1,033 research outputs found

    Outlier detection approach for PCB testing based on Principal Component Analysis, An

    Get PDF
    2011 Spring.Includes bibliographical references.Capacitive Lead Frame Testing, a widely used approach for printed circuit board testing, is very effective for open solder detection. The approach, however, is affected by mechanical variations during testing and by tolerances of electrical parameters of components, making it difficult to use threshold based techniques for defect detection. A novel approach is presented in this thesis for identifying boardruns that are likely to be outliers. Based on Principal Components Analysis (PCA), this approach treats the set of capacitance measurements of individual connectors or sockets in a holistic manner to overcome the measurement and component parameter variations inherent in test data. Effectiveness of the method is evaluated using measurements on different types of boards. Based on multiple analyses of different measurement datasets, the most suitable statistics for outlier detection and relative parameter values are also identified. Enhancements to the PCA-based technique using the concept of test-pin windows are presented to increase the resolution of the analysis. When applied to one test window at a time, PCA is able to detect the physical position of potential defects. Combining the basic and enhanced techniques, the effectiveness of outlier detection is improved. The PCA based approach is extended to detect and compensate for systematic variation of measurement data caused by tilt or shift of the sense plate. This scheme promises to enhance the accuracy of outlier detection when measurements are from different fixtures. Compensation approaches are introduced to correct the 'abnormal' measurements due to sense-plate variations to a 'normal' and consistent baseline. The effectiveness of this approach in the presence of the two common forms of mechanical variations is illustrated. Potential to use PCA based analysis to estimate the relative amount of tilt and shift in sense plate is demonstrated

    Innovative Techniques for Testing and Diagnosing SoCs

    Get PDF
    We rely upon the continued functioning of many electronic devices for our everyday welfare, usually embedding integrated circuits that are becoming even cheaper and smaller with improved features. Nowadays, microelectronics can integrate a working computer with CPU, memories, and even GPUs on a single die, namely System-On-Chip (SoC). SoCs are also employed on automotive safety-critical applications, but need to be tested thoroughly to comply with reliability standards, in particular the ISO26262 functional safety for road vehicles. The goal of this PhD. thesis is to improve SoC reliability by proposing innovative techniques for testing and diagnosing its internal modules: CPUs, memories, peripherals, and GPUs. The proposed approaches in the sequence appearing in this thesis are described as follows: 1. Embedded Memory Diagnosis: Memories are dense and complex circuits which are susceptible to design and manufacturing errors. Hence, it is important to understand the fault occurrence in the memory array. In practice, the logical and physical array representation differs due to an optimized design which adds enhancements to the device, namely scrambling. This part proposes an accurate memory diagnosis by showing the efforts of a software tool able to analyze test results, unscramble the memory array, map failing syndromes to cell locations, elaborate cumulative analysis, and elaborate a final fault model hypothesis. Several SRAM memory failing syndromes were analyzed as case studies gathered on an industrial automotive 32-bit SoC developed by STMicroelectronics. The tool displayed defects virtually, and results were confirmed by real photos taken from a microscope. 2. Functional Test Pattern Generation: The key for a successful test is the pattern applied to the device. They can be structural or functional; the former usually benefits from embedded test modules targeting manufacturing errors and is only effective before shipping the component to the client. The latter, on the other hand, can be applied during mission minimally impacting on performance but is penalized due to high generation time. However, functional test patterns may benefit for having different goals in functional mission mode. Part III of this PhD thesis proposes three different functional test pattern generation methods for CPU cores embedded in SoCs, targeting different test purposes, described as follows: a. Functional Stress Patterns: Are suitable for optimizing functional stress during I Operational-life Tests and Burn-in Screening for an optimal device reliability characterization b. Functional Power Hungry Patterns: Are suitable for determining functional peak power for strictly limiting the power of structural patterns during manufacturing tests, thus reducing premature device over-kill while delivering high test coverage c. Software-Based Self-Test Patterns: Combines the potentiality of structural patterns with functional ones, allowing its execution periodically during mission. In addition, an external hardware communicating with a devised SBST was proposed. It helps increasing in 3% the fault coverage by testing critical Hardly Functionally Testable Faults not covered by conventional SBST patterns. An automatic functional test pattern generation exploiting an evolutionary algorithm maximizing metrics related to stress, power, and fault coverage was employed in the above-mentioned approaches to quickly generate the desired patterns. The approaches were evaluated on two industrial cases developed by STMicroelectronics; 8051-based and a 32-bit Power Architecture SoCs. Results show that generation time was reduced upto 75% in comparison to older methodologies while increasing significantly the desired metrics. 3. Fault Injection in GPGPU: Fault injection mechanisms in semiconductor devices are suitable for generating structural patterns, testing and activating mitigation techniques, and validating robust hardware and software applications. GPGPUs are known for fast parallel computation used in high performance computing and advanced driver assistance where reliability is the key point. Moreover, GPGPU manufacturers do not provide design description code due to content secrecy. Therefore, commercial fault injectors using the GPGPU model is unfeasible, making radiation tests the only resource available, but are costly. In the last part of this thesis, we propose a software implemented fault injector able to inject bit-flip in memory elements of a real GPGPU. It exploits a software debugger tool and combines the C-CUDA grammar to wisely determine fault spots and apply bit-flip operations in program variables. The goal is to validate robust parallel algorithms by studying fault propagation or activating redundancy mechanisms they possibly embed. The effectiveness of the tool was evaluated on two robust applications: redundant parallel matrix multiplication and floating point Fast Fourier Transform

    Contactless Testing of Circuit Interconnects

    Full text link

    Heuristics Based Test Overhead Reduction Techniques in VLSI Circuits

    Get PDF
    The electronic industry has evolved at a mindboggling pace over the last five decades. Moore’s Law [1] has enabled the chip makers to push the limits of the physics to shrink the feature sizes on Silicon (Si) wafers over the years. A constant push for power-performance-area (PPA) optimization has driven the higher transistor density trends. The defect density in advanced process nodes has posed a challenge in achieving sustainable yield. Maintaining a low Defect-per-Million (DPM) target for a product to be viable with stringent Time-to-Market (TTM) has become one of the most important aspects of the chip manufacturing process. Design-for-Test (DFT) plays an instrumental role in enabling low DPM. DFT however impacts the PPA of a chip. This research describes an approach of minimizing the scan test overhead in a chip based on circuit topology heuristics. These heuristics are applied on a full-scan design to convert a subset of the scan flip-flops (SFF) into D flip-flops (DFF). The K Longest Path per Gate (KLPG) [2] automatic test pattern generation (ATPG) algorithm is used to generate tests for robust paths in the circuit. Observability driven multi cycle path generation [3][4] and test are used in this work to minimize coverage loss caused by the SFF conversion process. The presence of memory arrays in a design exacerbates the coverage loss due to the shadow cast by the array on its neighboring logic. A specialized behavioral modeling for the memory array is required to enable test coverage of the shadow logic. This work develops a memory model integrated into the ATPG engine for this purpose. Multiple clock domains pose challenges in the path generation process. The inter-domain clocking relationship and corresponding logic sensitization are modeled in our work to generate synchronous inter-domain paths over multiple clock cycles. Results are demonstrated on ISCAS89 and ITC99 benchmark circuits. Power saving benefit is quantified using an open-source standard-cell library

    Fault-Tolerant Computing: An Overview

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNASA / NAG-1-613Semiconductor Research Corporation / 90-DP-109Joint Services Electronics Program / N00014-90-J-127

    The role of deep learning in structural and functional lung imaging

    Get PDF
    Background: Structural and functional lung imaging are critical components of pulmonary patient care. Image analysis methods, such as image segmentation, applied to structural and functional lung images, have significant benefits for patients with lung pathologies, including the computation of clinical biomarkers. Traditionally, machine learning (ML) approaches, such as clustering, and computational modelling techniques, such as CT-ventilation imaging, have been used for segmentation and synthesis, respectively. Deep learning (DL) has shown promise in medical image analysis tasks, often outperforming alternative methods. Purpose: To address the hypothesis that DL can outperform conventional ML and classical image analysis methods for the segmentation and synthesis of structural and functional lung imaging via: i. development and comparison of 3D convolutional neural networks (CNNs) for the segmentation of ventilated lung using hyperpolarised (HP) gas MRI. ii. development of a generalisable, multi-centre CNN for segmentation of the lung cavity using 1H-MRI. iii. the proposal of a framework for estimating the lung cavity in the spatial domain of HP gas MRI. iv. development of a workflow to synthesise HP gas MRI from multi-inflation, non-contrast CT. v. the proposal of a framework for the synthesis of fully-volumetric HP gas MRI ventilation from a large, diverse dataset of non-contrast, multi-inflation 1H-MRI scans. Methods: i. A 3D CNN-based method for the segmentation of ventilated lung using HP gas MRI was developed and CNN parameters, such as architecture, loss function and pre-processing were optimised. ii. A 3D CNN trained on a multi-acquisition dataset and validated on data from external centres was compared with a 2D alternative for the segmentation of the lung cavity using 1H-MRI. iii. A dual-channel, multi-modal segmentation framework was compared to single-channel approaches for estimation of the lung cavity in the domain of HP gas MRI. iv. A hybrid data-driven and model-based approach for the synthesis of HP gas MRI ventilation from CT was compared to approaches utilising DL or computational modelling alone. v. A physics-constrained, multi-channel framework for the synthesis of fully-volumetric ventilation surrogates from 1H-MRI was validated using five-fold cross-validation and an external test data set. Results: i. The 3D CNN, developed via parameterisation experiments, accurately segmented ventilation scans and outperformed conventional ML methods. ii. The 3D CNN produced more accurate segmentations than its 2D analogues for the segmentation of the lung cavity, exhibiting minimal variation in performance between centres, vendors and acquisitions. iii. Dual-channel, multi-modal approaches generate significant improvements compared to methods which use a single imaging modality for the estimation of the lung cavity. iv. The hybrid approach produced synthetic ventilation scans which correlate with HP gas MRI. v. The physics-constrained, 3D multi-channel synthesis framework outperformed approaches which did not integrate computational modelling, demonstrating generalisability to external data. Conclusion: DL approaches demonstrate the ability to segment and synthesise lung MRI across a range of modalities and pulmonary pathologies. These methods outperform computational modelling and classical ML approaches, reducing the time required to adequately edit segmentations and improving the modelling of synthetic ventilation, which may facilitate the clinical translation of DL in structural and functional lung imaging

    Proceedings of the 10th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components

    Get PDF
    This conference, the tenth in a series on NDE in relation to structural integrity for nuclear and pressurized components, was held from 1st October to 3 October 2013, in Cannes, France. The scientific programme was co-produced by the European Commission’s Joint Research Centre, Institute for Energy and Transport (EC-JRC/IET). The Conference has been coordinated by the Confédération Française pour les Essais Non Destructifs (COFREND). The first conference, under the sole responsibility of EC-JRC was held in Amsterdam, 20-22 October 1998. The second conference was locally organized by the EPRI NDE Center in New Orleans, 24-26 May 2000, the third one by Tecnatom in Seville, 14-16 November 2001, the fourth one by the British Institute of Non-Destructive Testing in London, 6-8 December 2004, the fifth by EPRI in San Diego, 10-12 May 2006, the sixth by Marovisz in Budapest, 8-10 October 2007, the seventh by the University of Tokyo and JAPEIC in Yokohama, the eight by DGZfP, 29 September to 1st October 2010, the ninth by Epri NDE Center, 22-24 May 2012 in Seattle. The theme of this conference series is to provide the link between the information originated by NDE and the use made of this information in assessing structural integrity. In this context, there is often a need to determine NDE performance against structural integrity requirements through a process of qualification or performance demonstration. There is also a need to develop NDE to address shortcomings revealed by such performance demonstration or otherwise. Finally, the links between NDE and structural integrity require strengthening in many areas so that NDE is focussed on the components at greatest risk and provides the precise information required for assessment of integrity. These were the issues addressed by the papers selected for the conference.JRC.F.5-Nuclear Reactor Safety Assessmen

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin
    • …
    corecore