203 research outputs found

    Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records

    Full text link
    © 2013 IEEE. Aimed at the tremendous challenge of attribute reduction for big data mining and knowledge discovery, we propose a new attribute equilibrium dominance reduction accelerator (DCCAEDR) based on the distributed coevolutionary cloud model. First, the framework of N-populations distributed coevolutionary MapReduce model is designed to divide the entire population into N subpopulations, sharing the reward of different subpopulations' solutions under a MapReduce cloud mechanism. Because the adaptive balancing between exploration and exploitation can be achieved in a better way, the reduction performance is guaranteed to be the same as those using the whole independent data set. Second, a novel Nash equilibrium dominance strategy of elitists under the N bounded rationality regions is adopted to assist the subpopulations necessary to attain the stable status of Nash equilibrium dominance. This further enhances the accelerator's robustness against complex noise on big data. Third, the approximation parallelism mechanism based on MapReduce is constructed to implement rule reduction by accelerating the computation of attribute equivalence classes. Consequently, the entire attribute reduction set with the equilibrium dominance solution can be achieved. Extensive simulation results have been used to illustrate the effectiveness and robustness of the proposed DCCAEDR accelerator for attribute reduction on big data. Furthermore, the DCCAEDR is applied to solve attribute reduction for traditional Chinese medical records and to segment cortical surfaces of the neonatal brain 3-D-MRI records, and the DCCAEDR shows the superior competitive results, when compared with the representative algorithms

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce

    Full text link
    IEEE Although feature selection for large data has been intensively investigated in data mining, machine learning, and pattern recognition, the challenges are not just to invent new algorithms to handle noisy and uncertain large data in applications, but rather to link the multiple relevant feature sources, structured, or unstructured, to develop an effective feature reduction method. In this paper, we propose a multiple relevant feature ensemble selection (MRFES) algorithm based on multilayer co-evolutionary consensus MapReduce (MCCM). We construct an effective MCCM model to handle feature ensemble selection of large-scale datasets with multiple relevant feature sources, and explore the unified consistency aggregation between the local solutions and global dominance solutions achieved by the co-evolutionary memeplexes, which participate in the cooperative feature ensemble selection process. This model attempts to reach a mutual decision agreement among co-evolutionary memeplexes, which calls for the need for mechanisms to detect some noncooperative co-evolutionary behaviors and achieve better Nash equilibrium resolutions. Extensive experimental comparative studies substantiate the effectiveness of MRFES to solve large-scale dataset problems with the complex noise and multiple relevant feature sources on some well-known benchmark datasets. The algorithm can greatly facilitate the selection of relevant feature subsets coming from the original feature space with better accuracy, efficiency, and interpretability. Moreover, we apply MRFES to human cerebral cortex-based classification prediction. Such successful applications are expected to significantly scale up classification prediction for large-scale and complex brain data in terms of efficiency and feasibility

    A Scalable and Effective Rough Set Theory based Approach for Big Data Pre-processing

    Get PDF
    International audienceA big challenge in the knowledge discovery process is to perform data pre-processing, specifically feature selection, on a large amount of data and high dimensional attribute set. A variety of techniques have been proposed in the literature to deal with this challenge with different degrees of success as most of these techniques need further information about the given input data for thresholding, need to specify noise levels or use some feature ranking procedures. To overcome these limitations, rough set theory (RST) can be used to discover the dependency within the data and reduce the number of attributes enclosed in an input data set while using the data alone and requiring no supplementary information. However, when it comes to massive data sets, RST reaches its limits as it is highly computationally expensive. In this paper, we propose a scalable and effective rough set theory-based approach for large-scale data pre-processing, specifically for feature selection, under the Spark framework. In our detailed experiments, data sets with up to 10,000 attributes have been considered, revealing that our proposed solution achieves a good speedup and performs its feature selection task well without sacrificing performance. Thus, making it relevant to big data

    Enhancing Big Data Feature Selection Using a Hybrid Correlation-Based Feature Selection

    Get PDF
    This study proposes an alternate data extraction method that combines three well-known feature selection methods for handling large and problematic datasets: the correlation-based feature selection (CFS), best first search (BFS), and dominance-based rough set approach (DRSA) methods. This study aims to enhance the classifier’s performance in decision analysis by eliminating uncorrelated and inconsistent data values. The proposed method, named CFS-DRSA, comprises several phases executed in sequence, with the main phases incorporating two crucial feature extraction tasks. Data reduction is first, which implements a CFS method with a BFS algorithm. Secondly, a data selection process applies a DRSA to generate the optimized dataset. Therefore, this study aims to solve the computational time complexity and increase the classification accuracy. Several datasets with various characteristics and volumes were used in the experimental process to evaluate the proposed method’s credibility. The method’s performance was validated using standard evaluation measures and benchmarked with other established methods such as deep learning (DL). Overall, the proposed work proved that it could assist the classifier in returning a significant result, with an accuracy rate of 82.1% for the neural network (NN) classifier, compared to the support vector machine (SVM), which returned 66.5% and 49.96% for DL. The one-way analysis of variance (ANOVA) statistical result indicates that the proposed method is an alternative extraction tool for those with difficulties acquiring expensive big data analysis tools and those who are new to the data analysis field.Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2018/ICT04/UTM/01/1)Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04, Malaysia Research University Network (MRUN) Vot 4L876SPEV project, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (ID: 2102–2021), “Smart Solutions in Ubiquitous Computing Environments

    A Detailed Study of the Distributed Rough Set Based Locality Sensitive Hashing Feature Selection Technique

    Get PDF
    International audienceIn the context of big data, granular computing has recently been implemented by some mathematical tools, especially Rough Set Theory (RST). As a key topic of rough set theory, feature selection has been investigated to adapt the related granular concepts of RST to deal with large amounts of data, leading to the development of the distributed RST version. However, despite of its scalability, the distributed RST version faces a key challenge tied to the partitioning of the feature search space in the distributed environment while guaranteeing data dependency. Therefore, in this manuscript, we propose a new distributed RST version based on Locality Sensitive Hashing (LSH), named LSH-dRST, for big data feature selection. LSH-dRST uses LSH to match similar features into the same bucket and maps the generated buckets into partitions to enable the splitting of the universe in a more efficient way. More precisely, in this paper, we perform a detailed analysis of the performance of LSH-dRST by comparing it to the standard distributed RST version, which is based on a random partitioning of the universe. We demonstrate that our LSH-dRST is scalable when dealing with large amounts of data. We also demonstrate * This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 702527. 2 Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing that LSH-dRST ensures the partitioning of the high dimensional feature search space in a more reliable way; hence better preserving data dependency in the distributed environment and ensuring a lower computational cost
    • …
    corecore