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Abstract. In the context of big data, granular computing has recently been implemented by some
mathematical tools, especially Rough Set Theory (RST). As a key topic of rough set theory, fea-
ture selection has been investigated to adapt the related granular concepts of RST to deal with
large amounts of data, leading to the development of the distributed RST version. However, de-
spite of its scalability, the distributed RST version faces a key challenge tied to the partitioning
of the feature search space in the distributed environment while guaranteeing data dependency.
Therefore, in this manuscript, we propose a new distributed RST version based on Locality Sen-
sitive Hashing (LSH), named LSH-dRST, for big data feature selection. LSH-dRST uses LSH
to match similar features into the same bucket and maps the generated buckets into partitions to
enable the splitting of the universe in a more efficient way. More precisely, in this paper, we
perform a detailed analysis of the performance of LSH-dRST by comparing it to the standard dis-
tributed RST version, which is based on a random partitioning of the universe. We demonstrate
that our LSH-dRST is scalable when dealing with large amounts of data. We also demonstrate
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that LSH-dRST ensures the partitioning of the high dimensional feature search space in a more re-
liable way; hence better preserving data dependency in the distributed environment and ensuring
a lower computational cost.

Keywords: Granular Computing; Rough Set Theory; Big Data; Feature Selection; Locality
Sensitive Hashing; Distributed Processing.

1. Introduction

Granular computing [1] is a concept covering the family of theories, methodologies, tools, and tech-
niques that use the notion of “granules”. Granules can be in the form of groups, sets, classes, or
clusters of a universe, which are used in the process of problem solving [2, 3, 4]. These granules
are drawn together by indistinguishability, equivalence, similarity, proximity or functionality [5]. In
the literature, the basic notion of granular computing, i.e., granules, has appeared in various research
approaches among these we mention fuzzy set theory, rough set theory, belief function theory (also
called Dempster-Shafer theory), quantization, and many other mathematical approaches [5]. Recently,
granular computing has received more attention by researchers from a very different perspective: the
challenging big data context. Today, there is a fast growing interest in the study of granular computing
in the context of big data, and this manuscript is embedded in this context.

Within the context of big data, granular computing has begun to play important roles in many
application domains such as in big data processing [6] where the theory of fuzzy sets was applied
to offer a novel promising processing environment, in sentiment analysis where fuzzy set theory was
applied on big social data [7], in knowledge acquisition where rough set theory was applied [8], in
epidemiology where rough set theory was applied as a big data mining technique [9], in mammography
mass classification where rough set theory was applied to analyse deep and hand-crafted features [10],
etc.

For these example application domains and many others, there is always the same big challenge
in granular computing, which is the task of performing big data pre-processing, specifically feature
selection. In this context, the theory of rough sets has recently been adapted to the big data context and
successfully been applied as a scalable and effective feature selection technique within a distributed
environment [11, 12]. This success is due to many characteristics of the theory, among these the
capability of the theory to analyze the facts hidden in data, its independence from the user or expert
knowledge as it does not require any supplementary information about the given data, and its ability
to find a minimal knowledge representation [13]. These characteristics are gained from the use of the
RST granularity structure.

By adapting the basic granular concepts of RST to deal with large amounts of data, a first scalable
version of RST within a distributed environment, called Sp-RST, was proposed in [11]. Sp-RST,
also detailed in [14], was proposed to avoid the prohibitive complexity of the standard RST, i.e.,
the sequential/classical RST version, which is caused by the search for an optimal feature subset
through the competing of an exponential number of candidate subsets; an exhaustive search, which
becomes impractical for big data as it becomes unmanageable to generate the set of all possible feature
combinations. In this context, it is important to mention that in the literature there are several RST
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heuristics and other RST based methods and algorithms [15, 16] that can find a minimal reduct –
which is not globally minimal – in a much faster way. Despite the fact that these approaches avoid
such an exhaustive search performed by the classical RST version, the problem of finding a globally
minimal reduct remains a big challenge mainly in the context of big data, and specifically if the
application domain requires it. For instance, in many real-world applications, specifically in health or
medical research, it is essential to have a globally minimal reduct to better guide the decision maker
and facilitate their task as revealed in [9, 10]. In this context, it is important to mention that in our
research study and in line with our manuscript’s goals, we mainly focus on the generation of a globally
minimal reduct without calling for heuristics, which makes our task more challenging in the context
of big data, and hence we aim to revise Sp-RST. It is important to highlight that the generation of the
globally minimal reduct will be performed with respect to the partitioning process, i.e., with respect
to the generated smaller data sets that will result from the data partitioning process and where data
dependency is guaranteed.

Technically, to perform feature selection in the context of big data, Sp-RST partitions the feature
search space in a random manner so that every single partition can hold a random set of attributes.
Each of the generated partitions is dealt with in a separate way, i.e., independently in the distributed
environment so that at the end of the feature selection process all the selected attributes from every
single partition are assembled together to generate the ultimate reduced set of features. However, it
can be noticed that in such implementation design, it is very likely that similar attributes will appear
in different partitions and hence a cut in data dependency will occur. It is crucial to point out that
data dependency is a significant matter in a distributed environment and in parallel computing; and
hence considered as a challenge. Based on the defined Sp-RST architecture [11], data dependency will
not be guaranteed as the algorithm uses a randomized procedure when partitioning the feature search
space. Hence, in this manuscript, we propose to revise the Sp-RST architecture and develop instead
a novel efficient distributed algorithm, which is based on the distributed granular concepts of rough
set theory and adopts a hashing based technique. Specifically, our proposed solution is based on the
Locality Sensitive Hashing (LSH) algorithm [17] for large-scale data pre-processing.

The main motivation behind the choice of LSH among other hashing techniques proposed in the
literature [17, 18, 19] is that LSH is often taken as a baseline. But most importantly, the algorithm is
widely used in industry, e.g., for image recognition, clustering, and some other tasks, but specifically
in database systems for high dimensional similarity search. The choice of LSH is also based on
several advantages and characteristics of the algorithm in comparison to other hashing techniques
when dealing with high dimensional data sets as demonstrated in [20].

Our proposed solution, dubbed LSH-dRST, adopts LSH, which maps similar data instances based
on their feature values into the same bucket in low dimensional cases. Based on this process, LSH-
dRST uses the generated buckets to partition the feature search space in a more reliable way, hence
better preserving data dependency and a lower computational cost as will be demonstrated in Section
7. Please, note that a preliminary version of LSH-dRST was presented in [21]. In this paper, we will
conduct a more detailed study of the work presented in [21] and a deeper analysis of its performance
as a distributed feature selection technique. Based on the shortcomings of [11] and the limitations of
[21] as it presents a preliminary version not thoroughly studied, a summary of the main contributions
of this manuscript are presented as follows:
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• Revise the work presented in [11] by developing a novel efficient distributed RST algorithm that
adopts a hashing technique to better preserve data dependency in the distributed environment,
specifically when it comes to partitioning the universe.

• Execute a thorough analysis of the work presented in [21] by providing (1) a detailed explana-
tion of LSH-dRST in terms of its architecture, its algorithmic design, and its functioning as a
distributed algorithm, and (2) by making a detailed analysis of the performance of LSH-dRST
by studying the number of features selected and the runtime performance in terms of the differ-
ent parts of the algorithms as well as its speedup, sizeup and scaleup. Additionally, we present a
more detailed model evaluation by additionally considering a simply Naive Bayes classifier (in
addition to the random forest classifier originally used).

• Demonstrate that LSH-dRST is not only scalable but also more reliable for feature selection,
which will show that it is more relevant to big data pre-processing.

• Demonstrate that LSH-dRST performs the partitioning of the high dimensional feature search
space in a more reliable way. This is to show that it better preserves data dependency in the
distributed environment, and ensures a lower computational cost.

The rest of this paper is structured as follows. Section 2 presents a review of attribute selection
techniques in the context of big data. Section 3 presents preliminaries for Locality Sensitive Hashing
and Rough Set Theory for feature selection. Section 4 presents a description of parallel computing
frameworks as well as a description of the MapReduce programming model. Section 5 formalizes the
motivation of this work and introduces our novel distributed LSH-dRST algorithm for large-scale data
pre-processing. The experimental setup is introduced in Section 6. The results of the performance
analysis are given in Section 7 and the work is concluded in Section 8.

2. Review of Feature Selection Techniques in the Context of Big Data

In the literature, several feature selection techniques for non-high dimensional environments have
been proposed, which were initially developed in a sequential way [22, 23]. However, their scalability
was questioned in the context of big data. In this context, in [24], a detailed study was conducted
where authors performed a deep analysis of the scalability of the state-of-the-art feature selection
techniques in all their three categories: filter techniques, i.e., approaches, which are independent from
any specific induction algorithm, the embedded techniques, i.e., approaches that fuse feature selection
and the learning approach into a single process, and the wrapper techniques, i.e., approaches involving
a specific learning algorithm when evaluating the attribute subset.

In [24], it was demonstrated that the state-of-the-art feature selection techniques would obviously
have scalability issues when dealing with big data. Authors have proved that the existent techniques
will be inadequate to handle a high number of attributes in terms of training time and/or effectiveness
in selecting the relevant set of features. Therefore, the adaptation of feature selection techniques for
big data problems seems essential and it may require the redesign of these algorithms and their incor-
poration in parallel and distributed environments/frameworks. Among the possible alternatives is the
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MapReduce paradigm [25], which was introduced by Google and offers a robust and efficient frame-
work to deal with big data analysis. Several recent works have been concentrated on parallelizing and
distributing machine learning techniques using the MapReduce paradigm [26, 27, 28]. Recently, a set
of new and more flexible paradigms have been proposed aiming at extending the standard MapRe-
duce approach, mainly Apache Spark1 [29], which has been applied with success over a number of
data mining and machine learning real-world problems [29]. Further details and descriptions of such
distributed processing frameworks will be given in Section 4.

With the aim of choosing the most relevant and pertinent subset of features, a variety of feature
reduction techniques were proposed within the Apache Spark framework to deal with big data in a
distributed way. Among these are several feature extraction methods, i.e., methods that create new at-
tributes from the initial feature set (such as nn-gram, Principal Component Analysis, Discrete Cosine
Transform, Tokenizer, PolynomialExpansion, ElementwiseProduct, etc) contrary to feature selection
approaches that select a subset from the initial features. There have been very few feature selection
techniques, which were proposed, and these are the VectorSlicer, the RFormula and the ChiSqSelector.
To further expand this restricted research, i. e., the development of parallel feature selection methods,
lately, some other feature selection techniques were proposed in the literature, which are based on
evolutionary algorithms [30]. Specifically, the evolutionary algorithms were implemented based on
the MapReduce paradigm to obtain subsets of features from big data sets2. These include a generic
implementation of greedy information theoretic feature selection methods3, which are based on the
common theoretic framework presented in [31], and an improved implementation of the classical
Minimum Redundancy and Maximum Relevance feature selection method [31]. This implementa-
tion includes several optimizations such as cache marginal probabilities, accumulation of redundancy
(greedy approach) and a data-access by columns4. However, when studying these distributed tech-
niques, it is noticed that most of them suffer from some limitations. For example, they usually require
the user or expert to deal with the algorithms’ parameterization, noise levels specification, or simply
order the set of attributes and let the user choose their own subset. There are some other feature se-
lection techniques that require the user to indicate how many attributes should be selected, or require
the user to give a threshold that determines when the algorithm should stop. This are all considered
as significant drawbacks as they require users/experts to make a decision based on their own (possibly
subjective) perception.

To overcome the shortcomings of the parallel state-of-the-art techniques, it seems to be crucial to
look for a filter approach that does not require any external or supplementary information to function
properly. Rough Set Theory (RST) can be used as such a technique. As previously mentioned, most
of the classical rough set algorithms are sequential ones, computationally expensive and can only deal
with non-large data sets. With a special focus on the generation of a globally minimal feature set,
the prohibitive complexity of these algorithms comes from the search for an optimal attribute subset
through the computation of an exponential number of candidate subsets. Although it is an exhaus-
tive method, this is quite impractical for most data sets specifically for big data as it becomes clearly

1https://spark.apache.org/docs/2.2.0/ml-features.html
2https://github.com/triguero/MR-EFS
3https://github.com/sramirez/spark-infotheoretic-feature-selection
4https://github.com/sramirez/fast-mRMR
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unmanageable to build the set of all possible combinations of features. In order to overcome these
weaknesses, a first version presenting a parallel rough set model was presented in [11]. The main idea
in [11] is to randomly split the given big data set into several partitions, each with a smaller number
of randomly selected features, which are all then processed in a parallel way. This is to minimize
the computational effort of the RST computations when dealing with a very large number of features
particularly. As it can be noticed, and as previously explained in Section 1, this parallel RST version
suffers from one main limitation: it cannot guarantee data dependency within the distributed environ-
ment. Our work, which is a revision of [11], is based on a distributed partitioning procedure, within a
Spark/MapReduce paradigm, that makes our proposed solution scalable and effective in dealing with
big data. The new version that we are proposing in this manuscript, LSH-dRST, adopts a hashing tech-
nique that will better preserve data dependency as it will match similar features into the same bucket
and map the generated buckets into partitions to enable the splitting of the universe in a more effi-
cient way. As previously mentioned in Section 1, a preliminary version of LSH-dRST was introduced
in [21] where a non-detailed description of the algorithm as well as a limited analysis of the algo-
rithm’s performance were presented. In this paper, a deep and thorough elucidation and performance
investigation of LSH-dRST will be given as highlighted in the contributions presented in Section 1.

3. Preliminary knowledge

In this section, we provide preliminary knowledge about the Locality Sensitive Hashing algorithm and
the granulation structure of Rough Set Theory for feature selection.

3.1. Locality Sensitive Hashing

There are several hashing techniques that have been proposed in the literature [17, 18, 19]. Among
these the Locality Sensitive Hashing (LSH) algorithm [17] is considered as the most representative
and popular one. LSH is presented as a probabilistic similarity-preserving dimensionality reduction
method. Based on the adopted distances and similarities, including lp distance [32], angular distance
[33], Hamming distance [34], Jaccard coefficient [35], etc., different types of LSH can be designed,
which also depends on the type of the used data [17]. Many variants are developed based on these
basic LSH families such as Spectral hashing [36], Kernelized spectral hashing [37], and independent
component analysis hashing [38]. These methods aim at learning the hash functions for better fitting
the data distribution [39].

In this section, we will mainly introduce LSH, among other hashing techniques, as this algorithm
is often taken as a baseline. But most importantly, the algorithm is widely used in database systems
for high dimensional similarity search. The choice of LSH is also based on several advantages and
characteristics the algorithm has in comparison to other hashing techniques when dealing with high
dimensional data sets as demonstrated in [20].

LSH was introduced as a probabilistic technique suitable for solving the approximate K-nearest
neighbors (K-NN) problem in a high dimensional space. It is based on the definition of an LSH
family (H), a family of hash functions mapping similar input items to the same hash code with higher
probability than dissimilar items. Formally, an LSH family is defined as follows: LetH be a family of



Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing 7

hash functions such that h ∈ H : Rd → U . Consider a function h that is chosen uniformly at random
fromH and a similarity function sim : Rd × Rd→ [0, 1]. The familyH is called locality sensitive if
for any vectors u, v ∈ Rd, it satisfies the property: P (h(u) = h(v)) = sim(u, v).

That means, the more similar a pair of vectors is, the higher the collision probability is. The LSH
scheme indexes all items in hash tables and searches for near items via hash table lookup. Formally, for
an integer k, we define a function family G = {g : Rd → Uk} such that g(v) = (h1(v), . . . , hk(v))
where hi ∈ H, i.e., g is the concatenation of k LSH functions. For an integer `, we choose ` functions
G = {g1, . . . , g`} from G independently and uniformly at random. Each gi, 1 ≤ i ≤ ` effectively
constructs a hash table denoted by Dgi . The hash table is a data structure that is composed of buckets,
each of which is indexed by a hash code. A bucket in Dgi stores all v ∈ V that have the same gi
values. Only the nonempty buckets are retained using standard hashing. G defines a collection of `
tables IG = {Dg1 , . . . , Dg`} and we call it an LSH index.

As previously mentioned, there are different kinds of LSH families for different (dis)similarity
measures including Hamming distance, Jaccard similarity, and cosine similarity. In this paper, we rely
on the LSH scheme that supports the p-stable similarity.

3.2. Rough Sets for Feature Selection

Rough Set Theory (RST) [40] is a formal approximation of the conventional set theory which supports
approximations in decision making. It provides a filter-based technique by which knowledge may
be extracted from a domain in a concise way; retaining the information content whilst reducing the
amount of knowledge involved [16]. The fundamentals of RST for feature selection are as follows:

In RST, an information table is defined as a tuple T = (U,A) where U and A are two finite, non-
empty sets, U the universe of primitive objects and A the set of attributes. Each attribute or feature
a ∈ A is associated with a set Va of its value, called the domain of a. We may partition the attribute
set A into two subsets C and D, called condition and decision attributes, respectively. Any pair (x, a),
where x ∈ U and a ∈ A defines the table entry consisting of the value a(x).

Let B ⊂ A be a subset of attributes. The indiscernibility relation, denoted by IND(B), is the
central concept of RST and is an equivalence relation, which is defined as: xIND(B)y if and only if
a(x) = a(y) for every a ∈ B, where a(x) denotes the value of feature a of object x.

The family of all equivalence classes of IND(B), referring to a partition of U determined by
B, is denoted by U/IND(B). Each equivalence class may be viewed as a granule consisting of
indistinguishable elements. It is also referred to as an equivalence granule. The granulation structure
induced by an equivalence relation is a partition of the universe. Each element in U/IND(B) is a set
of indiscernible objects with respect to B. The equivalence classes U/IND(C) and U/IND(D) are
called condition and decision equivalence classes, respectively.

For any concept X ⊆ U , two operations can be defined: B(X) = {x ∈ U : B(x) ⊆ X},
and B(X) = {x ∈ U : B(x) ∩ X 6= ∅}, assigning to every subset X of the universe U two
sets B(X) and B(X) called the B-lower and the B-upper approximation of X , respectively. The
lower approximation of a set X with respect to B is the set of all objects, which can be for certain
classified as X using B. The upper approximation of a set X with respect to B is the set of all
objects, which can be possibly classified as X using B. The concept defining the set of objects that
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can be classified neither as X nor as not-X using B is called the boundary region, and is defined as:
BNDB(X) = B(X)−B(X). If the boundary region of X is empty, that is B(X) = B(X), concept
X is said to be B-definable; otherwise X is a rough set with respect to B.

To discover dependencies between attributes in a given decision system T = (U,C,D), the de-
pendency degree is defined. Intuitively, a set of attributes D depends totally on a set of attributes C,
denoted C ⇒ D, if the values of attributes from C uniquely determine the values of attributes from
D. This can be formally defined as: we say that D depends on C to a degree k (0 ≤ k ≤ 1), denoted
C ⇒k D if: k = γ(C,D) = |POSC(D)|

|U | , where POSC(D) =
⋃

X∈U/IND(D)C(X) is called the
positive region of the partition U/IND(D) with respect to condition attributes C. The positive region
is a set of objects of U that can be uniquely classified to blocks of the partition U/IND(D), by means
of C.

If k = 1 we say that D depends totally on C, and if k < 1, we say that D depends partially (to
degree k) on C. If k = 0 then the positive region of the partition U/IND(D) with respect to C is
empty. The coefficient k, the dependency degree, expresses the ratio of all elements of the universe,
which can be properly classified to blocks of the partition U/IND(D), employing attributes C.

Based on these basics, RST defines the D-reduct concept for feature selection. Let C,D ⊆ A, be
sets of condition and decision attributes respectively. We will say that C ′ ⊆ C is a D-reduct (reduct
with respect toD) of C, if C ′ is a minimal subset of C such that: γ(C,D) = γ(C ′, D), and there is no
C ′′ ⊂ C ′ such that γ(C ′, D) = γ(C ′′, D). In other words, the Reduct is the minimal set of selected
attributes preserving the same dependency degree as the whole set of attributes. Meanwhile, RST may
generate a set of D-reducts, called REDF

D(C,D), from the given information table. In this case, any
reduct from REDF

D(C,D) can be chosen to replace the initial information table.

4. Parallel Computing Frameworks and the MapReduce Programming
Model

With the dramatic increase of the amount of data, a specific computing paradigm has been stressed
out, which is called parallel computing. Parallel computing is a type of computation in which multiple
compute resources are simultaneously used to perform several calculations to solve a computational
problem. Within a parallel computing schema, a problem is broken into discrete and smaller parts
that can be solved concurrently. Each of these parts is further broken down to a series of instructions,
which are executed simultaneously on different CPUs so that they can be solved at the same time.

In the context of big data, it has become necessary to implement a new set of technologies and tools
that permit parallel computing in an effective way. Different techniques [41] have been developed
to handle high dimensional data sets where most of these proposed tools are based on distributed
processing, e.g., the Message Passing Interface (MPI) programming paradigm [42].

The encountered challenges are essentially linked to the access to the given big data, to the trans-
parency of the development process of the software with respect to its prerequisites, as well as to the
available programming paradigms [43]. For example, standard techniques require that all the given
data should be loaded into the main machine’s memory. This obviously presents a technical issue
in big data since the data, which is given as input, is usually stored in different locations causing an
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intensive communication in the network as well as some supplementary input and output costs. It is
true that it is possible to afford this but it is also important to mention that it will be crucial to afford
an intensively large main memory to be able to retain all the pre-loaded given data for computing and
processing purposes.

To overcome these serious limitations, a new set of highly efficient and fault-tolerant parallel
frameworks has been developed and set in the market. These distributed frameworks can be catego-
rized with respect to the nature or type of the data they are able to process. Actually, there are some
frameworks that can only process batch data. Within this schema, the parallel processing system func-
tions over a high dimensional and static data set. At a later level of the distributed processing, the
system returns the output result(s) when all the processes of computations are successfully achieved.
Among the well-known open-source distributed processing frameworks dedicated for batch process-
ing, we mention Hadoop5. Hadoop is based on simple programming paradigms that allow a highly
scalable and reliable parallel processing of high dimensional data sets. The framework offers a cost-
effective solution to store and process different types of data such as structured, semi-structured and
unstructured data without any specific format specifications. Technically, Hadoop works on top of the
Hadoop Distributed File System (HDFS), which duplicates the input data files in various storage ma-
chines (nodes). In this manner, the framework facilitates a fast transfer rate of the data among nodes
set in the cluster and allows the system to operate without any interruption if one or a number of nodes
fail. MapReduce is the core of the Hadoop framework. This paradigm offers an intensive scalability
over a large number of nodes within a Hadoop cluster.

On the other hand, there are some other distributed frameworks that can only deal with streaming
data. Within these frameworks’ design, the distributed calculations are performed over data (to each
individual data item) at the time it enters the parallel framework. Apache Storm6 and Apache Samza7

are among the most popular stream processing frameworks. A third category of distributed frame-
works can be highlighted, which is considered as hybrid systems. This is because these frameworks
are capable of processing not only batch data but also stream data. In these frameworks’ designs,
similar or some linked elements can be used for both types of data. This makes the diverse process-
ing requirements of the hybrid systems much easier and simpler. Among the well-known streaming
processing parallel frameworks, we mention Apache Spark8 and Apache Flink9.

In this research, we focus on Apache Spark. This distributed open source framework was initially
developed in the UC Berkeley AMP Lab for big data processing. Apache Spark is characterized
by its capability of improving the system’s effectiveness—which is achieved via the use of intensive
memory—, its efficiency, and its high transparency for users. These characteristics allow to perform
parallel processing of diverse application domains in a simple and easy way. More precisely and in
comparison to Spark, in Hadoop MapReduce multiple jobs would be adjusted together to build a data
pipeline. In this process, and in every level of this pipeline, MapReduce will have to read the data
from the disk, and then write it back to the disk again. This process was obviously ineffective as it had

5http://hadoop.apache.org/
6http://storm.apache.org/
7http://samza.apache.org/
8https://spark.apache.org/
9https://flink.apache.org/

http://hadoop.apache.org/
http://storm.apache.org/
http://samza.apache.org/
https://spark.apache.org/
https://flink.apache.org/
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to read all the data and write it from and back to the disk at each level of the process. To deal with this
issue, Apache Spark comes into play. Based on the same MapReduce paradigm, the Spark framework
could offer an immediate 10 times increase in the system’s performance. This is explained by the non-
necessity to store the given data back to the disk at every stage of the process as all activities remain
in the memory [29]. Spark allows a much faster data process in contrast to transferring it through
needless Hadoop MapReduce mechanisms. Adding to this specificity, the key concept that Spark
offers is a Resilient Distributed Data set (RDD), which is a set of elements that are distributed across
the nodes of the used cluster that can be operated on in a parallel way. Indeed, Spark has a number
of high-level libraries for working with structured data (Spark SQL10), for stream processing (Spark
Streaming11), for machine learning (MLlib)12[44], and for graphs and graph-parallel computation
(GraphX13). Other than that, there are also many R14 and Python15 libraries, among others, which
allow the programmers to code without writing mappers and reducers themselves.

The choice of Spark to design our proposed algorithm based on rough sets for big data feature
selection is based on several reasons, which are as follows: (i) To offer a general solution based on
a hybrid parallel framework. (ii) Apache Spark provides high speed benefits with a trade-off in the
usage of high memory. (iii) Spark is one of the well-known and certified distributed frameworks and
also a mature hybrid system. This is specifically true when comparing it to some other frameworks in
the market, which are considered as more niche in terms of their usage but more importantly they are
still in their initial periods of adoption16.

As previously mentioned, Spark is based on MapReduce [25] which is one of the most popular
processing techniques and program models for distributed computing to deal with big data. Spark re-
volves around the concept of a resilient distributed dataset (RDD)17, which is the Spark programming
model. It is a fault-tolerant collection of elements that can be operated on in parallel. RDDs, used
as our programming model, support two types of operations: transformations, which create a new
dataset from an existing one, and actions, which return a value to the driver program after running a
computation on the dataset. For example, map is a transformation that passes each dataset element
through a function and returns a new RDD representing the results. On the other hand, reduce is an
action that aggregates all the elements of the RDD using some function and returns the final result to
the driver program. The map and the reduce concepts constitute the MapReduce paradigm, which was
proposed by Google in 2004 and designed to easily scale data processing over multiple computing
nodes. As mentioned, the MapReduce paradigm is composed of two main tasks/phases, namely the
map phase and the reduce phase, which will be the main concepts used in our developed approach (see
Sections 5 and 5.2.2). At in abstract level, the map process takes as input a set of data and transforms
it into a different set where each element is represented in the form of a tuple key/value pair, producing
some intermediate results. Then, the reduce process collects the output from the map task as an input
and combines these given key/value tuples into a smaller set of pairs to generate the final output. A

10
https://spark.apache.org/sql/

11
https://spark.apache.org/streaming/

12
https://spark.apache.org/mllib/

13
https://spark.apache.org/graphx/

14
https://mapr.com/blog/installation-guide-rhadoop-mapr-now-available/assets/rhadoop_and_mapr.pdf

15
http://spark.apache.org/docs/latest/api/python/

16
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared

17
https://spark.apache.org/docs/latest/rdd-programming-guide.html#overview

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/
https://mapr.com/blog/installation-guide-rhadoop-mapr-now-available/assets/rhadoop_and_mapr.pdf
http://spark.apache.org/docs/latest/api/python/
https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-spark-and-flink-big-data-frameworks-compared
https://spark.apache.org/docs/latest/rdd-programming-guide.html#overview
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representation of the MapReduce framework is given in Figure 1.

Figure 1. The process of the MapReduce framework.

Technically, the MapReduce paradigm is based on a specific data structure, which is the (key,
value) pair. More precisely, during the map phase, on each split of the data the map function gets a
unique (key, value) tuple as an input and generates a set of intermediate (key’, value’) pairs as output.
This is represented as follows:

map(key, value)→ {(key′, value′), . . .}. (1)

After that, the MapReduce paradigm assembles all the intermediate (key’, value’) pairs by key via
the shuffling phase. Finally, the reduce function takes the aggregated (key’, value’) pairs and generates
a new (key’, value") pair as output. This is defined as:

reduce(key′, {value′, . . .})→ (key′, value′′). (2)

As discussed, a variety of open source parallel computing frameworks are proposed in the market
and in this section, we have highlighted the well-known ones. However, it is important to mention that
choosing a particular distributed framework is always dependent to the type or kind of the given data
that the system will process. The choice also depends on how time bound the specifications of the
users are, and on the types of output results that users are looking for. In this paper, we mainly focus
on the use of Apache Spark.
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5. LSH-dRST: The proposed Solution

In this section, we will make a detailed description of our proposed solution named LSH-dRST. LSH-
dRST has a distributed architecture with respect to the Apache Spark framework for a parallel and in-
memory processing job. At the beginning of this section, we will present the main motivation behind
the development and implementation of the LSH-dRST solution. To do so, we will first explain the
limitations of the standard distributed RST version. Next, we will explain LSH-dRST as an effective
technique that is capable of performing big data feature selection in a more intelligent and convenient
way without any considerable information loss.

5.1. Motivation and Problem Statement

As explained in Section 3.2, the theory of rough sets goes through the calculation of the dependency
of attributes, γ(C,D), so that it can perform feature selection. With this aim, and as a first process,
the indiscernibility relation, defined as IND(B), for all attributes has to be calculated. As previously
defined, the IND(B) searches for similar attribute values and gathers the corresponding features to
form the set of the equivalence relations. With respect to these fundamental RST notions, it is essential
to guarantee data dependency in order to define the most reliable and consistent equivalence relations,
so that the most representative reduct set can be determined. However, assuring data dependency is
considered as a big challenge when it comes to distributed environments and parallel computing.

The standard distributed RST version [11], named Sp-RST, applies a random process when parti-
tioning the feature search space; a process that does not guarantee data dependency. More precisely,
Sp-RST partitions the information table T (the big data set) into a set of m data blocks based on splits
from the conditional attribute set C, i.e., m smaller data sets with a fewer number of features instead
of using a single data block (T ) with an unmanageable number of features |C| (noted as T (C)). The
key idea is to generate m smaller data sets named Ti, where i ∈ {1, . . . ,m}, from the big data set T ,
where each Ti is defined via a manageable number of features r with r ≪ |C| ∈ {c1, . . . , cV } and
r ∈ {1, . . . , V }. The resulting data blocks are defined as Ti(r). This is formalized as T =

⋃m
i=1 Ti(r).

r is a user defined parameter that refers to the number of attributes, which will be considered to build
each data block Ti, and V refers to the total number of attributes. Specifically, every Ti is built using
r random and distinct attributes, which are selected from C, where there are no common attributes
between all the built Ti. With respect to the parallel implementation design, and as each constructed
partition is processed by a different machine, i.e., node, the distributed Sp-RST algorithm is applied to
every Ti(r) while gathering all the intermediate results from the m distinct created partitions (instead
of being applied to the complete T that encloses the whole set C of conditional features (T (C))).

Based on this Sp-RST architecture and implementation design, it is very probable that similar at-
tributes will be part of different partitions Ti. Consequently, an erroneous estimation of the constructed
IND(B) is more likely to occur. More precisely, the applied random process may mislead the RST
feature selection process by generating a non-relevant reduct. Based on these limitations, and aiming
at guaranteeing data dependency, in this paper we propose the LSH-dRST solution that makes use of
the locality sensitive hashing algorithm. Using LSH can guarantee the process of gathering similar
or close data instances based on their attribute values into the same bucket. By using the generated
buckets, a more intelligent and reliable partitioning of the universe can be applied. In such a way,
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LSH-dRST can conserve data dependency within the same buckets and hence it is capable of solving
the standard distributed RST limitations.

5.2. LSH-dRST

In order to deal with big data sets and to make use of the adopted LSH technique within a distributed
environment, the appropriate set of buckets, which is based on LSH, is generated first. After that, these
generated buckets will be mapped into several partitions. Then, the entire rough set feature selection
process, with all its granular concepts, will be partitioned into different elementary tasks where each
of these will be executed independently on each generated bucket. As a last step, the intermediate
results will be conquered to finally acquire the final output, i.e., the reduct set.

5.2.1. General Model Formalization

To perform feature selection, our learning problem has to select a set of high discriminating attributes
from the original large set of features that describes the high dimensional input database. The input
dataset corresponds to the data stored in the given Distributed File System (DFS). To operate on the
given DFS, a Resilient Distributed Data set (RDD) is created (defined in Section 4). This design
can be formalized as follows: the created RDD reflects the given information table, which we name
TRDD. TRDD is defined via a universe U = {x1, . . . , xN}, which refers to the set of data items,
a large conditional attribute set C = {c1, . . . , cV } that contains every single attribute of the TRDD

information table, and via a decision attribute D of the given learning problem. D corresponds to the
class, i.e., label, of each TRDD sample and is defined as D = {d1, . . . , dW }. The conditional feature
set C reflects the pool from where the most convenient attributes will be selected.

To make LSH-dRST scalable with the large number of attributes – instead of applying the algo-
rithm to a single data block (TRDD) defined via its unmanageable feature set C (that we also note as
TRDD(C)) – and with respect to data dependency, the given TRDD information table is partitioned into
B data blocks based on the B generated LSH buckets, named as TRDD(b)

where b ∈ {1, . . . , B}. This
is achieved by performing a transpose of the feature set C, on which LSH is applied to generate the
buckets based on the features. Specifically, LSH is applied based on a family of hash functionsH and
based on the p-stable similarity and on a Gaussian distribution as explained in Section 3.1. The differ-
ent buckets correspond to splits from the conditional feature set C and each bucket covers a definite
feature space h incorporating all similar and close data instances based on their attribute values. The
resulting data block is denoted as TRDD(b)

(h). This can be formalized as: TRDD =
⋃B

b=1 TRDD(b)
(h),

where h ∈ {1, . . . , V }. The parameter h refers to the value, which is generated by LSH, and corre-
sponds to the number of attributes per bucket that will be considered to build each TRDD(b)

data block.
h is equal to the size of the feature space C divided by B. This part of the LSH-dRST functioning is
presented in Figure 2.

Once the data blocks (also referred to as buckets) TRDD(b)
are defined, the K nearest neighbors

approach is applied on every TRDD(b)
. This results in automatically creating a set of S sub-information

tables that we name asCl, i.e., TRDD(b)
is partitioned into S sub-information tablesCl. K corresponds

to the number of attributes per sub-information table Cls, with s ∈ {1, . . . , S}, and on which LSH-
dRST will be applied. The resulting information table is denoted as Cls(K). This can be formalized
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Figure 2. The process of generating the B data blocks based on the B generated LSH buckets.

as: TRDD(b)
=

⋃S
s=1Cls(K), where S = h/K. This part of the LSH-dRST functioning is presented

in Figure 3.
Aiming at ensuring scalability, instead of applying LSH-dRST to TRDD, which covers the whole

conditional attribute set C (TRDD(C)), the distributed algorithm will be applied to every single
Cls(K). At the end, all the intermediate results will be congregated from the different sub-information
tables Cl of every single TRDD(b)

partition. Based on such a process, we can ensure that LSH-dRST
can be applied to a computable and manageable number of attributes while preserving data depen-
dency. Consequently, the limitations of the standard distributed RST [11], i.e., Sp-RST, can be solved.
The pseudo-code of LSH-dRST is presented in Algorithm 1.

Technically, as a first step, LSH-dRST will generate the B partitions using LSH, defined as
TRDD(b)

, while preserving data dependency as previously explained and as presented in Figure 2
(see Algorithm 1, line 1). After that, for each specific partition TRDD(b)

, a set S of sub-information
tables (called Cl) will be built in such a way that the K nearest neighbors from any data point within
the TRDD(b)

feature search space form a sub-information table called Cls, where s ∈ {1, . . . , S},
which is defined via its number of features K (noted as Cls(K)) (see Algorithm 1, line 4).

The different tasks of the distributed LSH-dRST, Algorithm 1, lines 6 - 11, will be performed on
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Figure 3. The process of generating the sub-information tables Cl for each TRDD(b)
bucket based on the K

nearest neighbors approach.

all the S Cl sub-information tables, i.e., on all the Cls(K) of all the TRDD(b)
partitions. As noticed

in Algorithm 1, the task defined in line 2, which is tied to generating the IND(D), is performed
outside the TRDD(b)

and the Cls(K) iteration loops. This implementation is explained by the fact that
this specific task deals with the calculation of the indiscernibility relation of the decision class, i.e.,
IND(D). This task is independent from the B partitions, which are built, as the result depends on
the data items class/label and not on the set of attributes.

Now, outside the iteration loops, Algorithm 1, line 14, each Cls(K) will have an output, which
can be in one of the following two forms: (i) either a single reduct REDs(K,D) or (ii) a family of
reducts REDF

s (K,D). As previously explained in Section 3.2, based on the RST preliminaries and
granular concepts, any reduct of REDF

s (K,D) can be used to represent the Cls(K) sub-information
table. Accordingly, in the case where LSH-dRST generates a single reduct for a specific Cls(K) sub-
information table, the output of this attribute selection phase is the set of the REDs(K,D) attributes.
These selected attributes reflect the most informative features among the initial K features defining
Cls(K). This results in a new reduced Cls(K), defined as Cls(RED), which preserves nearly the
same data quality as its corresponding Cls(K), which is based on the whole feature set K. The
second case is when LSH-dRST generates a family of reducts. In this particular case, the algorithm
will randomly select one reduct among REDF

s (K,D) to represent the corresponding Cls(K). Let
us recall, as seen in Section 3.2, that this random choice is mathematically justified by the different
granular concepts of rough set theory, which define the same priority for all the possible generated
reducts in REDF

s (K,D). This means that any reduct, which is included in REDF
s (K,D), can

be used to replace the K features of Cls(K). At this algorithmic phase, each Cls sub-information
table has its output REDs(K,D), which corresponds to the selected attributes. All the selected
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Algorithm 1: LSH-dRST
Inputs: TRDD: information table with:

D: decision class
K: number of nearest neighbors

B: number of buckets
Output: Reduct

1: Generate the B LSH buckets: TRDD(b)
, where b ∈ [1, . . . , B]

2: Calculate IND(D)
3: For each TRDD(b)

— where b ∈ [1, . . . , B]
4: Generate the set S of sub-information tables Cl based on K: Cls(K) — where s ∈ [1, . . . , S]
5: For each Cls(K) — where s ∈ [1, . . . , S]
6: Generate AllComb(K)

7: Calculate IND(AllComb(K))
8: Calculate DEP (AllComb(K))
9: Select DEPmax(AllComb(K))

10: Filter DEPmax(AllComb(K))
11: Filter NbFmin(DEPmax(AllComb(K)))
12: End For
13: End For
14: Gather the outputs: Each Cls(K) will have an output, which can be (i) either a single reduct

REDs(K,D) or (ii) a family of reducts REDF
s (K,D) from which a single reduct

REDs(K,D) is selected randomly. All the selected reducts are irreducible within their Cls(K).
15: Union all the generated reducts REDs(K,D) from all the Cls from all the TRDD(b)

:
Reduct =

⋃B
b=1

⋃S
s=1REDs(K,D)

16: Return (Reduct) //*Reduct is irreducible based on step 14*//

reducts are irreducible within theirCls(K). Nevertheless, as eachCls is defined using distinct features
within different TRDD(b)

feature search spaces and with respect to TRDD(b)
=

⋃S
s=1Cls(K), a union

operation is applied to merge all the REDs(K,D) from all the Cls and from all the TRDD(b)
. This

is defined as Reduct =
⋃B

b=1

⋃S
s=1REDs(K,D) (Algorithm 1, line 15). The generated Reduct

represents the minimal reduced set that represents the initial TRDD. Reduct is indeed irreducible as
it is based on the irreducible reducts REDs(K,D) within their Cls(K) (see Algorithm 1, line 14).

By removing the set of irrelevant and redundant attributes, LSH-dRST can reduce the dimension-
ality of the data, specifically the large number of features, from TRDD(C) to TRDD(Reduct). A high
level description of the full functioning of LSH-dRST is given in Figure 4.

In the following subsections, the different elementary distributed tasks of LSH-dRST will be de-
scribed in more detail.
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Figure 4. A high level description of LSH-dRST.

5.2.2. Algorithmic Details

As previously mentioned, the different elementary distributed tasks of LSH-dRST feature selection
will be performed on every single Cls(K) sub-information table, which is defined by its K attributes
within the TRDD(b)

partitions; except for the task defined in line 2 in Algorithm 1, which deals with
IND(D). To generate the final output, Reduct, LSH-dRST performs ten main jobs.

Initially, LSH-dRST applies the hashing technique, i.e., LSH, to build and generate theB different
buckets based on a hash table as previously explained in Section 3.1. To do so, LSH-dRST creates
the hash table based on a set of random vectors following a Gaussian distribution, referred to as the
family H of hash functions. The hash table created is based on the number of the TRDD attributes.
As a next step, LSH-dRST maps the TRDD to work on each single partition in a separate and parallel
way. On each partition, the algorithm applies a projection for each vector based on the set of the
mapped feature vectors in TRDD. Consequently, the buckets are automatically generated, each with a
specific index, referred to as a hash code (as explained in Section 3.1). Lastly, the algorithm performs
a sort operation/action to order the different buckets with respect to the given number of buckets B.
Algorithm 2 presents the pseudo-code of this distributed task.

The next process is that LSH-dRST has to compute the indiscernibility relation for the decision
class D = {d1, . . . , dW }, defined as IND(D): IND(di). Technically, the algorithm calculates
the indiscernibility relation for every single decision class di by collecting the same data items from
TRDD, which are defined in the universe U = {x1, . . . , xN} and belong to the same class di. To
achieve this task, LSH-dRST processes a first map transformation operation taking the data in its
format of (idi of xi, List of the features of xi, Class di of xi) and transforming it to a 〈key, value〉
pair: 〈Class di of xi, List of idi of xi〉. Based on this transformation, the decision class di defines the
key of the generated output and the data items identifiers idi of xi of TRDD define the values. After



18 Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing

Algorithm 2: Generate Buckets(B)

Inputs: TRDD: information table
B: number of buckets

Output: TRDD(b)
: buckets

1: Generate the hash table based on the feature size of TRDD

2: Map the TRDD

3: Apply the LSH projection for each vector
4: Sort the buckets by B

that, the foldByKey()18 transformation operation is applied to merge and reduce all values of each
key in the transformed RDD output. This is to represent the sought IND(D): IND(di). Algorithm
3 describes the pseudo-code of this distributed job.

Algorithm 3: Calculate IND(D)

Input: TRDD

Output: IND(D): [di, List of idi of xi]
1: Map the TRDD based on its format (idi of xi, List of the features of xi, Class di of xi) and

generate the new format as a key-value pair 〈Class di of xi, List of idi of xi〉
2: Merge/Reduce the values of each generated key using the foldByKey() operation
3: Return IND(D)

In the third algorithmic step of LSH-dRST, the algorithm has to generate the set S of the sub-
information tables Cls(K) based on the number of attributes K. At this stage, let us recall that LSH
has already gathered all the instances based on their similar attributes within a same specific bucket.
On these similar attributes collected, an additional partitioning is required to build and generate the
sub-information tables that can be handled by LSH-dRST. As previously explained in Section 1, and
as we are focusing on the generation of a globally minimal reduct, to perform feature selection, the
theory of rough sets has to generate all the combination of features at once, process them in turn to
finally generate the ultimate reduct. Since it is infeasible to generate all the combinations of attributes
based on the large amounts of features, the distributed LSH-dRST algorithm will function on the
Cls(K) sub-information tables built on K features. K is a manageable size that can be handled by
LSH-dRST.

Based on this formalization, and to achieve this distributed job, for every bucket TRDD(b)
, LSH-

dRST performs a mapPartitionsWithIndex19 transformation operation using the buckets indexes,
i.e., the already generated hash codes in Algorithm 2. This is to be able to apply the k-nearest neighbors
(KNN) separately on each TRDD(b)

partition while providing an index of the partition. After that, the
output of the applied transformation function is mapped in a way that: for each partition, the K

18https://spark.apache.org/docs/0.7.3/api/core/spark/PairRDDFunctions.html
19https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#
mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)

https://spark.apache.org/docs/0.7.3/api/core/spark/PairRDDFunctions.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex(scala.Function2,%20boolean,%20scala.reflect.ClassTag)
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features, which are the nearest to a randomly chosen feature within the same TRDD(b)
hash code, are

selected to build a sub-information table (Cls(K)). Algorithm 4 presents the pseudo-code related to
this distributed task.

Algorithm 4: Generate Cls(K)

Inputs: TRDD(b)
: bucket

K: number of features
Outputs: S: set of the sub-information tables Cls(K)

Cls(K): sub-information tables
1: Perform a mapPartitionsWithIndex on every TRDD(b)

using its index
2: Map the result of step (1)
3: Perform a KNN by looking for the K nearest features within a randomly selected attribute within

each TRDD(b)

4: Generate the set S of the sub-information tables Cls(K)

At this stage, and for all the TRDD(b)
, the set S of the sub-information tables Cls(K) is generated.

As a next step, the algorithm has to select the most pertinent features from each Cls(K). To perform
this task, LSH-dRST creates a set of all possible combinations of the sets of K features, defined as the
AllComb(K) RDD, by applying the flatmap()20 transformation operation and the combinations()
operation. This is shown in Algorithm 5.

Algorithm 5: Generate AllComb(K)

Input: K: number of features
Output: AllComb(K): set of all possible combinations of K features

1: Generate the AllComb(K) RDD by applying the flatmap() function and the combinations()
operation on each element

2: Return AllComb(K)

After that, within the fifth LSH-dRST distributed job, the algorithm computes the indiscernibil-
ity relation IND(AllComb(K)) for every previously generated combination, i.e., the indiscernibility
relation of every element in the output of Algorithm 5, named AllComb(K)i

. With respect to the
terminologies used in Section 3.2, and to calculate the indiscernibility of a combination of features,
the following equations are applied: (i) INDC = U/C = {[oj ]C |oj ∈ U}, (ii) [oj ]C = {oi|C(oi) =
C(oj)}, where oi and oj refer to data objects of the universe. In this task and as described in Algo-
rithm 6, the algorithm aims at collecting all the identifiers idi of the data items xi that have identical
values of the combination of attributes, which are extracted from AllComb(K). To do so, a first map
operation is applied, taking the data in its format of (idi of xi, List of the features of xi, Class di of xi)
and transforming it to a 〈key, value〉 pair: 〈(AllComb(K), List of the features of xi), List of idi of
xi〉. Based on this transformation, the combination of features and their vector of features define the

20https://spark.apache.org/docs/latest/rdd-programming-guide.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html
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key and the identifiers idi of the data items xi define the value. After that, the foldByKey() operation
is applied to merge all values of each key in the transformed RDD output, i.e., all the identifiers idi of
the data items xi that have the same combination of features with their corresponding vector of fea-
tures (AllComb(K), List of the features of xi). This is to represent the sought IND(AllComb(K)).

Algorithm 6: Calculate IND(AllComb(K))

Inputs: Cls(K): sub-information tables
AllComb(K): set of all possible combinations of K

Output: IND(AllComb(K))
1: Map the Cls(K) based on its format (idi of xi, List of the features of xi, Class di of xi) and

generate the new format as a key-value pair 〈(AllComb(K), List of the features of xi), List of idi
of xi〉

2: Merge the values of each generated key using the foldByKey() operation
3: Return AllComb(K) : IND(AllComb(K))

At this algorithmic phase, LSH-dRST arranges the set of attributes that will be selected in the
next algorithmic distributed jobs/steps. As presented in Algorithm 7, the dependency degree, de-
fined as γ(AllComb(K), D), of every single feature combination is calculated. This is achieved
based on the definition of γ given in Section 3.2 and with respect to the definition of the indiscerni-
bility of a combination of features IND(AllComb(K)) given above. For this task, the distributed
job requires three input parameters, which are the calculated indiscernibility relations IND(D),
the IND(AllComb(K)) and the set of all attribute combinations AllComb(K). For every element
AllComb(K)i

inAllComb(K), and by using the intersection() transformation, the job tests first if the
intersection of every IND(di) of IND(d) with each element IND(AllComb(K)i

in IND(AllComb(K))
holds all the elements in the latter parameter. This process refers to the calculation of the lower approx-
imation as detailed in Section 3.2. We name the length of the resulting intersection as LengthIntersect.
If the condition is satisfied, then a score, which is equal to the length of the elements resulting from
the generated intersection, i.e., LengthIntersect, is assigned, else a 0 value is given.

After that a reduce function is applied over the different IND(D) elements together with a
sum() function applied on the calculated scores, which are based on the elements having the same
IND(di). This operation is followed by a second reduce function, which is applied over the different
IND(AllComb(K)) elements together with a sum() function applied on the previously calculated
results, which are indeed based on the elements having the same AllComb(K)i

.
The latter output refers to the dependency degrees: γ(AllComb(K), D). This distributed job

generates two outputs namely the set of dependency degrees γ(AllComb(D), D) of the attribute com-
binations AllComb(K) as well as their associated sizes Size(AllComb(K)).

After that, the algorithm searches for the maximum dependency value DEPmax(AllComb(K))
among all the γ(AllComb(K), D) generated by applying the max() function operated on the given
RDD input, referred to as RDD[AllComb(K), Size(AllComb(K)), γ(AllComb(K), D)]. Specifically,
the max() function will be applied on the third argument of the given RDD, i. e.,
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Algorithm 7: Generate DEP (AllComb(K))

Inputs: AllComb(K): set of all possible combinations of K
IND(D): indiscernibility relation for the decision class D
IND(AllComb(K)): indiscernibility relation for every AllComb(K)

Outputs: γ(AllComb(K), D): dependency degrees of the feature combinations AllComb(K)

Size(AllComb(K)): size of the dependency degrees of the feature combinations
AllComb(K)

for each element AllComb(K)i
in AllComb(K) do

for each element IND(di) in IND(D) do
for each element IND(AllComb(K))i in IND(AllComb(K)) do

Apply the intersection() transformation over IND(di) and
IND(AllComb(K))i

Get the length of the resulting intersection that we name as LengthIntersect
If LengthIntersect = length of IND(AllComb(K))i
Score = LengthIntersect
Else Score = 0
End if

end
Apply a reduce function over IND(D) based on a sum() function on the

calculated scores, which are based on the elements having the same IND(di)
end
Apply a reduce function over AllComb(K) based on a sum() function on the

calculated previous results, which are based on the elements having the same AllComb(K)i

end
Return AllComb(K) : γ(AllComb(K), D), Size(AllComb(K))

γ(AllComb(K), D).

Algorithm 8: Select DEPmax(AllComb(K))

Input: RDD[AllComb(K), Size(AllComb(K)), γ(K,AllComb(K))]: RDD presenting all
AllComb(K) and their characteristics
Output: MaxDependency: baseline value for feature selection

1: Apply the max() function on the third argument of the given RDD: γ(AllComb(K), D)
2: Return MaxDependency

As presented in Algorithm 8, the output of this job, defined as MaxDependency, corresponds to
(i) the dependency of the whole feature set representing the Cls(K) and (ii) the dependency of all the
possible feature combinations satisfying the constraint γ(AllComb(K), D) = γ(K,D) (outlined in
Section 3.2). The output MaxDependency represents the baseline value for feature selection.

Once MaxDependency is defined, the algorithm keeps the set of all combinations having the



22 Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing

same dependency degrees as MaxDependency, i.e., γ(AllComb(K), D) = MaxDependency. This
job is achieved by applying a filter() function. At this stage, the algorithm eliminates in each compu-
tation level the useless attributes that may negatively affect the performance of any learning algorithm.
This distributed job is presented in Algorithm 9.

Algorithm 9: Filter DEPmax(AllComb(K))

Inputs: RDD[AllComb(K), Size(AllComb(K)), γ(AllComb(K), D)]: RDD presenting all
AllComb(K) and their characteristics

MaxDependency: baseline value for feature selection
Output: Filtered-RDD[AllComb(K), Size(AllComb(K)), γ(K,AllComb(K))]: filtered RDD and
its characteristics

1: Apply the filter() function on the input RDD in a way to select all combinations having a
dependency that is equal to MaxDependency: γ(AllComb(K)) =MaxDependency

2: Return the filtered RDD: Filtered-RDD[AllComb(K), Size(AllComb(K)), γ(AllComb(K), D)]

At a final stage, and using the results generated from the previous step, which is the input of
Algorithm 10, the algorithm applies first the min() operator to look for the minimum number of fea-
tures among all the Size(AllComb(K)). Specifically, the min() operator will be applied to the second
argument of the given RDD. Once determined, a result that we name minNbF , the algorithm ap-
plies a filter() method to only keep the set of combinations having the same minimum number of
features as minNbF . This is achieved by satisfying the full reduct constraints highlighted in Sec-
tion 3.2: γ(AllComb(K), D) = γ(K,D) while there is no AllComb(K′ ) ⊂ AllComb(K) such that
γ(AllComb(K′ ), D) = γ(AllComb(K), D). Every combination that satisfies this constraint is eval-
uated as a possible minimum reduct set. The attributes of the reduct set describe all concepts in the
sub-information table Cls(K).

Algorithm 10: Filter NbFmin(DEPmax(AllComb(K)))

Input: RDD[AllComb(K), Size(AllComb(K)), γ(K,AllComb(K))]: RDD presenting all
AllComb(K) and their characteristics
Output: Filtered-RDD[AllComb(K), Size(AllComb(K)), γ(K,AllComb(K))]: viable minimum
reduct set and its characteristics

1: Apply the min() function on the input filtered RDD second argument: Size(AllComb(K)) to get
minNbF

2: Apply a filter() function on the input RDD while satisfying the condition
Size(AllComb(K)) = minNbF

3: Return Reduct = List of selected K
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5.3. LSH-dRST: a working example

We apply LSH-dRST to an example of an information table, TRDD(C), which is presented in Table
1. By assuming that the considered TRDD(C) is a big data set, the information table is defined via a
universe U = {x1, x2, . . . , x8}, which refers to the set of data instances (items), a large conditional
feature setC = {a, b, c, d, e, f, g, l} that includes all the features of the information table TRDD(C) and
a decision feature X of the given learning problem. X refers to the label (or class) of each TRDD(C)
data item and is defined as follows: X = {1, 2}. C presents the conditional attribute pool from where
the most significant attributes will be selected.

Table 1. Toy dataset.

x ∈ U a b c d e f g l X

x1 1 2 4 0 1 2 5 3 1
x2 0 3 3 2 1 3 2 2 2
x3 2 3 1 3 3 1 6 1 2
x4 1 1 2 1 2 3 5 3 2
x5 0 2 0 1 2 4 2 3 1
x6 1 1 2 4 3 1 3 1 2
x7 2 2 1 3 2 4 2 2 2
x8 1 2 0 2 2 4 7 0 1

Independently from the set of conditional features C, LSH-dRST computes the indiscernibility
relation for the decision class X . We define the indiscernibility relation as IND(X): IND(Xi).
LSH-dRST will calculate IND(X) for each decision class Xi by associating the same data items
(instances) TRDD(C) that are expressed in the universe U and that belong to the same decision class
Xi. Based on the Apache Spark framework and by applying Algorithm 3, line 1, we get the following
outputs from the different Apache Spark data splits, which are presented in Table 2 and in Table 3:

x ∈ U a b c d e f g l X

x1 1 2 4 0 1 2 5 3 1
x2 0 3 3 2 1 3 2 2 2
x3 2 3 1 3 3 1 6 1 2
x4 1 1 2 1 2 3 5 3 2

Table 2. Toy dataset - Split 1.

• From Split 1:

– 〈1, x1〉
– 〈2, x2〉
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x ∈ U a b c d e f g l X

x5 0 2 0 1 2 4 2 3 1
x6 1 1 2 4 3 1 3 1 2
x7 2 2 1 3 2 4 2 2 2
x8 1 2 0 2 2 4 7 0 1

Table 3. Toy dataset - Split 2.

– 〈2, x3〉
– 〈2, x4〉

• From Split 2:

– 〈1, x5〉
– 〈2, x6〉
– 〈2, x7〉
– 〈1, x8〉

After that, and by applying Algorithm 3, line 2, we get the following output, which refers to the
indiscernibility relation of the class IND(X):

• 1, {x1, x5, x8}

• 2, {x2, x3, x4, x6, x7}

In this example, we assume that the number of buckets B = 2 and K = 2. By applying LSH,
Algorithm 2, to the set of features C = {a, b, c, d, e, f, g, l}, the output is a set of data items based on
the following similar and close features:

• Bucket 1 (TRDDb=1
): {d, e, f, g}

• Bucket 2 (TRDDb=2
): {a, b, c, l}

By applying KNN to each bucket, , Algorithm 4, the following sub-information tables are built:

• Bucket 1 (TRDDb=1
): {d, e, f, g}

– Cls=1(k = 2): {e, f}

– Cls=2(k = 2): {d, g}

• Bucket 2 (TRDDb=2
): {a, b, c, l}

– Cls=3(k = 2): {a, b}

– Cls=4(k = 2): {c, l}
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Based on these assumptions, LSH-dRST will be applied to every Cls(k). In what follows, we
will only focus on Cls=1(k = 2) as an example. The same process will be applied to the rest of the
Cls(k), i.e., Cls=2(k), Cls=3(k) and Cls=4(k). The following partitions and splits based on Apache
Spark are obtained for Cls=1(k = 2) (Table 4 and Table 5):

x ∈ U e f X

x1 1 2 1
x2 1 3 2
x3 3 1 2
x4 2 3 2

Table 4. Split 1.

x ∈ U e f X

x5 2 4 1
x6 3 1 2
x7 2 4 2
x8 2 4 1

Table 5. Split 2.

Based on Split 1, and by applying Algorithm 5, which aims to generate all the possible com-
binations AllComb(K) of the set of K attributes, the output from both Apache Spark splits is the
following:

• e

• f

• e, f

In its third distributed job, LSH-dRST calculates the indiscernibility relation IND(AllComb(K))
for every created combination, i.e., the indiscernibility relation of every element in the output of the
previous step (Algorithm 5). By applying Algorithm 6 and based on both Apache Spark splits, the
output is the following:

• From Split 1:

– e, {x1, x2}, {x3}, {x4}
– f, {x1}, {x2, x4}, {x3}
– e, f, {x1}, {x2}, {x3}, {x4}
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• From Split 2:

– e, {x5, x7, x8}, {x6}
– f, {x5, x7, x8}, {x6}
– e, f, {x5, x6, x7}, {x6}

In a next stage, and by using the previous output as well as IND(X), LSH-dRST computes the
dependency degrees γ(AllComb(K), D) of each attribute combination as described in Algorithm 7.
This distributed job generates two outputs namely the set of dependency degrees γ(AllComb(K), D)
of the attribute combinations AllComb(K) as well as their associated sizes Size(AllComb(K)). The
output from both splits is the following:

• e, 2, 1

• f, 5, 1

• e, f, 5, 2

Once all the dependencies are calculated, in Algorithm 8, Sp-RST looks for the maximum value
of the dependency among all the computed γ(AllComb(K), D). The maximum dependency reflects
the baseline value for the feature selection task. The output is the following:

• 5

In a next step, LSH-dRST performs a filtering process to only keep the set of all combina-
tions, which have the same dependency degrees, as the already selected dependency baseline value
(MaxDependency = 5), i.e., γ(AllComb(K), D) = MaxDependency = 5. By applying Algo-
rithm 9, the following output is obtained:

• f, 5, 2

• e, f, 5, 2

In fact, through these computations, the algorithm removes in each level the unnecessary attributes
that may negatively influence the performance of any learning algorithm. At a final stage, by using
the results generated from the previous step and applying Algorithm 10, LSH-dRST looks for the
minimum number of features among all the Size(AllComb(K)). Once determined (minNbF = 1),
the algorithm only keeps the set of combinations having the same minimum number of features as
minNbF . The filtered selected features define the reduct set and describe all concepts in the initial
Cls=1(K) training data set. The output of Algorithm 10, which presents the reduct (REDs(K,D))
for Cls=1(K), is the following:

• f

The same calculations will be applied to the rest ofCl (Cls=2(k),Cls=3(k) andCls=4(k)). At this
stage, different reducts –Cls=2(k): RED = {d},Cls=3(k): RED = {a, b},Cls=4(k): RED = {c}
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– are generated from the different B partitions and from the different Cls. With respect to Algo-
rithm 1, line 15, a union of the obtained results is required to represent the initial big information table
TRDD(C), i.e., Table 1. The final output is Reduct = {a, b, c, d, f}. LSH-dRST could reduce the big
information table presented in Table 1 from TRDD(C) to TRDD(Reduct). The output is presented in
Table 6.

x ∈ U a b c d f X

x1 1 2 4 0 2 1
x2 0 3 3 2 3 2
x3 2 3 1 3 1 2
x4 1 1 2 1 3 2
x5 0 2 0 1 4 1
x6 1 1 2 4 1 2
x7 2 2 1 3 4 2
x8 1 2 0 2 4 1

Table 6. Reduct.

6. Experimental Setup

The main aim of our experimentation is to demonstrate that our proposed approach LSH-dRST pre-
serves data dependency within the same generated buckets and within the distributed environment.
We will show that by using a more intelligent partitioning of the universe, via the use of LSH, a more
reliable process of gathering similar data instances based on their feature values can be reached; and
hence better classification results can be obtained. Indeed, we will show that LSH-dRST is not only
scalable but also more reliable for feature selection, making it more relevant to big data pre-processing.
We, therefore, investigate different parameters of LSH-dRST and analyze how these affect execution
time and stability of the feature selection, and hence data dependency.

The LSH-dRST algorithm is implemented in Scala 2.11 within the Spark 2.1.1 framework. Based
on the experiments conducted in [11], a maximum of 10 features per sub-information table Cl is used
that can be processed by LSH-dRST. We therefore perform experiments for 2, 5, 10, 25 and 50 buckets
(B), in Algorithm 1, each comprising sub-information tables of 4, 5, 8 and 10 features (F ), where F
refers to the parameter K in Algorithm 1. For instance, for bucket (B = 2) and for a number of 4
features (F = 4) per sub-information table the algorithm generates 1250 Cl. We run all settings on 1,
2, 4, 8, and 16 nodes on the Grid5000 testbed21, a large-scale testbed for experiment-driven research.
Within this testbed, we used dual 8 core Intel Xeon E5-2630v3 CPUs and 128 GB memory. Since the
study does not require a scalable version of the classifiers, these experiments are run on a standard

21https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home
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laptop configuration with a 3.1 GHz Dual-Core Intel Core i7 CPU, 16 GB 1867 MHz DDR3 RAM,
SSD storage, 64-bit, macOS Catalina.

Our analysis first focuses on the number of features selected and the scalability of our algorithm.
We evaluate the performance of LSH-dRST using the speedup, sizeup, and scaleup criteria introduced
in [45] (see Section 6.2).

We then show that the improvement in performance does not decrease the feature selection ability
by performing model evaluation using a Naive Bayes and a Random Forest classifier on the origi-
nal data set, the reduced data sets produced by LSH-dRST and some other feature selection tech-
niques (see Section 6.3). We use the scikit-learn Random Forest implementation22 with the following
parameters: n_estimators = 1000, n_jobs = −1, and oob_score = True. A Stratified 10-Folds
cross-validator23 is used for all our conducted experiments. Moreover, we use the Naive Bayes imple-
mentation from Weka 3.8.224, again with 10-fold cross-validation.

LSH-dRST makes use of randomization in several places, e.g., LSH uses random projections, the
construction of the sub-information tables starts with a randomly selected feature, and we select one
reduct among the generated family of reducts randomly. For this reason, we always perform multiple
runs of the algorithm and report appropriate statistics.

6.1. Benchmark

To validate the efficiency of the LSH-dRST algorithm we require a data set with a large number of
attributes as the advantage of the data partitioning scheme and the fact of looking on data dependencies
via LSH will become more pronounced for data sets with a large set of features. Therefore, and for the
sake of comparison with the standard distributed RST version [11], we chose the Amazon Commerce
reviews data set from the UCI machine learning repository [46]. This choice is based on the fact that
this data set was the one with the largest number of features that still had a sufficiently large number of
data items and as it was used in [11]. This data set was derived from customer reviews on the Amazon
commerce website by identifying a set of most active users and with the goal to perform authorship
identification. The database includes 1 500 data items described through 10 000 features (linguistic
style such punctuation, length of words, sentences, etc.) and 50 distinct classes (authors). Instances
are identically distributed across the different classes, i. e., for each class there are 30 items.

We have discretized the data using the Equal-Width Intervals method. It separates all possible
values into k intervals of the same width where width is defined as (max value − min value)/k. We
have used k = 10 in our experiments. Note that the number of distinct values for the conditional
attributes in the data ranges from 3 (e. g., it+is_an) to 298 (e. g., _).

We demonstrate the scalability of our approach by considering subsets of this data set in terms of
attributes. To be more precise, we have created five additional data sets by randomly choosing 1 000,
2 000, 4 000, 6 000, and 8 000 out of the original 10 000 attributes. We use these sets to evaluate our

22http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html
23http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.
html
24http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
http://weka.sourceforge.net/doc.dev/weka/classifiers/bayes/NaiveBayes.html


Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing 29

proposed method as discussed in Section 6.2 and refer to them as Amazon1000, Amazon2000, . . . ,
Amazon10000 in the following.

6.2. Evaluation Metrics

To evaluate the scalability of the parallel LSH-dRST, we consider the standard metrics, which are the
speedup, the scaleup, and the sizeup from literature [45]. These are defined as follows:

• For the speedup, we keep the size of the data set constant (where size is measured by the number
of features, i. e., we use the original data set with 10 000 features) and increase the number of
nodes. For a system with m nodes, the speedup is defined as:

Speedup(m) =
runtime on one node
runtime on m nodes

An ideal parallel algorithm has linear speedup: the algorithm using m nodes solves the problem
in the order of m times faster than the same algorithm using a single node. However, this is
difficult to achieve in practice due to startup and communication cost as well as interference and
skew [45], which may lead to a sub-linear speedup.

• The sizeup keeps the number of nodes constant and measures how much the runtime increases
as the data set is increased by a factor of m:

Sizeup(m) =
runtime for data set of size m · s

runtime for baseline data set of size s

To measure the sizeup, we use the smaller databases described in Section 6.1. We use 1 000
features as a baseline and consider 2 000, 4 000, 6 000, 8 000, and 10 000 features, respectively.
A parallel algorithm with a linear sizeup has a very good sizeup performance: considering a
problem that is m times larger than a baseline problem, the algorithm requires in the order of m
times more runtime for the larger problem.

• The scaleup evaluates the ability to increase the number of nodes and the size of the data set
simultaneously:

Scaleup(m) =
runtime for data set of size s on 1 node

runtime for data set of size s ·m on m nodes

Again, we use the sub-data set with 1 000 features as a baseline. Here, a scaleup of 1 implies
‘linear’ scaleup, which similarly to linear speedup is difficult to achieve.

For the model evaluation, we use the standard measures, which are the accuracy, precision, recall,
and F1 score to compare the quality of the LSH-dRST selected feature set with other feature selection
methods. Note that these metrics are formally defined for binary classification and thus, need to be
adjusted to be used with the Amazon dataset, which has 30 classes.

In the following we provide the formal definitions for the binary case. For the case with more than
two classes we use a standard weighted average approach. This approach first calculates the metrics
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for each class separately. Afterwards it determines the weighted average over all classes using the
number of true instances for each class as weights. This has the advantage to take potential class
imbalances into account.

The metrics definitions for the binary case are as follows (where TP: True positive, TN: True
negative, FP: False positive, and FN: False negative):

• Precision: measures the ratio of correctly predicted positive observations to the total predicted
positive observations, and is defined as:

Precision =
TP

TP + FP

• Recall: measures the ratio of correctly predicted positive observations to the all observations in
actual class - yes, and is defined as:

Recall =
TP

TP + FN

• Accuracy: measures the ratio of correctly predicted observation to the total observations, and is
defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP

• F1 score: is the weighted average of Precision and Recall. F1 score is defined as follows:

F1 score = 2 ∗ Recall * Precision
Recall + Precision

6.3. Other Feature Selection Techniques

We compare LSH-dRST with a number of other feature selection techniques from Weka 3.8.225

• CfsSubsetEval: considers the individual predictive ability of each feature along with the degree
of redundancy between them

• ChiSquaredAttributeEval: computes the value of the chi-squared statistic with respect to the
class

• ConsistencySubsetEval: considers the level of consistency in the class values when the training
instances are projected onto the subset of attributes

• CorrelationAttributeEval: measures the correlation (Pearson’s) between it and the class

• CVAttributeEval: first creates a ranking of attributes based on the Variation value, then divides
into two groups, last using Verification method to select the best group

• GainRatioAttributeEval: measures the gain ratio with respect to the class
25https://www.cs.waikato.ac.nz/~ml/weka

https://www.cs.waikato.ac.nz/~ml/weka


Z. Chelly Dagdia, C. Zarges / LSH-RST for an Efficient Big Data Pre-processing 31

• InfoGainAttributeEval: measures the information gain with respect to the class

• ReliefFAttributeEval: repeatedly samples an instance and considers the value of the given at-
tribute for the nearest instance of the same and different class

• SignificanceAttributeEval: computes the Probabilistic Significance as a two-way function (attribute-
classes and classes-attribute association)

• SymmetricalUncertAttributeEval: evaluates the symmetrical uncertainty with respect to the
class

and Smile26

• SumSquaresRatio (AttributeEval): measures the ratio of between-groups to within-groups sum
of squares

These methods include both, attribute and subset evaluation methods. For subset evaluation we use a
‘Best First’ greedy search method. For attribute evaluation, we need to either provide a threshold or a
number of features to be selected. We set the number of features to be selected to a value comparable
with LSH-dRST, i.e., the average number of features selected for each parameter setting of F and
additionally use 0 as a threshold. We determine the sets of features selected by these methods and then
perform model evaluation with a Random Forest and Naive Bayes classifier as discussed previously.

7. Results and Analysis

In this section, we will discuss our results. We first consider the features selected by LSH-dRST (Sec-
tion 7.1). After that we look into the runtime and scalability of LSH-dRST (Section 7.2). Finally, we
investigate the quality of the feature selection and compare our results with the previously introduced
algorithm creating random partitions (Sp-RST) and other feature selection techniques as discussed
above (Section 7.3).

7.1. Selected Features

We plot the number of features selected over 10 runs as boxplots and provide values for average and
standard deviation in Figure 5. We see that the number of features is very concentrated around its
median, implying a low variance in the number of features selected. We select on average 3 145
features for F = 4, 2 555 for F = 5, 1 686 for F = 8, and 1 427 for F = 10. Again, the number of
buckets hardly has any impact. For Sp-RST the results reported in [11] were much more erratic with
no clear tendency based on the parameter setting and numbers ranging between 1 600 and 6 200. We
will use these observed numbers to parameterize other feature selection techniques when performing
our model evaluation.

In a second step, we have a closer look at the features selected by LSH-dRST. For this, we perform
5 independent runs for each parameter setting and look at the number of times each of the 10 000
26https://haifengl.github.io/smile/feature.html

https://haifengl.github.io/smile/feature.html
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Figure 5. The number of features in the reduced data set. The boxplot visualizes the results over 10 inde-
pendent runs for all parameter settings. Average and standard deviation for these runs are listed in the table.

features is selected. We plot the results in Figure 6 and see that only very few features are selected
in every run while a considerable number of features is never or only once selected. This is a very
different picture from our original algorithm Sp-RST where features were typically selected in all or
none of the runs. It is also interesting to note that the number of bucketsB has hardly any influence on
this result—the shape of the curves in Figure 6 is mostly determined by the value of F . We therefore
only provide additional averages for all values of F in Figure 6.

We emphasize that selecting different features in different runs is not a weakness of our proposed
method. As pointed out in Section 3.2 more than one reduct may exist and selecting an arbitrary one
among these is appropriate.

7.2. Runtime and Scalability

As discussed in the previous section, we consider standard measures for parallel algorithms to analyze
the scalability of our approach, i. e., speedup (Section 7.2.1), sizeup (Section 7.2.2), and scaleup (Sec-
tion 7.2.3). In addition, we consider the runtime of LSH-dRST in more detail, e. g., how the runtime is
split between the LSH and the RST phase. We provide the actual runtimes for the different phases in
Tables 11 and 12 in the appendix. The total runtimes for different numbers of nodes and the datasets
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F = 8 4011.8 3981.6 1617.4 346 42.2 1

F = 10 4685 3785.4 1266.8 235.4 26.4 1

Figure 6. Number of features selected 0, 1, . . . , 5 times in five independent runs of LSH-dRST. Averages for
each value of F are listed in the table.

described in Section 6.1 can be found in Tables 7, 8, 9 and 10 in the appendix.
Figures 7 and 8 visualize the runtimes for the different phases of LSH-dRST, both in terms of

absolute and relative values. We observe that for some parameter settings the LSH part of LSH-dRST
is more time-consuming than the RST part, but for others it is less time-consuming: For F = 10, the
time for the LSH part of our algorithm is negligible for all settings of B and all numbers of nodes. For
F = 8, this is only the case for more than 2 buckets (i.e., B 6= 2). For F = 4 and F = 5, the time
taken for the LSH part is larger or equal to the time taken for RST in most cases. In general, we can
observe that the share of the LSH part is large if more nodes are used, for smaller number of buckets
B and for smaller values of F . We also observe that the runtime for the RST part generally peaks if
two nodes are used and decreases for larger number of nodes. We conclude that the overhead caused
by parallelization is not yet compensated for such a smaller number of nodes.

7.2.1. Speedup Analysis

We plot the speedup in Figure 9 and the actual runtime for the six data sets discussed in Section 6.1 in
Figure 10. We see that the speedup for most parameter settings is very similar. However, setting F = 8
for the datasets with 8 000 and 10 000 features improves the speedup considerably—independently of
the setting for B (where B = 5 and B = 10 yield the best overall results). Overall, we conclude that
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Figure 7. Absolute runtimes for different parameters of LSH-dRST, split by LSH and RST part. Please note
the different y-scales for different values of F .

the number of buckets does not have a considerable influence on the speedup, but the number of sub-
information tables F does. The latter is expected since the execution time grows exponentially with
respect to the number of features and thus, using more nodes is more beneficial in cases with many
features. It is therefore somewhat surprising that F = 10 does not exhibit a larger speedup. Note that
an ideal parallel algorithm has linear speedup, which is, however, difficult to achieve in practice due
to startup and communication cost as well as interference and skew [45].

7.2.2. Sizeup Analysis

To measure the sizeup we use 1 000 features as a baseline and consider 2 000, 4 000, 6 000, 8 000, and
10 000 features, respectively. We plot the sizeup for 1, 2, 4, 8, and 16 nodes in Figure 11 and the actual
runtimes for different numbers of nodes in Figure 12. We see that our method has sub-linear sizeup
for most parameter settings if at least 4 nodes are used, i. e., for a 10-times larger data set it requires
less than 10 times more time. The only two exceptions are F = 4 and F = 5 (i. e., small numbers
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Figure 8. Relative runtimes for different parameters of LSH-dRST, split by LSH and RST part.

of features) with only two buckets (B = 2). Results for 1 or 2 nodes look different, but it should be
noted that these settings are less relevant in the context of parallel algorithms.

7.2.3. Scaleup Analysis

We use the sub-data sets previously described with 1 000 features as a baseline and plot the results
in Figure 13. It should be noted that a scaleup of 1 implies linear scaleup, which similarly to linear
speedup is difficult to achieve. Our scaleup is clearly smaller than 1 for all parameter settings, but
fluctuates between 0.2 and 0.4 for most settings and 8 nodes, including the ones that exhibit the best
speedup. The best scaleup is achieved for F = 5 and large values for B.

7.3. Model Evaluation

We perform model evaluation with two classifiers, Random Forest and Naive Bayes as described
previously. We present boxplots of the results for all metrics (accuracy, precision, recall, F1 score)
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Figure 9. Speedup.
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Figure 10. Runtimes (in seconds) for the six data sets discussed in Section 6.1.
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Figure 11. Sizeup.
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Figure 12. Runtimes (in seconds) for different numbers of nodes.
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Figure 13. Scaleup.

as well as runtimes in the main text. The corresponding raw data can be found in the appendix:
Section 9.1 for runtimes and Sections 9.3 and 9.4 for classification metrics of Random Forest and
Naive Bayes, respectively.

As discussed in Section 6.3 some of the other feature selection methods have to be parameterized
by either defining a threshold or the number of features to be selected. For these methods we have
used five settings: a threshold of 0 (the standard setting) and four different numbers of features. The
latter numbers are motivated by the number of features selected by LSH-dRST with different settings
of F (see Section 7.1), i. e., 1 427, 1 686, 2 555, and 3 145 features. The relevant parameter settings
are displayed in brackets after the name of the corresponding method.

7.3.1. Random Forest Classifier

We show the results of 10 runs of random forest on the different reduced data sets in Figures 14, 15,
16 and 17 (classification metrics) as well as Figure 18 (runtime). The corresponding raw data for
classification metrics can be found in Tables 13, 14 and 15 in the appendix. The raw data for runtimes
is displayed in Tables 7, 8, 9 and 10 in the appendix.

We observe that LSH-dRST has comparable performance to most other feature selection tech-
niques and outperforms some of them.27 The only exception is the SumSquaresRatio method, which
outperforms all other methods for 1 686, 2 555, and 3 145 features. The overall best result is achieved
by SumSquaresRatio with 3 145 features (0.9513 accuracy, 0.9534 precision, 0.9577 recall, and 0.9345
F1 score). The best parameter setting for LSH-dRST is F = 4 and B = 50: 0.7402 accuracy, 0.7626
precision, 0.7402 recall, 0.7326 F1 score.

We also see that the classification result is quite stable with respect to the parameter settings in
LSH-dRST. The slightly better results are generally achieved for smaller values of F , with all results
for F = 4 (independent of the value for B) outperforming all other parameter settings. We conclude

27All observations hold for all evaluation metrics used, i.e., accuracy, recall, precision, and F1 score.
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Figure 14. Random Forest: Accuracy for different parameters of LSH-dRST, Sp-RST and other feature selec-
tion techniques.
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Figure 15. Random Forest: Precision for different parameters of LSH-dRST, Sp-RST and other feature selec-
tion techniques.
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Figure 16. Random Forest: Recall for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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Figure 17. Random Forest: F1 score for different parameters of LSH-dRST, Sp-RST and other feature selec-
tion techniques.
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Figure 18. Random Forest: Runtimes for different parameters of LSH-dRST, Sp-RST and other feature selec-
tion techniques.
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that for a Random Forest classifier small values of F are clearly preferable while the concrete value
of B makes less of a difference.

Concerning the runtime we have to consider both, the runtime for the actual feature selection and
the runtime for the Random Forest on the reduced dataset. In general, the runtime for the feature
selection is faster for small values of F , with the best runtime achieved for F = 4 and B = 50.
Note that this is independent of the number of nodes used and that this setting also achieved the best
classification result. The runtime for the Random Forest classifier ranges from 109.4952 seconds
(F = 8, B = 50) to 196.8976 seconds (F = 4, B = 25), with the fastest times obtained for large
values of F where fewer features are selected. For F = 4 and B = 50 (the fast setting for the feature
selection) the runtime is 156.7633, a medium value. Given the considerable increase in runtime for the
actual feature selection for larger values of F , we conclude that small values of F should be preferred
as the overall runtime (selection+classification) is smaller and the classification performance is better.
F = 4 andB = 50 appears to be a good choice for LSH-dRST if used with a Random Forest classifier.

Looking at the other feature selection methods, the runtimes for the classifiers vary more dras-
tically (40.6593 to 443.0512), with the fast time achieved for the ConsistencySubsetEval (40.6593
seconds). However, this method also takes considerably longer than any of the other methods used
for comparison to perform the feature selection task (608 seconds) and performs worse in terms of
classification (0.6493 accuracy, 0.6500 precision, 0.6493 recall, 0.6395 F1 score). The fastest meth-
ods in terms of feature selection are ReliefF with threshold 0 (1 second), ChiSquared (2-3 seconds)
and SumSquaresRatio (2 seconds). Note that the latter one was also the best in terms of classification
while the other two achieve results comparable to LSH-dRST.

Finally, in comparison to our previous method (Sp-RST), runtimes for the classification after using
LSH-dRST appear to be smaller (for some parameters much smaller) with slightly worse classification
results (accuracy 0.7402 vs 0.7912 in the best parameter settings). Sp-RST in general selects more
features than LSH-dRST, which is a possible explanation for this behavior. In terms of runtime for
the feature selection, the runtime for both methods varies largely with the parameterization and the
number of nodes used. For Sp-RST, we observe that the slower the method, the better the classification.
This does not seem to be the case for LSH-dRST where the faster parameters also yield the better
classification results. The runtimes for the fastest parameterization for both algorithms are comparable
(F = 4, B = 50 for LSH-dRST and 2500 for SP-RST). In this case we achieve a classification
accuracy of 0.7402 (LSH-dRST) vs 0.7710 (Sp-RST) and runtimes of less than 75 seconds (depending
on the number of nodes used).

7.3.2. Naive Bayes Classifier

Again, we show the results of 10 runs of Naive Bayes on the different reduced data sets: Figures 14,
15, 16 and 17 (classification metrics) as well as Table 18 (runtime). The corresponding raw data
for classification metrics can be found in Tables 16, 17 and 18. The raw data for runtimes is again
displayed in Tables 7, 8, 9 and 10 in the appendix.

We first observe that the overall classification performance of the Naive Bayes classifier is worse
than for the Random Forest classifier. While this observation is independent from the feature selection
method used, the overall results for LSH-dRST are somewhat disappointing as our method is outper-
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Figure 19. Naive Bayes: Accuracy for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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Figure 20. Naive Bayes: Precision for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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Figure 21. Naive Bayes: Recall for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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Figure 22. Naive Bayes: F1 score for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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Figure 23. Naive Bayes: Runtimes for different parameters of LSH-dRST, Sp-RST and other feature selection
techniques.
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formed by many of the other feature selection techniques.28 However, for some of these methods,
the performance very much depends on the parameterization while the performance for LSH-dRST is
again quite stable. Choosing the right parameters can be difficult in practice, thus it is promising to see
the robustness of our method. Investigating the concrete reasons for this behavior and improving the
overall performance when used with other classifiers such as Naive Bayes is subject to future research.

In terms of runtime for the classifier29, we observe that all runtimes for Naive Bayes are much
smaller than the ones for Random Forest, ranging from 0.924 seconds for ConsistencySubsetEval and
135.5330 seconds for SignificanceEval with threshold 0. The fastest parameter setting for LSH-dRST
is F = 10 and B = 50 (19.1884 seconds). Again, consistency is the fastest in this respect, but as
discussed previously it requires a long time for the feature selection process.

In terms of classification, the best results for LSH-dRST are achieved for F = 4 and B = 25
(0.5103 accuracy, 0.5486 precision, 0.5103 recall, 0.5149 F1 score). While this is slightly different
than for Random Forest, where B = 50 performed best, we again observe that smaller values for F
are generally better and outperform all other parameter settings. Thus, very similar conclusions as for
the Random Forest classifier can be drawn with an overall recommended parameter setting F = 4 and
B = 25 in this case.

The overall best classification result is again achieved by SumSquaresRatio. However, here, fewer
features seem to be better with the best result achieved for 1 427 features: 0.6680 accuracy, 0.6862
precision, 0.6679 recall, 0.6689 F1 score. This parameter setting requires a runtime for the classifier
of 88.5070, a medium value.

Finally, in comparison to our previous method (Sp-RST), again very similar conclusions can be
drawn: Runtimes for the classification after using LSH-dRST appear to be smaller with slightly worse
classification results. And while Sp-RST benefits from investing more computational power this is not
necessarily the case for LSH-dRST.

8. Conclusion and Emerging Trends

With the emergence of big data concept, various disciplines of granular computing have recently
received more attention by several researchers. Among these disciplines, which are involved in the
foundations of granular computing and within the big data context, specifically when it comes to
information and knowledge processing, we mention the theory of fuzzy sets and the theory of rough
sets. The adaptation of these disciplines to the context of big data, by revising the different granular
notions and concepts, presents a big challenge in granular computing.

In this paper, we have investigated the performance of the distributed rough set theory approach for
feature selection. The proposed method, named LSH-dRST, is based on an Apache Spark distributed
architecture, and integrates a hashing component, which is the Locality Sensitive Hashing algorithm
(LSH). In this version, the granular concepts of rough set theory have been revised and adapted to
the big data context and, accordingly, implemented in a distributed way. The main idea behind this
version is to ensure a more intelligent way on how to partition the feature search space to guarantee
data dependency, which is also considered as a big challenge in a distributed environment.
28Again all observations hold for all evaluation metrics used, i.e., accuracy, recall, precision, and F1 score.
29The runtime for the actual feature selection is discussed in Section 7.3.1.
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We have investigated the number of features selected for different parameters as well as the scal-
ability of the approach. Finally, we have performed model evaluation using two classifiers, Random
Forest and Naive Bayes.

From the conducted deep analysis of LSH-dRST and the obtained results, we can highlight the
different benefits and the impact of using the locality sensitive hashing in our proposed solution.
Being incorporated into LSH-dRST, LSH could partition the high dimensional feature search space in
a more reliable and intelligent way, and hence it can better preserve data dependency in the distributed
environment. Another important benefit is that such an application can achieve a lower computational
cost.

As future work, we aim to study the performance of the proposed distributed rough set theory
versions for feature selection when these are applied to more complex real-world problems with more
features and data items than the Amazon data set. Possible sources for such data sets include Kaggle
data-science platforms.

It is also interesting to mention that up to now all of the proposed rough set theory versions
dedicated to deal with the big data context focus on a single dimension of the input data set, i.e.,
the feature search space, to create the partitions. Therefore, it would be interesting to investigate
other ways of partitioning the input data matrix where both dimensions of the input data set can be
considered.
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9. Appendix

We provide more detailed experimental results in the appendix for the sake of completeness. We par-
ticularly include tables with numeric runtime and classification results. In the tables, we highlight the
best results (smallest runtime, highest classification metric) in bold. We do so separately for the best
parameter setting of LSH-dRST and other feature selection techniques. Whenever applicable, tables
display averages and standard deviation (in brackets) over the runs performed in our experiments.

9.1. Runtime Results (Overview)

Method #Features Selection Random Forest Naive Bayes

LSH (F=4,B=2)

1 node: 293.9634
2 nodes: 330.9884

3162.6 4 nodes: 273.6784 163.0903 46.1034
(20.93562) 8 nodes: 267.9994 (24.4049) (4.2355)

16 nodes: 264.1068

LSH (F=4,B=5)

1 node: 94.33579
2 nodes: 121.487

3153.4 4 nodes: 105.7729 137.6660 46.0554
(28.18333) 8 nodes: 83.20773 (6.0934) (3.9327)

16 nodes: 80.88177

LSH (F=4,B=10)

1 node: 68.99441
2 nodes: 95.21888

3136.6 4 nodes: 56.27094 143.4032 44.7714
(20.59854) 8 nodes: 52.24907 (8.8300) (2.7593)

16 nodes: 54.99504

LSH (F=4,B=25)

1 node: 52.77961
2 nodes: 81.43544

3129.6 4 nodes: 48.86025 196.8976 44.1836
(30.31171) 8 nodes: 43.4144 (132.1669) (2.5568)

16 nodes: 39.97918

LSH (F=4,B=50)

1 node: 49.00843
2 nodes: 74.64357

3143.8 4 nodes: 46.26422 156.7633 45.5628
(27.93206) 8 nodes: 41.5312 (20.5751) (3.0586)

16 nodes: 38.68473

LSH (F=5,B=2)

1 node: 356.9446
2 nodes: 292.1586

2562.6 4 nodes: 253.7213 136.3867 34.5402
(6.94982) 8 nodes: 258.2594 (6.5513) (2.3956)

16 nodes: 218.4629

LSH (F=5,B=5)

1 node: 116.4721
2 nodes: 170.3086

2549.2 4 nodes: 98.40898 142.6852 34.4690
(27.28919) 8 nodes: 87.09421 (8.2735) (2.2838)

16 nodes: 77.23412

LSH (F=5,B=10)

1 node: 81.31365
2 nodes: 137.0798

2579.0 4 nodes: 70.01903 163.2165 34.8486
(13.83835) 8 nodes: 51.65553 (35.9467) (2.5035)

16 nodes: 54.28747

Table 7. Runtime results for different parameters of LSH-dRST (Part 1).
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Method #Features Selection Random Forest Naive Bayes

LSH (F=5,B=25)

1 node: 66.17459
2 nodes: 141.0207

2548.2 4 nodes: 57.69587 156.7915 34.0446
(17.93600) 8 nodes: 44.21889 (31.7525) (2.0342)

16 nodes: 47.42742

LSH (F=5,B=50)

1 node: 62.64974
2 nodes: 122.0032

2535.4 4 nodes: 57.4125 178.9157 34.2858
(30.44339) 8 nodes: 47.37777 (35.8738) (2.2643)

16 nodes: 45.36554

LSH (F=8,B=2)

1 node: 1130.755
2 nodes: 1158.858

1700.8 4 nodes: 468.436 118.2328 22.9064
(10.32957) 8 nodes: 346.6934 (7.4608) (1.1685)

16 nodes: 257.8431

LSH (F=8,B=5)

1 node: 1032.926
2 nodes: 1123.54

1709.8 4 nodes: 540.2123 111.6114 23.7212
(18.28114) 8 nodes: 235.8572 (4.5041) (1.6567)

16 nodes: 196.4199

LSH (F=8,B=10)

1 node: 1009.47
2 nodes: 1279.771

1684.8 4 nodes: 394.2123 112.3749 23.3394
(14.09610) 8 nodes: 227.9812 (4.0889) (1.9714)

16 nodes: 200.1706

LSH (F=8,B=25)

1 node: 993.3145
2 nodes: 1452.427

1673.0 4 nodes: 395.2873 115.1896 22.8154
(34.72751) 8 nodes: 242.5078 (7.9205) (1.9989)

16 nodes: 219.3121

LSH (F=8,B=50)

1 node: 987.3648
2 nodes: 1513.367

1659.8 4 nodes: 333.6505 109.4952 22.5440
(12.11198) 8 nodes: 237.296 (3.7340) (1.3949)

16 nodes: 380.8814

LSH (F=10,B=2)

1 node: 1428.017
2 nodes: 6220.443

1452.2 4 nodes: 1561.927 112.4193 19.7990
(14.04279) 8 nodes: 1057.972 (9.1338) (1.2075)

16 nodes: 1097.766

LSH (F=10,B=5)

1 node: 1329.887
2 nodes: 6610.68

1438.8 4 nodes: 1602.414 109.9828 19.7598
(27.55358) 8 nodes: 947.0734 (13.6445) (1.6335)

16 nodes: 982.1677

LSH (F=10,B=10)

1 node: 1330.115
2 nodes: 6868.82

1423.6 4 nodes: 1661.798 148.4756 19.7192
(21.19670) 8 nodes: 1052.526 (42.4020) (1.7981)

16 nodes: 930.264

LSH (F=10,B=25)

1 node: 1302.886
2 nodes: 5493.28

1407.0 4 nodes: 1737.555 138.7421 19.2248
(16.00000) 8 nodes: 1024.793 (30.9709) (1.5202)

16 nodes: 1086.141

LSH (F=10,B=50)

1 node: 1300.365
2 nodes: 6891.06

1414.2 4 nodes: 1803.13 112.2374 19.1884
(21.62637) 8 nodes: 1317.976 (11.9036) (1.6507)

16 nodes: 964.0759

Table 8. Runtime results for different parameters of LSH-dRST (Part 2).
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Method #Features Selection Random Forest Naive Bayes

Original
10000 0 445.7113 154.3220

(-) (-) (8.9163) (13.4778)

CV (t=0)
4149 49 210.7067 59.7090

(-) (-) (2.9873) (5.3565)

CV (1427)
1427 47 98.2336 18.9600

(-) (-) (0.9268) (0.7974)

CV (1686)
1686 46 108.8291 22.4600

(-) (-) (0.9020) (1.3662)

CV (2555)
2555 47 144.7988 33.8160

(-) (-) (1.4936) (1.3971)

CV (3145)
3145 46 169.9300 41.7430

(-) (-) (1.9708) (1.8759)

Cfs (Greedy)
41 296 40.7580 1.1660
(-) (-) (0.1532) (0.1060)

Chi Squared (t=0)
113 2 43.2237 2.0520
(-) (-) (0.1800) (0.2946)

Chi Squared (1427)
1427 3 93.9593 19.8070

(-) (-) (0.6953) (0.7972)

Chi Squared (1686)
1686 2 104.1886 23.9980

(-) (-) (0.8936) (0.9149)

Chi Squared (2555)
2555 2 140.0667 35.0810

(-) (-) (1.2154) (1.0366)

Chi Squared (3145)
3145 3 166.6786 42.9120

(-) (-) (1.6763) (0.3186)

Consistency (Greedy)
30 608 40.6593 0.9240
(-) (-) (0.1933) (0.0534)

Correlation (t=0)
10000 10 442.0538 135.5330

(-) (-) (4.2028) (6.5574)

Correlation (1427)
1427 8 103.3509 17.1700

(-) (-) (0.6582) (0.7420)

Correlation (1686)
1686 7 114.5108 20.2100

(-) (-) (1.1578) (0.6911)

Correlation (2555)
2555 7 149.8167 30.6060

(-) (-) (1.4952) (0.5625)

Correlation (3145)
3145 8 174.2044 39.1150

(-) (-) (1.9106) (1.4067)

Gain Ratio (t=0)
113 7 43.2204 1.9850
(-) (-) (0.1460) (0.1276)

Gain Ratio (1427)
1427 7 93.6727 20.3990

(-) (-) (0.9373) (0.9114)

Gain Ratio (1686)
1686 7 104.5484 23.1170

(-) (-) (2.1300) (0.7720)

Gain Ratio (2555)
2555 8 140.4722 35.3750

(-) (-) (1.3630) (1.3214)

Gain Ratio (3145)
3145 8 166.8755 43.3280

(-) (-) (2.6151) (1.3403)

Info Gain (t=0)
113 7 43.2661 2.0050
(-) (-) (0.1277) (0.1910)

Info Gain (1427)
1427 7 93.8349 19.7290

(-) (-) (1.2257) (1.0071)

Info Gain (1686)
1686 7 104.4151 23.3660

(-) (-) (0.5484) (0.7313)

Info Gain (2555)
2555 8 139.8821 35.4830

(-) (-) (1.2951) (1.1791)

Info Gain (3145)
3145 8 166.2922 44.0000

(-) (-) (1.3921) (1.7727)

Table 9. Runtime results for other feature selection techniques (Part 1).
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Method #Features Selection Random Forest Naive Bayes

ReliefF (t=0)
7957 1 363.0645 106.4700

(-) (-) (2.4074) (6.8651)

ReliefF (1427)
1427 8 104.0523 17.0170

(-) (-) (0.6797) (0.7430)

ReliefF (1686)
1686 8 115.5863 20.2280

(-) (-) (0.8737) (0.7300)

ReliefF (2555)
2555 8 150.6049 31.5970

(-) (-) (1.1557) (0.9336)

ReliefF (3145)
3145 8 175.4633 39.1670

(-) (-) (2.7690) (1.4395)

Significance (t=0)
10000 3 443.0512 135.7860

(-) (-) (7.1975) (5.4555)

Significance (1427)
1427 3 93.4174 19.8110

(-) (-) (0.7614) (0.7376)

Significance (1686)
1686 3 104.0673 23.3070

(-) (-) (0.8551) (0.8137)

Significance (2555)
2555 3 141.2948 35.9880

(-) (-) (1.0859) (1.3315)

Significance (3145)
3145 3 165.8484 45.0320

(-) (-) (0.8897) (1.5426)

Sp-RST (1000)

1 node: 4448.072
2 nodes: 1540.4

6171.333 4 nodes: 1641.565 294.0260 79.3787
(26.01282) 8 nodes: 865.2048 (5.0313) (3.6052)

16 nodes: 585.8696
32 nodes: 334.1958

Sp-RST (1250)

1 node: 935.9299
2 nodes: 374.9

5566.000 4 nodes: 646.0979 268.5728 72.9547
(23.89142) 8 nodes: 209.8693 (3.2815) (5.2135)

16 nodes: 118.5509
32 nodes: 88.09231

Sp-RST (2000)

1 node: 72.27206
2 nodes: 52.9

4117.000 4 nodes: 49.97752 212.4548 51.9187
(18.95257) 8 nodes: 28.46254 (2.3847) (2.8680)

16 nodes: 22.83241
32 nodes: 18.30543

Sp-RST (2500)

1 node: 51.98853
2 nodes: 51

3205.333 4 nodes: 25.86191 177.0313 39.8933
(24.35296) 8 nodes: 20.81937 (2.6335) (1.2833)

16 nodes: 18.0587
32 nodes: 16.60878

Sum Squares Ratio (1427)
1427 2 88.5070 20.1640

(-) (-) (1.4030) (2.3277)

Sum Squares Ratio (1686)
1686 2 96.4577 22.7440

(-) (-) (0.5372) (1.2330)

Sum Squares Ratio (2555)
2555 2 146.0271 34.8390

(-) (-) (2.3981) (0.9321)

Sum Squares Ratio (3145)
3145 2 155.0862 44.3340

(-) (-) (1.8683) (4.8147)

Symmetrical Uncert (t=0)
113 7 43.1611 2.0700
(-) (-) (0.1603) (0.4490)

Symmetrical Uncert (1427)
1427 8 93.4457 19.9050

(-) (-) (0.8489) (0.8217)

Symmetrical Uncert (1686)
1686 8 104.1815 23.1590

(-) (-) (0.9198) (0.2291)

Symmetrical Uncert (2555)
2555 8 140.9627 35.4490

(-) (-) (1.1890) (1.1330)

Symmetrical Uncert (3145)
3145 8 168.7001 44.8310

(-) (-) (2.3883) (1.4125)

Table 10. Runtime results for other feature selection techniques (Part 2).
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9.2. Runtime Results (Detailed)

Method LSH Part RST Part Total

LSH (F=4,B=2 )

1 node: 249.1861 1 node: 44.77727 1 node: 293.9634
2 nodes: 281.8208 2 nodes: 49.16752 2 nodes: 330.9884
4 nodes: 252.6248 4 nodes: 21.05362 4 nodes: 273.6784
8 nodes: 250.6381 8 nodes: 17.36132 8 nodes: 267.9994
16 nodes: 253.5395 16 nodes: 10.56732 16 nodes: 264.1068

LSH (F=4,B=5 )

1 node: 70.68899 1 node: 23.6468 1 node: 94.33579
2 nodes: 76.22245 2 nodes: 45.26454 2 nodes: 121.487
4 nodes: 86.15117 4 nodes: 19.62175 4 nodes: 105.7729
8 nodes: 67.20983 8 nodes: 15.99789 8 nodes: 83.20773
16 nodes: 64.00956 16 nodes: 16.87221 16 nodes: 80.88177

LSH (F=4,B=10 )

1 node: 43.64644 1 node: 25.34797 1 node: 68.99441
2 nodes: 43.62331 2 nodes: 51.59557 2 nodes: 95.21888
4 nodes: 34.44596 4 nodes: 21.82497 4 nodes: 56.27094
8 nodes: 36.65276 8 nodes: 15.59631 8 nodes: 52.24907
16 nodes: 38.99837 16 nodes: 15.99668 16 nodes: 54.99504

LSH (F=4,B=25 )

1 node: 28.85205 1 node: 23.92756 1 node: 52.77961
2 nodes: 31.73694 2 nodes: 49.69851 2 nodes: 81.43544
4 nodes: 24.98696 4 nodes: 23.8733 4 nodes: 48.86025
8 nodes: 29.10556 8 nodes: 14.30883 8 nodes: 43.4144
16 nodes: 23.40279 16 nodes: 16.5764 16 nodes: 39.97918

LSH (F=4,B=50 )

1 node: 25.68635 1 node: 23.32208 1 node: 49.00843
2 nodes: 29.4082 2 nodes: 45.23537 2 nodes: 74.64357
4 nodes: 23.8163 4 nodes: 22.44792 4 nodes: 46.26422
8 nodes: 27.05567 8 nodes: 14.47553 8 nodes: 41.5312
16 nodes: 22.43465 16 nodes: 16.25009 16 nodes: 38.68473

LSH (F=5,B=2 )

1 node: 263.9243 1 node: 93.02023 1 node: 356.9446
2 nodes: 190.1182 2 nodes: 102.0403 2 nodes: 292.1586
4 nodes: 221.3475 4 nodes: 32.37374 4 nodes: 253.7213
8 nodes: 238.0008 8 nodes: 20.25855 8 nodes: 258.2594
16 nodes: 198.6282 16 nodes: 19.83463 16 nodes: 218.4629

LSH (F=5,B=5 )

1 node: 72.9804 1 node: 43.49173 1 node: 116.4721
2 nodes: 60.77011 2 nodes: 109.5385 2 nodes: 170.3086
4 nodes: 63.23359 4 nodes: 35.17539 4 nodes: 98.40898
8 nodes: 66.70733 8 nodes: 20.38688 8 nodes: 87.09421
16 nodes: 56.6734 16 nodes: 20.56072 16 nodes: 77.23412

LSH (F=5,B=10 )

1 node: 39.88054 1 node: 41.43311 1 node: 81.31365
2 nodes: 43.79706 2 nodes: 93.2827 2 nodes: 137.0798
4 nodes: 32.63216 4 nodes: 37.38687 4 nodes: 70.01903
8 nodes: 31.49336 8 nodes: 20.16216 8 nodes: 51.65553
16 nodes: 31.91303 16 nodes: 22.37444 16 nodes: 54.28747

LSH (F=5,B=25 )

1 node: 28.36333 1 node: 37.81126 1 node: 66.17459
2 nodes: 29.15167 2 nodes: 111.8691 2 nodes: 141.0207
4 nodes: 22.67827 4 nodes: 35.0176 4 nodes: 57.69587
8 nodes: 30.128 8 nodes: 14.09089 8 nodes: 44.21889

16 nodes: 26.06495 16 nodes: 21.36248 16 nodes: 47.42742

LSH (F=5,B=50 )

1 node: 25.76798 1 node: 36.88176 1 node: 62.64974
2 nodes: 26.97555 2 nodes: 95.02764 2 nodes: 122.0032
4 nodes: 21.72356 4 nodes: 35.68894 4 nodes: 57.4125
8 nodes: 23.83919 8 nodes: 23.53858 8 nodes: 47.37777
16 nodes: 23.56475 16 nodes: 21.80079 16 nodes: 45.36554

Table 11. Detailed runtime (split by LSH and RST part) for different parameters of LSH-dRST (Part 1).
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Method LSH Part RST Part Total

LSH (F=8,B=2 )

1 node: 153.141 1 node: 977.6144 1 node: 1130.755
2 nodes: 161.741 2 nodes: 997.1169 2 nodes: 1158.858
4 nodes: 145.5205 4 nodes: 322.9155 4 nodes: 468.436
8 nodes: 163.9673 8 nodes: 182.7261 8 nodes: 346.6934

16 nodes: 137.1214 16 nodes: 120.7217 16 nodes: 257.8431

LSH (F=8,B=5 )

1 node: 56.87063 1 node: 976.0553 1 node: 1032.926
2 nodes: 49.36937 2 nodes: 1074.171 2 nodes: 1123.54
4 nodes: 44.11492 4 nodes: 496.0974 4 nodes: 540.2123
8 nodes: 45.80784 8 nodes: 190.0493 8 nodes: 235.8572

16 nodes: 42.46138 16 nodes: 153.9585 16 nodes: 196.4199

LSH (F=8,B=10 )

1 node: 34.52373 1 node: 974.9466 1 node: 1009.47
2 nodes: 38.80107 2 nodes: 1240.97 2 nodes: 1279.771
4 nodes: 27.2223 4 nodes: 366.99 4 nodes: 394.2123
8 nodes: 26.39205 8 nodes: 201.5891 8 nodes: 227.9812

16 nodes: 26.84447 16 nodes: 173.3261 16 nodes: 200.1706

LSH (F=8,B=25 )

1 node: 25.40424 1 node: 967.9102 1 node: 993.3145
2 nodes: 27.50088 2 nodes: 1424.926 2 nodes: 1452.427
4 nodes: 22.44209 4 nodes: 372.8452 4 nodes: 395.2873
8 nodes: 22.03004 8 nodes: 220.4777 8 nodes: 242.5078

16 nodes: 23.92952 16 nodes: 195.3825 16 nodes: 219.3121

LSH (F=8,B=50 )

1 node: 24.64281 1 node: 962.722 1 node: 987.3648
2 nodes: 28.00279 2 nodes: 1485.364 2 nodes: 1513.367
4 nodes: 28.49751 4 nodes: 305.153 4 nodes: 333.6505
8 nodes: 28.49436 8 nodes: 208.8016 8 nodes: 237.296

16 nodes: 21.51559 16 nodes: 359.3658 16 nodes: 380.8814

LSH (F=10,B=2 )

1 node: 131.8026 1 node: 1296.215 1 node: 1428.017
2 nodes: 127.2752 2 nodes: 6093.168 2 nodes: 6220.443
4 nodes: 120.0283 4 nodes: 1441.898 4 nodes: 1561.927
8 nodes: 134.1363 8 nodes: 923.8355 8 nodes: 1057.972

16 nodes: 114.2739 16 nodes: 983.4926 16 nodes: 1097.766

LSH (F=10,B=5 )

1 node: 42.83346 1 node: 1287.053 1 node: 1329.887
2 nodes: 46.27018 2 nodes: 6564.41 2 nodes: 6610.68
4 nodes: 36.7243 4 nodes: 1565.689 4 nodes: 1602.414
8 nodes: 39.44878 8 nodes: 907.6247 8 nodes: 947.0734

16 nodes: 39.67369 16 nodes: 942.494 16 nodes: 982.1677

LSH (F=10,B=10 )

1 node: 30.9031 1 node: 1299.212 1 node: 1330.115
2 nodes: 31.69981 2 nodes: 6837.121 2 nodes: 6868.82
4 nodes: 26.93947 4 nodes: 1634.859 4 nodes: 1661.798
8 nodes: 25.8574 8 nodes: 1026.669 8 nodes: 1052.526

16 nodes: 24.99526 16 nodes: 905.2687 16 nodes: 930.264

LSH (F=10,B=25 )

1 node: 25.36443 1 node: 1277.522 1 node: 1302.886
2 nodes: 26.52125 2 nodes: 5466.758 2 nodes: 5493.28
4 nodes: 23.93727 4 nodes: 1713.618 4 nodes: 1737.555
8 nodes: 21.49535 8 nodes: 1003.298 8 nodes: 1024.793

16 nodes: 21.51204 16 nodes: 1064.629 16 nodes: 1086.141

LSH (F=10,B=50 )

1 node: 24.48343 1 node: 1275.881 1 node: 1300.365
2 nodes: 26.19428 2 nodes: 6864.866 2 nodes: 6891.06
4 nodes: 22.40849 4 nodes: 1780.721 4 nodes: 1803.13
8 nodes: 20.85069 8 nodes: 1297.125 8 nodes: 1317.976

16 nodes: 21.04216 16 nodes: 943.0337 16 nodes: 964.0759

Table 12. Detailed runtime (split by LSH and RST part) for different parameters of LSH-dRST (Part 2).
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9.3. Classification Results (Random Forest)

Method #Features Accuracy Precision Recall F1 Score

LSH-dRST (F=4,B=2)
3162.6 0.7259 0.7473 0.7259 0.7165

(20.93562) (0.0170) (0.0173) (0.0170) (0.0172)

LSH-dRST (F=4,B=5)
3153.4 0.7299 0.7544 0.7299 0.7209

(28.18333) (0.0108) (0.0090) (0.0108) (0.0105)

LSH-dRST (F=4,B=10)
3136.6 0.7342 0.7564 0.7342 0.7253

(20.59854) (0.0080) (0.0081) (0.0080) (0.0082)

LSH-dRST (F=4,B=25)
3129.6 0.7317 0.7539 0.7317 0.7230

(30.31171) (0.0173) (0.0162) (0.0173) (0.0168)

LSH-dRST (F=4,B=50)
3143.8 0.7402 0.7626 0.7402 0.7326

(27.93206) (0.0205) (0.0189) (0.0205) (0.0212)

LSH-dRST (F=5,B=2)
2562.6 0.7185 0.7404 0.7185 0.7090

(6.94982) (0.0307) (0.0307) (0.0307) (0.0319)

LSH-dRST (F=5,B=5)
2549.2 0.7163 0.7408 0.7163 0.7077

(27.28919) (0.0117) (0.0119) (0.0117) (0.0118)

LSH-dRST (F=5,B=10)
2579.0 0.7189 0.7418 0.7189 0.7101

(13.83835) (0.0110) (0.0114) (0.0110) (0.0108)

LSH-dRST (F=5,B=25)
2548.2 0.7096 0.7344 0.7096 0.7002

(17.93600) (0.0138) (0.0124) (0.0138) (0.0139)

LSH-dRST (F=5,B=50)
2535.4 0.7058 0.7276 0.7058 0.6967

(30.44339) (0.0233) (0.0240) (0.0233) (0.0250)

LSH-dRST (F=8,B=2)
1700.8 0.6542 0.6839 0.6542 0.6435

(10.32957) (0.0282) (0.0270) (0.0282) (0.0286)

LSH-dRST (F=8,B=5)
1709.8 0.6459 0.6734 0.6459 0.6355

(18.28114) (0.0250) (0.0233) (0.0250) (0.0255)

LSH-dRST (F=8,B=10)
1684.8 0.6751 0.6987 0.6751 0.6649

(14.09610) (0.0339) (0.0311) (0.0339) (0.0347)

LSH-dRST (F=8,B=25)
1673.0 0.6423 0.6695 0.6423 0.6314

(34.72751) (0.0241) (0.0227) (0.0241) (0.0234)

LSH-dRST (F=8,B=50)
1659.8 0.6597 0.6844 0.6597 0.6490

(12.11198) (0.0409) (0.0399) (0.0409) (0.0426)

LSH-dRST (F=10,B=2)
1452.2 0.6521 0.6758 0.6521 0.6404

(14.04279) (0.0195) (0.0181) (0.0195) (0.0213)

LSH-dRST (F=10,B=5)
1438.8 0.6444 0.6664 0.6444 0.6322

(27.55358) (0.0246) (0.0265) (0.0246) (0.0263)

LSH-dRST (F=10,B=10)
1423.6 0.6409 0.6662 0.6409 0.6294

(21.19670) (0.0146) (0.0152) (0.0146) (0.0148)

LSH-dRST (F=10,B=25)
1407.0 0.6518 0.6747 0.6518 0.6394

(16.00000) (0.0330) (0.0330) (0.0330) (0.0337)

LSH-dRST (F=10,B=50)
1414.2 0.6266 0.6535 0.6266 0.6147

(21.62637) (0.0173) (0.0210) (0.0173) (0.0174)

Table 13. Random Forest: Classification results for different parameters of LSH-dRST.
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Method #Features Accuracy Precision Recall F1 Score

Original
10000 0.7997 0.8151 0.7997 0.7925

(-) (0.0068) (0.0068) (0.0068) (0.0072)

CV (t=0)
4149 0.6792 0.7245 0.6792 0.6705

(-) (0.0055) (0.0054) (0.0055) (0.0051)

CV (1427)
1427 0.5325 0.6084 0.5325 0.5266

(-) (0.0074) (0.0119) (0.0074) (0.0082)

CV (1686)
1686 0.5526 0.6153 0.5526 0.5425

(-) (0.0060) (0.0100) (0.0060) (0.0073)

CV (2555)
2555 0.6090 0.6714 0.6090 0.6023

(-) (0.0061) (0.0073) (0.0061) (0.0063)

CV (3145)
3145 0.6386 0.6886 0.6386 0.6288

(-) (0.0043) (0.0065) (0.0043) (0.0042)

Cfs (Greedy)
41 0.6857 0.6864 0.6857 0.6772
(-) (0.0049) (0.0058) (0.0049) (0.0048)

Chi Squared (t=0)
113 0.7115 0.7187 0.7115 0.7074
(-) (0.0034) (0.0037) (0.0034) (0.0034)

Chi Squared (1427)
1427 0.7312 0.7386 0.7312 0.7214

(-) (0.0043) (0.0063) (0.0043) (0.0049)

Chi Squared (1686)
1686 0.7322 0.7407 0.7322 0.7224

(-) (0.0058) (0.0064) (0.0058) (0.0063)

Chi Squared (2555)
2555 0.7399 0.7508 0.7399 0.7293

(-) (0.0030) (0.0037) (0.0030) (0.0032)

Chi Squared (3145)
3145 0.7529 0.7668 0.7529 0.7432

(-) (0.0044) (0.0066) (0.0044) (0.0049)

Consistency (Greedy)
30 0.6493 0.6500 0.6493 0.6395
(-) (0.0060) (0.0069) (0.0060) (0.0060)

Correlation (t=0)
10000 0.7988 0.8167 0.7988 0.7921

(-) (0.0050) (0.0043) (0.0050) (0.0053)

Correlation (1427)
1427 0.7818 0.7940 0.7818 0.7744

(-) (0.0033) (0.0038) (0.0033) (0.0037)

Correlation (1686)
1686 0.7860 0.7977 0.7860 0.7789

(-) (0.0032) (0.0027) (0.0032) (0.0033)

Correlation (2555)
2555 0.7872 0.8026 0.7872 0.7802

(-) (0.0040) (0.0056) (0.0040) (0.0046)

Correlation (3145)
3145 0.7936 0.8097 0.7936 0.7861

(-) (0.0067) (0.0065) (0.0067) (0.0071)

Gain Ratio (t=0)
113 0.7061 0.7141 0.7061 0.7020
(-) (0.0045) (0.0037) (0.0045) (0.0043)

Gain Ratio (1427)
1427 0.7337 0.7402 0.7337 0.7243

(-) (0.0057) (0.0062) (0.0057) (0.0064)

Gain Ratio (1686)
1686 0.7343 0.7418 0.7343 0.7243

(-) (0.0045) (0.0051) (0.0045) (0.0049)

Gain Ratio (2555)
2555 0.7405 0.7502 0.7405 0.7305

(-) (0.0040) (0.0043) (0.0040) (0.0044)

Gain Ratio (3145)
3145 0.7543 0.7675 0.7543 0.7450

(-) (0.0037) (0.0040) (0.0037) (0.0038)

Info Gain (t=0)
113 0.7089 0.7174 0.7089 0.7053
(-) (0.0034) (0.0033) (0.0034) (0.0035)

Info Gain (1427)
1427 0.7335 0.7404 0.7335 0.7240

(-) (0.0046) (0.0041) (0.0046) (0.0042)

Info Gain (1686)
1686 0.7305 0.7415 0.7305 0.7213

(-) (0.0056) (0.0060) (0.0056) (0.0061)

Info Gain (2555)
2555 0.7408 0.7502 0.7408 0.7308

(-) (0.0048) (0.0063) (0.0048) (0.0057)

Info Gain (3145)
3145 0.7559 0.7692 0.7559 0.7461

(-) (0.0051) (0.0057) (0.0051) (0.0055)

Table 14. Random Forest: Classification results for other feature selection techniques (Part 1).
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Method #Features Accuracy Precision Recall F1 Score

Relief F (t=0)
7957 0.8005 0.8174 0.8005 0.7941

(-) (0.0042) (0.0046) (0.0042) (0.0045)

Relief F (1427)
1427 0.7813 0.7955 0.7813 0.7735

(-) (0.0028) (0.0033) (0.0028) (0.0029)

Relief F (1686)
1686 0.7889 0.8005 0.7889 0.7816

(-) (0.0050) (0.0064) (0.0050) (0.0061)

Relief F (2555)
2555 0.7909 0.8065 0.7909 0.7844

(-) (0.0058) (0.0058) (0.0058) (0.0063)

Relief F (3145)
3145 0.7944 0.8103 0.7944 0.7878

(-) (0.0045) (0.0049) (0.0045) (0.0049)

Significance (t=0)
10000 0.7988 0.8159 0.7988 0.7914

(-) (0.0067) (0.0073) (0.0067) (0.0079)

Significance (1427)
1427 0.7314 0.7392 0.7314 0.7224

(-) (0.0052) (0.0059) (0.0052) (0.0056)

Significance (1686)
1686 0.7330 0.7421 0.7330 0.7238

(-) (0.0038) (0.0046) (0.0038) (0.0039)

Significance (2555)
2555 0.7426 0.7524 0.7426 0.7329

(-) (0.0038) (0.0055) (0.0038) (0.0046)

Significance (3145)
3145 0.7538 0.7675 0.7538 0.7442

(-) (0.0046) (0.0047) (0.0046) (0.0052)

Sp-RST (1000)
6171.333 0.7912 0.8095 0.7912 0.7838

(26.01282) (0.0063) (0.0064) (0.0063) (0.0069)

Sp-RST (1250)
5566.000 0.7902 0.8059 0.7902 0.7826

(23.89142) (0.0077) (0.0079) (0.0077) (0.0083)

Sp-RST (2000)
4117.000 0.7784 0.7951 0.7784 0.7697

(18.95257) (0.0067) (0.0070) (0.0067) (0.0071)

Sp-RST (2500)
3205.333 0.7710 0.7869 0.7710 0.7627

(24.35296) (0.0065) (0.0070) (0.0065) (0.0070)

Sum Squares Ratio (1427)
1427 0.7139 0.7310 0.7251 0.6582

(-) (0.0022) (0.0028) (0.0023) (0.0031)

Sum Squares Ratio (1686)
1686 0.8719 0.8865 0.8866 0.8338

(-) (0.0008) (0.0016) (0.0098) (0.0089)

Sum Squares Ratio (2555)
2555 0.8585 0.8219 0.8642 0.8025

(-) (0.0004) (0.0249) (0.0005) (0.0010)

Sum Squares Ratio (3145)
3145 0.9513 0.9534 0.9577 0.9345

(-) (0.0000) (0.0000) (0.0000) (0.0000)

Symmetrical Uncert (t=0)
113 0.7099 0.7168 0.7099 0.7055
(-) (0.0036) (0.0032) (0.0036) (0.0033)

Symmetrical Uncert (1427)
1427 0.7309 0.7383 0.7309 0.7215

(-) (0.0041) (0.0051) (0.0041) (0.0041)

Symmetrical Uncert (1686)
1686 0.7345 0.7418 0.7345 0.7250

(-) (0.0060) (0.0062) (0.0060) (0.0066)

Symmetrical Uncert (2555)
2555 0.7425 0.7521 0.7425 0.7325

(-) (0.0039) (0.0035) (0.0039) (0.0043)

Symmetrical Uncert (3145)
3145 0.7533 0.7657 0.7533 0.7432

(-) (0.0049) (0.0068) (0.0049) (0.0049)

Table 15. Random Forest: Classification results for other feature selection techniques (Part 2).
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9.4. Classification Results (Naive Bayes)

Method #Features Accuracy Precision Recall F1 Score

LSH (F=4,B=2)
3162.6 0.5025 0.5385 0.5025 0.5069

(20.93562) (0.0085) (0.0102) (0.0085) (0.0084)

LSH (F=4,B=5)
3153.4 0.5037 0.5413 0.5037 0.5087

(28.18333) (0.0099) (0.0114) (0.0099) (0.0104)

LSH (F=4,B=10)
3136.6 0.5065 0.5410 0.5065 0.5098

(20.59854) (0.0103) (0.0136) (0.0103) (0.0120)

LSH (F=4,B=25)
3129.6 0.5103 0.5486 0.5103 0.5149

(30.31171) (0.0070) (0.0100) (0.0070) (0.0078)

LSH (F=4,B=50)
3143.8 0.5004 0.5354 0.5004 0.5047

(27.93206) (0.0140) (0.0180) (0.0141) (0.0152)

LSH (F=5,B=2)
2562.6 0.4770 0.5132 0.4769 0.4810

(6.94982) (0.0108) (0.0096) (0.0108) (0.0105)

LSH (F=5,B=5)
2549.2 0.4837 0.5174 0.4837 0.4873

(27.28919) (0.0074) (0.0075) (0.0073) (0.0068)

LSH (F=5,B=10)
2579.0 0.4804 0.5156 0.4804 0.4845

(13.83835) (0.0070) (0.0085) (0.0070) (0.0071)

LSH (F=5,B=25)
2548.2 0.4854 0.5142 0.4854 0.4876

(17.93600) (0.0164) (0.0194) (0.0164) (0.0171)

LSH (F=5,B=50)
2535.4 0.4807 0.5134 0.4808 0.4839

(30.44339) (0.0132) (0.0144) (0.0132) (0.0132)

LSH (F=8,B=2)
1700.8 0.4550 0.4848 0.4550 0.4592

(10.32957) (0.0138) (0.0172) (0.0138) (0.0148)

LSH (F=8,B=5)
1709.8 0.4496 0.4794 0.4496 0.4535

(18.28114) (0.0078) (0.0092) (0.0077) (0.0077)

LSH (F=8,B=10)
1684.8 0.4513 0.4776 0.4512 0.4537

(14.09610) (0.0153) (0.0179) (0.0153) (0.0159)

LSH (F=8,B=25)
1673.0 0.4538 0.4835 0.4539 0.4580

(34.72751) (0.0144) (0.0153) (0.0144) (0.0142)

LSH (F=8,B=50)
1659.8 0.4550 0.4846 0.4551 0.4586

(12.11198) (0.0169) (0.0179) (0.0169) (0.0167)

LSH (F=10,B=2)
1452.2 0.4538 0.4797 0.4537 0.4564

(14.04279) (0.0080) (0.0113) (0.0080) (0.0086)

LSH (F=10,B=5)
1438.8 0.4391 0.4657 0.4391 0.4433

(27.55358) (0.0111) (0.0136) (0.0111) (0.0123)

LSH (F=10,B=10)
1423.6 0.4427 0.4678 0.4426 0.4449

(21.19670) (0.0112) (0.0105) (0.0111) (0.0105)

LSH (F=10,B=25)
1407.0 0.4543 0.4829 0.4543 0.4576

(16.00000) (0.0139) (0.0156) (0.0140) (0.0138)

LSH (F=10,B=50)
1414.2 0.4443 0.4660 0.4442 0.4467

(21.62637) (0.0120) (0.0116) (0.0120) (0.0120)

Table 16. Naive Bayes: Classification results for different parameters of LSH-dRST.
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Method #Features Accuracy Precision Recall F1 Score

Original
10000 0.6099 0.6451 0.6098 0.6118

(-) (0.0080) (0.0082) (0.0080) (0.0087)

CV (t=0)
4149 0.5152 0.5703 0.5152 0.5213

(-) (0.0067) (0.0082) (0.0068) (0.0067)

CV (1427)
1427 0.3777 0.4137 0.3776 0.3804

(-) (0.0053) (0.0068) (0.0054) (0.0053)

CV (1686)
1686 0.3997 0.4382 0.3997 0.4022

(-) (0.0037) (0.0065) (0.0037) (0.0040)

CV (2555)
2555 0.4528 0.5050 0.4528 0.4576

(-) (0.0068) (0.0079) (0.0066) (0.0070)

CV (3145)
3145 0.4843 0.5342 0.4844 0.4883

(-) (0.0083) (0.0092) (0.0083) (0.0087)

Cfs (Greedy)
41 0.6083 0.6156 0.6084 0.6053
(-) (0.0039) (0.0049) (0.0039) (0.0043)

Chi Squared (t=0)
113 0.5771 0.5870 0.5771 0.5705
(-) (0.0039) (0.0055) (0.0038) (0.0043)

Chi Squared (1427)
1427 0.5670 0.5880 0.5670 0.5703

(-) (0.0053) (0.0059) (0.0053) (0.0055)

Chi Squared (1686)
1686 0.5609 0.5782 0.5610 0.5628

(-) (0.0065) (0.0071) (0.0066) (0.0067)

Chi Squared (2555)
2555 0.5303 0.5484 0.5302 0.5317

(-) (0.0045) (0.0040) (0.0045) (0.0045)

Chi Squared (3145)
3145 0.5027 0.5261 0.5027 0.5049

(-) (0.0043) (0.0057) (0.0041) (0.0046)

Consistency (Greedy)
30 0.5443 0.5514 0.5443 0.5391
(-) (0.0044) (0.0050) (0.0045) (0.0044)

Correlation (t=0)
10000 0.6147 0.6512 0.6147 0.6170

(-) (0.0059) (0.0063) (0.0059) (0.0069)

Correlation (1427)
1427 0.6409 0.6614 0.6409 0.6420

(-) (0.0056) (0.0056) (0.0057) (0.0057)

Correlation (1686)
1686 0.6363 0.6647 0.6363 0.6401

(-) (0.0058) (0.0049) (0.0058) (0.0055)

Correlation (2555)
2555 0.6211 0.6553 0.6211 0.6254

(-) (0.0059) (0.0069) (0.0058) (0.0061)

Correlation (3145)
3145 0.6239 0.6593 0.6240 0.6275

(-) (0.0061) (0.0067) (0.0061) (0.0065)

Gain Ratio (t=0)
113 0.5771 0.5870 0.5771 0.5705
(-) (0.0039) (0.0055) (0.0038) (0.0043)

Gain Ratio (1427)
1427 0.5670 0.5880 0.5670 0.5703

(-) (0.0053) (0.0059) (0.0053) (0.0055)

Gain Ratio (1686)
1686 0.5609 0.5782 0.5610 0.5628

(-) (0.0065) (0.0071) (0.0066) (0.0067)

Gain Ratio (2555)
2555 0.5303 0.5484 0.5302 0.5317

(-) (0.0045) (0.0040) (0.0045) (0.0045)

Gain Ratio (3145)
3145 0.5027 0.5261 0.5027 0.5049

(-) (0.0043) (0.0057) (0.0041) (0.0046)

Info Gain (t=0)
113 0.5771 0.5870 0.5771 0.5705
(-) (0.0039) (0.0055) (0.0038) (0.0043)

Info Gain (1427)
1427 0.5670 0.5880 0.5670 0.5703

(-) (0.0053) (0.0059) (0.0053) (0.0055)

Info Gain (1686)
1686 0.5609 0.5782 0.5610 0.5628

(-) (0.0065) (0.0071) (0.0066) (0.0067)

Info Gain (2555)
2555 0.5303 0.5484 0.5302 0.5317

(-) (0.0045) (0.0040) (0.0045) (0.0045)

Info Gain (3145)
3145 0.5027 0.5261 0.5027 0.5049

(-) (0.0043) (0.0057) (0.0041) (0.0046)

Table 17. Naive Bayes: Classification results for other feature selection techniques (Part 1).
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Method #Features Accuracy Precision Recall F1 Score

ReliefF (t=0)
7957 0.6087 0.6476 0.6087 0.6120

(-) (0.0061) (0.0069) (0.0060) (0.0067)

ReliefF (1427)
1427 0.6231 0.6475 0.6231 0.6253

(-) (0.0061) (0.0055) (0.0060) (0.0060)

ReliefF (1686)
1686 0.6199 0.6506 0.6198 0.6234

(-) (0.0055) (0.0057) (0.0055) (0.0060)

ReliefF (2555)
2555 0.6093 0.6409 0.6093 0.6118

(-) (0.0071) (0.0077) (0.0071) (0.0074)

ReliefF (3145)
3145 0.6004 0.6367 0.6005 0.6046

(-) (0.0073) (0.0069) (0.0071) (0.0074)

Significance (t=0)
10000 0.6139 0.6475 0.6138 0.6151

(-) (0.0065) (0.0065) (0.0066) (0.0068)

Significance (1427)
1427 0.5670 0.5880 0.5670 0.5703

(-) (0.0053) (0.0059) (0.0053) (0.0055)

Significance (1686)
1686 0.5609 0.5782 0.5610 0.5628

(-) (0.0065) (0.0071) (0.0066) (0.0067)

Significance (2555)
2555 0.5303 0.5484 0.5302 0.5317

(-) (0.0045) (0.0040) (0.0045) (0.0045)

Significance (3145)
3145 0.5027 0.5261 0.5027 0.5049

(-) (0.0043) (0.0057) (0.0041) (0.0046)

Sp-RST (1000)
6171.333 0.5934 0.6321 0.5934 0.5966

(26.01282) (0.0067) (0.0065) (0.0067) (0.0069)

Sp-RST (1250)
5566.000 0.5893 0.6304 0.5893 0.5929

(23.89142) (0.0066) (0.0067) (0.0066) (0.0067)

Sp-RST (2000)
4117.000 0.5736 0.6156 0.5736 0.5772

(18.95257) (0.0058) (0.0071) (0.0058) (0.0061)

Sp-RST (2500)
3205.333 0.5634 0.6050 0.5635 0.5681

(24.35296) (0.0061) (0.0073) (0.0061) (0.0068)

SumSquaresRatio (1427)
1427 0.6680 0.6862 0.6679 0.6689

(-) (0.0018) (0.0032) (0.0017) (0.0021)

SumSquaresRatio (1686)
1686 0.6667 0.6857 0.6666 0.6675

(-) (0.0032) (0.0047) (0.0032) (0.0038)

SumSquaresRatio (2555)
2555 0.6420 0.6680 0.6420 0.6439

(-) (0.0051) (0.0059) (0.0051) (0.0054)

SumSquaresRatio (3145)
3145 0.6480 0.6726 0.6480 0.6493

(-) (0.0037) (0.0032) (0.0038) (0.0039)

Symmetrical Uncert (t=0)
113 0.5771 0.5870 0.5771 0.5705
(-) (0.0039) (0.0055) (0.0038) (0.0043)

Symmetrical Uncert (1427)
1427 0.5670 0.5880 0.5670 0.5703

(-) (0.0053) (0.0059) (0.0053) (0.0055)

Symmetrical Uncert (1686)
1686 0.5609 0.5782 0.5610 0.5628

(-) (0.0065) (0.0071) (0.0066) (0.0067)

Symmetrical Uncert (2555)
2555 0.5303 0.5484 0.5302 0.5317

(-) (0.0045) (0.0040) (0.0045) (0.0045)

Symmetrical Uncert (3145)
3145 0.5027 0.5261 0.5027 0.5049

(-) (0.0043) (0.0057) (0.0041) (0.0046)

Table 18. Naive Bayes: Classification results for other feature selection techniques (Part 2).


