software systems is a difficult

task.To verify their combination and their relationships is very hard without the notion of re-

finement. The structuring mechanisms provided by the B method are also characterized by

simplicity, and are designed particularly with verification in mind.

Developing based in invariant assertions provides consistency conditions between compo-

nents. These invariants hold the document together and give rise to proof obligations which can

be used to guarantee its correctness.

The B language is an extensive language, rich in details and full of proper constructions.

The aim of these following sections is not to provide all the details but to give an overview of

the different aspects in the language.

2.3.1 Abstract machines

The basic mechanism in the B Method is the abstract machine, it defines in different clauses,

data and its properties as well as operations. They represent the base definition of what the pro-

gram components will do, i.e. the minimal functionality that satisfies the program requirements.

Various known programing notions, like modules, classes or abstract data types are concepts

very close to abstract machines. A machine contain variables and operations. Variables are

encapsulated by the machine and operations enable the access and manipulation of machine

variables.

Figure 2.2: Abstract machine representation

Mathematical concepts such as sets, relations, functions and sequences are the elements that

describe the basic machines. One central concept in abstract machines are the static laws. This

concept, defined by predicates, constitute the invariant of the abstract machine. Variables when

changed by operations must always obey to the invariant. Operations behavior is specified

2.3. B METHOD LANGUAGE 15

formally using generalized substitutions to change predicates. A given operation can have a

pre-condition: it is a predicate expressing the conditions necessary to invoke the operation.

Operations can also contain an action: it is a substitution describing how the variables of a

machine are manipulated.

Abstract machines belong to the specification phase. Sequencing and loop substitutions

are forbidden in this phase. So, the supposed is to describe what an operation should do,

not how. A good way of dealing with this limitation is thinking in terms of nondeterminism

because it leaves open choices for further developments. Parallel substitutions are used instead of

sequencing, order for the application of this type of substitution is no applicable. A mechanism

for the verification of the invariant is necessary for guarantee that the substitutions applied

by the operations preserve the invariant. Proof obligations are constructed from the formal

definition of the substitutions in the abstract machine. If proof obligations are proved then the

invariant is always true. This mechanism ensures the correct behavior of the machine ensuring

that the predicates defined on the invariant always remain true.

2.3.2 Refinements and Implementations

Refinement is a technique used to transform the “abstract” model of the software system

(its specification) into another mathematical model that is more “concrete” (its refinement)[3].

Refinement can be performed in three different ways: the removal of the non-executable el-

ements of the pseudo-code (pre-condicions and choice), the introduction of classical control

structures of programming (sequencing and loop), and the transformation of mathematical data

structures (sets, relations, functions, sequences and trees) into another structures that might

be programmable (simple variables, files, or arrays). So, refinement is basically applied to the

operations and data of the abstract machine. The refinement can be applied using various steps,

this is for guarantee the careful control of the transformations. During each step, the initial

abstract machine is entirely reconstructed. It keeps, however, the same operations, as viewed

by its users, although the corresponding pseudo-code is certainly modified. In the intermediate

refinement steps, we have a hybrid construct, which is not a mathematical model anymore, but

certainly not yet a programming module.

The final step in the refinement is the implementation. An implementation is a ultimate

level of refinement of an abstract machine. It is written using a B language sub-set called B0

language, which has the following characteristics. The implementation data must be concrete

data (scalars, arrays) that are directly implemented in a high level language like C. Also the body

of the implementation is made up of concrete and sequential substitutions, called instructions,

that are directly executable in a high level programming language.

During each refinement, operations refinements need to be proven compatible with the

operation that refine. The proof of refinement guarantees that the code of the refinement

will conform to its specification in the abstract machine. A picture showing the refinement

mechanism is presented in Figure 2.3.

2.3.3 B Architecture

A complete development in B corresponds to a B project. A project enables formally

modeling a system of any type. Mechanisms of decomposition and composition of abstract

machines are used to accomplish a project. As soon as the level of complexity of the refinement of

the abstract machines reaches a point where is too high, it is recommended to decompose it into

several, more simple parts. The implementation can then be implemented on the specification

of one or more several abstract machines, which are themselves refinable. This is done using the

IMPORTS clause and calling the operations of the imported machines. Using this methodology,

it is possible to construct a B project gradually, according to an architecture made from layers of

16 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

Figure 2.3: Refinement mechanism

abstraction. Figure 2.4 illustrates a possible example of a B project. It is possible to see in the

Figure 2.4: A B project

picture that the project is composed by several modules. The arrows represents IMPORT links.

The modules are made up of B components. A module has the following properties: it always

has an abstract machine, representing the module specification. It may have an implementation

(components finishing with “ imp”) and possibly some refinements (components finishing with

“ r”).

The formal development using the B Method fills exactly in the Balzer Software fife cycle

2.5. A formal specification (in which a mathematical text – the machine – is written prescribing

“what” the intended software system should do) is linked to (one or more) implementation.

The intended coherence between these two phases is achieved by means of a justification, a

mathematical document saying “why” the implementation meets the abstract model. This can

be done gradually using a technique called refinement.

2.3. B METHOD LANGUAGE 17

Figure 2.5: Diagram of Balzer’s software life cycle

In essence, the life mentioned life cycle is composed by:

• Informal Specification – The costumer exposes the problem, which is textually defined

via informal requirements;

• Formal Specification – The development team builds a mathematical mode of the

requirements (several machines in the B Method). This procedure describes the formal

understanding of the problem by the team;

• Prototype Machines are animated to see if they correspond to the expected functional

behavior. The customer can provide also some input to see if the model correspond to

the expectations;

• Formal Specification – If the model does exactly what is expected, then, it is refined

and formally verified using proof obligations for check the internal consistency. The B

Method uses internal mechanism to verify the correctness;

• Code – After reach an implementation level, the code is automatically generated using

the appropriated B tools.

As can be seen by the previous stages, the B Method fulfills all the stages of the Balzer life

cycle.

2.3.4 The B language

Basically the B language is a composition of four elements:

• Components (abstract machines, refinements, implementations)

• Predicates

• Expressions

• Substitutions

All of them will be described in the following text.

18 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

Components

Like mention before, components can be an abstract machine, a refinement or an imple-

mentation. Components are composed by a set of clauses describing the static and dynamic

properties of the behavior. The main clauses are:

• MACHINE – declaration of the machine name and parameters if them exists;

• REFINEMENT – declaration of the name of a refinement;

• IMPLEMENTATION – declaration of the name of an implementation;

• REFINES – clause used to declare the name of the refined component;

• IMPORTS – when a implementation imports an abstract machine, it can use the imported

machine operations. However it can not use the imported machine data. This is one of

the main principles to achieve decomposition;

• SEES – when a component sees another, it can consult its data and use operations in

which do not modify these data;

• INCLUDES – when an abstract machine includes another abstract machine it integrates

the data of the included machine;

• PROMOTES – when a component promotes another it is possible to promote operations

belonging to machine instances created by the component, this means that the operations

promoted from the imported machine pass to belong to the promoting machine;

• EXTENDS – special case of the promotes, in which all operations of the imported machine

are promoted;

• DEFINITIONS – declaration of purely syntactic translation. These textual definitions

will be expanded in the component before any further analysis. This feature is similar

to]define in C and C++, but one definition cannot use another one within the same

machine;

• CONSTRAINTS – declaration of properties of the machine’s parameters;

• SETS – declaration of abstract and enumerated sets;

• CONCRETE CONSTANTS – declaration of constants, concrete and implementable,

which will be kept during successive refinements;

• ABSTRACT CONSTANTS – declaration of abstract constants, which are non-implementable

and must therefore be refined. Constants may be members of sets, sets, or functions;

• PROPERTIES – declaration of the constants’ properties;

• CONCRETE VARIABLES – declaration of concrete variables, which are implementable

and will be kept during the successive refinements. The list of variables is separated by

commas. What these variables represent, their types, properties and relationship between

them are contained in the invariant clause;

• ABSTRACT VARIABLES – declaration of abstract variables, which are non-implementable

and must therefor be refined;

• INVARIANT – declaration of invariant properties of the variables. This is the logical

assertion about the system which shall always hold (”a safety constraint”), but, more

importantly, defines what the machine really is. Within it, all variables types, properties,

and relationships are defined. It is the most difficult part of the specification to produce,

since the invariant must be strong enough to hold information about the system without

contradict itself;

• ASSERTIONS – declaration of the “facts” that derive from the invariant. They are

mostly used to make proof easier;

2.3. B METHOD LANGUAGE 19

• INITIALISATION – initialization of variables. When the “machine” starts the variables

initialized in this clause need to stay true and do not break the invariant;

• OPERATIONS – declaration of the operations in the form of a header and a body. This

represents the actions that can be performed with the variables.

Predicates

Predicates are a subset of the logic of first logic predicates. They are formulas that can

be proved or disproved or that may be part of the assumptions used to determine the proof.

Predicates are used to express properties for the components data. An important utilization

is in the expression of the invariant clause, in which the predicates express the properties of

the variables. Another kind of utilization is in the pre-conditions under which operation can be

called (these conditions relate amongst others to input parameters of the operation).

Predicates are also used to express Proof Obligations. Hypotheses under which the proof is

made and that can help in the proof or refutation of the goal are also presented in predicates.

The predicates of the B language are grouped in the following families:

• simple propositions (conjunctions, negation, disjunction, implication, equivalence),

• quantified predicates (universal, existential),

• comparison predicates between predicates.

Expressions

Expressions are formulas describing data. Every datum has a type and a value. The

categories of expressions are:

• basic expressions;

• boolean expressions;

• arithmetic expressions;

• expression of couples

• set expressions (empty set, set of integers, boolean, ...);

• set construction (set of sub-sets, union, intersection, ...);

• relation expressions (identity, inverse, projection, composition, iteration, domain, ...);

• function expressions (injections, surjections, bijections, ...);

• function constructions (constant functions, lambda expressions, ...).

Substitutions

Generalized substitutions are mathematical notations defined as predicate transformers.

They are used to describe the dynamic behavior of B components, this is, their operations.

The description of the behavior with generalized substitutions is used for abstract ma-

chines, refinements and implementations. The specification of the substitutions can be non-

deterministic and non-executable if we are in the abstract, refinement level of abstraction.

Whereas in the implementation level, substitutions correspond to instructions of a classic com-

puting language.

Generalized substitutions are also used for proof obligations construction. This process is

automatically achieved using the B components. For example, the proof obligation correspond-

ing to the presentation of the invariant during the call of an operation is constructed by taking

the invariant as hypothesis and the proof of substitution of the operation applied to the invariant

as the goal. The substitutions of the B language are:

20 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

• substitution becomes equal, substitution becomes such as, substitution be-

comes element of:

x := E;

• pre-condition substitution, to express pre-conditions of operation calls:

PRE G THEN S END;

• bounded choice substitution, SELECT substitution:

SELECT G THEN S END;

• substitutions ANY and LET which introduce data verifying certain properties:

ANY v WHERE P THEN S END,

LET v BE P IN S END;

• V AR substitution which introduces local variables:

VAR v IN S END;

• conditional IF and CASE substitutions:

IF P THEN S ELSE Q END,

CASE E OF

EITHER l THEN S

OR m THEN T

...

OR n THEN U END

END

• simultaneous substitution:

x, ..., y := E, ..., F,

x := E||...||y := F ;

• loop substitution

2.4 Example

In oder to illustrate the described methodology, a simple example is presented next. First,

an informal specification of the problem is given. Then, a B complete development is build, step

by step, showing the different aspects of the B language.

The problem was extracted from [3], and the complete solution was presented in [4]. Sup-

posing that an hotel wants to develop a system for control the allocation of their rooms. It is

necessary to control the rooms available. The operations require are (i) the reservation of an

room, (ii) get the number of available rooms and (iii) free an used room.

The first machine to de specified is the Reservation machine. This machine provides the

basic operations for the maintainability of the hotel rooms.

2.4. EXAMPLE 21

MACHINE

Reservation(nb max)

CONSTRAINTS

nb max ∈ 1 .. 1000

DEFINITIONS

PLACES b= (1 .. nb max)

VARIABLES

occupied

INVARIANT

occupied ∈ F(PLACES)

INITIALISATION

occupied := ∅
OPERATIONS

nb ←− free places=

BEGIN

nb := nb max − card(occupied)

END;

place ←− reserve=

PRE

nb max − card(occupied) 6= 0

THEN

ANY pp WHERE

pp ∈ PLACES − occupied

THEN

place, occupied := pp, occupied ∪ {pp}
END

END;

freePlace(place)=

PRE

place ∈ PLACES ∧
place ∈ occupied

THEN

occupied := occupied − {place}
END

END

Reservation machine receives a formal parameter called nb max, this is the number of rooms

available for the hotel. The property that the formal parameter needs to be between 1 and

1000 is declared in the CONSTRAINTS clause. The formal parameter is also used in the

DEFINITIONS clause. Here it is defined the numerated set PLACES, that represent the number

of available places that the hotel has.

The variable occupied tells the places that are occupied and the ones that are not. This

variable is typed in the INVARIANT clause as a finite set of the type PLACES.

The machine is composed by three operations. The first operation is the free places, that

returns the number of free places. It is quite simple to understand how it works, if we subtract

the number of places actually used in the hotel, represented by occupied, to the total number of

places, we obtain the number of free places. The next operation is reserve. In this operation a

pre-condition is presented. It is necessary the hotel to have free rooms to make a reservation.

22 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

In the body of this operation is used non-determinism to chose one available room. Selecting

a place that belong to PLACES but do not belong to occupied we obtain a free room. Using

non-determinism it is possible to think in what we want to do and not in how. This can be very

helpful in the specification phase.

The final operation is freePlace. This operation receives an occupied room and free the room

for further use. The parameter of the operation needs to be a room belonging to the occupied

rooms.

This machine is far away of being an implementable machine. We are using sets, and

this type of structure is not implementable in common languages. We are dealing with the

specification of the problem. Defining in the abstract machine the properties of our system.

Since we have already defined our properties, we can step down a little bit and try to refine

the machine. The firs refinement consists in substituting the free variable representing the

number of free rooms by one variable (nb free), the second replacement is change the variable

occupied for one function characteristic (state) which associates the places with a boolean.

state(tt) = TRUE ⇔ pp ∈ occupied

Applying this property to the invariant we obtain the following formula:

occupied = state−1[{TRUE}]

The modifications of the operations are simple reformulations which try to complete the changes

in the refined variables.

REFINEMENT

Reservation r1(nb max)

REFINES

Reservation

DEFINITIONS

PLACES b= (1 .. nb max)

VARIABLES

state

CONCRETE VARIABLES

nb free

INVARIANT

state ∈ PLACES → B ∧
nb free ∈ 0 .. nb max ∧
occupied = state−1[{TRUE}] ∧
nb free = nb max − card(occupied)

INITIALISATION

state := PLACES × {FALSE} ‖
nb free := nb max

OPERATIONS

nb ←− free places =

BEGIN

nb := nb free

END;

place ←− reserve =

BEGIN

2.4. EXAMPLE 23

ANY pp1

WHERE

pp1 ∈ state−1[{FALSE}]
THEN

place := pp1 ‖
state(pp1) := TRUE ‖
nb free := nb free −1

END

END ;

freePlace (place) =

BEGIN

state(place) := FALSE ‖
nb free := nb free + 1

END

END

The final step is to reach implementation. The variable state (total function) can be implemented

importing the machine from the basic library provided from B, BASIC ARRAY VAR. This

machine accepts two parameters (domain and range) to form a relation. In our case, the domain

is the set with the possible values for the number of places (1..nb max) and the range is the set

of BOOL. Basically, this machine encapsulates the relation state from the previous refinement

using an array. The imported machine provides two operations, STR ARRAY to set a value in

the relation and VAL ARRAY to get a value from the relation. To respect the previous refine

machine, it is necessary to initialize with FALSE, all the values in the range of the relation of

the imported machine.

The invariant clause in the Reservation i implementation, connects the invariant of the

refined machine and the invariant of the imported machine. They both are total functions.

IMPLEMENTATION

Reservation i(nb max)

REFINES

Reservation r1

IMPORTS

BASIC ARRAY VAR(1 .. nb max, B)

INVARIANT

state = arr vrb

INITIALISATION

VAR ind IN

nb free := nb max ;

ind := 1;

WHILE ind ≤ nb max DO

STR ARRAY(ind,FALSE);

ind := ind + 1

INVARIANT

ind ∈ 1 .. nb max + 1 ∧
(1 < ind ⇒ arr vrb[1 .. ind −1] = {FALSE})

VARIANT

nb max + 1 − ind

END

END

24 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

OPERATIONS

nb ←− free places =

BEGIN

nb := nb free

END;

place ←− reserve =

BEGIN

VAR ind,bb IN

ind := 1;

bb ←− VAL ARRAY(ind);

WHILE bb = TRUE DO

ASSERT ind < nb max THEN

ind := ind + 1;

bb ←− VAL ARRAY(ind)

END

INVARIANT

ind ∈ 1 .. nb max ∧ bb = arr vrb(ind) ∧
FALSE ∈ arr vrb[ind .. nb max]

VARIANT

nb max − ind

END;

STR ARRAY(ind,TRUE);

nb free := nb free −1;

place := ind

END

END;

freePlace (place) =

BEGIN

STR ARRAY(place,FALSE);

nb free := nb free + 1

END

END

This small example is only intended to show the previous presented concepts. To be a complete

example it is necessary to have another machine working like a ”main” machine, providing the

operations offered by the Reservation machine. Another important aspect, not presented, is the

discharging of the proof obligations. It is necessary to proof at each step that the refinement or

implementation respects the refined machine.

2.5 B tools

Tools play an important role in the development and validation of software. The B Method

has a large variety of tools that can help in the different phases of the software development. A

perspective of the most commonly used is present here.

2.5.1 ProB

ProB is an animator and model checker tool for the B-Method [27]. Due to the fact that

is an animator, the user can see the behavior of the models and interact with it. This is an

2.5. B TOOLS 25

important feature because it gives some confidence of what is modeled. On the other hand,

model checking, the other feature of ProB, exhaustively explores the model.

To perform animation and exploration of the B machines in ProB, it is necessary to restrict

the given sets of the machine into restricted small numeric ranges. Doing this it becomes possible

to determine the enabled operations and allows the checking of all the reachable states of the

machine with finite types. Manually exploring the B machine many problems can be found, such

as invariant violations, deadlocks (states where no operation is applicable) or other unexpected

behavior not described in the invariant. Model checking will also notify when all states have

been explored; this situation guarantees the absence of errors in that space (restricted space

defined by the size of the sets). When no limitation is performed, the exploration of the state

space will happen until it finds an error or runs out of memory. The algorithm used by ProB is a

mixed from depth-first breath-first strategy. A random factor decides whether a given node will

be treated in depth-first or breath-first. Typically two types of errors are found when exploring

a first machine:

• Systematic errors inside an operation that occurs in most states. Here is not important

to locate a particular state, just to systematically try out all operations for all arguments;

• Error when the animation is performed long enough (e.g. deadlock errors). Here it is

often not important which particular path is taken, just that the machine is animated

long enough.

Typically, depth-first strategy is good picking out errors from the first time, but may fail in the

second type. Breath-first strategy works in the reverse way.

Exploring the machine operations it is possible to reach states where the invariant, by

some reason, is violated. This is called a counterexample. When a counterexample happens,

an alert message and the steps performed to reach that invalid state are showed. This type

of consistency checking can be very helpful when used as an complement to interactive proof;

the error that result in a counterexample should be eliminated before attempting any iterative

proof. Consistency checking detects the following conditions:

• Invariant violation errors;

• Assertion violation errors (assertions are properties of a B Machine that should follow

from the invariant);

• Deadlock errors;

• User-specific goal predicate becomes true.

Another useful concept in the use of this tool is for refinement. The B Method requires a gluing

invariant to be provided in the refinement. Sometimes the refinement does not hold and it may

take a while for the B developer to realize that the proof obligations cannot be proven, resulting

in a lot of wasted effort. Whit ProB an automatic refinement checker can be used to locate and

understand errors before any formal refinement proof be attempted.

It is important, at this point, to refer the different types of analysis to consistency checking.

A consistency checking counterexample is a sequence of operations calls that leads to a violation

of an invariant in a single machine. A refinement counterexample is a sequence of operation

calls that is allowed in a refined machine but is not allowed in its abstraction.

It is obvious that this tool should be seen as a complement to other tools that permit

verification by proof-based. Another important point is that this tool should be seen as a

sophisticated debugging and test tool and not a verification tool.

In the last version of ProB, 1.3.0, other features are included. Currently, ProB is included

as an additional plug-in to the Atelier B. This was true, sometimes ago, in the Rodin platform.

Another additional feature is the possibility to use temporal model checking. ProB provides

Linear Temporal Logic (LTL) has an extension to the B language.

26 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

2.5.2 Atelier B

Developed by ClearSy, Atelier B, is an industrial tool that allows the operational use of the

B Method to develop defect-free proven software. It offers an environment for management of

projects in the B language. Main functionalities provided by the tool can be groped in:

• Proof aid. To demonstrate proof obligations using suitable proof tools;

• Development aid. Automatic management of dependences between B components;

• User comfort tools. A graphical representation of projects, display of project status and

statistics and project archiving.

Atelier B is a complete framework for the development of complete projects using the B language

or Event-B. Type checking is the first phase of the verification of a machine. Syntax analyzer is

provided to verify the B files. A grammatical verification is performed and a certain number of

contextual verifications including the type control and the control of identifier scopes. Compo-

nents need to pass to the type checker before passing to the next phases. Automatic generation

of proof obligations is the next phase. A component, specified in B, is only correct when all its

proof obligations are demonstrated. Two methods for discharge proof obligations are provided.

In proof automatic mode, most of the proof obligations are demonstrated without user interven-

tion. The remaining proofs need to be verified using an interactive mode. In this case, the user

guides the prover in its proof obligations demonstration using interactive commands (lemma

additions, proof by case, etc.). When there are no remaining proofs, i.e. the entire project

is proved, the B0 checker enters in action. The function of the B0 checker is carrying out a

verification of the specific machine is in the B0 language (a sub-division of the B language), to

ensure that a model can be translated to the target language. The version used of Atelier B

is version 4.0. This version is free and only permits generation of code to the target language

C. On the last phase, the project checker checks all the components of a project to control its

architecture (the links between the components). The project must be checked before the final

translation of the project.

Additional tools are provided to help in the development phase. For example, BART is an

automatic refinement tool. BART permits the refinement and implementation generation using

refinement rules expanded by the user. Additional refinement rules can be added for refinement

personalization of certain components. To help in the documentation, B models can be saved

in pdf, rtf and LaTeX formats.

2.5.3 B-Toolkit

B-Toolkit, the tool provided by B Core, is the concurrent tool for Atelier B in the devel-

opment using the B Method. The B-Toolkit comprises a suite of fully integrated software tools

designed to support a rigorous or formal development of software systems using the B Method.

Like in Atelier B, it is provided a set of functions to help in the management of all associated

files, ensuring that the entire development, including code and documentation, is always in a

consistent state. The main functionalities can be divided into tree sub-groups, a configuration

management of the project, a proof-based mechanism for formal verification and a set of tools

for help in the documentation. Configuration management checks the dependency between

components. A set of software specification and analysis tools, which includes syntax check-

ers, type checkers and a specification animator. For formal verification it is used a proof-based

mechanism. This type of mechanism ensures the generation of automatic proof obligations and

automatic and interactive prover. A set of documentation generation tools for automatically

producing fully cross-referenced and indexed type-set documents from source files. Gathering all

this functionalities it is provided a complete framework to the development of complete projects

using the B language.

2.5. B TOOLS 27

2.5.4 Rodin

The Rodin Platform is an Eclipse-based IDE for Event-B [32]. It is an open source tool

developed for the European Union ICT Project Deploy. Event-B language is an evolution of B

Method developed by Jean-Raymond Abrial. Rodin, like the other tools previously described,

offers a complete environment to the development of projects using Event-B. It supports con-

figuration management for saving and editing the components of the projects and verification

of dependencies between them. It is composed by a type checker and a syntax checker for static

verification of the machines. This tool is also a proof-based tool. So, a proof obligation generator

for the components is provided. An animator is also provided, AnimB. It allows animation of

complete model (all refinements), and can be used to create complex animation with graphical

interface.

The difference between Rodin and the previous tools is that its environment is completely

customizable. Like other environments that use eclipse IDE, it works like a tool for combine

different plug-ins. So, different plug-ins come from different sources. The ones that deserve

special consideration are the prover plug-in provided by Atelier B, the animator ProB and the

U2B translator (plug-in that generate B machines from UML). Other types of plug-ins are

available and worthy to use. One plug-in very important is the one that transforms the code

from event-B to “common B”. Rodin does not provide any tool for translating from event-B

to a target language like C. The way to deal with this limitation is translating the code from

event-B to b and then use Atelier B to generate the code. The inverse, the translation between

B to event-B is also possible.

2.5.5 U2B

The aim of this tool is to use some features of UML diagrams to make the process of writing

formal specifications easier, at least for programmers that use UML frequently [17]. The U2B

tool converts adapted forms of UML class diagrams and state chart diagrams automatically into

specifications in the B language. This is done adding additional expression, using an adapted

form of the B abstract, to the class diagram component and to its attached state charts. The

resulting UML model is a precise formal specification but in a form which is friendlier to the

average programmer, particularly if they use the same UML notation for their program designs

work.

2.5.6 Brama

The Brama model animation tool is more frequently used in industrial world [34]. The

objective of this tool is to present the models to customers in a more fashion way. ClearSy has

a large experience using B to develop software, and when dealing with customers and in general

with those who did not write the model, have difficulty in understanding it on the one hand, and,

on the other, have difficulty in affirming that the model represents the system. Brama consists in

representing the system with the Flash tools and configuring scripts that allow communication

with the Brama animation engine. Using this, the customer gain more confidence in the model

and the modeler confirms that is really doing the work in the correct way. The visual power

that Brama transmits should be considered very helpful when dealing with customers.

2.5.7 Final Remarks

A relevant subset of tools used in the B development process were presented. The ones

used in this project were Atelier B, ProB and Rodin. The main reasons for this choice were

some previous experiences in the development of projects in B. Atelier B, is apparently a more

28 CHAPTER 2. SOFTWARE ENGINEERING AND THE B METHOD

actively used tool than B-Toolkit. The proof of this, is the fact that the last version of B-Toolkit

is from 2002 and Atelier B is from 2009.

It seems like the B community is adopting event-B. Recent courses in universities tend to

teach event-B instead of B. Due to the fact that this new approach is seen like an evolution of

B, it is quite normal that practitioners tend to adopt event-B. One of the main reasons for the

evolution of B to event-B was simplicity, like Abrial refers in [2].

Rodin is the ideal development platform for event-B. It offers a large variety of features

only in one tool. The environment is easily adaptable to the necessity of the user. It is also

possible to use event-B in Atelier B, however, it is not his natural language so Rodin should be

preferred. Another reason for this choice is the animator AnimB that is completely dedicated to

event-B and Rodin. In the previous versions of Atelier B a common problem was the absence of

an animator. This gap was covered adding ProB as a plug-in for Atelier B. With this additional

feature the task of modeling becomes easier. Animation of the model gives more confidence to

the modeler and can be used as an verification of the correctness of the model before going to

the proof, preventing a waste of time trying to prove something that is impossible.

2.6 Summary

This chapter starts with an explanation about aspects related to formal methods, such as

modeling. Simple processes like the “parachute paradigm”, makes the task of modeling more

easy. Then an description of the different phases of the formal development life cycle is presented.

The benefits of the use of such process are a precious help in achieving the objective of a good

quality product.

This chapter also gave a brief overview of the B Method and the tools related to such for-

malism. The purpose of this chapter was not to present the whole language but only the needed

aspects to understand the presented work. The B Method is not only a language but a complete

methodology. The B architecture is composed by several phase.In the first, specification phase,

it is used abstract machines. The objective of this phase is to express the desired properties

to the system to be developed. In this phase the components are not implementable, we are

working with sets, predicates, etc.. The refinement is a very important step because it is how

we can pass from a specification to an implementation. Refinement can be accomplished using

one or various steps. In each step of the refinement, the properties defined in the specification

phase need to continue being true.The final step is the implementation. This final phase can be

achieved using decomposition and importing various basic machines.

The example provided is quite simple but illustrates well the B language and methodology.

It is possible to see the use of decomposition, the elimination of non-determinism and the use

of refinement.

Another part of this chapter was dedicated to the description of a subset of tools related

to B Method. These tools are not randomly selected. A study of each tools were more used

reveled the previous ones. Atelier B and ProB are the most used by the B community. However,

Rodin for event-B gives a complete framework, with large choice of plug-ins. In this thesis only

two tools were used: Altelier B for editing, type-checking and discharging proof obligations and

ProB, for the animation of the specification and model checking.

Chapter 3

Secure Partition Kernel

Most early operating systems were implemented by means of large monolithic

kernels. Loosely speaking the complete operating system – scheduling, file system,

networking, device drivers, memory management, paging, and more – was packed

into a single kernel. In contrast, the microkernel approach involves minimizing the

kernel and implementing servers outside the kernel. Ideally, the kernel implements

only address spaces, interprocess communication (IPC), and basic scheduling. [39]

The concept of microkernel is not an innovation. In fact, a common idea is to use old

concepts and re-adequate them to new technologies. Secure partitioning microkernel is one of

the new concepts created from the old idea of microkernel. Multi-purpose systems can be ac-

complished using as base a secure partitioning microkernel. However, secure partitioning can

only be achieved through high levels of assurance. Common Criteria is the standard for security

evaluation, it defines generic security functional requirements and security assurance require-

ments.The combination of secure partitioning with formal methods provide the foundations to

achieve and assure the security of a system.

This chapter starts with a presentation of the problem (section 3.1). Certification can

be achieved through the use of formal methods, in section 3.2 the process of certification is

presented. In the next section 3.3, it is described what is a secure partitioning microkernel and

the requirements necessary to achieve that implementation. The solution proposed in this thesis

is presented in section 3.4. The target microkernel is exolained in detail in section 3.5. In the

end a summary of the chapter works like a resume of the main ideas here presented.

3.1 General Overview

Partitioning is being applied for a long time. Several applications, with different purposes,

can be deployed in the same system using different critically levels. Hardware solution, with

two different boards, was the first solution to achieve the objective of separation. Although

and despite the successful use for a long time, it is not as effective in terms of the resulting

architecture:

• Physical constraints: two boards require more space than a single board, consume

more power and more weight;

• Technology: increasing computational power allows a single computer to perform more

tasks;

29

30 CHAPTER 3. SECURE PARTITION KERNEL

• Testability: a system running in a single board is predominantly easier to test than a

system running in several boards;

• Reuse: Segregating a system across different boards implies to replicate common func-

tions on those boards

Figure 3.1: Evolution of partitioned systems

As can be seen by the previous picture, an architectural evolution has been applied over the

years. In the first times, partitioning was applied as physical segregation of the system. The next

step was change from physical segregation to partitions. This is, a real time operating system

(RTOS) provides different logical partitions that segregate different applications/functions. The

last and pretended solution is the partitioning microkernel. In this architecture several RTOS

can be segregated in different secure partitions. It is important to refer that is presented a

transition from applications/functions running in a logical partition into different RTOS running

separated.

Beside the problem of different critical levels, another important need is isolation of functions

developed for strictly different purposes but deployed in the same computer. This is an usual

practice, if we are using an email client it should be separated from a browser because they

have different purposes. In summary, partitioning may be applied because one or both of the

following causes:

• Criticality segregation: a given software application encompasses functions of different

criticality levels;

• Multipurpose system: strictly differentiated applications are deployed in the same

platform;

If the previous scenarios are putted working together, different applications with different

criticality levels and applications with possible different purposes in the same platform are

working together. If those applications need to exchange data among them, for example access

to a device driver, them the necessity for secure partitioning arrives again. By merging all the

partitioning aspects just presented we obtain:

• Time Partitioning: a given time slot is assigned to a given application or task ensur-

ing that this time slot will always be available irrespectively of the computation time

required/used by other applications and/or tasks;

3.2. SECURE PARTITIONING KERNEL PROTECTION PROFILE 31

• Space Partitioning: a given memory block is assigned to a given application or task

ensuring that this memory block will always be available irrespectively of the memory

required by other applications or tasks. Space partitioning also ensures that other appli-

cations or tasks will not access and/or change the data contained in the memory block

assigned to a particular partitioning or task - this feature already implements a significant

part of the secure partitioning;

• Secure Partitioning: communication between multiple communicating processes and/or

tasks is performed in a way that ensures that confidential data is protected from unau-

thorised access. Security requirements may drastically change from system to system

and therefore security is typically implemented using a multilevel approach. In func-

tional terms computer security may be described by the well known AAA mnemonic that

stands for:

– Authentication: refers to the process of establishing the identity of a given iden-

tity;

– Authorization: refers to the process of giving specific privileges to a given identity

that has been previously authenticated;

– Accounting: refers to the process of recording the actions of the different entities

that use a secure system - this information can later be used for security auditing.

A fourth ”A” is typically added to AAA mnemonic and standing that extra A for ”Auditing”

which is the manual and/or automatic process of handling accounting data.

3.2 Secure Partitioning kernel Protection Profile

Certification is a requirement for systems that will run in ”non-safety” environments.

Proof/evidence of correctness is a critical issue for critical systems. For separation kernels

there is a US made PP entitled ”US Government Protection Profile for Separations Kernels in

Environments Requiring High Robustness” (also known as SKPP) [19]. The purpose of this

document is not to produce a certified kernel but to be used as a reference document with

respect to the security aspects.

In terms of security certification the standard commonly used all across several application

domains is the ”Common Criteria for Information Technology Security Evaluation” (CC). The

CC defines seven ”Evaluation Assurance Levels” with increasing levels of security assurance

requirements (Table 3.2).

Depending on the target for evaluation, CC Protection Profiles (PP) have been defined to

group, and adapt as necessary, the CC assurance and functional requirements that are relevant

for specific product families such as firewalls, operating systems, etc.. The B Method was

used, with success, by GEMPLUS to certify using the Common Criteria the Java Card Virtual

Machine [30] [31].

As can be seen by the certification chain presented in the Figure 3.2, all the documents

are derived from the CC. The protection profile is a CC subset with the necessary adaptations

for a particular purpose. In the figure is also possible to see the Security Target (ST) and the

Target of Evaluation (TOE). The objective of the ST is to describe the TOE and should be in

conforming to a given Protection Profile (e.g. the SKPP). By the other hand, the TOE is the

subject of security certification.

32 CHAPTER 3. SECURE PARTITION KERNEL

EAL Definition Requirements Functional
Specifica-
tion

High
Level
Design

EAL1 Functionally
tested

Informal Informal Informal

EAL2 Structurally
tested

Informal Informal Informal

EAL3 Methodically
tested and
checked

Informal Informal Informal

EAL4 Methodically de-
signed, tested and
reviewed

Informal Informal Informal

EAL5 Semi-formally de-
signed and tested

Formal Semi-
formal

Semi-
formal

EAL6 Semi-formally
verified design
and tested

Formal Formal Semi-
formal

EAL7 Formally verified
design and tested

Formal Formal Formal

Table 3.1: CC Evaluation Assurance Levels

Figure 3.2: Common Criteria certification chain

3.3 Secure Partitioning Microkernel

The goal of this work is to develop an approach to the implementation of a secure par-

titioning kernel. To achieve this solution it is required to satisfy both safety and security

properties. Safety is characterized by the kernel predictability and fault containment. Security

is characterized by the kernel nom-bypassability and tamper proofness. Presently some U.S.

Secure Partitioning developed kernels are being evaluated and certified. A conclusion that can

be achieved from previous approaches is that most of this solutions use an architecture called

3.3. SECURE PARTITIONING MICROKERNEL 33

Multiple Independent Levels of Security (MILS). Created by J. Rushby [33], it takes advantage

of Moore’s Law’s, performance increases over the last two decades by layering small, formally

modeled and mathematically verified components while being affordable. Applications enforce

their own security policies instead of relaying on generalized security services. Rushby proposed

that memory should be divided into partitions using hardware memory management unit and

allow only carefully controlled communications between non-kernel partitions. The implication

of this property is that one partition can provide a service to another requiring minimal inter-

vention from the kernel. Due to the fact that a separation kernel only provides very specific

functionalities, the security policies that must be enforced at this level are relatively simple.

Consequently, the requirements for a separation microkernel can be divided in the following

four foundational:

• Data Isolation – information in a partition is accessible only by that partition, and

private date remains private;

• Control of Information Flow – information flow from one partition to another is

from an authenticated source to an authenticated recipient. The source of information is

authenticated to the recipient, and information goes only where intended;

• Periods Processing – the microprocessor and any networking equipment cannot be

used as a covert channel to leak information to listening parties;

• Fault Isolation – damage is limited by preventing a failure in one partition from cas-

cading to any other partition. Failures are detected, contained, and recovered locally.

As a result of the previous presented properties, the resultant kernel is now much smaller

and simpler, and conductive to rigorous inspection and mathematical proof of correctness by

techniques such as formal methods. One typical problem in the verification of code is the size of

code. Using this approach, the amount of security-critical code is dramatically reduced. MILS

is a security foundation that requires that the separation kernel and the trusted components are

implemented so that the NEAT security capabilities are guarantied:

• Non-bypassable – the security functions cannot be circumvented;

• Evaluatable – the security functions are small enough and simple enough to be mathe-

matically verified and evaluated;

• Always Invoked – the security functions are invoked each and every time;

• Tamperproof – subversive code cannot alter the function of the security functions by

exhausting resources, overrunning buffers, or other forms of making the security software

fail.

Different criticality levels for isolated software components can be achieved by guarantying safety

and security properties. Without isolation, a criticality level is assigned to a complete system

function. This is a normal procedure since without partitioning the concern that a fault in less

critical software component could have impact on more critical software component is always

present. Another advantage, in the use of isolation, is that the verification and certification

process will be considerably lightened by having several criticality levels assigned to each software

component of a give function. Figure 3.3 shows an example of a MILS architecture. As can

be seen by the previous picture, the MILS architecture defines three software layers. The

separation kernel (which is the purpose of this work), the application and the middleware. The

main responsibilities of the separation kernel are:

• Multi-core time and space multi-threaded partitioning;

• Data isolation

• Inter partition communication

• Periods processing

34 CHAPTER 3. SECURE PARTITION KERNEL

Figure 3.3: Mills architecture

• Minimum interrupt servicing

• Timers

The MILS architecture together with the safety and security requirements provided by the

SKPP define a strong foundation to build a microkernel that can provide an environment both

safe and secure for applications and systems to run over it. Three main aspects have been

addressed to build the secure partitioning microkernel. These aspects are Time partitioning,

Space partitioning and Secure partitioning. These top-level functions can be decomposed and

combined to provide a full functional block to the microkernel users. Decomposing these top-

level functions it is obtained the following set of services:

• FUN-1 – Time partitioning

– FUN-1.1 – Control partitioning execution time

– FUN-1.2 – Save partition context

– FUN-1.3 – Restore partition context

– FUN-1.4 – Provide time partitioning services to the microkernel user

• FUN-2 – Space partitioning

– FUN-2.1 – Manage partition space boundaries (i.e. control MMU)

– FUN-2.2 – Provide space partitioning services to the microkernel user

• FUN-3 – Security partitioning

– FUN-3.1 – Implement authentication services

– FUN-3.2 – Implement authorization services

– FUN-3.3 – Implement accounting services

– FUN-3.4 – Implement auditing services

– FUN-3.5 – Ensure integrity of communication data

– FUN-3.6 – Provide security partitioning services to the microkernel user

In the next subsections an explanation of the top-level functions will be presented.

3.3. SECURE PARTITIONING MICROKERNEL 35

3.3.1 Time Partitioning

The goal of Time partitioning is to ensure that each configured partition has its own time

slot. The total time will be divided between each partition and the kernel. In order to achieve

determinism and to increase simplicity at microkernel level, the sequence of scheduling is stati-

cally defined by configuration along with the time slot duration for each partition. The sequence

of scheduling is cyclic repeated by the microkernel and is named period (T). The criteria for

defining the time slot duration depends on the computational weight of the partition and the

number of slots in a period depends on the responsiveness needed by the partition. Timer

Figure 3.4: Static scheduler period

functionalities should be provided to the partitions. It is important to take some considerations

about time dimensioning in the system configuration. The total time for each partition to run

should be less that the total period T. The configuration can manage the time slots for each

partition (duration and period) taking in consideration the total period T.

As can be seen in the Figure 3.4 it is possible for one partition to run more than once in the

total period T. Other aspect that can be important is the period for the kernel partition. Two

solutions are valid, in the first one, kernel partition will run between the end of one partition

and the start of another. This means that the kernel will run several times during the period

T. The second hypotheses is to define a precise period for the kernel to run, for example, in the

end of all the partitions stopped running.

3.3.2 Space Partitioning

The main objective of Space partitioning is to provide a well defined virtual address segment

isolated from partition to partition. This means that neither one partition will be able to access

memory from other partitions, neither other partitions will be able to access memory from this

partition. Isolation for each partition is what this property should guarantee.

To achieve this objective the microkernel, in this architecture, will assume that exists an

underlying layer that provide these functionalities and will abstract it in basis functions that

shall be implemented for every architecture, processor and board. It is mostly common to find

an architecture having several privilege running levels, in which the functionalities and resources

accessible it the running software are different. The level in which the software can access all

functionalities and resources is called supervisor mode. Using this functionality provided by the

architecture, it is possible to configure the architecture in a way that every software partition

– being it a process, thread or system – will only see the resources that are allocated to it.

Another common mechanism provided by the architecture is the memory management unit

(MMU). This component have the responsibility for handling accesses to memory requested

by the CPU. Its functionalities are translate virtual addresses to physical addresses, memory

36 CHAPTER 3. SECURE PARTITION KERNEL

protection and others. The translation from virtual to physical address, or form physical to

virtual is completely transparent to the partition software. Combining the processor running

mode and the memory management unit we have a commonly used protection mechanism to

achieve different levels of privileges.

The existing processor units have usually two or more running modes. The available instruc-

tion set of the processing unit gets smaller as the processor enters in lower privileged running

modes. Usually the instructions that modify configuration registers, namely the running mode

itself and the trap table pointer, are only available to the most privilege mode, the supervisor

mode. When software running on lower privilege mode tries to execute an instruction that it is

not allowed to, the processor will trigger a hardware exception. When an exception happens the

processor will automatically halt the current software execution, move into the most privilege

mode and will jump into the address specified by the trap table that correspond to the exception

occurred. All the addresses in the trap table were previously set by the supervisor software and

will point to components of the supervisor software itself. As can be seen in Figure 3.5, the

Figure 3.5: Secure partitioning microkernel architecture

microkernel architecture is composed by three layers. The layer in the top is a interface to the

kernel, where some basic services are provided to the applications running in the partitions.

The layer in the middle is an architecture independent layer. This layer is an abstraction of

the hardware, it uses the functionalities provided by the hardware but do not matter by type

of the architecture. The last layer is the functions provided by the hardware. In this layer, all

the functionalities are extremely depend of the hardware. As can be seen it is where the MMU

resides.

3.3.3 Security Partitioning

Secure partitioning works like a complement to space and time partitioning. Guarantying

strict isolation between partitions is not simple but if communication between partitions is not

3.3. SECURE PARTITIONING MICROKERNEL 37

Partition A Partition B
Subject A Subject B Subject C Suject D Subject E Subject F

Subject A – – – Read and Write Read and Write Read and Write
Partition A Subject B – – – Read and Write Read and Write Read and Write

Subject C – – – Read and Write Read and Write Read and Write
Subject D Read Read Read – – –

Partition B Subject E Read Read Read – – –
Subject F Read Read Read – – –

Table 3.2: Partition Abstraction

allowed, isolation can be achieved through the mechanisms of space and time isolation alone.

Although it is desirable to provide the possibility of communication between partitions. That is

why secure partitioning plays an important role in the secure partitioning microkernel. Several

types of security can be enforced, in our case, the type of security is information security.

Information flow between partition has to be monitored and controlled by the separation kernel.

The SKPP defines the TOE rules for isolation as Partitioned Information Flow Policy (PIFP).

The PIFP is a set of information flows defined at the configuration. Each information flow

is identified by the triplet: (1) partition/active entity, (2) partition/resource and (3) mode. The

mode can be interpreted as the direction of the information flow.

The PIFP is based on the application of the Principle of Least Privilege (PoLP). The PoLP

requires that each component on the system design must have access only to the resources and

data that are necessary to its legitimate purpose.

The PIFP as defined in the SKPP is based on the following fundamental principles:

• The scope of the PIFP includes all exported resources; there are no exemptions;

• A controlled operation may result in multiple information flows, in which case, the PIFP

must explicitly authorize each flow. Therefore, none of the flows associated with the con-

trolled operation may occur if any one of the multiple information flows is unauthorized.

The purpose of this restriction is to reduce the complexity of the TOE;

• The SKPP defines two partition abstractions, each of which represents a different gran-

ularity of policy enforcement with respect to information flow.

The two types of partition abstractions are (i) the partition abstraction and (ii) the least privilege

abstraction.

Partition Abstraction

In the partition abstraction, all subjects bound to a given partition are enforced by the same

restrictions, that is, the flow authorizations assigned to that partition apply equally to all

subjects in that partition. For example, if any one subject of a partition requires access to

resources in another partition, then all subjects in that partition must have the same access to

all of those resources.

An example of a configuration that meets this restriction is shown in table 3.2. As can be

seen by the table, all the subjects inside the partition have the same flow authorization. All

subjects inside Partition A have the same flow authorization (Read and Write) to Partition B.

Least Privilege Abstraction

In the least privilege (Table 3.3) the flow authorizations is finer grained, active entities may re-

quire differentiated rights to access resources in other partitions. The least privilege abstraction

requires that both partition-pair and subject resource pair authorizations are used to determine

if a flow mode is allowed. This means that, one partition can have an access right to other

partition, but the subjects inside one partition can have diferent rights from each other.

The goal of security partitioning is to secure the information and data contained in each

partition, in order to this, a strict PIFP should be defined, implemented and followed according

38 CHAPTER 3. SECURE PARTITION KERNEL

Partition A Partition B
Subject A Subject B Subject C Suject D Subject E Subject F

Subject A – – – Read and Write Read and Write Read and Write
Partition A Subject B – – – Write Write Write

Subject C – – – Read and Write Read and Write Read and Write
Subject D Write Write Write – – –

Partition B Subject E Read Read Read – – –
Subject F Read Read – – – –

Table 3.3: Least Privilege Abstraction

to the SKPP. The SKPP describes the requirements needed in order to implement and PIFP

strategy and assure its security. Space and Time partitioning along with PIFP enforcement

allow building a strong foundation for a secure application.

3.4 Proposed Solution

As it can be seen by the previous sections [3.1,3.3] it is not an easy task to build a secure

partitioning microkernel. In the context of this thesis, the formal development architecture was

structured as follow:

Abstract model of the secure partitioning microkernel – Build an abstract model of

the secure partition kernel and try to animate him using it. This first model can be

seen as the top-level abstract machine that will be further refined.

Generate code only to part of the secure partitioning microkernel – The next step,

after build the top-level abstract machine, is to develop part of the secure partitioning

microkernel and integrate the developed work with an existing microkernel.

The chosen part to the secure partitioning kernel to be developed into a level of automatic code

generation was the PIFP. TO be able to merge the code automatically generated from the B

models, it was necessary to found out a microkernel with a set of characteristics:

• Small complexity – The microkernel should be small and not too complex. It is im-

portant to understand all the details of the microkernel and if it is too complex, more

time and effort will be spend investigating the microkernel details;

• Licensing policy – The code should be available for us to modify, so, a license like

open-source will be extremely necessary;

• Memory management – The microkernel should have a memory management system

compatible with space separation required for a separation microkernel - i.e. shall have

MMU support;

• Inter-partition communication – The microkernel should implement some sort of

mechanism for communication between schedulable units;

• Scheduling policy – The microkernel should provide support for fixed time slots schedul-

ing as to implement the required time partitioning functionalities;

• HW resources management – The microkernel should contain interrupt management

functionalities allowing associating a given resource to a given partition - i.e. as to apply

space partitioning to available hardware resources.

After some time looking over different microkernels (Minix, RTMES, ecos and Fluke), the

decision of the chosen kernel fall over Prex. It was the chosen target because of its simplicity

and efficiency. The next section is dedicated to describe Prex internal details.

http://prex.sourceforge.net/

3.5. PREX MICROKERNEL 39

3.5 Prex microkernel

Prex is a real time operating system for embedded systems [1]. It is open source and the

main language is C. This microkernel was build to be portable. It has a common layer and an

architectural dependent layer, which make him easy to import to another architecture. Another

feature in this microkernel is scalability. Kernel objects are not limited inside the kernel, they

are dynamically created after system boot. An important feature that every microkernel should

have is reliability. Prex was build to prevent crush anytime, even if any invalid parameter is

passed via kernel API. The design principle is ”garbage in, error out principle”. This property

guarantees that the kernel never stops even if any malicious program is loaded. Prex code is

very clean. It is well commented, and very well structured. It is easy to add or remove parts of

the microkernel. Also the debug facilities makes easy to test the microkernel with the desired

modifications.

The following figure illustrates the Prex microkernel structure. As can be seen, two layers

are well-defined. The first one is a thin interface layer called architecture dependent layer

that brings back together all the components dependent of the architecture. The second and

bigger layer is the common kernel layer. This layer groups memory components, inter process

communication components, synchronization components and the core of the microkernel. The

Figure 3.6: Prex microkernel structure

microkernel is structurally well defined. Each component belongs to one of the following groups:

• kern – kernel core components;

• mem – memory managers;

40 CHAPTER 3. SECURE PARTITION KERNEL

• ipc – inter process communication;

• sync – synchronize objects;

• arch – architecture dependent components.

We will briefly describe the most important components of each group. The first group is

the memory management group (mem). Physical memory is allocated by the basic unit of

physical pages. The physical page allocator is responsible for page allocation/deallocation and

reservation. Prex microkernel does not swap out any pages to the disk devices. So real-time

performance and system simplicity is significantly obtained by these features.

Other important component is the kernel memory allocator. This component is optimized

for small memory foot print system. It is the necessary component to allocate kernel memory.

Once in a while, when, for example, a thread needs to send data to the microkernel, it uses this

type of memory to share data between the microkernel and thread.

The last component inside the group of memory management is the virtual memory manager.

A task owns its private virtual address space. All the threads running inside a task share

the memory of the task. The microkernel provides allocate/deallocate memory regions for the

virtual memory; change memory attributes (read, write and execute); and map another task’s

memory to the current task. Prex microkernel has an important task, the kernel task. This

special task which has the virtual memory mapping for the kernel. All the other user mode tasks

will have the same kernel memory image mapped from the kernel task. This feature provides

to kernel threads the ability of work with all user mode tasks without context switching the

memory map. Figure 3.7 illustrates the microkernel memory mapping between the kernel task

and other tasks.

Figure 3.7: Microkernel memory mapping

Like mentioned before, each task has its own virtual address space. In fact, tasks can be

seen like a container that holds threads and objects. In Prex, tasks are not the execution unit

but the container and memory maps for the units it contains, like threads. Tasks works, in a

certain way, like partitions. They both have in common an isolated virtual address space and

hold the units of execution. The main difference between a task and a partition is that when a

partition is created it is possible to define the size of the partition, something that is impossible

to do with a task.

Threads are the minimum execution unit including processor’s register state. Each thread

has a state, a scheduling policy, a priority and other type of attributes. When a new thread is

3.5. PREX MICROKERNEL 41

created, in the initial state the thread has a owner task, inherited from parents thread and thread

state is suspended. So it is necessary start the thread by calling the routine thread resume().

An important issue in thread creation is the allocation of memory for the thread. Since the

Prex microkernel does not allocate any stack buffer for user mode threads, the parent thread

has responsible to allocate it. Like exists a kernel task, also exists a kernel thread. This thread

is always executed in kernel mode, and it does not have user mode context.

To define which thread will run, Prex has a scheduler. Based on the algorithm known as

priority based multi level queue. To each thread it is assigned a priority between 0 and 255,

being the lowest priority the one with the higher value, like BSD UNIX. The lowest priority

(255) is used for an idle thread. Scheduler based on the priorities of the threads currently in

the system, defines the state for each thread. Figure 3.8 shows the different states in which a

Figure 3.8: Thread states

thread can be. The state run means that the thread is currently running. The threads that are

in the state ready are, like the name says, ready to run, those threads are only waiting for their

time to run. One thread reaches the state sleep when is pushed for this state by some event.

Suspend state happens when the time given to that thread ends and the thread still not finished

her work. Finally, the last state is exit, when a thread finished is job.

Communication in Prex is quite simple. Messages are sent to object from thread to thread.

The concept of object is similar to the well-known terminology of port in other microkernels.

Objects are owned by a task and can be used to hold a queue of messages. Objects can be safety

used for communication, each object is stored in kernel space, and are protected form user mode

code. Objects are identified, inside the kernel space, by their names. Three basic functions are

provided for objects: object create(), object lookup() and object delete(). To send a message to

the specified object, the sender must obtain the ID of the target object using object lookup().

If an object is created without a name, the object is considered private and can be used for

threads in the same task to communicate.

Betwen objects messages are changed. Each message needs to include the message header

in it. The header is composed by the ID of the sender, the message code and a return status.

Although, the header is not filled by the sender task but by the microkernel. This mechanism

ensures the receiver task can get the exact task ID of the sender task.

Messages are sent from one thread to a specific object. The transmission mechanism is

synchronous. Therefor, the thread which sent the message is blocked until it receives a response

from another task. The receiver thread is also blocked until a new message reaches to the target

42 CHAPTER 3. SECURE PARTITION KERNEL

object. In the end, when the receiver thread receives the message, is also necessary to send

a reply message saying that the receiver task had received the message. Figure 3.9 illustrates

the all process of communication. It is important to mention that the receiver thread can not

Figure 3.9: Message passing sequence

receive another message until it replies to the sender. This means, that a thread can only receive

one message at once. After replying to the message received, it can send another message to

different objects.

For the message transfer mechanism (Figure 3.10) the microkernel is used. The memory

region of sent message is automatically mapped to the receiver’s memory without the kernel.

This mechanism allows to reduce the number of copy time while message transfer. Since there is

no page out of memory in Prex, we can copy the message data via physical memory at anytime.

Prex is small and not very complex. The source code is available and well commented,

additionally, it provides enough documentation to understand the implementation details. The

chosen microkernel needs to have a memory management system compatible with space seg-

regation. The microkernel provides this space segregation using tasks. Tasks are isolated in

space.

An inter-partition communication mechanism is provided using objects. This mechanism is

ideal for communication in a secure partitioning microkernel. PIFP can be implemented in a

microkernel using this type of mechanism for communication. The scheduling policy is not the

pretended one. However, this type of limitation can be passed if the implementor takes some

attention on the way it implements the code. It is responsibility of the implementor to ensure

that every task will have some time for scheduling.

All the features that Prex provides lead us to choose this microkernel was a good target for

our work.

3.6. SUMMARY 43

Figure 3.10: Message transfer in Prex

3.6 Summary

In this chapter, a secure partitioning microkernel was introduced. Space partitioning and

time partitioning can be accomplished by almost all microkernels. Safety communication is

what makes the secure partitioning microkernel different from the others.

The proposed solution introduced in the sequel is an abstract model of a secure partitioning

microkernel and a complete development of a flow policy to be integrated in the chosen microker-

nel (Prex). The abstract model is important for a complete understanding of the functionalities

and properties of the secure partition microkernel. After this, a formal development of the flow

policy adds new functionalities to Prex.

Prex is a very simple and efficient microkernel. It has good documentation and a good

support. Characteristic like the previous ones, and the ones showed in section 3.5 makes him a

good candidate to merge the partition information flow policy.

Chapter 4

Verified Kernels: State of the Art

Security in microkernels is an important issue that brings together scientific and industrial

areas. Specific areas like the space industry or aeronautics require the use of secure applications

for using in high robustness environments. Being the kernel the main component in which those

applications run, the security of such component requires even more attention. In this chapter

a view of some previous work related to the development of verified microkernels is described.

Two types of work are described in the next sections:

• Work related to the verification of microkernels and their properties;

• Verification of microkernels using the B Method.

4.1 Verified Microkernels

The problem in verification of kernel systems is a problem with some years. In [33], John

Rushby presents the difficulty that arrive with the design and verification of kernels. It is pre-

sented a technique to strength the security in microkernels. This technique consists in building

the microkernel as a distributed system in which the security resides in the physical separation

of their individual components and the use of some components to perform trusted functions.

Placing the security critical software in the kernel, all non kernel software becomes irrelevant to

the security of the system. Kernel verification using formal methods as basis for the construction

of a secure kernel is provided. A common problem is security of the information. The problem

of indirect leakage or direct access to confidential information is also presented. To prevent this

problem, the security flow policy should be enforced not only to the non-kernel software but

also to the kernel itself. One single system-wide security policy is applied to the all kernel.

The passing of non essential software to the outside of the kernel and the usage of formal ver-

ification only crucial components inside the microkernel, together with a separation microkernel

can be used to provide a system that can be used in high robustness environments.

Wiliam Bevier in his doctoral thesis [5] developed a verified kernel, Kernel Isolated Tasks

(KIT), using Boyer-Moore Logic. The services provided by the kernel are process scheduling,

error handling, message passing and an interface to asynchronous devices. The main objective

of this work is achieving a correct implementation of the processes and communication between

them. The KIT project conceives an attempt to prove task isolation in a kernel written for being

used in a very simple Von Neumann machine. Tasks must be able to communicate by some mean.

45

46 CHAPTER 4. STATE OF THE ART

Therefore, task isolation really means limited task communication. It is defined an address space

for a task, and each task has his own pages; shared pages are used for communication.

In KIT verification important security properties are accomplished, mainly, task isolation,

protection of the operating system from tasks, and the inability of tasks to enter supervised

mode. At the end the system is proved to be tamper proof. However, like other kernel to

embedded systems, KIT does not have virtual memory so it only uses memory provided by the

hardware and no guaranty in the correct memory usage is provided.

The use of formal methods in the construction and verification of kernels is not a common

practice. Classical approaches, for this type of work, are preferred instead of the use of formal

methods. The main reason for this is the ”misperception gap” that separate formal methods

practitioners and OS developers. A work presenting the benefits of using formal methods in OS

implementation [41], presents the benefits in using formal methods for appropriated structured

kernels. The SPIN model checker is used to analyze the Fluke microkernel’s Inter Process Com-

munication (IPC) subsystem. This subsystem was chosen due to its complex implementation

and being a system extremely concurrent, making it a worthy target for formal methods. In

this paper tools for formal verification of hardware or software are divided in two groups, model

checker and theorem prover. The benefits and disadvantages of each one are presented. The

main reasons for the choice of model checking and SPIN are that model checking has made

major advances in the last years and the learning curve, for newbie’s users in formal methods,

is shorter when compared to theorem proving. In the end of the project some conclusions are

achieved, one is that SPIN or another model checking can be a practical tool for OS implemen-

tors. Other conclusion is that if they tried to verify the all kernel, model checking would not

have been a good choice. Mainly because enlarging the scale of the software to be validated

the problem of state space explosion, common to model checkers, would arrived. One of the

main conclusions in this paper, and that really shows the benefits of applying formal methods

in kernel validation and verification, is that some bugs were founded and that probably those

subtle bugs could evaded traditional testing techniques.

There are more two works in kernel verification using SPIN model checker. The first one

is the verification of IPC for the RUBIS kernel [14]. The main objective of this work is to

model the already implemented kernel and then, using the model, verify that the kernel has the

expected behaviour. Using this work the authors pretend ”to find out a method to formalize

and to verify such systems”. The technique for achieving this objective is to use a model of the

system, specified abstractly, and them analyze it. Scenarios and properties are then formalized

in the model using Promela, the language of SPIN, and linear temporal logic. The authors

have chosen PROMELA as the specification language and SPIN to check the system because

according to them ”Communicating finite state machines seemed to be the best choice to model

our system”. Two levels of abstraction are used. In the first level, the abstraction is very high,

and some details can be forgotten. For example, in the IPC the type of data is not important to

verify some properties like the absence of deadlocks. When the verification is complete, in this

level of abstraction, they pass and use more detailed models. Decreasing the level of abstraction,

some details of implementation are them taken into account. At the end, the detailed models

have to be an exact reflection of the system behavior. Different scenarios for verifying the IPC

are also defined and verified using SPIN.

At the end of this work, some important conclusions are achieved. Different kinds of error

were detected. Return errors for IPC between tasks were founded. Not returning an error

message, the calling task does not know that a problem occurred. This could reach a state

where a system crash could happen. Other types of errors concerning memory management

were also detected.

The other work using SPIN for verification is [13]. A model of the kernel HARMONY, a

portable real-time multitasking multiprocessor kernel, is verified. Like in the previous work the

strategy is the same. After modeling, in PROMELA, the kernel and formalizing the properties,

4.1. VERIFIED MICROKERNELS 47

the result using different scenarios is checked using the SPIN tool. To achieve this objective

it is used the principle of ”divide to conquer”. The complete model of the kernel is divided

in sub-models. The models taken into account are interrupts, inter task communication, task

management and scheduling. The complexity of the models are gradually increased in two

different directions. The first direction is the combination of the different sub-models until

reaching a complete model. The second direction is the level of abstraction, from more to less

abstract. At the end, a tractable model that enables the expression, simulation and verification

of any scenario is obtained. The definition of a scenario consists of a bounded number of

tasks that may use differet combinations of kernel services. In this paper two sub-models are

presented, the inter process communication and task management. Using the models of inter-

task communication, task management and running a priority based scheduling it was possible

to simulate a quite large number of scenarios. The test of all cases is a complicated issue.

However for simple scenarios, they reached some important conclusions. A quite considerable

number of errors were founded when executing different scenarios on the model. In the inter

task communication primitives a bug was found that did not showed up during ten years of

utilization.

Because the system already existed the approach of reengineering was adopted. According

to the authors, the usage of reengineering makes difficult the usage of a method of layered

refinement. Starting in an abstraction and use consecutive refinements to produce a concrete

model was clearly the better approach. Another problem that the authors clearly identify is the

choice of the scenarios for verification. It is impossible to cover all the scenarios of utilization,

and a problem arrives when deciding the best scenarios for testing. The last conclusions is

related to the SPIN tool. It was proven that SPIN was very well suited for addressing this

problem because its high verification power. SPIN should be used as a design help and not only

in porteriori validations.

Model checking for the verification of kernels is very popular. Another example of this type of

verification is the work in [16]. Due to the fact that the kernel is a concurrent system, it becomes

appropriate to use techniques to perform a correct design and validation of the system. Using

TLA+ as the specification language and TLC as the model checker, a set of solutions for real

time operating systems are proposed. This work focus principally in the resource management

mechanism and the protocols to ensure the consistency of the data in those shared resources.

Communication mechanism between tasks is also modeled in a simple and efficient way. At the

end of the work, the results achieved provide good basis for the development of a ”nano-kernel”

operating system.

The reason for the choice of a model checking technique instead of other technique is,

according to the author, the simplicity that this type of formal method can offer for analyzing

concurrent systems. A set of unique characteristics make this type of verification very profitable,

namely, the use of branching or linear temporal logic, symbolic or explicit state verification,

breadth-first search or depth-first search, real-time or timeless verification, etc..

Using these techniques, is possible to reason about the system abstracting from some de-

tails that not influence directly the system. Resource is the key abstraction on this work. Any

software structure (for example a set of variables, a memory area, a file, a set of registers, etc.)

that can be used by a process to advance its execution is abstracted using resources. This

abstraction makes easier to reason about the system behavior leaving details of implementation

outside of the scope of analysis. Resources are mutually exclusive to ensure the consistency of

data in shared resources. In the first part the model of resource access management is provided.

Then to accomplish the objective of the kernel be a real-time kernel, it is presented a priority

handling mechanism. To handle time constraints tasks are given priorities and scheduled ac-

cording to some priority based protocol. Communication ans synchronization between tasks are

described in the last part of this work. The showed mechanism can be used in both distributed

and non-distributed systems.

48 CHAPTER 4. STATE OF THE ART

The conclusion in this work, using the TLA+ as the specification language and TLC as

the model checker, shows the benefits of using verification techniques, like model checking, to

implement systems from the beginning. Normally this type of verification is applied to systems

already implemented, using a process of re-engineering for formally achieve a certain degree

of confidence in the system. In my point of view I agree with the author of this work, such

verification should be performed at the beginning of the development.

Other methodologies, different from model checking also revealed well successful in the

verification of kernels. The following text present a description of some of the developed work

using techniques different from model checking.

The existence of formal security policies are one of the most important requirements to

accomplish a verified kernel according to the US Government Protection Profile for Separation

Kernels in Environments Requiring High Robustness (SKPP) [19]. Rockwell Collins and the

U.S. Department of Defense presented a work describing a formal security policy for a separation

kernel [12]. Separation kernels are normally used as a high-assurance product. This type of

products requires precise and unambiguous specifications for high-level certification. A formal

security policy is ”a formal specification of what a system allows and guards against”. In this

work, a security policy for a separation kernel for a Multiple Independent Levels of Security

(MILS) architecture is presented. Two properties are required for a good specification of the

kernel formal security policy:

1. The specification can be proved about a particular system component;

2. The specification can be used in larger system that contains the component about which

the specification has been proved.

To prove that the formal security policy proposed in this work is correct, some theorems similar

to what others have used to describe a separation kernel are proved in the proposed security

policy. It is also presented a case study - a firewall - that uses the separation kernel and shows

that the separation kernel security policy implies that the application works properly. ACL2 is

the chosen tool for the specification of the formal security policy. The reason for the choice of

ACL2 is because it is useful in modelling and reasoning about computing systems.

In this document, are presented a set of previous defined theorems for proving the correct

formal security policy. The first property that needs to be proved is exfiltration. This is, when

a partition is the currently-executing partition, a partition’s memory segments can only be

effected in a way that is consistent with the communication mechanism. The second property

is, supposing that one partition is executing, the effect on a segment cannot depend on anything

other than the segment’s original value and the values of the current partition. This property is

named meditation. The final property is infiltration. The definition of this property is that, when

a partition executes, the values of the current partition’s memory segments do not depend on

other segments that should not effect it. These tree properties are proved using ACL2 theorem

prover for their current formal security policy. At the end, it is formalized a firewall application

that uses the previous separation kernel. This is done to show that the firewall works properly

using the formal security policy in the separation kernel. To conclude, this work is extremely

interesting and important, however the lack of an implementation is an important issue.

In [21], an approach to formulate a formal specification and verification of data separation

in a separation kernel for an embedded system is presented to provide evidence for a Common

Criteria evaluation. The way to verify the kernel code and the artifacts used to the evaluation

are a sequence of five steps:

1. Specification of a Top Level Specification (TLS) of the kernel as a state machine model;

2. Formalization of the data separation property in terms of the inputs, state variables, and

transitions defined in the state machine model that underlines the TLS;

3. Translation the TLS and data separation property into the language of a mechanical

prover, and prove formally that the TLS satisfies the data separation property;

4.1. VERIFIED MICROKERNELS 49

4. Implementation of the kernel code annotated whit pre- and post-conditions, partition

the code into Event, Other, and Trusted Code, where, informally Event code is code

corresponding to an event in TLS that touches a Memory Area of Interest, Trusted Code

is code that touches a Memory Area of Interest but is not Event Code, and Other Code

in neither Event Code nor Trusted Code.

5. Demonstration that the Event Code does not violate separation by constructing:

a) A mapping from Event Code to the TLS events and from the code states to the

states in TLS;

b) A mapping from pre- and post-conditions of the TLS events to pre- and post-

conditions that annotate the corresponding Event code.

Demonstration separately that Trusted Code and Other Code do not violate data sepa-

ration.

The first part for the verification of the kernel is the TLS. The major goals of the TLS are to

provide an explicit description of the required behavior and to make the assumptions on which

the specification is based. To describe the TLS it is necessary to use different stakeholders

with different perspectives to communicate and understand each others, so, a formal context

and a precise vocabulary is needed. State machine models using precise natural language help

achieving a good comprehension of the specification.

A set of properties need to be implemented by the kernel to enforce a security policy to

data separation.

• No-Exfiltration – data in one partition cannot influence the data outside the partition;

• No-Infiltration – the data inside a partition cannot be influenced by data outside that

partition;

• Temporal separation – the data areas in one partition must be clear when the system is

not processing data in that partition;

• Separation of control – when data processing is in progress in one partition, no data is

being processed in a different partition, until the processing partition terminates;

• Kernel Integrity – when data processing is in progress in one partition, the data stored

in other partition does not change.

To verify that the TLS enforces data separation it is necessary to prove these previous properties

with the defined TLS. In this paper this is done using the prover PVS.

Demonstrate the code conformance is necessary. This correspondence is obtained by two

mappings. The first one is the mapping between the concrete states in kernel code and the TLS

abstract states. The second mapping relates assertions at the abstract TLS level to assertions at

the code level. This requires that the code needs to be annotated with pre- and post-conditions.

The match between assertions in the TLS and derived code-level assertions is not exact because

auxiliary assertions were added to:

• Express the correspondence between variables in the code and physical memory areas;

• Save values in memory areas as values of logical variables;

• Express error conditions that the TLS implicitly assumes to be impossible.

The last part of the verification is the formal foundations. This is necessary to show that the

kernel code conforms to the behaviour captured in the TLS.

Some of the conclusions achieved at the end of this project are that an animator is a very

helpful tool to reason about the specification. It is said that running the simulator exposed

some gaps in the understanding of the kernel. Keeping the size of the TLS specification small

helped in very ways, such as proving the data separation, and helped in the discussion between

50 CHAPTER 4. STATE OF THE ART

the different stakeholders. The discussion between the different stakeholders helped to ensure

that misunderstandings were avoided and issues solved at the early certification process.

Motorola and the Natinal Security Agency (NSA) worked together in the development of

a Mathematical Analyzed Separation Kernel (MASK) [28]. The formal methodology used in

the development of MASK was SPECWARE. This environment permits the specification and

formal development of software with its primary objective being the correct development of the

entire system. More specifically, SPECWARE provides the formal composition of specifications

and the refinement of specification into code. The process of specification in this work is divided

in three phases. In the first phase, the separation specification, a set of mathematical properties

for separation are specified. The second phase is the multiple cell abstraction level specification

where it is detailed how the MASK kernel shall meet the separation specification. The last phase

is the kernel specification. The purpose of this part is to detail the actual data structures and

algorithms used to construct the implementation of the kernel. At the end of the SPECWARE

MASK kernel specification, a code implemented in the C language needs to be checked if it is

in accordance with the specification. In the end, a complete mathematically verified kernel is

obtained using the SPECWARE methodology.

Sometimes it is difficult to gather the different stakeholder (i.e. developers, formal methods

practitioners, project manager, etc.) in the development process to work together. The main

reason for this is that they have different views of the system. Reconciling the approach taken

by kernel developers with the one taken by formal developers practitioners is the scope of [15]. A

small kernel is implemented, with the name of seL4, using a complete cycle of developing. Issues

like design, specification, implementation and verification of the kernel are presented. The small

size of current kernels, and the increase power of iterative theorem proving environments, means

that the time is right to attempt formal verification by proof of real world microkernels [40].

The final goal of the project is to achieve a verification of the kernel implementation behavior

as it is formally specified in the abstract model and properties such as spatial partitioning of

processes hold both for the model and the implementation.

A problem presented in this work is the cooperation between the team of formal methods

and the team of kernel developers. To achieve an implementation using formal methodologies

is necessary for both teams to work together. The fact that kernel developers tend to adopt

a bottom-up approach while formal method practitioners take a top-down approach makes the

task more difficult. A need for a methodology that facilitates both teams working together

and enables them to efficiently iterate through the design, specification, implementation and

verification of the system. The proposed solution is to use an intermediate language that permits

both teams to express their ideas, in this case, Haskell. Using this approach, the specification is

an implementation so that kernel developers are forced to think about implementation details.

On the other hand, the task of the formal verification team is to extract a formal model of the

prototype in order to reason about it in a theorem proving environment, Isabelle/HOL. The

reason for choosing Haskell language is the precise semantics of the language and the lack of

side-effects of functional languages in general. This made easier the translation between Haskell

to a formal model that can be used in Isabelle/HOL. The translation between Haskell to a

model that can be used in theorem proving environment was mostly syntactic. However, it

is important to prove that the model obtained from the Haskell code, really is a simplified,

more abstract formal model of the kernel. If the model is really a valid abstraction then is

used to facilitate proofs of more complex safety and invariant properties of the kernel without

need to go into implementation details.Using this methodology some evidences were found. The

verification process found some incorrect behaviours in the model but also in the Haskell code.

These problems were captured in an early phase of the process and were easily fixed.

The final step on the previous work is the implementation of the kernel formally verified

using a more traditional language such as C. The plan is to use the Haskell code only as an

intermediary bridge to unify the formal methods team and the development team. This code

4.1. VERIFIED MICROKERNELS 51

is then passed to a model used in the theorem proving environment, and the final part of the

process is the refinement to a C implementation of the formal model. At the end, the produced

kernel and its formal proof are sufficient, the Haskell code can be considered redundant.

One of the most important conclusions of this project is that the use of an intermediate

language for both teams can be very helpful to cooperatively and iteratively develop a formally

verified design and implementation of a small kernel. On the other hand, the translation of

the Haskell code to a formal model, performed by the verification team, found a number of

problems. However, in this phase much errors can be considered small bugs and easily fixed.

Other types of problems were found when the verification team started making the verification

proofs in the Isabelle/HOL environment. This shows that formalisation and the use of theorem

proving tools is beneficial even if full verification is not yet performed. The final conclusion

is that this methodology, with the team working in parallel, enables kernel developers, formal

modellers and higher-level programmers to work more closely together, leading to faster results

than using a sequential development. It also proves that an intermediate language as Haskell

can be very convenient and helpful, making feasible, even easy, for kernel developers and formal

methods team to collaborate on the specification, design, implementation and formal verification

of a high performance kernel.

Other type of approach is presented in [10]. The Z notation (a predecessor of the B Method)

is used to show that the formal specification of kernels is not only possible but also necessary

if the operating system is required to achieve high levels of reliability, safety and security. The

reliability of the entire operating system, as well as its performance, depend upon having a

reliable kernel. In this book, the concepts related to the kernel functionalities are presented

in a fashion and comprehensive way. The formal models of three operating systems kernels

are presented. Besides that, some important concepts that sometimes are not addressed, like

hardware abstraction model, virtual storage and Interrupt Service Routines (ISR) are here

presented.

The first model is a simple kernel, like the ones often used in embedded and real-time

systems. It is very simple and does not deals with such things as ISR or device drivers. The

objective of the author in modeling such kernel is to show that it is possible to produce a

formal model of an operating system kernel. Despite being a simple kernel, it should not be

underestimated because it is possible to refine the model of the kernel and produce a real working

code.

The second kernel presented is an extension of the first one. The model now includes device

drivers and in particular a clock process that is central to the process-swapping mechanism.

Inter Process Communication (IPC) is implemented using shared memory and semaphores for

control synchronization. Other feature is the use of a swapping mechanism to give the kernel

the ability for support more processes that can be simultaneously maintained in main store. In

relation to the first kernel the complexity is higher. It can be seen as a Tannenbaum’s MINIX

system [38] except signals, file system and terminal interface. The kernel properties for each

part of the kernel are provided and the proofs of the correct behavior are included.

The third kernel is a variation of the previous one. The main difference is the IPC mecha-

nism. The IPC is implemented using a message passing mechanism using ISR. All communica-

tion and synchronization in this kernel is based upon synchronous message exchange. Another

improvement in relation to the previous one is the modeling of the interface and the respectively

system calls. An important proof is presented in this chapter; the proof that only one process

can be in the kernel at any time. This property is important to guarantee process isolation in

execution, one of the properties that the separation kernel needs to achieve.

In the last part of the book the virtual storage, a particular part of the kernel, is modeled.

Recent kernel use virtual memory for system and user processes. Virtual storage offers a consid-

erable number of benefits including automatic storage management at page level, management

of large address spaces and support for more processes than will simultaneously fit into main

52 CHAPTER 4. STATE OF THE ART

store without having to resort to the all-nothing techniques exemplified by the swapping mech-

anisms of the previous kernels. Message passing mechanism is also changed to support virtual

memory.

The work previously presented is very helpful when using formal methods to design, verify

and implement kernels or parts. However, some details were left to be done in the future. For

example, asynchronous signals and kernel initialization. Another missing point is refinement,

no refinement is present. Models are simply models and no guarantee that can be implemented

is presented.

In response to the fact that in the previous book no refinement is presented, the same

author wrote another book completely dedicated to refinement for operating system kernels

[11]. The book is about the specification, design and refinement to executable code of two

operating systems. Each specification is relatively complete and the refinements reach the level

at which executable code in a language such as C or Ada can be extracted from the Z schemata.

Proofs for the refinement are presented to show that it is possible to refine and achieve code

trough refinement. An advantage in presenting the proofs is that is possible for reason about

the specifications and consequently about the refinements.

Two models of kernels are presented. The first model is a small kernel that can be used in

embedded systems. The other is a separation kernel as proposed by John Rushby. This is an

important reference mainly because it is performed in the Z notation, that is similar to the B

Method, and because the separation kernel is the main objective of this thesis.

Already some commercial products of verified kernels are available in the market. The next

text describes some commercial versions of verified kernels.

Two companies already have developed their verified kernels. Details about the implemen-

tation of each one are not easy to find. Nevertheless, it will be described briefly each one. The

first real time operating system is Integrity, provided by Green Hills, is one of the most secure

operating system in the world having been certified by the NSA-managed NIAP lab to EAL6+

High Robustness. It is the first operating system achieving this level of certification. The SKPP

contains provisions necessary to certify a separation kernel up to EAL 6/7. SKPP requirements

include the use of formal methods to mathematically prove the security policies, formal spec-

ifications, formal correspondence between design and implementation, complete test coverage

of all functional requirements, and penetration testing by the NSA, which has complete access

to the source code. Integrity accomplish all this previous requirements to achieve EAL6+. It

was designed to be used in systems that require maximum reliability and security. Examples of

usage of this kernel are the several aircrafts equipped with this kernel (for example Lockheed

Martin’s F-16), military computers and other industrial applications

Wind River VxWorks MILS Platform is the second verified kernel. Already achieved the

requirements according to SKPP for medium robustness (EAL4+) and currently is being evalu-

ated for achieve high robustness (EAL6+). In a Multiple Independent Levels of Security (MILS)

operating system, developers and system integrators define rules for resource allocation (space

and time) and information flow. Wind River already had some experience with partitioned

environments from the development of Wind River VxWorks 653 Platform for safety-certified

Integrated Modular Avionics (IMA) systems. Therefore to create VxWorks MILS some basis of

security-certified partitioned systems were already known.

All the previous works showed that it is possible to verify operating system kernels. For

some years this was considered an impossible task,in part due to the large amount of code used

to implement the kernel. Microkernels make the work of verification feasible.

4.2. THE B METHOD IN THE VERIFICATION OF MICROKERNELS 53

4.2 The B Method in the Verification of Microkernels

The B Method was successfully applied in several projects. For the verification of micro-

kernels some work was already done. B4L4 project [36] is a consortium that brings together

companies like ST Microelectronics and ClearSy, with the objective to achieve a secure oper-

ating system using formal modeling and the validation of its development. B-Method is used

to model the system and the APIs for the various servers that compose the OS. Studies on

the use of these models as test oracles are also conducted. This project already presents some

results [22]. The objective is to model the L4 microkernel with formal techniques, in this case

with a variation of the B language, event-B. L4 microkernel is second-generation microkernel

based on the principles of minimalism, flexibility and efficiency. The size of the kernel and its

relevance for security makes it a good candidate for verification. A formal model of the L4 API

is presented. The API can be seen as a set of operations that change the internal state of the

kernel. Basically, the operations provided by the API invoke a system call in the kernel. The

model uses events to simulate system calls, only when the guards of the event are true it is

possible to the operation to be executed. The internal data is represented using variables and

constants. Mainly two data structures are used to represent the internal state of the kernel:

memory; and threads. So, a system call is an event. Guards and system call parameters cause

the events to trigger.

To perform to a validation of the model, the technique is to perform some tests over the

model and compare them whit the running code. For that, the Brama animator framework is

used. The results obtained from each one are them compared and evaluated. This comparison is

performed using an interface that allows to convert a kernel state into a mode state, associating

the model variables with the implementation data.

The conclusions achieved, at this state of the project, are that the development of a model

allows achieving more confidence in the correctness of the API, to describe the behavior from

a different point of view and to establish a deeper understanding on how it works. The test

framework also permits to validate the model against the implementation. This last feature is a

good help when the objective is to validate software already implemented. This project is still

ongoing and more results will certainly appear.

Another project that used the B-Method was also the verification of the L4 ”Pistachio” API

(but this time, using the B language instead of event-B). This work was performed by Rafal

Kolanski during his thesis, in the University of New South Wales [24]. The objectives were

to produce a formal model of the API and identify potential faults in the API. User threads,

privilege threads, scheduling, IPC and other type of internal components that compose the

kernel are modeled according to their behavior. Although, due to the fact that the objective

is to model the API, the memory management is not detailed, a simple model of which spaces

are used by the system and which of those have been initialized is provided. This work was

performed using B-Toolkit. This framework offers an animator. However, the animator is quite

limited and some dificults arrived from this limitation. According to the author, event-b is the

future of B, and any possible attempt of continuing this work should be done using event-b.

4.3 Summary

Some work has already done in the verification of kernels. Mostly of them has used model

checking as the primary technique for verification. Mainly two approaches for verification are

used. In the first one, the kernel code is already done and most of the work is to see if some

bug is found in such code. The second approach is to start all from the beginning and model

the whole kernel.

In almost all of the previous works, the memory is not addressed. The main reason for this

54 CHAPTER 4. STATE OF THE ART

is that most of the kernels are embedded systems and memory for this type of kernels is very

simple. This thesis memory issues will be addressed.

Other important conclusion of this analysis is that some work involving B in the verification

of kernels was already done. Because this is an argument in favor of the choice of the B Method.

Both of the cases, in which the B Method was used, the purpose was the verification of the

kernel API. The work on this thesis will be different in this aspect.

Chapter 5

Formal Development of a Secure

Partitioning Microkernel

This chapter is dedicated to the formal development of the secure partitioning microkernel.

The section 5.1 introduces the overall methodology used for the formal development of the mi-

crokernel. Next, in section 5.2, a complete abstract model of the secure partitioning microkernel

is presented. From this part, it is extracted a small part for a complete development (section

5.3). The objective is to reach the level of automatic generation using Atelier B. In section 5.4

the automatic generated code is integrated with a microkernel. The verification and validation

of the work is presented in section 5.5 and in the end a summary works like a conclusion (section

5.6)

5.1 General strategy

Some design decisions were made about the architecture of the secure partitioning microker-

nel. The chosen part for a complete development using the B methodology was the PIFP. Two

types of abstraction can be used for communication. Partition Abstraction or Least Privilege

Abstraction. In this work the decision fall over Partition Abstraction. Since in this case all

subjects in the same partition are enforced by the same restrictions, a task can be seen like an

partition.

Another aspect in terms of design is the scheduler. Tasks are the unit that is scheduled,

not threads. The scheduler use a FIFO algorithm. The first task that is added to the system

will be the first task running and so on.

Since the microkernel is to be used in embedded systems, no mechanism of swapping is

necessary. The only available memory is physical memory (RAM) and virtual memory, provided

by the MMU.

All the types and constants are placed in context machines (sufixed “Ctx”). Apart from

helpfully dividing the development into state machines and those providing abstract sets, the

practice helps with refinement. They can also be used as a method of slowly building up

the specification, adding only those context machines that are necessary at every stage. The

composition of the machines in the abstract model is the presented in Figure 5.1.

55

56
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

Figure 5.1: Architecture of the abstract model for the secure partitioning micro-
kernel

5.2 Formal specification of the Secure Partitioning micro-

kernel

This is the first section of this thesis dedicated to the development of the secure partitioning

microkernel. A detailed description (and justification) of the models that are the result of this

thesis is provided, as well as the methods and approach used to obtain it. The aim of this

section is:

• to produce a formal model of the secure partitioning microkernel using the B Method;

• gain a very thorough understanding of the secure partitioning microkernel from a func-

tional perspective;

• identify potential faults and shortcomings that may be useful to current implementers

and any future formal verification;

• create a starting point to future implementors that want to use the B Method in the

development of microkernels.

The complete code is visible in Appendix A, only the relevant parts of the machines will be

described in this section. For a full view, please see the complete model.

5.2.1 Machine Ctx

The B Method uses first-order logic based on sets and set membership. Any type information

is therefore also conveyed in terms of set membership. In order to define a system inside this

methodology, we must first define abstract sets of “objects” inside it.

Sets are the basis for defining the microkernel types. Abstractly, we start defining sets for

the resources inside the microkernel. For example, thread number, task number, etc.. Using the

clause PROPERTIES, we can add properties for the sets. One important property for each set is

the notion of limit. All systems manage a finite set of resources. The way to define upper limits

to the resources inside the system is using the properties clause and restricting the cardinality

of the abstract sets. B later ask us to prove that these limits are not exceed.

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 57

This machine called Ctx serves to define all the sets, constants and properties of the system.

The abstract sets we have are, (i) the set named TASKS, which represents the possible tasks

for the system; (ii) the set of the possible messages for the system MSG; and finally (iii) the

set of possible threads for the system, THREADS. One enumerated set represents also defined

in this machine, MODE. This set is the possible values for the communication access modes

between two tasks. The mode of communication is used in the Partition Information Flow

Policy (explained in detail in section 5.3). The triplet:

< t1, t2, m >

t1, t2 ∈ TASKS, t1 6= t2, m ∈MODE

represents the flow policies for communication between the tasks in the system. Only four modes

are permitted:

• noflow – means that is not possible to have communication between the two tasks;

• read – means that a task can communicate with other tasks. However it is only possible

to read from the other task;

• write – means that a task can communicate with other tasks. However it is only possible

to write to the other task;

• readWrite - means that a tasks can communicate, using read or write, with other tasks.

SETS

TASKS;

MSG;

THREADS;

MODE = { noflow , read , write , readWrite }

The secure partitioning microkernel is composed by one special tasks and one special thread

(kernelTask and kernelThread). Both of them belong to the set of TAKS and THREADS

respectively. Since, we are giving a time slice for each task, kernelTaskPeriod represents the

time given for the kernelTask to process. The total time for the system to run is given by the

constant maxtime. The total time of the system will vary between zero and maxtime.

Another constants are introduced in this machine. They play an important role in the

communication process. In the next subsection, the communication mechanism is explained, for

now it is only important to know that nullMsg works like a null message. If we think in terms

of a language like C, it is comparable to a structure defining a message pointing to null.

PROPERTIES

card (TASKS) ≥ 1 ∧
card (THREADS) ≥ 1 ∧
card (MSG) ≥ 1 ∧
kernelTask ∈ TASKS ∧
kernelThread ∈ THREADS ∧
nullMsg ∈ MSG ∧
kernelTaskPeriod ∈ NAT1 ∧
maxPortSize ∈ NAT1 ∧
communicationTime ∈ NAT1 ∧
maxtime ∈ NAT

The values for these constants stay open. The variables values are only introduced when the

implementation level is reached. Although, some properties can be already specified. The

cardinality for the set of TASKS must be greater than one, because this set contains the constant

kernelTaks. The same reasoning can by applied to the sets THREAD and MSG.

58
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

5.2.2 Machine CtxMemory

In order to talk about memory within the model, further context is defined. Memory is an

important resource that must be carefully managed. Memory is divided in three parts: kernel

space, user space and kernel space for communication.

Kernel space is where the microkernel executes (i.e., runs) and provides its services. This

space in memory is reserved and only the kernel thread can access it. User space is a set of

memory locations in which user processes (i.e., everything other than the microkernel) run.

Kernel space for communication is a set of memory locations used for communication.

The secure partitioning microkernel modeled here will use two techniques very frequently

used in nowadays kernels, namely virtual memory and paging. The basis idea behind virtual

memory is that the combined size of the program, data and stack may exceed the amount

of physical memory available for it. Systems that use this technique make programming of

large applications easier and use real physical memory (e.g. RAM) more efficiently than those

without virtual memory. Another functionality for the use of virtual memory is for protection.

The common mechanisms provided by most of the architectures to achieve different levels of

privileges are a combination of two techniques: the processor running mode and the memory

management unit (MMU). The MMU performs address translation to the real physical addresses

completely transparent to the software. The program does not have any knowledge on the real

physical addresses it is using. The same program may running on a physical space or another

without changing the program itself. A program-generated addresses are then virtual addresses

and for the virtual address space. The virtual address space is divided up into units called pages.

The corresponding units in physical memory are called page frames. The context presented here

deal with the constants used to perform virtual memory, pages and memory sizes for each space.

SETS

STATE = { idle , normal , coldstart , warmstart }
PROPERTIES

memorysize ∈ NAT1 ∧
memorysize ≥ 3 ∧
pagesize ∈ NAT1 ∧
pagesize < memorysize ∧
kernelspace ∈ NAT1 ∧
kernelspacecommunication ∈ NAT1 ∧
userspace ∈ NAT1 ∧
kernelspace + kernelspacecommunication + userspace = memorysize ∧
userspace mod pagesize = 0 ∧
kernelspace mod pagesize = 0 ∧
kernelspacecommunication mod pagesize = 0 ∧

INDEX = 0 .. (pagesize − 1) ∧
ADDRESS = 0 .. (memorysize − 1) ∧
PAGE = 0 .. ((userspace / pagesize) +

(kernelspacecommunication / pagesize) − 1) ∧
PAGESCOMMUNICATION = (userspace / pagesize) .. ((userspace / pagesize) +

(kernelspacecommunication / pagesize) − 1) ∧
VPAGE = 0 .. ((userspace / pagesize) − 1) ∧

The total size of available memory is given by the variable memorysize. The size for one

page is defined in pagesize. The size of the kernel space plus the size of the user space and

plus the size of the kernel space for communication must be equal to the total size of memory.

Other property for the sizes is that each of them must be multiple of pagesize. The set INDEX

works like an offset to navigate in one page. If we want to access the second address inside

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 59

one page, it is used the page number and the the value for index is equal to one. The set

ADDRESS is equal to the total addresses that compose the memory of the microkernel. This

set start in zero and goes until memorysize minus one. Using the previous variables the sets

PAGE (representing the physical memory pages, or page frames), PAGESCOMMUNICATION

(the pages dedicated for the kernel space for communication) and the VPAGE (the set of virtual

pages) are constructed. To make this explanation clearer an example with some fixed values

is provided. Suppose that the memory size is equal to forty and the page size is two. Then,

kernel space can be equal to two and the kernel space for communication to four. From the

property kernelspace+kernelspacecommunication+userspace = memorysize we obtain that

userspace is equal to thirty four. So we have the following values to the sets:

ADDRESS = 0..39

PAGE = 0..18

V PAGE = 0..16

INDEX = {0, 1}
PAGESCOMMUNICATION = {17, 18}
The missing page 19 belongs to the microkernel. This page is used to allocate the space occupied

by the microkernel code.

In the secure partitioning microkernel every task have a state. This state can be idle,

normal, coldstart or warmstart. Task state is represented in the enumerated set STATE, which

contains the states mentioned before. Task states and their state transitions are shown in the

following figure:

Figure 5.2: States and possible transitions for tasks

5.2.3 Machine MemoryManagement

Memory management is the job of keeping track of which parts of the memory are in

use and which parts are not in use. Allocation of memory to tasks when they need it and

deallocating it when they are done is the other pretended functionality. In terms of security,

memory management is essential. The mechanism of protection is provided by the hardware

(MMU). Although, the hardware mechanism is controlled by the microkernel.

Every task that is initialized in memory has a set of attributes. Those attributes are

represented by functions connecting the tasks in memory to the respective attribute. The

60
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

mandatory attributes are a state and a duration (the time that each task will occupy the

processor). Each task must have, at least four pages (i.e. does not make any sense to create a

task without any page).

This machine is the memory manager of the secure partitioning microkernel. It SEES Ctx

(see 5.2.1) and CtxMemory (see 5.2.2). The following variables are introduced:

• usedTks – represents those tasks that have been created and are in memory. It is a subset

of TASKS without the kernel task;

• tksPages – represents the function that maps virtual pages to usedTks. It is a partial

function because some virtual pages may not have been mapped;

• tksDuration – represents the function that maps usedTks to a duration for scheduling. It

is also a total function because the attribute is mandatory;

• tksState – represents the function that maps usedTks to the state of the task.

INVARIANT

usedTks ⊆ TASKS − {kernelTask} ∧
tksPages ∈ VPAGE 7→ usedTks ∧
tksDuration ∈ usedTks → NAT1 ∧
tksState ∈ usedTks → STATE ∧
ran (tksPages) = usedTks ∧
dom (tksDuration) = ran (tksPages) ∧
dom (tksState) = ran (tksPages) ∧
∀(tt).(tt ∈ usedTks ∧ tt ∈ ran(tksPages) ⇒ card(tksPages B {tt}) ≥ 4)

The INVARIANT clause is used to type the variables but also to define some properties that

are pretended to hold to the rest of the development. In all the functions, where the variable

usedTks, the range or domain must be same. This is the easy way to assure that the mandatory

properties are assured. The last statement in the invariant guarantees that each task must

have at least four virtual pages, one for heap, another for stack, other for code and finally one

for data. The INITIALISATION clause is used to initialize the variables, it must respect the

invariant.

INITIALISATION

usedTks := ∅ ‖
tksPages := ∅ ‖
tksDuration := ∅ ‖
tksState := ∅

Like mentioned at the start of this section, it is the primary objective for memory manage-

ment to keep track of the parts of memory in use and provide the operations for allocating and

freeing parts of the memory. The first operation provided by the machine MemoryManagement

is createTaskM.

createTaskM (pnumber , bounds , tm) =

PRE

pnumber ∈ TASKS ∧
pnumber /∈ usedTks ∧
bounds ∈ NAT1 ∧
tm ∈ NAT1 ∧
bounds ≥ 4 ∧
card(usedTks) + bounds ≤ card(TASKS)

THEN

usedTks := usedTks ∪ { pnumber } ‖

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 61

tksDuration (pnumber) := tm ‖
tksState (pnumber) := coldstart ‖
ANY vpgs WHERE

vpgs ⊆ VPAGE ∧ card (vpgs) = bounds ∧
∀ (vp) . (vp ∈ VPAGE ∧ vp ∈ vpgs ⇒ vp /∈ dom (tksPages))

THEN

tksPages := tksPages ∪ vpgs × { pnumber }
END

END ;

This operation is dedicated to allocate memory for one task. The parameters are an elements of

the set TASKS that are not member of usedTks, the size of the task and a duration by this order.

Basically, what is done in the operation is the addition of the parameters to the variables of this

machine. However, the allocation of the virtual pages is done using non-determinism, which is

a good principle for a specification. We are not telling how to allocate the pages, instead, we

are saying what we want to do within this operation. The request in the allocation of virtual

memory for a new task is to get a subset from the set of virtual pages vpgs, where in this new

subset none of the pages belong to the pages already in use (dom (tksPages)) and the size of

this subset must be equal to the bounds of the task. One aspect in this operation is that when

a task is created, its state is fixed in coldstart.

The aim of the operation eliminateTaskM is the opposite of createTaskM. It is used to free

a task, releasing the memory that the task was occupying.

eliminateTaskM (pnumber) =

PRE

pnumber ∈ usedTks

THEN

usedTks := usedTks − { pnumber } ‖
tksDuration := { pnumber } C− tksDuration ‖
tksState := { pnumber } C− tksState ‖
tksPages := tksPages B− { pnumber }

END ;

In this operation the parameter pnumber identifies the task that is to be removed from the

microkernel address space. What is done in this operation is the removing of the element from

the functions previously defined.

The next operation is to change the state of the task. The entrance parameters are the task

and the next mode. In the pre-condition, it is taken in consideration the previous state and

the next state for the task. As described in figure 5.2, the possible transitions depends on the

actual mode and the next mode, the pre-conditons for this operation guarantee that no invalid

transition can happen.

setTaskMMode (pnumber , mode) =

PRE

pnumber ∈ usedTks ∧
mode ∈ STATE ∧
((tksState (pnumber) = coldstart) ⇒

(mode = coldstart) ∨ (mode = normal) ∨ (mode = idle)) ∧
((tksState (pnumber) = idle)

⇒ (mode = coldstart) ∨ (mode = warmstart)) ∧
((tksState (pnumber) = normal)

⇒ (mode = coldstart) ∨ (mode = warmstart)) ∧
((tksState (pnumber) = warmstart)

⇒ (mode = coldstart) ∨ (mode = warmstart) or

62
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

(mode = idle) ∨ (mode = normal))

THEN

tksState (pnumber) := mode

END

The last operation is only for get the mode of one task.

val ←− getTaskMMode (pnumber) =

PRE

pnumber ∈ usedTks

THEN

val := tksState (pnumber)

END

5.2.4 Machine Clock

This machine is used to model the clock for the system. Time properties are not easy to

model using the B Method. However, some work around this thematic is being developed [20],

[9], [8]. The idea is to extend the B Method so that it can help specifying and validating systems

with complex timed constraints. Duration calculus is used in order to express the semantics for

the B language and deduce a conservative extension allowing its use in both its original context

and in the context of time-constrainded systems. For the secure partitioning microkernel, time

constraints are not problematic the only necessary idea is to have a clock controlling the global

system time.

In the machine Ctx the constant maxtime is defined. This machine SEES Ctx mainly

because it uses this constant to define the possible values for the time.The utilization of maxtime

can be seen in the INVARIANT clause.

ABSTRACT VARIABLES

now

INVARIANT

now ∈ 0 .. maxtime

INITIALISATION

now := 0

The variable now indicates the current time for the system. This variable is initialized with

the initial value zero. Four operations are used to change the state of the variable. The first one

is the reset operation. In this operation the actual time is reseted to the initial value (zero).

reset =

BEGIN

now := 0

END ;

The other operation is called tick u. This operation is used to increment time, changing the

value of the variable now. Using non-determinism, now is changed. This operation is required

when we do not know exactly the time that the microkernel will take to process a task. So the

best way to model this is using non-deteminism [25]. What is done in this operation is to define

an interval between the actual time plus a minimum time and the actual time plus a maximum

time. Then a value from this interval is chosen to now.

tick u (from , to) =

PRE

from ∈ NAT ∧

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 63

to ∈ NAT ∧
from < to ∧
now + to ≤ maxtime

THEN

now :∈ (now + from) .. (now + to)

END ;

The next operation does exactly the same from the previous one. However, non-determinism

is not used to change the time.

tick (to) =

PRE

to ∈ NAT ∧
now + to ≤ maxtime

THEN

now := (now + to)

END ;

The final operation (current time) is simply a getter. It returns the actual time returning

the value of the variable now.

tt ←− current time =

BEGIN

tt := now

END

5.2.5 Machine Messages

Tasks communicate using a message passing mechanism. This machine (Messages) is like

an abstraction of the data in a message. A message is characterized by the following attributes:

• Source – The source of the message;

• Destination – The destination of the message;

• SIze – The size of the message.

These fields are necessary when we desire to send a message. Machine Messages SEES Ctx (see

5.2.1), it is where the set MSG is defined.

INVARIANT

message ⊆ MSG − {nullMsg} ∧
messageSource ∈ message → TASKS ∧
messageDestination ∈ message → TASKS ∧
messageSize ∈ message → NAT1 ∧
dom (messageSource) = dom (messageDestination) ∧
dom (messageSource) = dom (messageSize) ∧
∀ (mm) . (mm ∈ message ∧ mm ∈ dom (messageSource) ∧
mm ∈ dom (messageDestination)

⇒
messageSource (mm) 6= messageDestination (mm))

The variables presented in the invariant are:

• message – represents the messages currently in the system. It is a subset of MSG without

the nullMsg ;

• messageSource – represents the total function that maps a message to the source task;

64
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

• messageDestination – represents the total function that maps a message with the desti-

nation task;

• messageSize – represents the total function that maps a message with a size.

All of the previous variables are initialized as empty sets.

INVARIANT

message := ∅ ‖
messageSource := ∅ ‖
messageDestination := ∅ ‖
messageSize := ∅

Operations for creation and removal of messages are necessary. These operations are per-

formed, like usually, using the B Method with pre-conditions. The first operation defined is

addNewMessage. For this operation, four parameters are required. The first parameter is msg,

a new element of the set MSG that does not belong to the subset message and is different from

nullMsg, the null identifier for a message. Then taskOwner which is an element of TASKS.

Like the name suggests, it is the task that is sending the message. Analogously taskDestiny is

the task destination for the message. In the pre-condition, a clause defines that the sending

task should be different from the receiver task. The fourth necessary parameter is the size of

the message. Length is particularly important because the microkernel needs to know if is has

enough space for retaining the message. A space limitation is required for the message. Because

of the chosen design, messages cannot be divided, so the maximum size for a message is limited.

addNewMessage (msg , taskOwner , taskDestiny , length) =

PRE

msg ∈ MSG ∧
msg 6= nullMsg ∧
taskOwner ∈ TASKS ∧
taskDestiny ∈ TASKS ∧
taskOwner 6= taskDestiny ∧
length ∈ NAT1 ∧
length < maxPortSize

THEN

message := message ∪ { msg } ‖
messageSource (msg) := taskOwner ‖
messageDestination (msg) := taskDestiny ‖
messageSize (msg) := length

END ;

To remove a message, it is required to pass the element to be removed msg. This element

is then removed from the set message and from the respective functions.

removeMessage (msg) =

PRE

msg ∈ message ∧
msg 6= nullMsg

THEN

message := message − { msg } ‖
messageSource := messageSource − { msg 7→ messageSource (msg) } ‖
messageDestination := messageDestination − { msg 7→ messageDestination (msg) } ‖
messageSize := messageSize − { msg 7→ messageSize (msg) }

END ;

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 65

The next operations are only getter to the message. Operation getMessagelength returns

the size of the message, getMessageSource returns the task source in a message and getMes-

sageDestionation the destination for a message.

5.2.6 Machine PoolForCommunication

The mechanism for communication is composed by a pool of memory pages shared between

the microkernel and the tasks. When a task want to communicate with another task, a page is

mapped to the sending task. If it is the case of receiving a message, the page with the message

is mapped into the receiver task. Due to the fact that we want to achieve secure partitioning, a

page could not have messages from the same source to different destinations. This assures that

when a page is mapped to a receiver, it only can access to messages that were sent to him. In

figure 5.3 it is illustrated an example of a possible state for the pool of pages for communication.

Supposing that is the task one that is running, we have two pages mapped for task one. One

page with messages from task one to task two and other with messages from task one to task

three. If the next task chosen to run will be task two, then the page with messages from task

one to task two will be mapped to task two allowing task two to access the messages that are

for herself.

Figure 5.3: Example of a possible state for the pool for communication

This machine is responsible for the allocation, mapping and deallocation of pages belonging

to the kernel space for communication (the pool of pages for communication). Two variables

are used to control the pool. The first one is usedPagesCommunication. It is a subset of

PAGESCOMMUNICATION and represents the pages currently allocate (see subsection 5.2.2).

The second one is pagesCommunicationMapping. It is a total function that maps the pages

currently being used with the task that is using it. It works like a page table for the kernel to

know which page is allocated and to who. Both of these variables are initialized as empty.

INVARIANT

usedPagesCommunication ⊆ PAGESCOMMUNICATION ∧
pagesCommunicationMapping ∈ usedPagesCommunication → TASKS

INITIALISATION

usedPagesCommunication := ∅ ‖

66
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

pagesCommunicationMapping := ∅

Two operations are related to the action of mapping and one with deallocation. mapNewFreeP-

age is the operation for mapping a new page for a task to communicate. This operation requires

two arguments, an task (tt) and a page for communication (fp). The page can not belong to

the set of pages already allocated for communication, i.e. must be an empty page.

mapNewFreePage (tt , fp) =

PRE

tt ∈ TASKS ∧
fp ∈ PAGESCOMMUNICATION ∧
fp /∈ usedPagesCommunication ∧
fp /∈ dom (pagesCommunicationMapping)

THEN

usedPagesCommunication := usedPagesCommunication ∪ { fp } ‖
pagesCommunicationMapping (fp) := tt

END ;

The second operation is also for allocation of a page. But it works in a different way. In this

operation we are changing the mapping of one page. During the communication process pages

are changed from one task to another. This process of changing pages permits to tasks to send

and receive messages. This operation is called by ProcessTaskToReceive (subsection 5.2.7). This

means that the page we are mapping must belong to the set of pages already mapped.

mapPage (pg , tt) =

PRE

pg ∈ usedPagesCommunication ∧
tt ∈ TASKS

THEN

pagesCommunicationMapping (pg) := tt

END ;

The last operation is for deallocation of one page. The argument required for deallocation is

a page belonging to the set of already mapped pages. The operation what does is remove the

page from the set of used pages (usedPagesCommunication) and also from the total function

(pagesCommunicationMapping).

unmapPage (pg) =

PRE

pg ∈ usedPagesCommunication ∧
pg ∈ dom (pagesCommunicationMapping)

THEN

usedPagesCommunication := usedPagesCommunication − { pg } ‖
pagesCommunicationMapping := pagesCommunicationMapping −

{ pg 7→ pagesCommunicationMapping (pg) }
END

5.2.7 Machine KernelCommunication

As mentioned in the subsection 5.2.6, the communication is performed using a pool of

pages for communication. It is necessary to provide a mechanism for information flow between

partitions compliant with PIFP as a mean to achieve secure partitioning. The chosen mechanism

for this is an abstraction for inter task communication called ports. Each task can contain one

or several ports. A port is a page that is mapped to one task. Ports are implemented by

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 67

the process of changing pages between processes. Secure partitioning microkernel allow passing

information between the tasks under his supervision since the task of transferring the information

is performed by the microkernel.

A port is an endpoint of a unidirectional communication channel between a task that re-

quests a service and a task that provides the service. In most cases, the resource that is accessed

by the port (that is, named by it) is referred to as an object. Ports rights can be used to imple-

ment the PIFP efficiently.

Machine KernelCommunication is responsible for port management in the secure partition-

ing microkernel. This machine SEES Ctx and CtxMemomory and also INCLUDES PoolFor-

Communication and Messages.

INVARIANT

ports ∈ usedPagesCommunication → iseq (message) ∧
portSender ∈ usedPagesCommunication → TASKS ∧
portReceiver ∈ usedPagesCommunication → TASKS ∧
dom (portSender) = dom (portReceiver) ∧
∀ (us1 , us2) . (us1 ∈ usedPagesCommunication ∧
us2 ∈ usedPagesCommunication ∧
us1 ∈ dom (portSender) ∧ us2 ∈ dom (portReceiver)

∧ us1 = us2

⇒ portSender (us1) 6= portReceiver (us2)) ∧
portsSize ∈ usedPagesCommunication → NAT ∧
dom(portsSize) = dom(ports) ∧
∀ (us) . (us ∈ usedPagesCommunication

⇒ ∀ (mm) . (mm ∈ message ∧ mm ∈ ran (ports (us))

⇒
SIGMA (xx) . (xx ∈ message ∧ xx ∈ ran (ports (us)) | messageSize (xx))

= portsSize (us))) ∧
∀ (up) . (up ∈ usedPagesCommunication

⇒ portsSize (up) ≤ maxPortSize) ∧
∀ (us) . (us ∈ usedPagesCommunication ⇒
∀ (mm1 , mm2) . (mm1 ∈ message ∧ mm1 ∈ ran (ports (us))

∧ mm2 ∈ message ∧ mm2 ∈ ran (ports (us))

⇒ messageDestination (mm1) = messageDestination (mm2))) ∧
∀ (us) . (us ∈ usedPagesCommunication

⇒ ∀ (mm1 , mm2) . (mm1 ∈ message ∧ mm1 ∈ ran (ports (us)) ∧
mm2 ∈ message ∧ mm2 ∈ ran (ports (us))

⇒ messageSource (mm1) = messageSource (mm2))) ∧
com ∈ TASKS ↔ TASKS

Five functions are here defined:

• ports – is the total function that connects pages used in communication with a injective

sequence of messages. Injective sequence of messages means that in this sequence is not

possible to find repeated elemets;

• portSender – is the total function that connects used pages in communication with the

task that is sending;

• portReceiver – is the total function that connects used pages in communication with the

task that is receiving;

• portsSize – is the total function that connects used pages in communication with the

actual size of the port. The actual size of one port is equal to the sum off all the

messages within this port;

68
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

• com – is a relation that connects tasks to tasks. This variable is necessary to know with

each task is communicating with each other task.

The INVARIANT clause in this machine introduces some important properties. The domain

for both function using usedPagesCommunication should be the same. Other property is that

a port cannot have the same task to send and to receive. This is the property that says that

a task cannot send a message for herself. A number of properties for the size of the port are

then defined. The sum of each message belonging to one port must be equal to the value in

the function portsSize. On the other hand, the size of port must be smaller or equal than the

maximum size for one port (maxPortSize).

All the previously defined variables are initialized as empty.

INITIALISATION

ports := ∅ ‖
portSender := ∅ ‖
portReceiver := ∅ ‖
portsSize := ∅ ‖
com := ∅

The operations on this machine can be divided in two groups. One group are services offered by

the microkernel and the other are internal routines for the microkernel. The first service that

the microkernel provides is send a new message.

sendNewMessage (t1 , t2 , sz) =

PRE

t1 ∈ TASKS ∧
t2 ∈ TASKS ∧
t1 6= t2 ∧
sz ∈ NAT1 ∧
sz ≤ maxPortSize ∧
(card (usedPagesCommunication) <

card (PAGESCOMMUNICATION)) ∧
(¬ (∃ (up) . (up ∈ usedPagesCommunication ∧
portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize

∧ pagesCommunicationMapping (up) = t1)))

THEN

ANY newMessage , up WHERE

newMessage ∈ MSG ∧
newMessage /∈ message ∧
newMessage 6= nullMsg ∧
up ∈ PAGESCOMMUNICATION ∧
up /∈ usedPagesCommunication ∧
up /∈ dom (pagesCommunicationMapping)

THEN

mapNewFreePage (t1 , up) ‖
addNewMessage (newMessage , t1 , t2 , sz) ‖
ports (up) := [] ←↩ newMessage ‖
portSender (up) := t1 ‖
portReceiver (up) := t2 ‖
portsSize (up) := sz ‖
com := com ∪ { t1 7→ t2 }

END

END ;

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 69

The aim of this operation is to create a new message and add it to the port. The sendNewMessage

operation creates a new port, mapping a free page to this task. The parameters are two tasks

(sender and receiver task) and the size of the message. The required pre-conditions for this

operation are:

• The sender task (t1) and the receiver task (t2) must be different;

• The size of the message must be less or equal than the total size of a port;

• The microkernel must have at least one empty page for communication;

• The sender task and receiver task cannot have any other allocated page with space (i.e.

free memory), unless the space in that page is less than the size of the new message.

If all of the previous pre-conditons are true, then the body of the operation is executed. Once

again, non-determinism is used. A new message is created, with the desired sender, receiver and

size. A free page for communication is chosen, this page will be used to allocate the new message.

The free page is allocated to the sender task using the operation mapNewFreePage provided

by PoolForCommunication machine. At the end, it is added the message to the sequence of

messages in that port. Since it is a new message, the port sequence for that page must be equal

to empty. The variable com is also updated, registering that new channel is connecting the task

t1 and t2.

The last operation is used to send a new message. Supposing that we already sent a message

from task one to task two with a size less than the maximum size of a port. It does not make

sense to waste space and allocate a new page if we are sending from the same task to the

same receiver and the port has enough space to handle the message. Operation sendMessage

represents this case.

sendMessage (t1 , t2 , sz) =

PRE

t1 ∈ TASKS ∧
t2 ∈ TASKS ∧
t1 6= t2 ∧
sz ∈ NAT1 ∧
∃ (up) . (up ∈ usedPagesCommunication ∧
portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize ∧
pagesCommunicationMapping (up) = t1)

THEN

ANY newMessage , up WHERE

newMessage ∈ MSG ∧
newMessage /∈ message ∧
newMessage 6= nullMsg ∧
up ∈ usedPagesCommunication ∧
portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize

THEN

addNewMessage (newMessage , t1 , t2 , sz) ‖
ports (up) := ports (up) ←↩ newMessage ‖
portsSize (up) := portsSize (up) + sz

END

END ;

The changes comparing with sendNewMessage are few. If we take a deeper look, the only

change in the pre-condition is that instead of having the negation in the last part, we do not

70
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

have anything. The behavior of the operation is almost the same, but instead of getting a new

page we will obtain an already used page with the same sender and receiver.

The last operation for services that the microkernel offers is receiveMessage. This operation

receives two parameters, tto (the receiver task) and tfrom (the sender task).

res ←− receiveMessage (tto , tfrom) =

PRE

tto ∈ TASKS ∧
tfrom ∈ TASKS ∧
tto 6= tfrom ∧
∃ (up) . (up ∈ usedPagesCommunication

∧ portSender (up) = tfrom

∧ portReceiver (up) = tto ∧ ports (up) 6= []

∧ pagesCommunicationMapping (up) = tto

)

THEN

ANY msg , up WHERE

msg ∈ message ∧
messageSource (msg) = tfrom ∧
messageDestination (msg) = tto ∧
up ∈ usedPagesCommunication ∧
pagesCommunicationMapping (up) = tto ∧
portSender (up) = tfrom ∧
portReceiver (up) = tto ∧
ports (up) 6= [] ∧
msg = last (ports (up))

THEN

res := msg ‖
IF size (ports (up)) = 1

THEN ports (up) := []

ELSE ports (up) := front (ports (up))

END ‖
portsSize (up) := portsSize (up) − messageSize (msg) ‖
removeMessage (msg)

END

END ;

To a task receive a message, it is necessary to have, at least, one page for communication

where the sender is the argument passed in tfrom and the receiver the task tto. The message

that is taken from the sequence is always the one that is in the head of the sequence. The body

of the previous operation, selects a message, (i) where the source is tfrom and the sender is tto,

(ii) the page must belong to the task that is requesting the service, and (iii) the sequence must

be different from empty. If is only a message in the port, then the sequence will become equal

to empty else it is removed the first message from the sequence. It is also necessary to update

the size of the port and eliminate the message from the system. The operation removeMessage

is imported from the machine Messages.

Operations for internal routines of the microkernel are also defined in this machine. The

first operation is processTaskToReceive.

processTaskToReceive (tt) =

PRE

tt ∈ TASKS

THEN

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 71

ANY pg WHERE

pg ∈ usedPagesCommunication ∧
portReceiver (pg) = tt ∧
pagesCommunicationMapping (pg) 6= tt

THEN

mapPage (pg , tt)

END

END ;

When a context switch is performed, a new task starts running. It is necessary to see if the

new task that will run has any messages to receive. If it has, then is necessary to map the page

to the new task, otherwise it cannot access to the page. The operation processTaskToReceive

checks if the task tt have any port in which the messages are for herself. If is this the case,

then the imported operation mapPage is performed. The last internal routine is the operation

cleanEmptyPorts.

cleanEmptyPorts =

PRE

∃ (up) . (up ∈ usedPagesCommunication ∧ ports (up) = [])

THEN

ANY up WHERE

up ∈ usedPagesCommunication ∧
ports (up) = []

THEN

portSender := portSender − { up 7→ portSender (up) } ‖
portReceiver := portReceiver − { up 7→ portReceiver (up) } ‖
ports := ports − { up 7→ ports (up) } ‖
portsSize := portsSize − { up 7→ portsSize (up) } ‖
unmapPage (up)

END

END

This operation works like a daemon. When the kernel task assumes control, this is one of the

operations that we have to proceed (Figure 5.4). It is necessary to eliminate the mapping for

pages in which the ports are empty. The kernel task execute always between the execution of

two tasks. This is, if task one is running, when she terminates, kernel task will execute before

changing to the next task.

5.2.8 Machine Scheduling FIFO

Machine Scheduling FIFO, like the name says, is a fifo. It has a formal parameter, in this

case, a SET CC.

MACHINE

Scheduling\ FIFO (CC)

ABSTRACT VARIABLES

fifo

INVARIANT

fifo ∈ iseq (CC)

INITIALISATION

fifo := []

72
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

Figure 5.4: Behavior of the operation cleanEmptyPorts

An abstract variable fifo represents the state of the machine. This variable implements a

injective sequence of elements of the type CC. Five operations are defined for this machine.

• add – Adds an element to the sequence;

• isEmpty – Checks if the sequence is empty. Returns true case is empty, false otherwise;

• topFifo – Returns the top element of the sequence;

• remove – Removes the top element of the sequence;

• change – Puts the top element at the tail and push each element one position straight

forward.

This machine works like a scheduler for the tasks. The element on the top is the task that

is running. The other ones are waiting for their time.

5.2.9 Machine Interface

The purpose for this machine is only to provide a efficient and enlightening animation using

the ProB. For achieve this objective, this machine is pretended to work like a sequential program.

It call the operations of the imported machines almost sequentialy. In a “normal” development

using the B Method, this machine would not be required, it is only here for animation. This

machine IMPORTS the machines clock, MemoryManagement, kernelCommunication, Schedul-

ing FIFO(TASKS) and FlowPolicy (this last one will be thoroughly explained in the section 5.3)

and SEES Ctx and CtxMemory.

The variables for this machine are:

• elapseTime – represents the time passed for the currently executing partition;

• actualTask – reprsenets the task that is currently executing;

• actualThread – represents the actual running thread;

• tperiod - represents the period of time that a task will run;

• tasks – constitutes the subset of tasks that are present in system;

• threads – constitutes the subset of threads that are present in the system;

5.2. FORMAL SPECIFICATION OF THE SECURE PARTITIONING
MICROKERNEL 73

• tthreads – is the total function that maps each thread present in threads to the tasks in

tasks;

• reSched – is a boolean variable indicating if is necessary to reschedule the system or not;

• configure – is a boolean variable indicating if the configuration was already done or not;

• kernelRemainTime – represents the time that the kernel still have to run.

Interface machine code is presented in the Appendix A, in this subsection only a explanation

of what each function does is described. Those functions are:

• createTask – This function is used to create a new task. The task is added to memory

and to scheduler;

• addThreadToTask – This function permits the creation of a thread. The created thread

is added to the correspondent task;

• endConf – Function that is used to end the configuration. This operation uses generate-

Conf from the machine FlowPolicy;

• changeToKernelTask – Function that passes the control to the kernel. The scheduler is

updated and cleanEmptyPorts in case of necessity;

• kernelTaskExecution – This function is used by the microkernel to map pages for com-

munication and to update the clock;

• kernelTaskEndExecution – Function that changes the control of the microkernel ti a next

task that will execute;

• run – Function that is used to simulate a thread execution;

• sendMessageCurrentTask – Function that is used to send a message from the current task

to a destination task;

• receiveMessageCurrentTask – Function that is used to receive a message.

5.2.10 Animation with ProB

To a better understanding of the secure partitioning kernel behavior, animation provides

an important role. ProB, the animation tool, is used for animate and understand the models.

Because machine Interface (see 5.2.9) includes and uses the operations of the included machines,

it is possible to see all the machines interacting with each other. The behavior of the secure

partitioning microkernel is well visible using animation.

Several differences between the expected behavior of the model and the real behavior were

found during the development stage. ProB discovers situations of deadlocks and invariant vio-

lations very easily. Model checking is also very useful, because it automatically tries to reach

all the states of the model and warns if some problem is found. The all secure partitioning mi-

crokernel was animated and model checked using different parameters. It is possible to change

the cardinality of sets, the number of possible operations at each stage and the number of

initializations.

ProB has some limitations. During the development process of the project, some machines

were not able to be animated. Apparently, the reasoning applied in the machines was correct.

After some time trying to understand what was going wrong, it was found that ProB sometimes

does not animate well the machines due to some limitations. This is quite normal, for a tool

that is being development in the context of research. It must be said, that ProB developers

always answered to any doubt that was presented, revealing an extraordinary availability.

ProB should be considered an useful tool to help in the development process. However,

the animation and model checking that this tool provides never should be considered a possible

substitution to proof.

74
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

Figure 5.5: Example of ProB animation

5.3 Partition Information Flow Policy

Partition information flow policy is an important issue in the communication process. Access

to information depends on the rights of each task. The aim of the partition information flow

policy is to control the rights in the communication process to each task.

A flow policy is the set of possible flows for all the tasks in the system. When a task

tries to communicate with another task, the kernel first checks to see if that flow is possible.

Initially, a configuration indicating the different flows privileges between each task is provided.

By default, no communication between tasks is allowed. So, if no configuration is given, tasks

cannot communicate with each others.

A flow is a triplet composed by a first task, a second task and a privilege. The possible

types for privileges are:

• noflow – means that the first task cannot communicate to the second task;

• read – means that the first task can only read from the second task;

• write – means that the first task can only write to the second task;

• readWrite – means that the first task have full privileges, it can read and write to the

second task.

A task cannot communicate with herself, so the type of communication is noflow. This property

is an easy one of escape, it is so obvious that is natural to the implementor not to think about

it. However, formal methods are good dealing with this type of inconsistencies.

To communicate tasks need to use ports. So, when a task request a service, it first needs

to lookup for the task port that is providing the service. If is possible to connect to the port, it

can send or receive a message (depending on the privileges) to the connected port.

5.3. PARTITION INFORMATION FLOW POLICY 75

In this section a complete development of a partition information flow policy is presented

(Figure 5.6).

Figure 5.6: Partition Information Flow Policy Architecture

The next subsections explain in detail each component in the development process until

reach a level in which is possible to generate code automatically.

5.3.1 Machine FlowPolicy

Machine FlowPolicy defines the properties for the partition information flow policy. It SEES

the machine Ctx (see subsection 5.2.1).

INVARIANT

flowPolicy ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
∀ (t1 , t2) . (t1 ∈ (0 .. nmaxTasks) ∧ t2 ∈ (0 .. nmaxTasks)

∧ (t1 , t2) ∈ dom (flowPolicy) ∧ t1 = t2

⇒ flowPolicy (t1 , t2) = noflow) ∧
conf ∈ B

Two variables are used, flowPolicy and conf. The first variable represents the flows between all

the tasks in the system. A total function, where the domain is a tuple with two enumerated

sets (from zero to nmaxTasks). The range is the privilege mode.

As can be seen in the INVARIANT, the second clause says that if two tasks are the same,

then the mode of communication between them are noflow. An example for a better compre-

hension is present next. Supposing that the number of nmaxTasks is two, we have the following:

dom(flowPolicy) = {(0, 0); (0, 1); (0, 2); (1, 0); (1, 1); (1, 2); (2, 0); (2, 1); (2, 2)}
The second variable is conf. This variable is a boolean indicating if the configuration was

already done or not.

The operations in this machine are used to control flows in the communication process.

Four operations are defined in this machine. The first operation is generateConf. The purpose

is to generate a possible configuration of flows to the system.

generateConf =

PRE

conf = FALSE

76
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

THEN

ANY newConf WHERE

newConf ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
∀ (t1 , t2) . (t1 ∈ (0 .. nmaxTasks) ∧ t2 ∈ (0 .. nmaxTasks) ∧
(t1 , t2) ∈ dom (newConf) ∧ t1 = t2 ⇒ newConf (t1 , t2) = noflow)

THEN

flowPolicy := newConf

END ‖
conf :∈ B

END ;

This operation has the pre-condition that the variable conf must be equal to false. This means

that no configuration was already done. The body of the operation, once again, is defined

using non-determinism. A new configuration is generated respecting the invariant. The variable

flowPolicy is then replaced by the new configuration.

The second operation is lookup. If a task wants to communicate with another task, it is

necessary to see first if is possible to communicate with the object belonging to the task that

is providing the service. The next operation checks if the mode for the tasks involved in the

communication is different from noflow.

res ←− lookup (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks)

THEN

IF flowPolicy (t1 , t2) 6= noflow

THEN res := TRUE

ELSE res := FALSE END

END ;

Two parameters are used in this machine. The first one, t1, is the task that is requesting the

service. The second, t2, is the task that is providing the service. Both parameters must be a

valid task, between the interval zero to nmaxTasks. The result for this operation is true if the

the flow between t1 and t2 is different from noflow.

Operation send is third operation, it is used to see if a task can send a message to another

task.

res ←− send (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks) ∧
flowPolicy (t1 , t2) 6= noflow

THEN

IF flowPolicy (t1 , t2) = write ∨ flowPolicy (t1 , t2) = readWrite

THEN res := TRUE

ELSE res := FALSE END

END ;

For a task t1 to send a message to t2 is necessary that the flowPolicy between them be equal

to write or readWrite. The precondition flowPolicy(t1, t2) 6= noflow is used to assure that the

task can communicate with the object of the destination task. This operation returns true case

is possible to send a message form t1 to t2 and false otherwise.

The last operation is receive. This operation is used to see if a task can receive a message

from another task.

5.3. PARTITION INFORMATION FLOW POLICY 77

res ←− receive (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks) ∧
flowPolicy (t1 , t2) 6= noflow

THEN

IF flowPolicy (t1 , t2) = read ∨ flowPolicy (t1 , t2) = readWrite

THEN res := TRUE

ELSE res := FALSE END

END

As in the previous operation (send), this operation also requires that the receiver task can

communicate with the sending task. This property is assured in the invariant clause. To a task

receive from another task, the flowPolicy between them must be equal to read or readWrite. In

the case of success this operation returns true, otherwise returns false.

5.3.2 Machine Matrix

Machine FlowPolicy needs to be refined and implemented to generate code automatically.

Like seen in the previous machine, the invariant flowPolicy is very closed to a matrix. This

machine is then a model of a matrix to use in the implementation of the FlowPolicy machine.

The variable used here is matrix and as the name says is the abstract representation of a

matrix.

matrix ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE

Two operations are required to interact with the matrix, add and get. The first operation

add a value mm to the position (t1,t2). The second operation gets a value from the position

t1,t2.

add (t1 , t2 , mm) =

PRE

t1 ∈ 0 .. nmaxTasks ∧
t2 ∈ 0 .. nmaxTasks ∧
mm ∈ MODE

THEN

matrix (t1 , t2) := mm

END ;

val ←− get (t1 , t2) =

PRE

t1 ∈ 0 .. nmaxTasks ∧
t2 ∈ 0 .. nmaxTasks

THEN

val := matrix (t1 , t2)

END

In both operations, the pre-conditon guarantees that the parameters are valid.

5.3.3 Machine BASIC IO

Machine BASIC IO is the definition of input and output functions. This machine belongs

to the library of basic machines provided by Atelier B. The code for this machine is in the

appendix A. This machine has no invariant, only a set of operations. Those operations are:

78
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

• INTERVAL READ – reads a number in one expected interval;

• INT WRITE – writes a number into stdout;

• BOOL WRITE – write true or false into stdout;

• CHAR READ – reads a character from the stdin;

• CHAR WRITE – write a character into the stdout;

• STRING WRITE – write a string into the stdout.

5.3.4 Machine FlowPolicy Imp

For the generation of code automatically, it is necessary to have an implementation using

the B0 language (a subset of the B language). Machine FlowPolicy Imp is the implementation

of FlowPolicy. This machine IMPORTS BASIC IO and Matrix. The process of decomposition

using imports, makes more easy the process of code generation. To implement this machine,

invariant of the imported machines are connected to the invariants of the abstract machine. This

process of “gluing the invariants” is necessary to prove that the implementation does exactly

the same that the abstract machine. The SEES clause is also used, like in the abstraction. This

machine continues seeing the Ctx machine.

A new variable is introduced here. Variables to be implementable must belong to the B0

language and be defined like concretes.

CONCRETE VARIABLES

confC

Invariants are glued using the INVARIANT clause in the implementation machine.

INVARIANT

confC ∈ B ∧
confC = conf ∧
flowPolicy = matrix

In this case, the invariants are equal flowPolicy = matrix so there are not many changes to

do. Basically, it is only used the process of decomposition to achieve the implementation. The

concrete variable confC will be equal to the abstract variable conf,

The first operation is generateConf. Like in the abstract machine, this operation has the

purpose of generate a configuration.

generateConf =

BEGIN

VAR cont1 , cont2 , ch IN

cont1 := 0 ;

cont2 := 0 ;

IF confC = TRUE THEN

STRING WRITE (”\tCONFIGURATION ALREADY DONE\n”)

ELSE

WHILE cont1 ≤ nmaxTasks DO

WHILE cont2 ≤ nmaxTasks DO

IF cont1 6= cont2 THEN

STRING WRITE (”\tSET MODE FOR∈\n”) ;

INT WRITE (cont1) ;

STRING WRITE (”\t→\t”) ;

INT WRITE (cont1) ;

STRING WRITE (”\n”) ;

5.3. PARTITION INFORMATION FLOW POLICY 79

STRING WRITE (”\t 1 − NO FLOW \n”) ;

STRING WRITE (”\t 2 − READ \n”) ;

STRING WRITE (”\t 3 − WRITE \n”) ;

STRING WRITE (”\t 4 − READ AND WRITE \n”) ;

ch ←− CHAR READ ;

CASE ch OF

EITHER 1 THEN add (cont1 , cont2 , noflow)

OR 2 THEN add (cont1 , cont2 , read)

OR 3 THEN add (cont1 , cont2 , write)

OR 4 THEN add (cont1 , cont2 , readWrite)

ELSE add (cont1 , cont2 , noflow) END

END

ELSE

add (cont1 , cont2 , noflow)

END ;

cont2 := cont2 + 1

INVARIANT

cont2 ∈ 0 .. nmaxTasks + 1

VARIANT

nmaxTasks + 1 − cont2

END ;

cont1 := cont1 + 1

INVARIANT

cont1 ∈ 0 .. nmaxTasks + 1

VARIANT

nmaxTasks + 1 − cont1

END

END ;

confC := TRUE

END

END ;

Two local variables are used in this operation (cont1 and cont2). Both of them are counters

to be used within the while cycles. To fill the matrix, both counters are used to first run the

lines and then the columns. The invariant of the first cycle is cont1 ∈ 0..nmaxTasks + 1.

It goes until nmaxTasks + 1 because the variable is first incremented and only after that is

actualized. The variant is a value that is decreasing at each iteration of the cycle. In this case,

nmaxTasks + 1− cont1 is an expression that decreases at each iteration, because the value of

cont1 is increasing and nmaxTasks + 1 is a constant value. The same reasoning can be applied

to the second cycle.

Inside both cycles, various operations from the imported machines are called. One that is

particular important is add. Depending on the value that the user chooses, add is called with

the correspondent parameter. Although, if cont1 and cont2 are equal, the parameter for add is

noflow , this is because the tasks are the same, so the parameter must be noflow.

The second operation is lookup. The pre-conditions in this operation are replaced by if

conditions. The local variable aux gets the value in the matrix for the parameters. If the value

is equal to noflow the return value for the operation is false, else returns true. If the parameter

are not valid, the result is also false and a error message is showed.

res ←− lookup (t1 , t2) =

BEGIN

VAR aux IN

80
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = noflow THEN res := FALSE ELSE res := TRUE END

ELSE

STRING WRITE (”\tERROR − TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

res := FALSE

END

END

END ;

Other operations are send and receive. Like in the previous operation, the general strategy

is the substitution of the pre-conditions, defined in the abstract machine, by if conditions and

use of imported operations.

res ←− send (t1 , t2) =

BEGIN

VAR aux IN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = write ∨ aux = readWrite THEN res := TRUE ELSE res := FALSE END

ELSE

STRING WRITE (”\tERROR − TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

res := FALSE

END

END

END ;

res ←− receive (t1 , t2) =

BEGIN

VAR aux IN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = read ∨ aux = readWrite THEN res := TRUE ELSE res := FALSE END

ELSE

STRING WRITE (”\tERROR − TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

res := FALSE

END

END

END

5.3.5 Machine Matrix Imp

This machine is the implementation of the Matrix abstract machine. Matrix machine is

easily implemented, transforming the invariant of the abstract machine in a concrete one.

CONCRETE VARIABLES

matrixC

INVARIANT

matrixC ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
matrixC = matrix

This is easy because the type of matrixC is already an implementable type. So is possible to

generate code for this type. The operations are implemented using the technique of substitution

5.4. PREX WITH PARTITIONING INFORMATION FLOW POLICY 81

of the pre-conditions by if clauses. The code for the implemented machine is presented in

Appendix A.

5.4 Prex with Partitioning Information Flow Policy

Like mentioned in the previous sections, ports rights can be used to implement the PIFP

efficiently. Prex does not have such ports, however, it has something similar called objects. Prex

communication mechanism was already explained in chapter 3 in section 3.5. Objects in Prex

provide all the characteristics to implement PIFP.

To integrate the PIFP with the target microkernel, some changes in the code of the target

microkernel were necessary. Although, these changes were done in a manner to become the added

PIFP like an invisible layer in Prex. All the necessary functions to perform communication were

duplicated and added a suffix “my” at the end. This gluing code, like is showed in Figure 5.7,

is the code that connects the code generated from Atelier B with Prex.

Figure 5.7: Prex and Partition Information Flow Policy

Tasks in Prex does not have any unique identifier. They have an attribute called name,

but this attribute can change during task execution using the function task name. A necessary

mechanism to assure unique identification to tasks were provided adding a new camp to the

task structure called task number. So the new structure to tasks will be:

/∗
Task s t r u c t

∗/
struct task {

int magic ; /∗ magic number ∗/
char name [MAXTASKNAME] ; /∗ t a s k name ∗/
struct l i s t l i n k ; /∗ l i n k f o r a l l t a s k s in system ∗/
struct l i s t o b j e c t s ; /∗ o b j e c t s owned by t h i s t a s k ∗/
struct l i s t threads ; /∗ t h r e a d s in t h i s t a s k ∗/
vm map t map ; /∗ address space d e s c r i p t i o n ∗/
int suscnt ; /∗ suspend counter ∗/
cap t c a p a b i l i t y ; /∗ s e c u r i t y permiss ion f l a g ∗/

82
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

struct t imer alarm ; /∗ alarm timer ∗/
void (∗ handler) (int) ; /∗ p o i n t e r to e x c e p t i o n hand ler ∗/
t a s k t parent ; /∗ parent t a s k ∗/
int task number ; /∗ @André Passos −
t a s k number f o r commmunication ∗/

} ;

Now, when it is necessary to create a new task, the new function create task my receives an

integer that corresponds to the task number. A configuration for the flow policy is necessary

when we start executing the microkernel. By default, all the tasks cannot communicate with

each other. A configuration file is passed before the microkernel starts executing and mechanism

for the secure generation of the flow policies transforms the configuration file in a set of calls to

the microkernel generate the flow policy. An example of a transformation of a configuration file

in a C file is presented in the Appendix B. The function with the responsibility of add a flow

policy is addFlowPolicy.

To send or receive messages, it is necessary for tasks to be in contact with objects. The

function, object lookup my, replaces the normal lookup for objects in Prex. The only difference

between this one and the original one, is that object lookup my asks to the flow policy if is

possible for the task that is requesting the service to talk with the task that is providing the

service. If is possible to communicate, this is, the flow policy is different from noflow, then a

pointer to the object is passed to the task that is requesting the service. Case it is not possible

to talk, a message is showed and the pointer is returned as null.

After connecting to the object, every time a task wants to send or receive a message, it

should use send message my to send a message or receive message my. Both of these functions

access to the flow policy to see if the task that is requesting the service has enough privileges

for it.

The difficulty of integrating the code generated by Atelier B with Prex was not very difficult.

The code generated automatically does not changed anything. Most of the work was done on

the side of Prex. A comprehension of all the aspects involved in the communication and the

understanding of how a microkernel works were a precious help. It was necessary to add new

system calls, new routines to the API and other more or less complex changes. As conclusion,

it is possible to be said that it was more harder to change the code of Prex than the integration

of PIFP and Prex.

5.5 Verification and Validation

Verification is an activity that takes place before validation. Verification evaluates docu-

ments, plans, code, requirements and specification. Validation involves the execution of tests

designed to cover each of the specific requirements. Atelier B provides tools for verification.

Mainly the automatic and interactive prover. In this section some number about the complete

development of the PIFP work will be presented. The global state of the project is shown in

Table 5.1.

The B project comprises eight components (abstract machines and implementation), of

which two basic machines (BASIC IO and BASIC IO Imp). The number of proof obligations,

for the totally of its components, is a hundred and forty-three. Where a hundred and twenty-six

were trivial proof obligations; i.e. directly demonstrated by the Atelier B. No proof work is

to be executed for such proof obligations. Seventeen non trivial proof obligations are need to

demonstrate.

In a qualitative evolution, two aspects are need to be taken in consideration. The ar-

chitecture of the project and the proof coverage. Considering the first, this B project does

not compromise any refinement. The structures of the manipulated data and the algorithms de-

5.5. VERIFICATION AND VALIDATION 83

Component TC POG nPO nUN %Pr B0C
BASIC IO OK OK 0 0 - OK

BASIC IO Imp OK OK 3 3 0 OK
Ctx OK OK 0 0 - OK

Ctx Imp OK OK 1 0 100 OK
FlowPolicy OK OK 4 0 100 OK

FlowPolicy Imp OK OK 108 14 87 OK
Matrix OK OK 4 0 100 OK

Matrix Imp OK OK 23 0 100 OK

Table 5.1: Global state of PIFP project

scribed in the body of the operations being sufficient clear, it has not been necessary to introduce

any data or algorithm refinements. The architecture clauses used are of INCLUDES and SEES.

The link of SEES type are few, this is in order to improve the readability and maintainability

of the components. These links are created to consult context components (Ctx). The link of

IMPORTS is used in the decomposition process to achieve implementation.

The proof coverage rate corresponds to the percentage of proof obligations obtained by the

use of the automatic prover is 88%. The interactive prover were not used in this project. So

the PIFP project is 88% proved. However, animation/model-checking performed by ProB and

manual inspection to the non proved proof obligations (12%) reveal, at first look no problem.

Off course, the project is only a 100% correct if all the proof obligations are discharged.

All of the proof obligations revealed (by visual inspection) that is necessary to proof the

remaining proof obligations (12% of the total). Currently, this work is being performed. Only

after the conclusion of this part of the work, it is possible to say that the project is 100% correct.

Generally the proof coverage rate obtained by the use of automatic prover only is approx-

imately 70%. It is estimated that below 50%, the B project necessitates re-handling (either

by decomposing the B modules or introducing refinements, or expressing the need in another

way). The performance achieved by the automatic prover on this project can be explained by

(i) the use of simple data structures, easily manipulated by the prover; (ii) few calculus in the

algorithms; (iii) use of few refinements; and finally (iv) the decomposition obtained by the IM-

PORTS links permits not only to divide the B model in specific activities but also to divide the

proof work. The proof obligations generated are, as such, ore simple and in less number.

Validation was performed by tests. Using a machine emulator and virtualizer, QEMU,

the microkernel is tested. Boot tasks are special tasks that when the microkernel is load into

memory, the code of the tasks will also be load. Then, when the microkernel starts running,

those tasks will immediately also run.

Boot task are C programs, using the API of Prex to make system calls. Prex and the PIFP is

then tested using boat tasks. The inter process communication is tested creating different tasks

and defining the flow policy between them. Maintaining the number of tasks and changing the

flow policy between them, it is possible to test the communication process and more precisely

the PIFP.

Table 5.2 presents the flow policy for two tasks.

Each one of the different flow policies is tested using boot tasks. The sequence of execution

for the boot tasks is:

1. Two tasks are created, task t1 and t2. Associated to each task there are an object;

2. A flow policy is created. All the flow policies described in Table 5.2 are tested;

3. Task t1 connects to the object of task t2;

http://www.nongnu.org/qemu/

84
CHAPTER 5. FORMAL DEVELOPMENT OF A SECURE PARTITIONING

MICROKERNEL

Task t1 Task t2 Task t1 Task t2 Task t1 Task t2
Task t1 noflow noflow Task t1 noflow read Task t1 noflow write
Task t2 noflow noflow Task t2 read noflow Task t2 write noflow

Task t1 Task t2 Task t1 Task t2 Task t1 Task t2
Task t1 noflow read Task t1 noflow write Task t1 noflow readWrite
Task t2 write noflow Task t2 read noflow Task t2 readWritenoflow

Task t1 Task t2 Task t1 Task t2 Task t1 Task t2
Task t1 noflow readWrite Task t1 noflow readWrite Task t1 noflow write
Task t2 write noflow Task t2 read noflow Task t2 readWritenoflow

Task t1 Task t2
Task t1 noflow read
Task t2 readWritenoflow

Table 5.2: Possible configurations for two tasks

4. Task t2 connects to the object of task t1;

5. Task t1 sends a message to task t2;

6. Task t2 receives the message from t2;

7. Task t2 sends a message to task t1;

8. Task t1 receives the message from t2.

This sequence defines the protocol for testing. Depending on the flow policy implemented, the

execution can complete all the steps or not. For example, if the flow policy is readWrite between

task t1 and task t2 and the same for t2 and t1. It should cover all the previous points. On the

other hand, if the flow policy between t1 and t2 is readWrite and between t2 and t1 is noflow.

Task t1 can connect to the object of t1 and send the message. But task t2 could not receive

from t1 because of the flow policy is noflow. All the previous configuration were tested. The

same was done with three and four tasks. No problem was found for each configuration. It is

obvious that this is not enough for guarantee the absence of errors. This verification should be

seen like a initial and not complete validation. Much more work should be done to guarantee

correctness, mainly the proof of all the proof obligations.

5.6 Summary

This chapter presented all the realized work. A complete abstract model of the secure

partitioning microkernel is presented in section 5.2. This part was important for a better under-

standing of the problem. ProB helped very much in the modeling stage. At the same time that

the machines were modeled with Atelier B, animation and model checking provided by ProB

made the work much more easy.

After a complete model of the secure partitioning microkernel, it was time to develop entirely

the PIFP (section 5.3). Atelier B revealed some drawbacks in this part. Atelier B free license

provides ComenC translator. This tool have some limitations. The normal development, like is

usual to see, must to be changed because of the tool limitations. Some changes in the models

were due to that limitations. One important aspect is that to provide full confidence using the

B Method, is necessary to have all the components proved. In this case the objective was not

achieved (section 5.5).

http://www.comenc.eu/

5.6. SUMMARY 85

The next part is the integration of the PIFP with Prex (section 5.4). The difficulty in this

part was on the side of Prex. A complete understanding of the kernel was necessary to introduce

there a flow policy. In the end, the preliminary tests reveled good results.

Chapter 6

Conclusion

A formal model of the secure partitioning microkernel has been presented, along with several

aspects of its internal structure and functioning. It can be animated to further check for correct-

ness. A complete development for part of the microkernel (Partition Information Flow Policy)

and the integration with Prex was also presented. Prex now have a flow policy integrated. Proof

of consistency, for this part, has not been completed.

6.1 Contribute

This work was a collaboration between Critical Software and the University of Beira Inte-

rior. The process of knowledge transfer plays an important role to Critical Software successful

growing. It was one objective to add know how to the company to embrace future projects

involving the use of formal methods. This particular project, using the B Method, gives internal

know how in the use of formal methods (in this case, the B Method) to the company.

Other contribution was the extension of Prex to have a flow policy. Prex is an open source

microkernel with a very active work group. It is frequent to find new features in Prex. Until

the day of the this thesis, no flow policy was joined to Prex. In the future it will be publish the

work developed during this thesis in the Prex site.

The publication of this work in some conferences are also planned. However is necessary to

complete the part of the proof consistency.

6.2 Challenge

In this thesis various subjects were addresses. Beside the use of the B Method, concepts

related to microkernels were completely unknown. Some of the time spend on this thesis was

on the discover of techniques related to the development of microkernels. It is important to say

that, Critical Software played an important role in this part. Their help in the understanding

of microkernels and experience was crucial to the success of this project.

Some work related to the development of microkernels using the B Method were available.

Although, the verification of such microkernels was always addressed to the verification of the

API. Using the B Method it is possible to achieve the complete development of the secure

partitioning microkernel. However, the use of different formal methods, according with the

specific part to be developed, can become the work easier. An example of this is time properties,

87

http://prex.sourceforge.net/

88 CHAPTER 6. CONCLUSION

B does not deal well with this properties and they have an important place in the microkernel

requirements.

The challenge of developing this work inside a company like Critical Software was one of

the best experiences. This type of projects involving researchers and companies are very profit

and should become more frequent. The project offers a view of this, sometimes, very different

worlds.

6.3 Future Work

A complete proof of consistency is need for the partition information flow policy. Beside of

tests that were already realized, the best way to guarantee the absence of errors in the code is a

project with 100% proved components. In this thesis this was one of the objectives, but it was

not accomplished.

The tests realized over Prex with the flow policy integrated showed good results. Although

it is necessary the use of other type of verification besides tests. One idea is perform a work

like the one mentioned in [14]. Modeling Prex extended with the flow policy with some model

checker and then verify that all is working fine.

The formal development of the whole microkernel is also a future work. The formal mode

here presented can be refined and then try to reach a level where is possible to generate code.

In my opinion, this is important to be done, however the use of different formal methods could

make the work less painful.

By last, other future work is the testing of Prex and PIFP together with a already existent

microkernel that implements secure partitioning. If we generate the same inputs to both mi-

crokernels and the outputs of both are the same, it is possible to say that Prex with PIFP are

working correctly.

Bibliography

[1] Prex Documentation. [cited at p. 39]

[2] J-R Abrial. Modeling in Event-B: System and Software Engineering. Forthcoming.
[cited at p. 28]

[3] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge
University Press, August 1996. [cited at p. 9, 12, 15, 20]

[4] Didier Bert. Exemples de conduite de preuve interactive avec l’atelier b, version 3.5,
2000. [cited at p. 20]

[5] William R. Bevier and Texas At Austin. A verified operating system kernel. Tech-
nical report, University of Texas at Austin, 1987. [cited at p. 45]

[6] Michael Butler Carla Ferreira. Practitioner’s Handbook. Methodologies and Tech-
nologies for Industrial Strength Systems Engineering (MATISSE), 2003. [cited at p. 9]

[7] Clearsy. Industrial use of the b, 2000. [cited at p. 4]

[8] Samuel Colin. Contribution à l’intégration de temporalité au formalisme B : utili-
sation du calcul des durées en tant que sémantique pour B. PhD thesis, Université
de Valenciennes et du Hainaut-Cambrésis, October 2006. [cited at p. 62]

[9] Samuel Colin, Georges Mariano, and Vincent Poirriez. Duration calculus: a real-
time semantic for B. In First International Colloquium on Theoretical Aspects of
Computing. UNU-IIST, September 2004. Guiyang, China. [cited at p. 62]

[10] Iain D. Craig. Formal Models of Operating System Kernels. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006. [cited at p. 51]

[11] Iain D. Craig. Formal Refinement for Operating System Kernels. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007. [cited at p. 52]

[12] David Greve, Matthew Wilding, and W. Mark Van Eet. A separation kernel formal
security policy. 2003. [cited at p. 48]

[13] Council Canada De, Thierry Cattel, and Thierry Cattel. National research conseil
national. In In 7th Internation Conference on Formal Description Techniques, pages
35–51, 1994. [cited at p. 46]

89

90 BIBLIOGRAPHY

[14] Gregory Duval and Jacques Julliand. Modeling and verification of the rubis micro-
kernel with spin. In In Proceedings of the First SPIN Workshop, 1995. [cited at p. 46,

88]

[15] Kevin Elphinstone, Gerwin Klein, Philip Derrin, and Timothy Roscoe. Towards a
practical, verified kernel. In In 11th HotOS, 2007. [cited at p. 50]

[16] Jose Miguel Faria. Formal Development of Solutions for Real-Time
Operating System with TLA+/TLC. Master’s thesis, Universidade do Porto, 2008.
[cited at p. 5, 47]

[17] Houda Fekih, Leila Jemni Ben Ayed, and Stephan Merz. Transformation of B
specifications into UML class diagrams and state machines. In 21st Annual ACM
Symposium on Applied Computing - SAC 2006, volume 2, pages 1840–1844, Dijon,
France, April 2006. [cited at p. 27]

[18] Steven D. Fraser, Frederick P. Brooks, Jr., Martin Fowler, Ricardo Lopez, Aki
Namioka, Linda Northrop, David Lorge Parnas, and David Thomas. ”no silver
bullet” reloaded: retrospective on ”essence and accidents of software engineering”.
In OOPSLA ’07: Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, pages 1026–1030, New
York, NY, USA, 2007. ACM. [cited at p. 6]

[19] U.S. Government. U.s. government protection profile for separation kernels in envi-
ronments requiring high robustness, 2004. [cited at p. 31, 48]

[20] Ahmed Hammad, Jacques Julliand, Hassan Mountassir, and Dieudonné Okalas-
Ossami. Expression en B et raffinement des sytèmes réactifs temps réel. In
AFADL’2003, pages 211–226, 2003. [cited at p. 62]

[21] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John McLean.
Formal specification and verification of data separation in a separation kernel for an
embedded system. pages 346–355, 2006. [cited at p. 48]

[22] Sarah Hoffmann, Germain Haugou, Sophie Gabriele, and Lilian Burdy. The B-
method for the construction of microkernel-based systems. In The 7th International
B Conference, pages 257–259, 2007. [cited at p. 5, 53]

[23] J.-R.Abrial. Guidelines to Formal System Studies. 2000. [cited at p. 3, 10, 12]

[24] Rafal Kolanski. A formal model of the L4 micro-kernel API using the B method.
Number Technical Report 05-00029-1, 2005. [cited at p. 53]

[25] Kevin Lano. The B Language and Method: A guide to Practical Formal Develop-
ment. Springer-Verlag London Ltd., 1996. [cited at p. 62]

[26] Gérard Le Lann. The Ariane 5 Flight 501 Failure - A Case Study in System Engi-
neering for Computing Systems. (RR-3079), 1996. Projet REFLECS. [cited at p. 11]

[27] Michael Leuschel and Michael Butler. ProB: A model checker for B. In Keijiro
Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods,
LNCS 2805, pages 855–874. Springer-Verlag, 2003. [cited at p. 24]

BIBLIOGRAPHY 91

[28] W. Martin, P. White, F. S. Taylor, and A. Goldberg. Formal construction of the
mathematically analyzed separation kernel. In ASE ’00: Proceedings of the 15th
IEEE international conference on Automated software engineering, page 133, Wash-
ington, DC, USA, 2000. IEEE Computer Society. [cited at p. 50]

[29] Betrand Meyer. From process to product: Where is the software headed? IEE E
Computer, 1995. [cited at p. 3]

[30] Stéphanie Motré and Corinne Téri. Using formal and semi-formal methods for a com-
mon criteria evaluation. In Eurosmart, Marseille (France), June 2000. [cited at p. 31]

[31] Antoine Requet. A B model for ensuring soundness of the Java card virtual machine.
In FMICS’2000, Berlin, March 2000. [cited at p. 31]

[32] Rodin. Rodin Site. [cited at p. 27]

[33] John Rushby. Design and verification of secure systems. ACM Operating Systems
Review, 15(5):12–21, dec 1981. [cited at p. 33, 45]

[34] Thierry Servat. BRAMA: A new graphic animation tool for B models. pages 274–
276, 2007. [cited at p. 27]

[35] Ian Sommerville. Software Engineering: (Update) (8th Edition) (International Com-
puter Science Series). Addison Wesley, 8 edition, June 2006. [cited at p. 13]

[36] ENST: LabSoc ClearSy ST Microelectronics, CEA. B4l4 project. [cited at p. 53]

[37] G. Pouzancre T. Lecomte, T. Servat. Formal methods in satefy critical railway
systems. In Conference SBMF, 2007. [cited at p. 4]

[38] Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems Design and Im-
plementation (3rd Edition) (Prentice Hall Software Series). Prentice Hall, January
2006. [cited at p. 51]

[39] Jochen Liedtke Toward and Jochen Liedtke. Toward real microkernels. Communi-
cations of the ACM, 39, 1996. [cited at p. 29]

[40] Harvey Tuch, Gerwin Klein, and Gernot Heiser. Os verification - now. In In Pro-
ceedings of the 10th Workshop on Hot Topics in Operating Systems, pages 7–12,
2005. [cited at p. 50]

[41] Patrick Tullmann, Jeff Turner, John Mccorquodale, Jay Lepreau, Ajay Chitturi,
and Godmar Back. Formal methods: A practical tool for os implementors. 1997.
[cited at p. 46]

Appendices

93

Appendix A

B components

A.1 Machine Ctx

MACHINE

Ctx

SETS

TASKS ;

MSG ;

THREADS ;

MODE = { noflow , read , write , readWrite }
CONCRETE CONSTANTS

kernelTask ,

kernelThread ,

kernelTaskPeriod ,

nullMsg ,

maxPortSize ,

communicationTime ,

maxtime

PROPERTIES

card (TASKS) ≥ 1 ∧
card (THREADS) ≥ 1 ∧
card (MSG) ≥ 1 ∧
kernelTask ∈ TASKS ∧
kernelThread ∈ THREADS ∧
kernelTaskPeriod ∈ NAT1 ∧
nullMsg ∈ MSG ∧
maxPortSize ∈ NAT1 ∧
communicationTime ∈ NAT1 ∧
maxtime ∈ NAT ∧

END

A.2 Machine CtxMemory

95

96 APPENDIX A. B COMPONENTS

MACHINE

CtxMemory

SETS

STATE = { idle , normal , coldstart , warmstart }

CONCRETE CONSTANTS

memorysize ,

kernelspace ,

kernelspacecommunication ,

userspace ,

pagesize ,

ADDRESS ,

PAGE ,

VPAGE ,

INDEX ,

PAGESCOMMUNICATION

PROPERTIES

memorysize ∈ NAT1 ∧
memorysize ≥ 3 ∧
pagesize ∈ NAT1 ∧
pagesize < memorysize ∧
kernelspace ∈ NAT1 ∧
kernelspacecommunication ∈ NAT1 ∧
userspace ∈ NAT1 ∧
kernelspace + kernelspacecommunication + userspace = memorysize ∧
userspace mod pagesize = 0 ∧
kernelspace mod pagesize = 0 ∧
kernelspacecommunication mod pagesize = 0 ∧

INDEX = 0 .. (pagesize − 1) ∧
ADDRESS = 0 .. (memorysize − 1) ∧
PAGE = 0 .. ((userspace / pagesize) + (kernelspacecommunication / pagesize) − 1) ∧
PAGESCOMMUNICATION = (userspace / pagesize) .. ((userspace / pagesize) +

(kernelspacecommunication / pagesize) − 1) ∧
VPAGE = 0 .. ((userspace / pagesize) − 1)

A.3 Machine MemoryManagement

MACHINE

MemoryManagement

SEES

CtxMemory ,

Ctx

ABSTRACT VARIABLES

usedTks ,

tksPages ,

tksPeriod ,

tksDuration ,

tksState

A.3. MACHINE MEMORYMANAGEMENT 97

INVARIANT

usedTks ⊆ TASKS − { kernelTask } ∧
tksPages ∈ VPAGE 7→ usedTks ∧
tksPeriod ∈ usedTks → NAT1 ∧
tksDuration ∈ usedTks → NAT1 ∧
tksState ∈ usedTks → STATE ∧
ran (tksPages) = usedTks ∧
dom (tksPeriod) = ran (tksPages) ∧
dom (tksDuration) = ran (tksPages) ∧
dom (tksState) = ran (tksPages) ∧
∀ (tt) . (tt ∈ usedTks ∧ tt ∈ ran (tksPages) ⇒ card (tksPages B { tt }) ≥ 4)

INITIALISATION

usedTks := ∅ ‖
tksPages := ∅ ‖
tksPeriod := ∅ ‖
tksDuration := ∅ ‖
tksState := ∅

OPERATIONS

createTaskM (pnumber , bounds , per , tm) =

PRE

pnumber ∈ TASKS ∧
pnumber /∈ usedTks ∧
pnumber 6= kernelTask ∧
bounds ∈ NAT1 ∧
per ∈ NAT1 ∧
tm ∈ NAT1 ∧
bounds ≥ 4 ∧
card (usedTks) + bounds ≤ card (TASKS)

THEN

usedTks := usedTks ∪ { pnumber } ‖
tksPeriod (pnumber) := per ‖
tksDuration (pnumber) := tm ‖
tksState (pnumber) := coldstart ‖
ANY vpgs WHERE vpgs ⊆ VPAGE ∧ card (vpgs) = bounds ∧
∀ (vp) . (vp ∈ VPAGE ∧ vp ∈ vpgs ⇒ vp /∈ dom (tksPages)) THEN

tksPages := tksPages ∪ vpgs × { pnumber }
END

END ;

eliminateTaskM (pnumber) =

PRE

pnumber ∈ usedTks ∧
pnumber 6= kernelTask

THEN

usedTks := usedTks − { pnumber } ‖

98 APPENDIX A. B COMPONENTS

tksPeriod := { pnumber } C− tksPeriod ‖
tksDuration := { pnumber } C− tksDuration ‖
tksState := { pnumber } C− tksState ‖
tksPages := tksPages B− { pnumber }

END ;

setTaskMMode (pnumber , mode) =

PRE

pnumber ∈ usedTks ∧
mode ∈ STATE ∧
((tksState (pnumber) = coldstart) ⇒ (mode = coldstart)

∨ (mode = normal) ∨ (mode = idle)) ∧
((tksState (pnumber) = idle) ⇒ (mode = coldstart)

∨ (mode = warmstart)) ∧
((tksState (pnumber) = normal) ⇒ (mode = coldstart)

∨ (mode = warmstart)) ∧
((tksState (pnumber) = warmstart) ⇒ (mode = coldstart)

∨ (mode = warmstart) ∨ (mode = idle) ∨ (mode = normal))

THEN

tksState (pnumber) := mode

END ;

val ←− getTaskMMode (pnumber) =

PRE

pnumber ∈ usedTks

THEN

val := tksState (pnumber)

END

END

A.4 Machine Clock

MACHINE

Clock

SEES

Ctx

ABSTRACT VARIABLES

now

INVARIANT

now ∈ 0 .. maxtime

INITIALISATION

now := 0

OPERATIONS

reset =

BEGIN

now := 0

END ;

tick u (from , to) =

PRE

A.5. MACHINE MESSAGES 99

from ∈ NAT ∧
to ∈ NAT ∧
from < to ∧
now + to ≤ maxtime

THEN

now :∈ (now + from) .. (now + to)

END ;

tick (to) =

PRE

to ∈ NAT ∧
now + to ≤ maxtime

THEN

now := (now + to)

END ;

tt ←− current time =

BEGIN

tt := now

END

END

A.5 Machine Messages

MACHINE

Messages

SEES

Ctx

ABSTRACT VARIABLES

message ,

messageSource ,

messageDestination ,

messageSize

INVARIANT

message ⊆ MSG − {nullMsg}∧
messageSource ∈ message → TASKS ∧
messageDestination ∈ message → TASKS ∧
messageSize ∈ message → NAT1 ∧
dom (messageSource) = dom (messageDestination) ∧
dom (messageSource) = dom (messageSize) ∧
∀ (mm) . (mm ∈ message ∧ mm ∈ dom (messageSource)

∧ mm ∈ dom (messageDestination)

⇒ messageSource (mm) 6= messageDestination (mm))

INITIALISATION

message := ∅ ‖
messageSource := ∅ ‖
messageDestination := ∅ ‖
messageSize := ∅

OPERATIONS

100 APPENDIX A. B COMPONENTS

addNewMessage (msg , taskOwner , taskDestiny , lenght) =

PRE

msg ∈ MSG ∧
msg 6= nullMsg ∧
taskOwner ∈ TASKS ∧
taskDestiny ∈ TASKS ∧
taskOwner 6= taskDestiny ∧
lenght ∈ NAT1 ∧
lenght < maxPortSize

THEN

message := message ∪ { msg } ‖
messageSource (msg) := taskOwner ‖
messageDestination (msg) := taskDestiny ‖
messageSize (msg) := lenght

END ;

removeMessage (msg) =

PRE

msg ∈ message ∧
msg 6= nullMsg

THEN

message := message − { msg } ‖
messageSource :=

messageSource − { msg 7→ messageSource (msg) } ‖
messageDestination :=

messageDestination − { msg 7→ messageDestination (msg) } ‖
messageSize :=

messageSize − { msg 7→ messageSize (msg) }
END ;

msglgt ←− getMessageLenght (msg) =

PRE

msg ∈ message ∧
msg 6= nullMsg

THEN

msglgt := messageSize (msg)

END ;

msgsrc ←− getMessageSource (msg) =

PRE

msg ∈ message ∧
msg 6= nullMsg

THEN

msgsrc := messageSource (msg)

END ;

msgdest ←− getMessageDestionation (msg) =

PRE

msg ∈ message ∧
msg 6= nullMsg

A.6. MACHINE POOLFORCOMMUNICATION 101

THEN

msgdest := messageDestination (msg)

END

END

A.6 Machine PoolForCommunication

MACHINE

PoolForCommunication

SEES

CtxMemory , Ctx

ABSTRACT VARIABLES

usedPagesCommunication ,

pagesCommunicationMapping

INVARIANT

usedPagesCommunication ⊆ PAGESCOMMUNICATION ∧
pagesCommunicationMapping ∈

usedPagesCommunication → TASKS

INITIALISATION

usedPagesCommunication := ∅ ‖
pagesCommunicationMapping := ∅

OPERATIONS

/∗Maps a new free page for a process to communicate∗/
mapNewFreePage (tt , fp) =

PRE

tt ∈ TASKS ∧
fp ∈ PAGESCOMMUNICATION ∧
fp /∈ usedPagesCommunication ∧
fp /∈ dom (pagesCommunicationMapping)

THEN

usedPagesCommunication := usedPagesCommunication ∪ { fp } ‖
pagesCommunicationMapping (fp) := tt

END ;

/∗Map a used page to a task∗/
mapPage (pg , tt) =

PRE

pg ∈ usedPagesCommunication ∧
tt ∈ TASKS

THEN

pagesCommunicationMapping (pg) := tt

END ;

/∗unmap a page from a task∗/
unmapPage (pg) =

102 APPENDIX A. B COMPONENTS

PRE

pg ∈ usedPagesCommunication ∧
pg ∈ dom (pagesCommunicationMapping)

THEN

usedPagesCommunication := usedPagesCommunication − { pg } ‖
pagesCommunicationMapping :=

pagesCommunicationMapping − { pg 7→ pagesCommunicationMapping (pg) }
END

END

A.7 Machine KernelCommunication

MACHINE

KernelCommunication

SEES

Ctx , CtxMemory

INCLUDES

PoolForCommunication , Messages

ABSTRACT VARIABLES

ports ,

portSender ,

portReceiver ,

portsSize ,

com

INVARIANT

ports ∈ usedPagesCommunication → iseq (message) ∧
portSender ∈ usedPagesCommunication → TASKS ∧
portReceiver ∈ usedPagesCommunication → TASKS ∧
dom (portSender) = dom (portReceiver) ∧
∀ (us1 , us2) . (us1 ∈ usedPagesCommunication

∧ us2 ∈ usedPagesCommunication ∧ us1 ∈ dom (portSender) ∧
us2 ∈ dom (portReceiver) ∧ us1 = us2

⇒ portSender (us1) 6= portReceiver (us2)) ∧
portsSize ∈ usedPagesCommunication → NAT ∧
dom (portsSize) = dom (ports) ∧
∀ (us) . (us ∈ usedPagesCommunication

⇒ ∀ (mm) . (mm ∈ message ∧ mm ∈ ran (ports (us))

⇒ SIGMA (xx) . (

xx ∈ message ∧ xx ∈ ran (ports (us)) | messageSize (xx)) = portsSize (us))) ∧
∀ (up) . (up ∈ usedPagesCommunication ⇒
portsSize (up) ≤ maxPortSize) ∧
∀ (us) . (us ∈ usedPagesCommunication

⇒ ∀ (mm1 , mm2) . (mm1 ∈ message ∧ mm1 ∈ ran (ports (us))

∧ mm2 ∈ message ∧ mm2 ∈ ran (ports (us))

⇒
messageDestination (mm1) = messageDestination (mm2))) ∧

∀ (us) . (us ∈ usedPagesCommunication ⇒
∀ (mm1 , mm2) . (mm1 ∈ message ∧ mm1 ∈ ran (ports (us))

A.7. MACHINE KERNELCOMMUNICATION 103

∧ mm2 ∈ message ∧ mm2 ∈ ran (ports (us))

⇒
messageSource (mm1) = messageSource (mm2))) ∧

com ∈ TASKS ↔ TASKS

INITIALISATION

ports := ∅ ‖
portSender := ∅ ‖
portReceiver := ∅ ‖
portsSize := ∅ ‖
com := ∅

OPERATIONS

sendMessage (t1 , t2 , sz) =

PRE

t1 ∈ TASKS ∧
t2 ∈ TASKS ∧
t1 6= t2 ∧
sz ∈ NAT1 ∧
∃ (up) . (up ∈ usedPagesCommunication

∧ portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize

∧ pagesCommunicationMapping (up) = t1)

THEN

ANY newMessage , up WHERE

newMessage ∈ MSG ∧
newMessage /∈ message ∧
newMessage 6= nullMsg ∧
up ∈ usedPagesCommunication ∧ portSender (up) = t1

∧ portReceiver (up) = t2

∧ portsSize (up) + sz ≤ maxPortSize

THEN

addNewMessage (newMessage , t1 , t2 , sz) ‖
ports (up) := ports (up) ←↩ newMessage ‖
portsSize (up) := portsSize (up) + sz

END

END ;

sendNewMessage (t1 , t2 , sz) =

PRE

t1 ∈ TASKS ∧
t2 ∈ TASKS ∧
t1 6= t2 ∧
sz ∈ NAT1 ∧
sz ≤ maxPortSize ∧
(card (usedPagesCommunication) <

card (PAGESCOMMUNICATION)) ∧
(¬ (∃ (up) . (up ∈ usedPagesCommunication

∧ portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize

104 APPENDIX A. B COMPONENTS

∧ pagesCommunicationMapping (up) = t1)))

THEN

ANY newMessage , up WHERE

newMessage ∈ MSG ∧
newMessage /∈ message ∧
newMessage 6= nullMsg ∧
up ∈ PAGESCOMMUNICATION ∧
up /∈ usedPagesCommunication ∧
up /∈ dom (pagesCommunicationMapping)

THEN

mapNewFreePage (t1 , up) ‖
addNewMessage (newMessage , t1 , t2 , sz) ‖
ports (up) := [] ←↩ newMessage ‖
portSender (up) := t1 ‖
portReceiver (up) := t2 ‖
portsSize (up) := sz ‖
com := com ∪ { t1 7→ t2 }

END

END ;

res ←− receiveMessage (tto , tfrom) =

PRE

tto ∈ TASKS ∧
tfrom ∈ TASKS ∧
tto 6= tfrom ∧
∃ (up) . (up ∈ usedPagesCommunication

∧ portSender (up) = tfrom

∧ portReceiver (up) = tto ∧ ports (up) 6= []

∧ pagesCommunicationMapping (up) = tto

)

THEN

ANY msg , up WHERE

msg ∈ message ∧
messageSource (msg) = tfrom ∧
messageDestination (msg) = tto ∧
up ∈ usedPagesCommunication ∧
pagesCommunicationMapping (up) = tto ∧
portSender (up) = tfrom ∧
portReceiver (up) = tto ∧
ports (up) 6= [] ∧
msg = last (ports (up))

THEN

res := msg ‖
IF size (ports (up)) = 1 THEN ports (up) := []

ELSE ports (up) := front (ports (up))

END ‖
portsSize (up) := portsSize (up) − messageSize (msg) ‖
removeMessage (msg)

END

END ;

A.8. MACHINE SCHEDULING FIFO 105

processTaskToReceive (tt) =

PRE

tt ∈ TASKS

THEN

ANY pg WHERE

pg ∈ usedPagesCommunication ∧
portReceiver (pg) = tt ∧
pagesCommunicationMapping (pg) 6= tt

THEN

mapPage (pg , tt)

END

END ;

cleanEmptyPorts =

PRE

∃ (up) . (up ∈ usedPagesCommunication ∧ ports (up) = [])

THEN

ANY up WHERE

up ∈ usedPagesCommunication ∧
ports (up) = []

THEN

portSender := portSender − { up 7→ portSender (up) } ‖
portReceiver := portReceiver − { up 7→ portReceiver (up) } ‖
ports := ports − { up 7→ ports (up) } ‖
portsSize := portsSize − { up 7→ portsSize (up) } ‖
unmapPage (up)

END

END

END

A.8 Machine Scheduling FIFO

MACHINE

Scheduling FIFO (CC)

ABSTRACT VARIABLES

fifo

INVARIANT

fifo ∈ iseq (CC)

INITIALISATION

fifo := []

OPERATIONS

add (cc) =

PRE

cc ∈ CC ∧
cc /∈ ran (fifo)

THEN

fifo := fifo ←↩ cc

END ;

106 APPENDIX A. B COMPONENTS

res ←− isEmpty =

BEGIN

IF fifo = [] THEN res := TRUE ELSE res := FALSE END

END ;

res ←− topFifo =

PRE

fifo 6= []

THEN

res := first (fifo)

END ;

remove =

PRE

fifo 6= []

THEN

fifo := fifo \|/ 1

END ;

change =

BEGIN

IF fifo = [] THEN fifo := [] ELSE

IF size (fifo) = 1 THEN fifo := fifo ELSE

ANY newFifo WHERE

newFifo ∈ iseq (CC) ∧
newFifo = tail (fifo) ←↩ first (fifo)

THEN

fifo := newFifo

END

END

END

END

END

A.9 Machine InterfaceMachine

MACHINE

InterfaceMachine

SEES

Ctx ,

CtxMemory

INCLUDES

Scheduling FIFO (TASKS) ,

Clock ,

KernelCommunication ,

MemoryManagement ,

FlowPolicy

A.9. MACHINE INTERFACEMACHINE 107

ABSTRACT VARIABLES

elapseTime ,

actualTask ,

actualThread ,

tperiod ,

tasks ,

threads ,

tthreads ,

reSched ,

configure ,

kernelRemainTime,

per

INVARIANT

configure ∈ B ∧
reSched ∈ B ∧
elapseTime ∈ NAT ∧
tasks ⊆ TASKS ∧
threads ⊆ THREADS ∧
actualTask ∈ tasks ∧
actualThread ∈ threads ∧
tperiod ∈ tasks → NAT1 ∧
tthreads ∈ threads → tasks ∧
tthreads (actualThread) = actualTask ∧
kernelRemainTime ∈ NAT ∧
per ∈ NAT

INITIALISATION

configure := TRUE ‖
reSched := FALSE ‖
elapseTime := kernelTaskPeriod ‖
tasks := { kernelTask } ‖
threads := { kernelThread } ‖
actualTask := kernelTask ‖
actualThread := kernelThread ‖
tperiod := { kernelTask 7→ kernelTaskPeriod } ‖
tthreads := { kernelThread 7→ kernelTask } ‖
kernelRemainTime := 0 ‖
per := 0

OPERATIONS

createTask (tt , time, bb) =

PRE

tt ∈ TASKS ∧
tt /∈ tasks ∧
time ∈ NAT1 ∧
configure = TRUE ∧
bb ∈ NAT ∧
bb ≥ 4

108 APPENDIX A. B COMPONENTS

THEN

createTaskM (tt , bb , per , time)

tasks := tasks ∪ { tt } ‖
tperiod (tt) := time ‖
add (tt) ‖
per := per + 1

END ;

addThreadToTask (tt , th) =

PRE

tt ∈ tasks ∧
th ∈ THREADS ∧
th /∈ threads ∧
tt 6= kernelTask ∧
configure = TRUE

THEN

threads := threads ∪ { th } ‖
tthreads (th) := tt

END ;

endConf =

PRE

configure = TRUE

THEN

configure := FALSE ‖
generateConf

END ;

changeToKernelTask =

PRE

elapseTime = 0 ∧
reSched = FALSE ∧
configure = FALSE ∧
actualTask 6= kernelTask ∧
actualThread 6= kernelThread ∧
kernelRemainTime = 0

THEN

change ‖
setTaskMMode(actualTask,)

actualTask := kernelTask ‖
actualThread := kernelThread ‖
IF ∃ (up) . (up ∈ usedPagesCommunication ∧ ports (up) = []) THEN

cleanEmptyPorts

ELSE

skip

END ‖
kernelRemainTime := kernelTaskPeriod

END ;

res ←− kernelTaskExecution =

PRE

A.9. MACHINE INTERFACEMACHINE 109

actualTask = kernelTask ∧
actualThread = kernelThread ∧
configure = FALSE ∧
kernelRemainTime 6= 0

THEN

IF ∃ (pg) . (pg ∈ usedPagesCommunication ∧ portReceiver (pg)

= first (fifo) ∧ pagesCommunicationMapping (pg) 6= first (fifo))

THEN

processTaskToReceive (first (fifo)) ‖
res := first (fifo)

ELSE

res := first (fifo)

END ‖
ANY t1 WHERE

t1 ∈ NAT1 ∧
t1 ≤ kernelRemainTime

THEN

tick (t1) ‖
kernelRemainTime := kernelRemainTime − t1

END

END ;

kernelTaskEndExecution =

PRE

actualTask = kernelTask ∧
actualThread = kernelThread ∧
configure = FALSE ∧
kernelRemainTime = 0

THEN

actualTask := first (fifo) ‖
elapseTime := tperiod (first (fifo)) ‖
ANY th WHERE

th ∈ threads ∧
tthreads (th) = first (fifo)

THEN

actualThread := th

END ‖
reSched := FALSE

END ;

run =

PRE

elapseTime 6= 0 ∧
reSched = FALSE ∧
configure = FALSE ∧
actualTask 6= kernelTask ∧
actualThread 6= kernelThread

THEN

ANY t1 WHERE

t1 ∈ NAT1 ∧
t1 ≤ elapseTime

110 APPENDIX A. B COMPONENTS

THEN

tick (t1) ‖
elapseTime := elapseTime − t1 ‖
ANY th WHERE

th ∈ threads ∧
tthreads (th) = first (fifo)

THEN

actualThread := th

END

END

END ;

res ←− sendMessageCurrentTask (t1 , t2 , sz) =

PRE

reSched = FALSE ∧
configure = FALSE ∧
actualTask 6= kernelTask ∧
actualThread 6= kernelThread ∧
t1 = actualTask ∧
t2 ∈ TASKS ∧
t2 6= kernelTask ∧
t2 6= t1 ∧
sz ∈ NAT1 ∧
sz ≤ maxPortSize ∧
elapseTime ≥ communicationTime ∧
(∃ (up) . (up ∈ usedPagesCommunication ∧ portSender (up) = t1 ∧
portReceiver (up) = t2 ∧ portsSize (up) + sz ≤ maxPortSize ∧
pagesCommunicationMapping (up) = t1)

∨ (card (usedPagesCommunication) < card (PAGESCOMMUNICATION))

∧ (¬ (∃ (up) . (up ∈ usedPagesCommunication ∧ portSender (up) = t1 ∧
portReceiver (up) = t2 ∧ portsSize (up) + sz ≤ maxPortSize ∧
pagesCommunicationMapping (up) = t1)))) ∧

(flowPolicy (t1 , t2) = write ∨ flowPolicy (t1 , t2) = readWrite)

THEN

IF (card (usedPagesCommunication) < card (PAGESCOMMUNICATION)) ∧
(¬ (∃ (up) . (up ∈ usedPagesCommunication ∧
portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize ∧
pagesCommunicationMapping (up) = t1)))

THEN sendNewMessage (t1 , t2 , sz) ‖ res := TRUE

ELSE IF ∃ (up) . (up ∈ usedPagesCommunication ∧
portSender (up) = t1 ∧ portReceiver (up) = t2 ∧
portsSize (up) + sz ≤ maxPortSize ∧
pagesCommunicationMapping (up) = t1)

THEN sendMessage (t1 , t2 , sz) ‖ res := TRUE

ELSE res := FALSE

END

END ‖
tick (communicationTime) ‖
elapseTime := elapseTime − communicationTime

A.10. MACHINE FLOWPOLICY 111

END ;

res ←− receiveMessageCurrentTask (t1 , t2) =

PRE

reSched = FALSE ∧
configure = FALSE ∧
actualTask 6= kernelTask ∧
actualThread 6= kernelThread ∧
t1 = actualTask ∧
t2 ∈ TASKS ∧
t2 6= kernelTask ∧
t2 6= t1 ∧
elapseTime ≥ communicationTime ∧
(flowPolicy (t1 , t2) = read ∨ flowPolicy (t1 , t2) = readWrite)

THEN

IF (∃ (up) . (up ∈ usedPagesCommunication ∧
portSender (up) = t2 ∧ portReceiver (up) = t1

∧ ports (up) 6= [] ∧ pagesCommunicationMapping (up) = t1))

THEN

res ←− receiveMessage (t1 , t2)

ELSE

res := nullMsg

END ‖
tick (communicationTime) ‖
elapseTime := elapseTime − communicationTime

END

END

A.10 Machine FlowPolicy

MACHINE

FlowPolicy

SEES

Ctx

ABSTRACT VARIABLES

flowPolicy ,

conf

INVARIANT

flowPolicy ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
∀ (t1 , t2) . (t1 ∈ (0 .. nmaxTasks) ∧ t2 ∈ (0 .. nmaxTasks)

∧ (t1 , t2) ∈ dom (flowPolicy) ∧ t1 = t2 ⇒ flowPolicy (t1 , t2) = noflow) ∧
conf ∈ B

INITIALISATION

flowPolicy := (0 .. nmaxTasks) × (0 .. nmaxTasks) × { noflow } ‖
conf := FALSE

112 APPENDIX A. B COMPONENTS

OPERATIONS

generateConf =

PRE

conf = FALSE

THEN

ANY newConf WHERE

newConf ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
∀ (t1 , t2) . (t1 ∈ (0 .. nmaxTasks) ∧ t2 ∈ (0 .. nmaxTasks)

∧ (t1 , t2) ∈ dom (newConf) ∧ t1 = t2 ⇒ newConf (t1 , t2) = noflow)

THEN

flowPolicy := newConf

END ‖
conf :∈ B

END ;

res ←− lookup (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks)

THEN

IF flowPolicy (t1 , t2) 6= noflow THEN res := TRUE ELSE res := FALSE END

END ;

res ←− send (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks) ∧
flowPolicy (t1 , t2) 6= noflow

THEN

IF flowPolicy (t1 , t2) = write ∨ flowPolicy (t1 , t2) = readWrite

THEN res := TRUE

ELSE res := FALSE END

END ;

res ←− receive (t1 , t2) =

PRE

t1 ∈ (0 .. nmaxTasks) ∧
t2 ∈ (0 .. nmaxTasks) ∧
flowPolicy (t1 , t2) 6= noflow

THEN

IF flowPolicy (t1 , t2) = read ∨ flowPolicy (t1 , t2) = readWrite

THEN res := TRUE

ELSE res := FALSE END

END

END

A.11 Machine Matrix

MACHINE

A.12. MACHINE BASIC IO 113

Matrix

SEES

Ctx

ABSTRACT VARIABLES

matrix

INVARIANT

matrix ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE

INITIALISATION

matrix := (0 .. nmaxTasks) × (0 .. nmaxTasks) × { noflow }
OPERATIONS

add (t1 , t2 , mm) =

PRE

t1 ∈ 0 .. nmaxTasks ∧
t2 ∈ 0 .. nmaxTasks ∧
mm ∈ MODE

THEN

matrix (t1 , t2) := mm

END ;

val ←− get (t1 , t2) =

PRE

t1 ∈ 0 .. nmaxTasks ∧
t2 ∈ 0 .. nmaxTasks

THEN

val := matrix (t1 , t2)

END

END

A.12 Machine BASIC IO

MACHINE

BASIC IO

OPERATIONS

bb ←− INTERVAL READ (mm , nn) = PRE

nn ∈ NAT ∧
mm ∈ NAT ∧
mm ≤ nn

THEN

bb :∈ mm .. nn

END ;

INT WRITE (vv) = PRE

vv ∈ NAT

THEN

skip

END ;

bb ←− B READ = BEGIN

bb :∈ B
END ;

114 APPENDIX A. B COMPONENTS

B WRITE (bb) = PRE

bb ∈ B
THEN

skip

END ;

cc ←− CHAR READ = BEGIN

cc :∈ 0 .. 255

END ;

CHAR WRITE (cc) = PRE

cc ∈ 0 .. 255

THEN

skip

END ;

STRING WRITE (ss) = PRE

ss ∈ STRING

THEN

skip

END

END

A.13 Machine FlowPolicy Imp

IMPLEMENTATION

FlowPolicy Imp

REFINES

FlowPolicy

IMPORTS

Matrix ,

BASIC IO

SEES

Ctx

CONCRETE VARIABLES

confC

INVARIANT

confC ∈ B ∧
confC = conf ∧
flowPolicy = matrix

INITIALISATION

confC := FALSE

OPERATIONS

generateConf =

BEGIN

VAR cont1 , cont2 , ch IN

cont1 := 0 ;

cont2 := 0 ;

A.13. MACHINE FLOWPOLICY IMP 115

IF confC = TRUE THEN

STRING WRITE (”\tCONFIGURATION ALREADY DONE\n”)

ELSE

WHILE cont1 ≤ nmaxTasks DO

WHILE cont2 ≤ nmaxTasks DO

IF cont1 6= cont2 THEN

STRING WRITE (”\tSET MODE FOR∈\n”) ;

INT WRITE (cont1) ;

STRING WRITE (”\t→\t”) ;

INT WRITE (cont1) ;

STRING WRITE (”\n”) ;

STRING WRITE (”\t 1 − NO FLOW \n”) ;

STRING WRITE (”\t 2 − READ \n”) ;

STRING WRITE (”\t 3 − WRITE \n”) ;

STRING WRITE (”\t 4 − READ AND WRITE \n”) ;

ch ←− CHAR READ ;

CASE ch OF

EITHER 1 THEN add (cont1 , cont2 , noflow)

OR 2 THEN add (cont1 , cont2 , read)

OR 3 THEN add (cont1 , cont2 , write)

OR 4 THEN add (cont1 , cont2 , readWrite)

ELSE add (cont1 , cont2 , noflow) END

END

ELSE

add (cont1 , cont2 , noflow)

END ;

cont2 := cont2 + 1

INVARIANT

cont2 ∈ 0 .. nmaxTasks + 1

VARIANT

nmaxTasks + 1 − cont2

END ;

cont1 := cont1 + 1

INVARIANT

cont1 ∈ 0 .. nmaxTasks + 1

VARIANT

nmaxTasks + 1 − cont1

END

END ;

confC := TRUE

END

END ;

res ←− lookup (t1 , t2) =

BEGIN

VAR aux IN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = noflow THEN res := FALSE ELSE res := TRUE END

ELSE

STRING WRITE (”\tERROR ↪→ TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

116 APPENDIX A. B COMPONENTS

res := FALSE

END

END

END ;

res ←− send (t1 , t2) =

BEGIN

VAR aux IN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = write ∨ aux = readWrite THEN res := TRUE ELSE res := FALSE END

ELSE

STRING WRITE (”\tERROR ↪→ TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

res := FALSE

END

END

END ;

res ←− receive (t1 , t2) =

BEGIN

VAR aux IN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 ∧ confC = TRUE THEN

aux ←− get (t1 , t2) ;

IF aux = read ∨ aux = readWrite THEN res := TRUE ELSE res := FALSE END

ELSE

STRING WRITE (”\tERROR ↪→ TASKS DO NOT EXIST IN THE SYSTEM\n”) ;

res := FALSE

END

END

END

END

A.14 Machine Matrix Imp

IMPLEMENTATION

Matrix Imp

REFINES

Matrix

SEES

Ctx

CONCRETE VARIABLES

matrixC

INVARIANT

matrixC ∈ ((0 .. nmaxTasks) × (0 .. nmaxTasks)) → MODE ∧
matrixC = matrix

INITIALISATION

matrixC := (0 .. nmaxTasks) × (0 .. nmaxTasks) × { noflow }
OPERATIONS

A.14. MACHINE MATRIX IMP 117

add (t1 , t2 , mm) =

BEGIN

IF (mm = noflow ∨ mm = read ∨ mm = write ∨ mm = readWrite)

∧ t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 THEN

matrixC (t1 , t2) := mm

ELSE

skip

END

END ;

val ←− get (t1 , t2) =

BEGIN

IF t1 ≤ nmaxTasks ∧ t1 ≥ 0 ∧ t2 ≤ nmaxTasks ∧ t2 ≥ 0 THEN

val := matrixC (t1 , t2)

ELSE

val := matrixC (0 , 0)

END

END

Appendix B

Example Configuration File

B.1 Config File

s t a r t

f low <<1,2, read >>;

f low <<2,3, write >>;

f low <<2,1,noFlow>>

end

B.2 Result file

#include <prex / prex . h>

#include <s t d i o . h>

#include <s t r i n g . h>

/∗ 1 = No Flow

2 − Read

3 − Write

4 − Read and Write

∗/

void f l owPo l i cyCrea t i on ()

{
addFlowPolicy (1 , 2 , 2) ;

addFlowPolicy (2 , 3 , 3) ;

addFlowPolicy (2 , 1 , 1) ;

}

119

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.1.1 Motivation
	1.1.2 The choice of the B Method
	1.1.3 Cautionary notes about formal methods

	1.2 Definition of the work
	1.2.1 Objectives
	1.2.2 Contribution

	1.3 Outline

	2 Software Engineering and the B Method
	2.1 System Modeling and Design
	2.2 Formal Development Life Cycle
	2.3 B Method language
	2.3.1 Abstract machines
	2.3.2 Refinements and Implementations
	2.3.3 B Architecture
	2.3.4 The B language

	2.4 Example
	2.5 B tools
	2.5.1 ProB
	2.5.2 Atelier B
	2.5.3 B-Toolkit
	2.5.4 Rodin
	2.5.5 U2B
	2.5.6 Brama
	2.5.7 Final Remarks

	2.6 Summary

	3 Secure Partition Kernel
	3.1 General Overview
	3.2 Secure Partitioning kernel Protection Profile
	3.3 Secure Partitioning Microkernel
	3.3.1 Time Partitioning
	3.3.2 Space Partitioning
	3.3.3 Security Partitioning

	3.4 Proposed Solution
	3.5 Prex microkernel
	3.6 Summary

	4 State of the Art
	4.1 Verified Microkernels
	4.2 The B Method in the Verification of Microkernels
	4.3 Summary

	5 Formal Development of a Secure Partitioning Microkernel
	5.1 General strategy
	5.2 Formal specification of the Secure Partitioning microkernel
	5.2.1 Machine Ctx
	5.2.2 Machine CtxMemory
	5.2.3 Machine MemoryManagement
	5.2.4 Machine Clock
	5.2.5 Machine Messages
	5.2.6 Machine PoolForCommunication
	5.2.7 Machine KernelCommunication
	5.2.8 Machine Scheduling_FIFO
	5.2.9 Machine Interface
	5.2.10 Animation with ProB

	5.3 Partition Information Flow Policy
	5.3.1 Machine FlowPolicy
	5.3.2 Machine Matrix
	5.3.3 Machine BASIC_IO
	5.3.4 Machine FlowPolicy_Imp
	5.3.5 Machine Matrix_Imp

	5.4 Prex with Partitioning Information Flow Policy
	5.5 Verification and Validation
	5.6 Summary

	6 Conclusion
	6.1 Contribute
	6.2 Challenge
	6.3 Future Work

	Bibliography
	A B components
	A.1 Machine Ctx
	A.2 Machine CtxMemory
	A.3 Machine MemoryManagement
	A.4 Machine Clock
	A.5 Machine Messages
	A.6 Machine PoolForCommunication
	A.7 Machine KernelCommunication
	A.8 Machine Scheduling_FIFO
	A.9 Machine InterfaceMachine
	A.10 Machine FlowPolicy
	A.11 Machine Matrix
	A.12 Machine BASIC_IO
	A.13 Machine FlowPolicy_Imp
	A.14 Machine Matrix_Imp

	B Example Configuration File
	B.1 Config File
	B.2 Result file

