138 research outputs found

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the “near-neighbor attractor” and “near-neighbor repeller”, which are selected from the set of memorized personal best positions and the current swarm based on the principles of “superior-and-nearer” and “inferior-and-nearer”, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Step-Optimized Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is widely used in industrial and academic research to solve optimization problems. Recent developments of PSO show a direction towards adaptive PSO (APSO). APSO changes its behaviour during the optimization process based on information gathered at each iteration. It has been shown that APSO is able to solve a wide range of difficult optimization problems efficiently and effectively. In classical PSO, all parameters are fixed for the entire swarm. In particular, all particles share the same settings of their velocity weights. We propose four APSO variants in which every particle has its own velocity weights. We use PSO to optimize the settings of the velocity weights of every particle at every iteration, thereby creating a step-optimized PSO (SOPSO). We implement four known PSO variants (global best PSO, decreasing weight PSO, time-varying acceleration coefficients PSO, and guaranteed convergence PSO) and four proposed APSO variants (SOPSO, moving bounds SOPSO, repulsive SOPSO, and moving bound repulsive SOPSO) in a PSO software package. The PSO software package is used to compare the performance of the PSO and APSO variants on 22 benchmark problems. Test results show that the proposed APSO variants outperform the known PSO variants on difficult optimization problems that require large numbers of function evaluations for their solution. This suggests that the SOPSO strategy of optimizing the settings of the velocity weights of every particle improves the robustness and performance of PSO

    Niching particle swarm optimization based euclidean distance and hierarchical clustering for multimodal optimization

    Get PDF
    Abstract : Multimodal optimization is still one of the most challenging tasks in the evolutionary computation field, when multiple global and local optima need to be effectively and efficiently located. In this paper, a niching Particle Swarm Optimization (PSO) based Euclidean Distance and Hierarchical Clustering (EDHC) for multimodal optimization is proposed. This technique first uses the Euclidean distance based PSO algorithm to perform preliminarily search. In this phase, the particles are rapidly clustered around peaks. Secondly, hierarchical clustering is applied to identify and concentrate the particles distributed around each peak to finely search as a whole. Finally, a small world network topology is adopted in each niche to improve the exploitation ability of the algorithm. At the end of this paper, the proposed EDHC-PSO algorithm is applied to the Traveling Salesman Problems (TSP) after being discretized. The experiments demonstrate that the proposed method outperforms existing niching techniques on benchmark problems, and is effective for TSP

    Reliable cost-optimal deployment of wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) technology is currently considered one of the key technologies for realizing the Internet of Things (IoT). Many of the important WSNs applications are critical in nature such that the failure of the WSN to carry out its required tasks can have serious detrimental effects. Consequently, guaranteeing that the WSN functions satisfactorily during its intended mission time, i.e. the WSN is reliable, is one of the fundamental requirements of the network deployment strategy. Achieving this requirement at a minimum deployment cost is particularly important for critical applications in which deployed SNs are equipped with expensive hardware. However, WSN reliability, defined in the traditional sense, especially in conjunction with minimizing the deployment cost, has not been considered as a deployment requirement in existing WSN deployment algorithms to the best of our knowledge. Addressing this major limitation is the central focus of this dissertation. We define the reliable cost-optimal WSN deployment as the one that has minimum deployment cost with a reliability level that meets or exceeds a minimum level specified by the targeted application. We coin the problem of finding such deployments, for a given set of application-specific parameters, the Minimum-Cost Reliability-Constrained Sensor Node Deployment Problem (MCRC-SDP). To accomplish the aim of the dissertation, we propose a novel WSN reliability metric which adopts a more accurate SN model than the model used in the existing metrics. The proposed reliability metric is used to formulate the MCRC-SDP as a constrained combinatorial optimization problem which we prove to be NP-Complete. Two heuristic WSN deployment optimization algorithms are then developed to find high quality solutions for the MCRC-SDP. Finally, we investigate the practical realization of the techniques that we developed as solutions of the MCRC-SDP. For this purpose, we discuss why existing WSN Topology Control Protocols (TCPs) are not suitable for managing such reliable cost-optimal deployments. Accordingly, we propose a practical TCP that is suitable for managing the sleep/active cycles of the redundant SNs in such deployments. Experimental results suggest that the proposed TCP\u27s overhead and network Time To Repair (TTR) are relatively low which demonstrates the applicability of our proposed deployment solution in practice

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Simple and Adaptive Particle Swarms

    Get PDF
    The substantial advances that have been made to both the theoretical and practical aspects of particle swarm optimization over the past 10 years have taken it far beyond its original intent as a biological swarm simulation. This thesis details and explains these advances in the context of what has been achieved to this point, as well as what has yet to be understood or solidified within the research community. Taking into account the state of the modern field, a standardized PSO algorithm is defined for benchmarking and comparative purposes both within the work, and for the community as a whole. This standard is refined and simplified over several iterations into a form that does away with potentially undesirable properties of the standard algorithm while retaining equivalent or superior performance on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSODRS) requires only a single user-defined parameter in the positional update equation, and uses minimal additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is wellsuited to optimize

    Towards Swarm Diversity: Random Sampling in Variable Neighborhoods Procedure Using a Lévy Distribution

    Get PDF
    Abstract. Particle Swarm Optimization (PSO) is a nondirect search method for numerical optimization. The key advantages of this metaheuristic are principally associated to its simplicity, few parameters and high convergence rate. In the canonical PSO using a fully connected topology, a particle adjusts its position by using two attractors: the best record stored for the current agent, and the best point discovered for the entire swarm. It leads to a high convergence rate, but also progressively deteriorates the swarm diversity. As a result, the particle swarm frequently gets attracted by sub-optimal points. Once the particles have been attracted to a local optimum, they continue the search process within a small region of the solution space, thus reducing the algorithm exploration. To deal with this issue, this paper presents a variant of the Random Sampling in Variable Neighborhoods (RSVN) procedure using a Lévy distribution, which is able to notably improve the PSO search ability in multimodal problems. Keywords. Swarm diversity, local optima, premature convergence, RSVN procedure, Lévy distribution. Hacia la diversidad de la bandada: procedimiento RSVN usando una distribución de Lévy Resumen. Particle Swarm Optimization (PSO) es un método de búsqueda no directo para la optimización numérica. Las principales ventajas de esta metaheurística están relacionadas principalmente con su simplicidad, pocos parámetros y alta tasa de convergencia. En el PSO canónico usando una topología totalmente conectada, una partícula ajusta su posición usando dos atractores: el mejor registro almacenado por el individuo y el mejor punto descubierto por la bandada completa. Este esquema conduce a un alto factor de convergencia, pero también deteriora la diversidad de la población progresivamente. Como resultado la bandada de partículas frecuentemente es atraída por puntos subóptimos. Una vez que las partículas han sido atraídas hacia un óptimo local, ellas continúan el proceso de búsqueda dentro de una región muy pequeña del espacio de soluciones, reduciendo las capacidades de exploración del algoritmo. Para tratar esta situación este artículo presenta una variante del procedimiento Random Sampling in Variable Neighborhoods (RSVN) usando una distribución de Lévy. Este algoritmo es capaz de mejorar notablemente la capacidad de búsqueda de los algoritmos PSO en problemas multimodales de optimización. Palabras clave. Diversidad de la bandada, óptimos locales, convergencia prematura, procedimiento RSVN, distribución de Lévy
    corecore