401 research outputs found

    Suited for spacewalking: A teacher's guide with activities

    Get PDF
    This publication is an activity guide for teachers on spacesuits and spacewalking. It uses the intensive interest many children have in space exploration as a launching point for hands-on-opportunities. The guide begins with brief discussions of the space environment, the history of space walking, the Space Shuttle spacesuit, and working in space. These are followed by a series of activities that enable children to explore the space environment as well as the science and technology behind the functions of spacesuits. The activities are not rated for specific grade levels because they can be adapted for students of many ages. The guide concludes with a brief glossary as well as references and resources

    INDUSTRIAL SAFETY USING AUGMENTED REALITY AND ARTIFICIAL INTELLIGENCE

    Get PDF
    Industrialization brought benefits to the development of societies, albeit at the cost of the safety of industrial workers. Industrial operators were often severely injured or lost their lives during the working process. The causes can be cuts or lacerations resulting from moving machine parts, burns or scalds resulting from touch, or mishandling of thermal, electrical, and chemical objects. Fatigue, distraction, or inattention can exacerbate the risk of industrial accidents. The accidents can cause service downtime of manufacturing machinery, leading to lower productivity and significant financial losses. Therefore, regulations and safety measures were formulated and overseen by the government and local authorities. Safety measures include effective training of workers, an inspection of the workplace, safety rules, safeguarding, and safety warning systems. For instance, safeguarding prevents contact with hazardous moving parts by isolating or stopping them, whereas a safety warning system detects accident risks and issues an alert warning. Warning systems were mostly mounted detection sensors and alerting systems. Mobile alerting devices can be gadgets such as phones, tablets, smartwatches, or smart glasses. Smart goggles can be utilized for industrial safety to protect, detect, and warn about potential risks. Adopting new technologies such as augmented reality and artificial intelligence can enhance the safety of workers in the industry. Augmented reality systems developed for head-mounted displays can extend workers’ perception of the environment. Artificial intelligence utilizing state-of-the-art sensors can improve industrial safety by making workers aware of potential hazards in the environment. For instance, thermal or infrared sensors can detect hot objects in the workplace. Built-in infrared sensors in smart glasses can detect the state of attention of users. Using smart glasses, potential hazards can be conveyed to industrial workers using various modalities, such as audial, visual, or tactile. We have successfully developed advanced safety systems for industrial workers. Our innovative approach incorporates cutting-edge technologies such as eye tracking, spatial mapping, and thermal imaging. By utilizing eye tracking, we are able to identify instances of user inattention, while spatial mapping allows us to analyze the user’s behavior and surroundings. Furthermore, the integration of thermal imaging enables us to detect hot objects within the user’s field of view. The first system we developed is a warning system that harnesses the power of augmented reality and artificial intelligence. This system effectively issues alerts and presents holographic warnings to combat instances of inattention or distraction. By utilizing visual cues and immersive technology, we aim to proactively prevent accidents and promote worker safety. The second safety system we designed involves the integration of a third-party thermal imaging system into smart glasses. Through this integration, our safety system overlays false-color holograms onto hot objects, enabling workers to easily identify and avoid potential hazards. To evaluate the effectiveness of our systems, we conducted comprehensive experiments with human participants. These experiments involved both qualitative and quantitative measurements, and we further conducted semi-structured interviews with the participants to gather their insights. The results and subsequent discussions from our experiments have provided valuable insights for the future implementation of safety systems. Through this research, we envision the continued advancement and refinement of safety technologies to further enhance worker safety in industrial settings

    Multi-user virtual environments for physical education and sport training

    Get PDF
    For effective learning and training, virtual environments may provide lifelike opportunities, and researchers are actively investigating their potential for educational purposes. Minimal research attention has been paid to the integration of multi-user virtual environments (MUVE) technology for teaching and practicing real sports. In this chapter, the authors reviewed the justifications, possibilities, challenges, and future directions of using MUVE systems. The authors addressed issues such as informal learning, design, engagement, collaboration, learning style, learning evaluation, motivation, and gender, followed by the identification of required elements for successful implementations. In the second part, the authors talked about exergames, the necessity of evaluation, and examples on exploring the behavior of players during playing. Finally, insights on the application of sports exergames in teaching, practicing, and encouraging real sports were discussed

    Vibrotactile Warnings Design for Improving Risks Awareness in Construction Environment

    Get PDF
    Construction workers have difficulty identifying potential risks in harsh environments because traditional visual and acoustical alerts are inefficient. This study investigated a new communication method with a wearable tactile-based system to improve worker’s hazard perception. Three experiments are reported in relation to this system. The first experiment exploited VR as an experimental tool to compare auditory and vibrotactile warning signals as well as their combination in a simulated construction working environment. Findings demonstrated that the vibrotactile cues induced faster response times and higher affective ratings than auditory alarms, and their combination provided the shortest reaction time. The second experiment compared 7 different vibrotactile patterns varying in intensity, duration, and interval, to identify configurations that led to a higher degree of awareness. The third experiment validated the effectiveness of three selected tactons for delivering information on 3 hazard levels, finding that subjects could identify three-parameter signals with relatively low error. Our findings provide guidelines for designing tactile warning signals, which could help improve hazard recognition and risk perception, especially in construction sites

    4th Annual Fall Undergraduate Research Symposium

    Get PDF

    Supporting Eyes-Free Human–Computer Interaction with Vibrotactile Haptification

    Get PDF
    The sense of touch is a crucial sense when using our hands in complex tasks. Some tasks we learn to do even without sight by just using the sense of touch in our fingers and hands. Modern touchscreen devices, however, have lost some of that tactile feeling while removing physical controls from the interaction. Touch is also a sense that is underutilized in interactions with technology and could provide new ways of interaction to support users. While users are using information technology in certain situations, they cannot visually and mentally focus completely during the interaction. Humans can utilize their sense of touch more comprehensively in interactions and learn to understand tactile information while interacting with information technology. This thesis introduces a set of experiments that evaluate human capabilities to understand and notice tactile information provided by current actuator technology and further introduces a couple of examples of haptic user interfaces (HUIs) to use under eyes-free use scenarios. These experiments evaluate the benefits of such interfaces for users and concludes with some guidelines and methods for how to create this kind of user interfaces. The experiments in this thesis can be divided into three groups. In the first group, with the first two experiments, the detection of vibrotactile stimuli and interpretation of the abstract meaning of vibrotactile feedback was evaluated. Experiments in the second group evaluated how to design rhythmic vibrotactile tactons to be basic vibrotactile primitives for HUIs. The last group of two experiments evaluated how these HUIs benefit the users in the distracted and eyes-free interaction scenarios. The primary aim for this series of experiments was to evaluate if utilizing the current level of actuation technology could be used more comprehensively than in current-day solutions with simple haptic alerts and notifications. Thus, to find out if the comprehensive use of vibrotactile feedback in interactions would provide additional benefits for the users, compared to the current level of haptic interaction methods and nonhaptic interaction methods. The main finding of this research is that while using more comprehensive HUIs in eyes-free distracted-use scenarios, such as while driving a car, the user’s main task, driving, is performed better. Furthermore, users liked the comprehensively haptified user interfaces

    The Effect of Posture During CPR on Rescuer Muscular Fatigue Development and CPR Quality

    Get PDF
    The purpose of this study was to evaluate muscle fatigue and CPR quality over time, during four CPR positions. Twenty-one, CPR-certified participants performed six-minutes of CPR, on a training manikin, at four heights (KH, LH, FH, WH). EMG of sixteen muscles, kinematics of the manikin, and kinetic data at the hands were collected. The MPF identified that four, six, four, and nine muscles fatigued during KH, LH, FH, and WH, respectively. Furthermore, there was a linear decrease in CC force and CC depth over time, during all positions. The results indicated that rescuers should perform CPR below WH. Furthermore, as the TB produced the highest peak activation and fatigued within all CPR positions, it is recommended rescuers attempt to rest the TB during ventilations, if CPR is performed with two or more rescuers. Lastly, CPR feedback devices should be improved to detect full CC and display force vs. depth measurements

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 156)

    Get PDF
    This bibliography lists 170 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1976
    corecore