4,159 research outputs found

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table

    Anonymous certification for E-assessment opinion polls

    Get PDF
    Anonymous certification (AC) refers to cryptographic mechanisms in which users get certified from trusted issuers, with regard to some pre-defined user attributes, in order to produce presentation tokens. Such tokens satisfy service providers’ access policies, without revealing sensitive user information. AC systems are generally classified under two main different categories: (1) one-time show credentials that can be shown once for avoiding their originating user being traced from one transaction to another, and (2) multi-show credentials that can be used many times while avoiding their originating user to be traced. In this paper, we consider e-assessment opinion polls scenarios and propose an AC scheme where the one-time show property is relevant for making sure each user cannot hand in more than one poll in order to get significant results. To mitigate cheating, the scheme is provided with two extra procedures: attribute revocation and anonymity removal. The correctness of our scheme, as well as unforgeability, privacy and anonymity removal, are analyzed and demonstrated

    Data Minimisation in Communication Protocols: A Formal Analysis Framework and Application to Identity Management

    Full text link
    With the growing amount of personal information exchanged over the Internet, privacy is becoming more and more a concern for users. One of the key principles in protecting privacy is data minimisation. This principle requires that only the minimum amount of information necessary to accomplish a certain goal is collected and processed. "Privacy-enhancing" communication protocols have been proposed to guarantee data minimisation in a wide range of applications. However, currently there is no satisfactory way to assess and compare the privacy they offer in a precise way: existing analyses are either too informal and high-level, or specific for one particular system. In this work, we propose a general formal framework to analyse and compare communication protocols with respect to privacy by data minimisation. Privacy requirements are formalised independent of a particular protocol in terms of the knowledge of (coalitions of) actors in a three-layer model of personal information. These requirements are then verified automatically for particular protocols by computing this knowledge from a description of their communication. We validate our framework in an identity management (IdM) case study. As IdM systems are used more and more to satisfy the increasing need for reliable on-line identification and authentication, privacy is becoming an increasingly critical issue. We use our framework to analyse and compare four identity management systems. Finally, we discuss the completeness and (re)usability of the proposed framework

    Bringing data minimization to digital wallets at scale with general-purpose zero-knowledge proofs

    Get PDF
    Today, digital identity management for individuals is either inconvenient and error-prone or creates undesirable lock-in effects and violates privacy and security expectations. These shortcomings inhibit the digital transformation in general and seem particularly concerning in the context of novel applications such as access control for decentralized autonomous organizations and identification in the Metaverse. Decentralized or self-sovereign identity (SSI) aims to offer a solution to this dilemma by empowering individuals to manage their digital identity through machine-verifiable attestations stored in a "digital wallet" application on their edge devices. However, when presented to a relying party, these attestations typically reveal more attributes than required and allow tracking end users' activities. Several academic works and practical solutions exist to reduce or avoid such excessive information disclosure, from simple selective disclosure to data-minimizing anonymous credentials based on zero-knowledge proofs (ZKPs). We first demonstrate that the SSI solutions that are currently built with anonymous credentials still lack essential features such as scalable revocation, certificate chaining, and integration with secure elements. We then argue that general-purpose ZKPs in the form of zk-SNARKs can appropriately address these pressing challenges. We describe our implementation and conduct performance tests on different edge devices to illustrate that the performance of zk-SNARK-based anonymous credentials is already practical. We also discuss further advantages that general-purpose ZKPs can easily provide for digital wallets, for instance, to create "designated verifier presentations" that facilitate new design options for digital identity infrastructures that previously were not accessible because of the threat of man-in-the-middle attacks

    Formal Security Analysis and Performance Evaluation of the Linkable Anonymous Access Protocol

    Get PDF
    Part 2: The 2014 Asian Conference on Availability, Reliability and Security, AsiaARES 2014International audienceThe introduction of e-Health applications has not only brought benefits, but also raised serious concerns regarding security and privacy of health data. The increasing demands of accessing health data, highlighted critical questions and challenges concerning the confidentiality of electronic patient records and the efficiency of accessing these records. Therefore, the aim of this paper is to provide secure and efficient access to electronic patient records. In this paper, we propose a novel protocol called the Linkable Anonymous Access protocol (LAA). We formally verify and analyse the protocol against security properties such as secrecy and authentication using the Casper/FDR2 verification tool. In addition, we have implemented the protocol using the Java technology to evaluate its performance. Our formal security analysis and performance evaluation proved that the LAA protocol supports secure access to electronic patient records without compromising performance

    Trust Evaluation for Embedded Systems Security research challenges identified from an incident network scenario

    Get PDF
    This paper is about trust establishment and trust evaluations techniques. A short background about trust, trusted computing and security in embedded systems is given. An analysis has been done of an incident network scenario with roaming users and a set of basic security needs has been identified. These needs have been used to derive security requirements for devices and systems, supporting the considered scenario. Using the requirements, a list of major security challenges for future research regarding trust establishment in dynamic networks have been collected and elaboration on some different approaches for future research has been done.This work was supported by the Knowledge foundation and RISE within the ARIES project

    Handling privacy and concurrency in an online educational evaluation system

    Get PDF
    Nowadays, all academic institutions exhibit and distribute their material over Internet. Moreover, e-learning and e-evaluation products is one of the most rapidly expanding areas of education and training, with nearly 30% of U.S. college and university students now taking at least one online course. However, Internet increases the vulnerability of digital educational content exploitation since it is a potential hostile environment for secure data management. The challenge is that providing current online educational tools that are accessible by a large number of users, these educational environments handle data of varying sensitivity thus it is increasingly important to reason about and enforce information privacy guarantees in the presence of concurrency. The present paper provides a privacy preserving approach in a concurrent online educational evaluation system. It introduces a privacy preserving approach for utilizing online concurrent evaluation of acquired student competencies that handles the increasingly complex issues of designing, developing and e-competence evaluation systems suitable for educational and e-learning environments. The proposed architecture for an online competence evaluation system offers access control and protect users' private data while, it provides concurrent procedures for evaluating competencies. © 2019 International Press of Boston, Inc. All rights reserved.European Commission, ECThis work has been partially supported by the “Implementation of Software Engineering Com-petence Remote Evaluation for Master Program Graduates (iSECRET)” project No 2015-1-LVo1-KA203-013439 funded by ERASMUS+ of the European Commission

    Accountable infrastructure and its impact on internet security and privacy

    Get PDF
    The Internet infrastructure relies on the correct functioning of the basic underlying protocols, which were designed for functionality. Security and privacy have been added post hoc, mostly by applying cryptographic means to different layers of communication. In the absence of accountability, as a fundamental property, the Internet infrastructure does not have a built-in ability to associate an action with the responsible entity, neither to detect or prevent misbehavior. In this thesis, we study accountability from a few different perspectives. First, we study the need of having accountability in anonymous communication networks as a mechanism that provides repudiation for the proxy nodes by tracing back selected outbound traffic in a provable manner. Second, we design a framework that provides a foundation to support the enforcement of the right to be forgotten law in a scalable and automated manner. The framework provides a technical mean for the users to prove their eligibility for content removal from the search results. Third, we analyze the Internet infrastructure determining potential security risks and threats imposed by dependencies among the entities on the Internet. Finally, we evaluate the feasibility of using hop count filtering as a mechanism for mitigating Distributed Reflective Denial-of-Service attacks, and conceptually show that it cannot work to prevent these attacks.Die Internet-Infrastrutur stĂŒtzt sich auf die korrekte AusfĂŒhrung zugrundeliegender Protokolle, welche mit Fokus auf FunktionalitĂ€t entwickelt wurden. Sicherheit und Datenschutz wurden nachtrĂ€glich hinzugefĂŒgt, hauptsĂ€chlich durch die Anwendung kryptografischer Methoden in verschiedenen Schichten des Protokollstacks. Fehlende Zurechenbarkeit, eine fundamentale Eigenschaft Handlungen mit deren Verantwortlichen in Verbindung zu bringen, verhindert jedoch, Fehlverhalten zu erkennen und zu unterbinden. Diese Dissertation betrachtet die Zurechenbarkeit im Internet aus verschiedenen Blickwinkeln. Zuerst untersuchen wir die Notwendigkeit fĂŒr Zurechenbarkeit in anonymisierten Kommunikationsnetzen um es Proxyknoten zu erlauben Fehlverhalten beweisbar auf den eigentlichen Verursacher zurĂŒckzuverfolgen. Zweitens entwerfen wir ein Framework, das die skalierbare und automatisierte Umsetzung des Rechts auf Vergessenwerden unterstĂŒtzt. Unser Framework bietet Benutzern die technische Möglichkeit, ihre Berechtigung fĂŒr die Entfernung von Suchergebnissen nachzuweisen. Drittens analysieren wir die Internet-Infrastruktur, um mögliche Sicherheitsrisiken und Bedrohungen aufgrund von AbhĂ€ngigkeiten zwischen den verschiedenen beteiligten EntitĂ€ten zu bestimmen. Letztlich evaluieren wir die Umsetzbarkeit von Hop Count Filtering als ein Instrument DRDoS Angriffe abzuschwĂ€chen und wir zeigen, dass dieses Instrument diese Art der Angriffe konzeptionell nicht verhindern kann
    • 

    corecore