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Abstract

Particle swarm optimization (PSO) is widely used in industrial and academic research to solve

optimization problems. Recent developments of PSO show a direction towards adaptive PSO

(APSO). APSO changes its behaviour during the optimization process based on information gath-

ered at each iteration. It has been shown that APSO is able to solve a wide range of difficult

optimization problems efficiently and effectively. In classical PSO, all parameters are fixed for the

entire swarm. In particular, all particles share the same settings of their velocity weights. We

propose four APSO variants in which every particle has its own velocity weights. We use PSO

to optimize the settings of the velocity weights of every particle at every iteration, thereby creat-

ing a step-optimized PSO (SOPSO). We implement four known PSO variants (global best PSO,

decreasing weight PSO, time-varying acceleration coefficients PSO, and guaranteed convergence

PSO) and four proposed APSO variants (SOPSO, moving bounds SOPSO, repulsive SOPSO, and

moving bound repulsive SOPSO) in a PSO software package. The PSO software package is used

to compare the performance of the PSO and APSO variants on 22 benchmark problems. Test

results show that the proposed APSO variants outperform the known PSO variants on difficult

optimization problems that require large numbers of function evaluations for their solution. This

suggests that the SOPSO strategy of optimizing the settings of the velocity weights of every particle

improves the robustness and performance of PSO.
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Chapter 1

Introduction

Optimization problems are problems for which a solution, for example the highest yield or the

lowest cost, is to be found. There are many different types of optimization problems. Optimization

techniques often focus on specific types of optimization problems, whereas this work aims to develop

optimization techniques that efficiently and effectively solve a wide range of optimization problems.

Particle swarm optimization (PSO) [28] is a promising technique from the field of evolutionary

computation that, by its nature, is able to solve a wide variety of optimization problems. We propose

variants to PSO to increase its performance and its ability to solve a wide range of optimization

problems. We particularly focus on adaptive PSO (APSO), i.e., a variant of PSO that can change its

behavior based on information gained during the optimization. We present promising results, that

suggest the proposed APSO variants can solve an even wider range of difficult problems efficiently

and effectively.

1.1 Optimization

Optimization is the process used to find the best solution that addresses a certain problem. This

research focuses on techniques from evolutionary computation, a subfield of heuristic and meta-

heuristic optimization techniques based on successful concepts and patterns found in evolution and

nature [13]. Examples of successful optimization concepts in nature are selective breeding, swarms

following successful individuals, ant colonies trying to maximize their food sources by protecting

plant louse colonies, or birds trying to minimize the distance to their food sources by strategically

placing their nests.

This work focuses on the optimization technique PSO [28]. The swarm of PSO can be envi-

sioned as multiple birds (particles) that search for the best food source (optimum) by using their

inertia, their knowledge, and the knowledge of the swarm. Single particles behave similarly because

traditionally they share the same configuration, i.e., the same settings for their velocity weights;

see below. PSO is selected for the study in this thesis due to its wide use in fields like engineering

[13], its ability to solve hard problems [23], its potential for use as a hybrid incorporating other

optimization techniques [46, 61], and its potential for parallelization [30, 44, 58].
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APSO variants adapt their behavior based on their state or knowledge gained about the objective

function. Further, APSO variants have shown promising results [7, 15, 21, 72, 74, 76, 80]. Based

on these reasons, this work focuses on APSO and proposes new APSO variants. The idea of

the proposed APSO is to assign every particle its own velocity weights. These velocity weights are

optimized during the solution process. Additionally, we combine the proposed APSO approach with

ideas from attractive-repulsive PSO to create further APSO variants. We compare the proposed

APSO variants to other PSO variants and show that the proposed APSO variants have improved

performance on difficult problems that require large numbers of function evaluations for their

solution.

1.2 Optimization Problems

An important part of an optimization problem is the function to be optimized. This function is

called the objective function and is denoted by f in this work. In the literature, the objective

function is also referred to as the fitness function. The variables required by the objective function

are called input variables. In the literature, the input variables are also referred to as the decision

variables. A particular setting of the input variables is referred to as the position and is denoted

by x, x ∈ R
D, where D is the total number of input variables; the literature additionally uses

the terms setting or decision vector. Variables can be constrained by simple bounds or potentially

complex constraints; the set of all feasible positions of the constrained variables is referred to as

the search space. In the literature, the search space is also referred to as the function space. A

neighborhood of a position is a connected subset of the search space containing that position. The

result to which the objective function evaluates a certain position is called the objective value. In

the literature, the objective value is also referred to as the fitness value, the fitness score, or the

solution value. The objective function, its search space, and its constraints are all parts of the

optimization problem.

The maximum of an objective function is the objective value where the objective function has

its highest objective value. The minimum of an objective function is the objective value where

the objective function has its lowest objective value. Figure 1.1 shows the unimodal objective

function f(x) = x2 + 0.5 with a minimum 0.5 at x = 0. Both a maximum and a minimum can

be called an optimum. A local optimum is an optimum within its neighborhood. Figure 1.2 shows

the multimodal objective function f(x) = 10 sin(x) + x and three of its local minima. The global

optimum is the optimum of all local optima; i.e., it is the optimum in the complete search space.

Figure 1.2 shows a global minimum of roughly −18 located close to x = −8 in the search space

[−10, 10].

A maximization problem is an optimization problem for which the position with the highest

2



objective value is to be found. A minimization problem is an optimization problem for which the

position with the lowest objective value is to be found. A maximization problem can be converted

into a minimization problem by negating the objective function. Accordingly, only minimization

problems are discussed in this work. Depending on their properties, optimization problems can be

divided into several types, which we now discuss.

0

2

4

6

8

10

-3 -2 -1 0 1 2 3

f(
x)

x

Figure 1.1: Example of a unimodal objective function.

1.2.1 Types of Optimization Problems

There are many optimization problem types and their descriptions can overlap [23]. A convex

optimization problem has a convex objective function and convex constraints. Geometrically, convex

means that a line drawn from any position z to any other position w in the search space lies on

or above all objective values between z and w. Figure 1.1 shows such a convex function. Linear

programming problems are a subgroup of convex optimization problems. A linear programming

problem has a linear objective function and all constraints are linear functions. A linear function

has the form f(x) = a0 + a1x1 + a2x2 + ... + aDxD.

A smooth non-linear optimization problem has a smooth non-linear objective function or one or

more smooth non-linear constraints. Smooth means that the function has derivatives at all orders.

Smooth non-linear optimization problems can be convex or non-convex. An example of a smooth

non-linear function is f(x) = x3
1 −x2

2 +5. Quadratic programming problems are a subset of smooth

3
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Figure 1.2: Example of a multimodal objective function with three local minima.

non-linear optimization problems. A quadratic programming problem has a quadratic objective

function and linear constraints. An example of a quadratic function is f(x) = 20x2
1 +5x2

2 +x3−10.

Quadratic programming problems can be convex or non-convex [23].

Mixed-integer programming problems have fully or partially discrete positions. For combina-

torial optimization problems, discrete values have to be assigned. An example of a combinatorial

optimization problem is to assign consumers to limited supplies. Combinatorial optimization prob-

lems can have complex constraints. Most mixed-integer and combinatorial optimization problems

are non-convex, making them hard to solve [23].

Global optimization problems are problems for which the global optimum is to be found [50].

A typical global optimization problem can be envisioned as a mountain range where the highest

mountain for maximization or the lowest valley for minimization is to be found. Due to the

possibility of multiple local optima, global optimization problems are often hard to solve. Like

global optimization problems, non-smooth optimization problems generally have multiple local

optima [23]. Additionally, non-smooth optimizations problems are discontinuous in some cases

[23].

Dynamic optimization problems have objective functions that change over time [21, 67], making

them difficult to solve. Dynamic dimension optimization problems have positions with a non-

constant number of dimensions, and the dimensionality of the optimum is also unknown [74].
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A multi-objective optimization problem has multiple objectives; i.e., its objective function re-

turns a vector of objective values. In many cases, for such problems, the Pareto front, which consists

of all non-dominated solutions, is to be found. A solution is said to be non-dominated if there is

no other solution that has better values in all its objectives. Because finding all non-dominated so-

lutions is generally more difficult than finding one solution, multi-objective optimization problems

are generally more difficult to solve than single-objective optimization problems [14, 54].

1.2.2 Examples of Optimization Problems

Objective functions often attempt to model real entities. Creating an objective function that

behaves like the real entity can be a challenging task on its own. Simplified descriptions of real-

world optimization problems include:

• maximize the volume of a structure given a certain amount of building material [68]

• minimize the air resistance of a car body [42]

• minimize the output of certain chemical species by finding an optimal reaction temperature

and pressure given a certain catalyst [20, 37]

• minimize the building cost of a car, ship, engine, or notebook without violating quality con-

straints [10, 18]

• minimize the length of a route that visits certain points at least once [26]

• maximize the potential yield or minimize the risk of a portfolio [4]

• maximize the efficiency of a fuel cell [6]

• minimize the difference between a simulation and experimental measurements [63]

• minimize the operating cost of a fresh water system without violating constraints such as

minimal amount of stored water [79]

• minimize the difference between power generation and demand for scheduling a hydroelectric

power station [7, 36, 43]

1.3 Summary of Results

The proposed APSO variants show promising results on a test suite of 22 benchmark optimization

problems. For large numbers of function evaluations, the proposed APSO variants outperform

implemented known PSO variants. This suggests that the proposed APSO variants improves the

efficiency and effectiveness of PSO.
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1.4 Thesis Outline

The outline of this thesis is as follows. Chapter 2 describes known PSO variants used in this

research and various other PSO variants. Chapter 3 focuses on the proposed APSO variants,

implementation details, standard settings, and their implementation in a PSO software package.

Chapter 4 contains a comparison of the proposed APSO variants against known PSO variants.

Chapter 5 contains conclusions and further work.

6



Chapter 2

Related Work

This chapter outlines different global optimization techniques in Section 2.1 and lists PSO

variants in Section 2.2. The PSO variants described include standard PSO, hybrid PSO, and

APSO.

2.1 Optimization Techniques

Many optimization techniques exist. There are deterministic optimization techniques such as in-

terval optimization [5], branch-and-bound [66], and algebraic techniques [65]. Further, there are

stochastic optimization techniques such as simulated annealing [16], Monte Carlo sampling [12],

stochastic tunneling [34], and parallel tempering [38]. Furthermore, there are heuristic and meta-

heuristic optimization techniques such as genetic algorithms [13], evolutionary strategies [47], evo-

lutionary programming [1], PSO [28], ant colony optimization [71], cuckoo search [75], and memetic

algorithms [9]. By focusing on statistical considerations, the no-free-lunch theorem describes a set of

theorems that state that there is no perfect optimization technique [69]. If there is an optimization

technique “A” that outperforms optimization technique “B” on optimization problem “X”, there

is an optimization problem “Y” for which optimization technique “B” outperforms optimization

technique “A”. The no-free-lunch theorem further states that if optimization technique “C” is spe-

cialized to certain problems, it can be expected to show good performance for these problems, but

it can be expected to show weak performance for other problems. The no-free-lunch theorem also

discusses that creating a general optimization technique that performs well on many optimization

problems is challenging and that such a general optimization technique is likely to be outperformed

on a given optimization problem by specialized solvers, i.e., a better solution is found using the

same number of function evaluations.

2.2 Particle Swarm Optimization

PSO was introduced by Kennedy and Eberhart [28]. The behavior of PSO can be envisioned by

comparing it to bird swarms searching for optimal food sources, where the direction in which a

bird moves is influenced by its current movement, the best food source it ever experienced, and the

7



best food source any bird in the swarm ever experienced. In other words, birds are driven by their

inertia, their personal knowledge, and the knowledge of the swarm. In terms of PSO, the movement

of a particle is influenced by its inertia, its personal best position, and the global best position.

PSO has multiple particles, and every particle consists of its current objective value, its position,

its velocity, its personal best value, that is the best objective value the particle ever experienced,

and its personal best position, that is the position at which the personal best value has been found.

In addition, PSO maintains the global best value, that is the best objective value any particle has

ever experienced, and the global best position, that is the position at which the global best value

has been found. Classical PSO [28] uses the following iteration to move the particles:

x(i)(n + 1) = x(i)(n) + v(i)(n + 1), n = 0, 1, 2, ..., N − 1, (2.1a)

where x(i) is the position of particle i, n is the iteration, n = 0 refers to the initialization, N is the

total number of iterations, and v(i) is the velocity of particle i. In classical PSO, the velocity of

the particle is determined using the following iteration:

v(i)(n + 1) = v(i)(n) + 2r
(i)
1 (n)[x(i)

p (n) − x(i)(n)] + 2r
(i)
2 (n)[xg(n) − x(i)(n)],

n = 0, 1, 2, ..., N − 1, (2.1b)

where xp is the personal best position, and xg is the global best position. x
(i)
p (n)−x(i)(n) calculates

a vector directed towards the personal best position, and xg(n)−x(i)(n) calculates a vector directed

towards the global best position. Both r
(i)
1 and r

(i)
2 are random vectors that contain values uniformly

distributed between 0 and 1. The notation r
(i)
1 (n) is meant to denote that a new random vector is

generated for every particle i and iteration n.

PSO can focus on either convergence or diversity at any iteration. To focus on diversity means

particles are scattered, searching a large area coarsely. To focus on convergence means particles are

close to each other, searching a small area intensively. A promising strategy is to focus on diversity

in early iterations and convergence in later iterations [13, 55].

2.2.1 Global Best Particle Swarm Optimization

Global best PSO (GBPSO) [13] is a standard PSO variant. GBPSO [28] uses the following iteration

to determine the velocities:

v(i)(n + 1) = wv(i)(n) + c1r
(i)
1 (n)[x(i)

p (n) − x(i)(n)] + c2r
(i)
2 (n)[xg(n) − x(i)(n)],

n = 0, 1, 2, ..., N − 1. (2.2)

The velocity weights are the inertia weight w, the personal best weight c1, and the global best

weight c2. Compared to the classical PSO described in [28], GBPSO uses an inertia weight w and

does not require the personal c1 and global best weight c2 be set to 2 as in Equation (2.1b).
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Figure 2.1 shows the flowchart of GBPSO. First, the swarm is initialized; i.e., the position and

velocity of particles are randomly initialized within the search space. After that, the objective

values of particles are calculated. The first objective values and positions are automatically the

personal best values and the personal best positions. The global best value and the global best

position are set to the objective value and position of the particle with the best objective value

in the entire swarm. After the initial step, all particles are moved to their new positions using

Equation (2.1a). All objective values are evaluated again. Personal best positions are updated for

particles that have a new objective value that is better than the old personal best value. The global

best position is updated if there is any particle with an objective value that is better than the old

global best value. Again, all particles are moved to their new positions using Equation (2.1a). The

algorithm continues with evaluating the objective values and updating the positions, the personal

best values, the personal best positions, the global best value, and the global best position. The

algorithm stops if a termination criterion, such as a limit on the number of iterations, is reached.

Figure 2.1: Flowchart of PSO.

2.2.2 Decreasing Weight Particle Swarm Optimization

Decreasing weight particle swarm optimization (DWPSO) is similar to GBPSO, but the inertia

weight is decreased linearly over time [13]. The idea behind DWPSO is to focus on diversity in

early iterations and convergence in late iterations. DWPSO uses the following iteration to determine
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the velocities:

v(i)(n + 1) = w(n)v(i)(n) + c1r
(i)
1 (n)[x(i)

p (n) − x(i)(n)] + c2r
(i)
2 (n)[xg(n) − x(i)(n)],

n = 0, 1, 2, ..., N − 1, (2.3)

where the inertia weight w at every iteration n is calculated using the following equation:

w(n) = ws − (ws − we)
n

N
, (2.4)

where w(n) is the inertia weight at iteration n, ws is the inertia weight designated for the first

iteration, and we is the inertia weight designated for the last iteration N .

The inertia weight w at every iteration n depends on the total number of iterations N . Therefore,

changing the total number of iterations N will change the behavior of the algorithm at every

iteration. This also means that the algorithm cannot be restarted from a certain point if the total

number of iterations N is changed.

2.2.3 Time-Varying Acceleration Coefficients PSO

Time-varying Acceleration Coefficients PSO (TVACPSO) does not only change the inertia weight

w, but also the acceleration coefficients, i.e., the personal c1 and global best weight c2, over time

[13, 55]. The idea is to have a high diversity for early iterations and a high convergence for late

iterations. The inertia weight w is changed as in DWPSO using Equation (2.4). TVACPSO uses

the following iteration to determine the velocities:

v(i)(n + 1) = w(n)v(i)(n) + c1(n)r
(i)
1 (n)[x(i)

p (n) − x(i)(n)] + c2(n)r
(i)
2 (n)[xg(n) − x(i)(n)],

n = 0, 1, 2, ..., N − 1, (2.5)

where the personal best weight c1 and the global best weight c2 at every iteration n are calculated

using the following equations:

c1(n) = c1s − (c1s − c1e)
n

N
, (2.6a)

c2(n) = c2s − (c2s − c2e)
n

N
, (2.6b)

where c1(n) is the personal best weight at iteration n, c2(n) is the global best weight at iteration

n, c1s is the personal best weight designated for the first iteration, c1e is the personal best weight

designated for the last iteration N , c2s is the global best weight designated for the first iteration,

and c2e is the global best weight designated for the last iteration N .

2.2.4 Guaranteed Convergence Particle Swarm Optimization

Guaranteed Convergence PSO (GCPSO) guarantees that the global best particle searches within

a dynamically adapted radius at all times [64]. The technique addresses the problem of stagnation
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and increases local convergence [64] by using the global best particle to randomly search in a

adaptively changing radius at every iteration. GCPSO, as described in [64], uses Equation (2.3) to

determine the velocities v(i)(n) and Equation (2.4) to change the inertia weight w over time. The

personal best weight c1 and the global best weight c2 are kept constant. GCPSO uses the following

iteration to update the position of the global best particle:

v(ig)(n + 1) = −x(ig)(n) + xg(n) + w(n)v(ig)(n) + ρ(n)(1 − 2r3(n)),

n = 0, 1, 2, ..., N − 1, (2.7a)

where ig is the index of the particle that updated the global best value most recently. The expression

−x(ig)(n)+xg(n) is used to reset the position of particle ig to the global best position. The random

numbers in r3(n) are uniformly distributed between 0 and 1. The search radius is controlled by the

search radius parameter ρ. The search radius parameter ρ is calculated using:

ρ(n + 1) =























2ρ(n), if š(n + 1) > sc,

1
2ρ(n), if ǎ(n + 1) > ac,

ρ(n), otherwise,

(2.7b)

where sc is the success threshold and ac is the failure threshold. Success means using Equation

(2.7a) results in an improved global best value and position, and failure means it does not. The

numbers of consecutive successes š(n) and failures ǎ(n) are calculated using:

š(n + 1) =











0, if ǎ(n + 1) > ǎ(n),

š(n) + 1, otherwise,

(2.7c)

ǎ(n + 1) =











0, if š(n + 1) > š(n),

ǎ(n) + 1, otherwise.

(2.7d)

2.2.5 Other Particle Swarm Optimization Variants

Local best PSO differs from GBPSO in that the global best position xg used in Equation (2.1b)

is replaced with the global best position of a certain subset of particles [13]. Therefore, different

particles may not use the same global best position xg. A fully informed PSO is introduced in [27].

The paper recommends to cluster particles into k clusters based on their position after initialization.

The neighborhood size is increased as the algorithm proceeds, trying to achieve a totally connected

swarm, i.e., one cluster, after 80% of the total number of iterations N . Local best PSO is studied

by comparing the weight factor free canonical PSO and fully informed PSO for different topologies;

i.e., neighborhood structures and neighborhood sizes, in [29]. Weight factor free canonical PSO does

not use any weights; i.e., no inertia weight, no personal best weight, and no global best weight.
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The paper shows that large neighborhoods contribute to convergence, whereas small neighborhoods

contribute to diversity [29].

Mutation TVACPSO combines time-varying acceleration coefficients, time-varying inertia weight,

mutation, maximum velocity, and reinitialization of particles [55]. If any particle stagnates, it is

reinitialized. If the global best particle stagnates, it is mutated. Further, one particle is selected

randomly and values at random dimensions in its position and velocity are mutated.

An attractive-repulsive PSO [56] jumps between an attractive phase and a repulsive phase based

on the diversity in the swarm. The attractive phase focuses on convergence, and the repulsive

phase focuses on diversity. The attractive phase uses Equation (2.1b) from GBPSO to calculate

the velocities v(i). The repulsive phase uses Equation (2.1b) with a repulsive personal best −c1 and

a repulsive global best −c2 weight to calculate the velocities. Two thresholds are used, a minimal

diversity threshold for which the algorithm switches to the repulsive phase, and a maximal diversity

threshold for which the algorithm switches to the attractive phase.

The cooperative combinatorial PSO [31] is specialized for solving mixed-integer and combina-

torial optimization problems. Cooperative combinatorial PSO uses multiple swarms to optimize

different parts of the problem by moving particles towards the global best position of their swarm

and the global best positions of neighboring swarms [31].

There are PSO variants specialized for solving dynamic optimization problems. Multi-swarm

charged PSO and self-organizing scouts PSO were developed for solving dynamic optimization

problems [45]. Multi-swarm charged PSO uses charged sub-swarms that repel each other to maintain

diversity. Self-organizing scouts PSO splits the swarm if a local optimum is found, one part focusing

on the local optimum and the other part on finding another optimum. The cooperative charged PSO

is a combination of a cooperative PSO and a multi-swarm charged PSO [53]. Cooperative charged

PSO divides the search space by dimensions, and every sub-swarm optimizes the objective values

for certain dimensions. Cooperative charged PSO uses a context vector that holds the values of the

global best sub-positions. Particles use the context vector to fill dimensions in the position that

their sub-swarm does not optimize. Cooperative combinatorial PSO uses the concept of particles

that are charged and repel each other as well as particles that are neutral and do not repel each

other to increase diversity and counter dynamic changes in the objective function.

Vector evaluated PSO [48] and multi-objective APSO [25] are specialized for solving multi-

objective optimization problems. Vector evaluated PSO uses one swarm for every objective. Each

swarm evaluates the objective values based on the particular objective upon which it focuses and

uses one of the others swarms global best particles as its global best particle [45].

Optimized PSO uses PSO to find good parameter settings for the whole swarm [40]. Optimized

PSO runs multiple PSO instances and uses the optima from the individual runs to optimize the

parameter settings [40].
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2.2.6 Hybrid Particle Swarm Optimization

Hybrid optimization techniques combine two or more optimization techniques. A hybrid PSO

technique combines PSO with one or more optimization techniques.

The memetic PSO combines linear search strategies with PSO [59]. Similarly, fuzzy adaptive

Nelder–Mead PSO uses fuzzy adaptive PSO as a global search technique and applies a Nelder–Mead

simplex search to the global best position after every iteration [27].

The co-evolutionary PSO [61] uses multiple competing swarms. Objective values are calculated

using the objective function and the global best value of a competing swarm. Contrary to co-

evolutionary PSO, the multi-swarm co-evolution PSO [77] uses cooperating swarms. Multi-swarm

co-evolution PSO uses one master swarm that contains the global best particles of all swarms. One

half of the particles of all slave swarms move towards their personal best position, the global best

position, and the global best position of the master swarm. The other half uses crossover and

mutation. Particles in the master swarm move towards the global best position and the global best

position of the previous iteration.

2.2.7 Adaptive Particle Swarm Optimization

A promising research direction within PSO is the use of adaptive concepts and patterns [7, 15,

21, 72, 74, 76, 80]. APSO variants adapt their behavior based on information gathered as the

optimization proceeds.

There are many APSO variants that adaptively change some or all of the velocity weights w, c1,

and c2. PSO with dynamic adaption [76] uses an evolutionary speed factor that measures personal

best value changes and an aggregation degree that measures the relative position of particles in the

objective space to calculate the inertia weight w. The APSO in [82] adapts the inertia weight of

every particle based on its objective value, the global best value, and the global worst value. The

APSO introduced in [2] changes its inertia weight based on swarm diversity to reduce premature

convergence and hence increases overall convergence. The swarm diversity is calculated as a function

of positions. Different variations of the self-tuning APSO are discussed in [72, 73, 78]. Self-tuning

APSO as described in [72] grants every particle its own personal best weight c
(i)
1 and global best

weight c
(i)
2 . Self-tuning APSO initializes the personal and global best weights randomly for every

particle and then moves them towards the values of the particle that yielded the most updates of

the global best position, where the magnitude of the movement is based on the total number of

iterations [73]. In an update of self-tuning APSO, the personal and global best weights are moved in

ever smaller steps for increasing iterations [72]. In a recent update of self-tuning APSO, the authors

show how to self-adapt the inertia weights w(i), the personal best weights c
(i)
1 , and the global best

weights c
(i)
2 [78]. The controlled APSO adapts the distance of single particles to the global best
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particle to address the problems of stagnating particles, exponentially increasing velocity sizes, and

trapping of particles at local optima [22]. A parameter is calculated to adapt the personal best

weights c
(i)
1 and the global best weights c

(i)
2 . The inertia weight APSO [82] grants every particle its

own inertia weight w(i) and adapts the inertia weights as a function of the objective values and the

global best objective value. The self-learning APSO adapts personal best weights c
(i)
1 of particles

based on environment feedback, i.e., feedback given by the objective function [3]. The personal

best weights c
(i)
1 are updated using a function of that environment feedback [3].

The APSO introduced in [24] adaptively sets the velocity weights w, c1, and c2 of the swarm

based on the average velocity. The four-state APSO remains in one of four states and changes its

personal best weight c1 and the global best weight c2 based on the current state [80]. The four

states used are exploration, exploitation, convergence, and jumping-out. The state is selected for

every iteration using a fuzzy set on an evolutionary factor. The evolutionary factor is calculated

using the mean separation of the particles of the swarm. Table 2.1 shows the changes in the personal

best weight c1 and the global best weight c2 based on the state.

Table 2.1: Four-state APSO: change of c1 and c2 depending on the state.

State c1 c2

Exploration Increase Decrease

Exploitation Slight increase Slight decrease

Convergence Slight increase Slight increase

Jumping-out Decrease Increase

A two-state APSO is introduced in [32]. Two-state APSO avoids being trapped at local optima

and the failure to accurately find the global optima by putting particles in either an explorative or

an exploitative state. In the explorative state, the particles use Equation (2.1b) for updating the

position. In the exploitative state, the particles are driven away from their personal best and worst

positions. The state of a particle is determined by comparing the distance between its position and

the global best position to an activity threshold that is decreased over time.

Certain APSO variants adapt entities such as the random distributions used. Fuzzy APSO uses

a scaled random velocity to speed up particles that have a velocity v(i) smaller than the minimum

velocity threshold vmin [35]. This speed up counters decreasing velocities that might hold the

algorithm in a local optimum. Fuzzy APSO calculates the scale factor and vmin using a fuzzy set

and expert rules.

Mutation is used by several APSO variants. In PSO with adaptive mutation [15], mutation

is used to increase diversity and to reduce the chance of premature convergence. The personal
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best position of every particle is mutated based on the variance of the objective values and the

aggregation degree of the particles, i.e., the relative positions of the particles in the solution space.

Mutation is used by [62] to avoid early convergence. The global best particle is changed with a

certain probability, which is determined by the variance in the objective values. Low variance leads

to many mutations, whereas high variance leads to few mutations.

Detection and response APSO is used to solve dynamic optimization problems by monitoring

the global best and second best positions [21]. Detection and response APSO assumes that a change

in the objective function occurred if any of these two positions change their objective value between

iterations. If the objective function changes, particles and the global best particle are reinitialized

at random positions.

Dimension adaptive PSO addresses dynamic dimension optimization problems by using a prob-

ability equation to calculate the number of dimensions for positions [74]. An adaptive vector is used

to determine which dimension is added or deleted in case the number of dimensions of a position

changes.

Multi-objective APSO addresses highly constrained multi-objective problems by using a gradient-

based search on non-dominated particles [25]. The weight of the gradient-based technique is adap-

tively changed based on the distribution of non-dominated particles.
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Chapter 3

Approaches and Implementation

This chapter describes the proposed APSO variants in Section 3.1, states standard settings and

implementation details for the implemented known PSO and proposed APSO variants in Section

3.2, and introduces the implemented PSO software package in Section 3.3.

3.1 Adaptive Particle Swarm Optimization

As part of this work, different APSO variants have been implemented. Step-optimized PSO

(SOPSO) is described in Section 3.1.2, moving bound SOPSO (MSOPSO) is described in Sec-

tion 3.1.3, repulsive SOPSO (RSOPSO) is described in Section 3.1.4, and moving bound repulsive

SOPSO (MRSOPSO) is described in Section 3.1.5.

3.1.1 Inspiration

The idea for our novel concept is inspired by PSO techniques that give every particle its own velocity

weights [72, 78]. These techniques often move the velocity weights of all particles to the velocity

weights of a certain particle [78] that is selected based on superior performance. Self-tuning APSO

moves the velocity weights towards the settings of the particle that yielded the most updates of

the global best position [72, 78]. Controlled APSO adaptively changes the personal best weights

c
(i)
1 and the global best weights c

(i)
2 based on the distance between the positions and the global

best position [22]. Inertia weight APSO [82] grants every particle its own inertia weight w(i) that

is changed using a function of the objective values and the global best objective value. Inspired

by optimized PSO [40], we go further by treating the problem of finding good velocity weights

as another optimization problem within the original optimization problem. Optimized PSO uses

multiple PSO subswarms, each with its own parameter settings, in an inner iteration to solve the

original optimization problem. The parameter settings are then optimized in an outer iteration of

PSO for a fixed number of iterations. A detailed description of optimized PSO including a flow

diagram can be found in [40].
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3.1.2 Step-Optimized Particle Swarm Optimization

In step-optimized PSO (SOPSO) every particle has its own velocity weights, i.e., its inertia weight

w(i), its personal best weight c
(i)
1 , and its global best weight c

(i)
2 . As mentioned above, the proposed

SOPSO treats the problem of finding good velocity weights for every particle as an optimization

problem. A particular setting of the velocity weights is referred to as the position of the velocity

weights. An objective function for the velocity weights is used to calculate how well the positions of

the velocity weights perform for solving the optimization problem. Using the calculated objective

values of the velocity weights, SOPSO optimizes the velocity weights using a PSO variant such as

GBPSO, TVACPSO, or DWPSO at every iteration. The velocity weights are optimized in a fixed

search space for the velocity weights.

Compared to optimized PSO [40], as described above, the SOPSO approach of optimizing after

every iteration is more efficient because we only run one PSO instance for exactly one iteration a

total number of N − 1 times. Another advantage of the proposed SOPSO approach is that the

velocity weights can adapt themselves to dynamic changes, i.e., different conditions, for example

different distributions of the particles, at different iterations.

SOPSO allows the selection of certain particles for mutation (see Table 3.5); mutation is used

in other APSO variants such as [62]. If a particle is selected for mutation, its velocity weights are

reinitialized at every iteration. This mutation is used to maintain diverse behavior of particles and to

better address the dynamic optimization problem of optimizing the velocity weights. The problem

of optimizing the velocity weights is a dynamic optimization problem because a good setting for a

certain iteration and situation, for example, requiring velocity weights that yield diversity might be

a bad setting for another iteration and situation, for example requiring velocity weights that yield

convergence.

SOPSO maintains the global best value, the global best position, the global best objective value

of the velocity weights, the global best position of the velocity weights, and the particles, where

every particle stores its current objective value, current position, personal best value, personal best

position, velocity weights, objective value of the velocity weights, personal best objective value of

the velocity weights, and personal best position of the velocity weights.

SOPSO uses the following iterations with the notation as used in Equations (2.1a) and (2.2) to

update the velocities of particles:

v(i)(n + 1) = w(i)(n)v(i)(n) + c
(i)
1 (n)r

(i)
1 (n)[x(i)

p (n) − x(i)(n)] + c
(i)
2 (n)r

(i)
2 (n)[xg(n) − x(i)(n)],

n = 0, 1, 2, ..., N − 1, (3.1)

where w(i) are the inertia weights, c
(i)
1 are the personal best weights, and c

(i)
2 are the global best

weights of particle i.

The objective function for the velocity weights is used to calculate the success of particles.
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Whereas the success of particles depends on their velocity weights, there are directly employable,

more accurate, and reliable entities to measure the performance of particles. In particular, we use

the improvement in the objective value of the particle, the number of updates of the global best

position the particle yielded, and the number of updates of the personal best position the particle

yielded to measure the success of particles. We propose the following objective function for the

velocity weights, selected based on good performance in tests:

f̃ (i)(n) = e(i)(n)
(

1 + ľu(i)
p (n) + ǧu(i)

g (n)
)

, n = 1, 2, ..., N − 1, (3.2)

where f̃ (i)(n) is the objective value of the velocity weights for particle i at iteration n, e is the

normalized improvement, u
(i)
p is the number of times particle i updated its local best position, u

(i)
g

is the number of times particle i updated the global best position, ľ is the local weight factor used

to weigh the number of local best updates u
(i)
p , and ǧ is the global weight factor used to weigh the

number of global best updates u
(i)
g . The value of ǧ is usually set to a higher number as the value

of ľ as updates to the global best position are more important. By using the objective value of the

velocity weights f̃ , the personal best and the global best position of the velocity weights can be

found. Alternative objective functions are for example to only use the normalized improvements

e(i) or the local and global best update counters. The normalized improvements e(i) are calculated

using the following equation, selected based on good performance in tests:

e(i)(n) =
δ(i)(n)

š(n)
, (3.3a)

where š(n) is the normalization sum (described below) and δ(i)(n) is the difference in the objective

values calculated using:

δ(i)(n) = f (i)(n) − f (i)(n − 1), (3.3b)

where f (i) is the objective value of particle i.

In practice, early iterations might yield large absolute values of δ(i), whereas late iterations

might only yield small absolute values of δ(i). Therefore, we propose the following normalization to

give good positions of the velocity weights from late iterations a chance of being selected as local

or global best positions of the velocity weights. In other words, the normalization sum š(n) makes

objective values of the velocity weights from different iterations n comparable. The normalization

sum š(n) is calculated as follows:

š(n) =











∑np

i=1 max(−δ(i)(n), 0), if any δ(i)(n) < 0,

1, otherwise,

(3.3c)

where np is the number of particles in the swarm. This normalization is selected based on good

performance in tests.
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The velocity weights are optimized using PSO. The following iterations are applied to update

the positions of the velocity weights:

x̃(i)(n + 1) = x̃(i)(n) + ṽ(i)(n + 1), n = 1, 2, 3, ..., N − 1, (3.4a)

ṽ(i)(n + 1) = w̃(n)ṽ(i)(n) + c̃1(n)r̃
(i)
1 (n)[x̃(i)

p (n) − x̃(i)(n)]

+c̃2(n)r̃
(i)
2 (n)[x̃(i)

g (n) − x̃(i)(n)] , n = 1, 2, ..., N − 1, (3.4b)

where x̃ is the position of the velocity weights, ṽ is the velocity of the velocity weights, x̃p is

the personal best position of the velocity weights, x̃g is the global best position of the velocity

weights, w̃ is the inertia weight for optimizing the velocity weights, c̃1 is the personal best weight

for optimizing the velocity weights, c̃2 is the global best weight for optimizing the velocity weights,

and r̃
(i)
1 and r̃

(i)
2 are random vectors. The components in the random vectors r̃

(i)
1 and r̃

(i)
2 are

uniformly distributed between 0 and 1 for every particle i and iteration n. Equations (3.4) are used

after Equation (2.1a) has been used to update the positions of the particles and the new objective

values have been calculated. The first component of x̃(i) is used as the inertia weight w(i), the

second component of x̃(i) is used as the personal best weight c
(i)
1 , and third component of x̃(i) is

used as the global best weight c
(i)
2 in Equation (3.1).

Figure 3.1 shows the flowchart of SOPSO. Steps that have a pale yellow background are also

part of PSO (Figure 2.1) and steps that have a yellow background are introduced for SOPSO.

First, the swarm is initialized; i.e., the position of particles, the velocity of particles, and positions

of the velocity weights are randomly initialized within their search spaces. The objective values

of the particles are calculated using the objective function. If the termination criterion is not

fulfilled, the algorithm continues with moving all particles to their new positions using Equation

(3.1). All objective values are evaluated again. If there are particles with objective values better

than their personal best value, their personal best positions and values are updated and their local

best update counter u
(i)
p is increased by 1. The global best update counter u

(i)
g is increased for the

particle that updated the global best position and value if there is such a particle. After that, the

objective values of the velocity weights are calculated for all particles using Equation (3.2). The

first objective values and positions of the velocity weights are automatically the personal best values

and positions of the velocity weights. The global best position and value of the velocity weights are

selected by finding the particle with the best objective value of the velocity weights. The positions

of the velocity weights are updated using Equations (3.4). The termination criterion is checked

and if it is still not satisfied, the algorithm continues with updating the positions, evaluating the

objective values, updating the personal best values and positions, updating the local best update

counters, updating the global best position and value, and updating the global best update counter.

This time, personal best positions and values of the velocity weights are only updated if the new

objective values of the velocity weights are better. The global best position and value of the velocity
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weights are updated if the particle with the best objective value of the velocity weights in the swarm

has a better value than the global best objective value of the velocity weights. Again, the positions

of the velocity weights are updated using Equations (3.4). The algorithm stops if a termination

criterion is reached.

Figure 3.1: Flowchart of SOPSO.

3.1.3 Moving Bound Step-Optimized Particle Swarm Optimization

Moving bound SOPSO (MSOPSO) is a variant of SOPSO. MSOPSO gives users more influence

on the behavior of SOPSO. MSOPSO makes it possible to use expert knowledge on PSO and

the optimization problem addressed. Instead of using a large, fixed search space for the velocity
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weights, MSOPSO uses a configurable search space for the velocity weights. Therefore, by using

MSOPSO, concepts of PSO variants such as TVACPSO [13, 55] or four-state APSO [80] can be

applied. MSOPSO makes it possible to optimize the velocity weights and at the same time roughly

base them on the iteration number or the mean separation. This concept is inspired by the idea of

using the mean separation to influence the velocity weights, as for example in four-state APSO [80],

or to use the number of iterations to influence the velocity weights, as for example in TVACPSO

or DWPSO [13, 55]. The distribution with which velocity weights are initialized or reinitialized

is moved according to the search space for the velocity weights. The following equations are used

because we have observed that they effectively move the bounds for optimizing the velocity weights

between the absolute lower and upper boundaries.

The following equations are proposed to move the bounds for optimizing the inertia weights:

wl(n) = w̌l + sw(n)(w̌u − w̌l) − sw(n)w̌w, (3.5a)

wu(n) = wl(n) + w̌w. (3.5b)

The inertia weights w(i)(n) are optimized between the lower inertia weight bound wl(n) and the

upper inertia weight bound wu(n). The absolute lower inertia weight w̌l is the lowest value any

lower inertia weight bound wl(n) can have and the absolute upper inertia weight w̌u is the highest

value any upper inertia weight wu(n) can have. The lower and upper inertia weight bounds, wl

and wu, move based on the mean separation of the inertia weight sw(n) calculated from:

sw(n) =











1 − s(n), if w̌f < 0,

s(n), otherwise.

(3.5c)

If the inertia weight bound flag w̌f is negative, the search space for optimizing the inertia weights

w(i) moves from the absolute upper inertia weight w̌u towards the absolute lower inertia weight w̌l

for a decreasing mean separation s(n). For example, a high mean separation at a certain iteration

might yield inertia weights w(i) optimized in the range of 0.7 to 0.9, and a low mean separation at

another iteration might yield inertia weights w(i) optimized in the range of 0.4 to 0.6. If the inertia

weight bound flag is positive, the bound range for optimizing the inertia weights moves from the

absolute lower inertia weight bound w̌l towards the absolute upper inertia weight bound w̌u for a

decreasing mean separation s(n).

Analogously, the following equations are used to move the bounds for optimizing the personal

best weights c
(i)
1 :

c1l(n) = č1l + sc1(n)(č1u − č1l) − sc1(n)č1w, (3.6a)

c1u(n) = c1l(n) + č1w. (3.6b)

The personal best weights c
(i)
1 (n) are optimized between the lower personal best weight bound c1l(n)

and the upper personal best weight bound c1u(n). The absolute lower personal best weight č1l and
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the absolute upper personal best weight č1u bound the values of the lower and upper personal best

weight bounds. The lower c1l and upper personal best weight bounds c1u move based on the mean

separation of the personal best weight sc1(n), calculated from:

sc1(n) =











1 − s(n), if č1f < 0,

s(n), otherwise.

(3.6c)

If the personal best weight bound flag č1f is negative, the search space for optimizing the personal

best weights c
(i)
1 moves from the absolute upper personal best weight bound č1u towards the absolute

lower personal best weight bound č1l for a decreasing mean separation s(n). For example, a high

mean separation at a certain iteration might yield personal best weights c
(i)
1 optimized in the range

of 1.5 to 1.9, and a low mean separation at another iteration might yield personal best weights c
(i)
1

optimized in the range of 0.6 to 1.0.

The following equations are used to move the bounds for optimizing the global best weights c
(i)
2 :

c2l(n) = č2l + sc2(n)(č2u − č2l) − sc2(n)č2w, (3.7a)

c2u(n) = c2l(n) + č2w. (3.7b)

The global best weights ci
2(n) are optimized between the lower global best weight bound c2l(n)

and the upper global best weight bound c2u(n). The absolute lower global best weight č2l and the

absolute upper global best weight č2u bound the values of the lower and upper global best weight

bounds. The lower c2l and upper global best weight bounds c2u move based on the mean separation

of the global best weight sc2(n), calculated from:

sc2(n) =











1 − s(n), if č2f < 0,

s(n), otherwise.

(3.7c)

If the global best weight bound flag č2f is positive, the search space for optimizing the global best

weights c
(i)
2 moves from the absolute lower global best weight bound č2l towards the absolute upper

global best weight bound č2u for a decreasing mean separation s(n). For example, a high mean

separation at a certain iteration might yield global best weights c
(i)
2 optimized in the range of 0.8 to

1.2, and a low mean separation at another iteration might yield global best weights c
(i)
2 optimized

in the range of 1.6 to 2.0.

The mean separation s(n) is calculated using the following equation:

s(n) =
1

np

np
∑

i=1

s(i)(n), (3.8a)

where s(i)(n) is the mean separation of particle i from all other particles. A high value for the mean

separation s(n) implies particles are far scattered in the search space, and a low value for the mean
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separation s(n) implies the particles are condensed at a certain point in the search space. The sum

over all mean separations
∑np

i=1 s(i)(n) is divided by the number of particles np, guaranteeing a

normalized mean separation in [0, 1] because all s(i) are in [0, 1].

We use the Euclidean distance to calculate the mean separation of any particle as used in four-

state APSO [80]. The only difference between the equation used by four-state APSO [80] and

Equation (3.8b) is that we divide by the square root of the number of dimensions. Specifically, the

mean separation of a single particle s(i) from all other particles is calculated using:

s(i)(n) =
1√

D(np − 1)

np
∑

j=1

√

√

√

√

D
∑

d=1

(x
(i)
d (n) − x

(j)
d (n)

bd

)2

, (3.8b)

where b = u − l.

The size of the search space b is calculated subtracting the lower bounds of the search space l

from the upper bounds of the search space u. The term
x
(i)
d

(n)−x
(j)
d

(n)

bd
calculates the separation

of particles i and j normalized to the search space b for component d. Because the sum over the

separations from particle i to all particles is normalized by dividing it by the number of particles

np and the square root of the number of dimensions
√

D, the mean separations s(i) of particles are

in [0, 1].

If calculating the mean separation s(n) for every iteration takes too much computational time,

MSOPSO offers the option to use the percentage of remaining iterations m(n) instead. Using an

approximation of the state of the system, instead of an actual measurement of the state of the

system, might be sufficient to choose the right adaptation strategy for solving certain problems. If

the percentage of remaining iterations is used, Equations (3.5), (3.6), and (3.7) replace the mean

separation s(n) with the percentage of remaining iterations m(n). The percentage of remaining

iterations m(n) is calculated using the following equation:

m(n) = 1 − n

N
.

The decreasing behavior of the percentage of remaining iterations m(n) is desired because the mean

separation s(n) is expected to behave similarly; i.e., it is expected to decrease over time because

all particles are attracted towards the global best position xg.

Figure 3.2 shows the flowchart of MSOPSO. The flow of MSOPSO is similar to the flow of

SOPSO. Steps that have a yellow background are also part of SOPSO (Figure 3.1), and steps

that have an orange background are introduced for MSOPSO. At every iteration n, including

initialization, MSOPSO sets the search space for the velocity weights based on the mean separation

or the percentage of remaining iterations.
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Figure 3.2: Flowchart of MSOPSO.
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3.1.4 Repulsive Step-Optimized Particle Swarm Optimization

Repulsive SOPSO (RSOPSO) combines the proposed SOPSO concepts of optimizing the velocity

weights w(i), c
(i)
1 , and c

(i)
2 with an attractive and a repulsive phase as used by the attractive-

repulsive PSO [56]. The proposed RSOPSO switches between phases based on the mean separation

of particles. If RSOPSO is in the attractive phase and converges, it switches to the repulsive phase

once it has reached a small enough mean separation. This can counter the trapping at a local

optimum that might not be the global optimum. If RSOPSO is in the repulsive phase, it switches

to the attractive phase once it has reached a large enough mean separation. Similarly, four-state

APSO uses the mean separation to decide in which of four states it is [80]. The attractive-repulsive

PSO [56] switches between phases based on a calculated diversity factor that is calculated similarly

to the mean separation.

We propose the following objective function for the velocity weights that adapts itself to the

current phase:

f̄ (i)(n) =











f̃ (i)(n), if a(n) = 1,

−s(i)(n), if a(n) = 2,

(3.9)

where f̄ (i)(n) is the objective value of the velocity weights used in RSOPSO and a(n) is the phase

indicator. If RSOPSO is in the attractive phase a(n) = 1, the objective value of the velocity

weights f̄ (i)(n) is set to f̃ (i)(n) as calculated in Equation (3.2). If RSOPSO is in the repulsive

phase a(n) = 2, the objective value of the velocity weights f̄ (i)(n) is set to the negation of the

mean separation s(i)(n) as calculated in Equation (3.8b). This objective function for the velocity

weights was selected for RSOPSO because good performance of the velocity weights is indicated by

f̃ (i)(n) in the attractive phase and −s(i)(n) in the repulsive phase. In particular, in the attractive

phase we focus on convergence by rewarding good objective values of the velocity weights f̃ (i)(n)

as in SOPSO, and in the repulsive phase we focus on diversity by rewarding high mean separations

s(i)(n).

The attractive-repulsive PSO [56] switches to the repulsive phase if its diversity factor goes below

an absolute lower threshold value and switches to the attractive phase if its diversity factor goes

above an absolute upper threshold value. We use the same mechanism but replace the diversity

factor with the mean separation. Specifically, we use the following equation to switch between

phases:

a(n + 1) =























1, if a(n) = 2 ∧ s(n) > su(n),

2, if a(n) = 1 ∧ s(n) < sl(n),

a(n), otherwise ,

(3.10a)

where sl(n) is the mean separation absolute lower threshold and su(n) is the mean separation
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absolute upper threshold.

RSOPSO starts in the attractive phase a(n) = 1. If the mean separation s(n) calculated by

Equation (3.8a) falls below the mean separation absolute lower threshold sl(n), RSOPSO changes

from the attractive phase a(n) = 1 to the repulsive phase a(n+1) = 2. If the mean separation s(n)

calculated by Equation (3.8a) rises above the mean separation absolute upper threshold, RSOPSO

changes from the repulsive phase a(n) = 2 to the attractive phase a(n + 1) = 1; this is depicted in

Figure 3.3.

Figure 3.3: State diagram of RSOPSO.

To the best of our knowledge, the adaptive change of the mean separation absolute lower sl(n)

and upper threshold su(n) is novel. This concept allows for increased accuracy and convergence as

the algorithm proceeds. Furthermore, it can be used if good values for the mean separation absolute

lower and the mean separation absolute upper threshold are not known. The mean separation

absolute lower sl(n) and upper threshold su(n) are adapted as follows:

sl(n + 1) =











sl(n)/s̆l, if a(n) = 2 ∧ s(n) > su(n),

sl(n), otherwise,

(3.10b)

su(n + 1) =











su(n)/s̆u, if a(n) = 2 ∧ s(n) > su(n),

su(n), otherwise,

(3.10c)

where s̆l is the mean separation absolute lower divisor and s̆u is the mean separation absolute upper

divisor. The mean separation absolute lower threshold sl(n + 1) is divided by the mean separation

absolute lower divisor s̆l and the mean separation absolute upper threshold su(n + 1) is divided by

the mean separation absolute upper divisor s̆u if the algorithm switches from the repulsive phase to

the attractive phase at iteration n. Both the mean separation absolute lower sl(n + 1) and upper

threshold su(n+1) remain the same if the algorithm does not switch from the repulsive phase to the

attractive phase; i.e., the mean separation absolute lower sl(n + 1) and upper threshold su(n + 1)
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are only changed after a full cycle through the attractive and repulsive state.

Figure 3.4 shows the flowchart of RSOPSO. The flow of RSOPSO is similar to the flow of SOPSO.

Steps that have a cyan background are introduced for RSOPSO. Different from SOPSO, RSOPSO

calculates the mean separation after the local and global best positions are updated. RSOPSO

requires the mean separation to decide whether a phase switch is required. If so, the objective

function for the velocity weights and the search space for the velocity weights are switched to

their counterparts in the new phase. The search space for the velocity weights in the attractive

phase must mainly yield positive velocity weights. The search space for the velocity weights in

the repulsive phase must mainly yield negative velocity weights. All velocity weights have to be

reinitialized in the new search space for the velocity weights if a phase switch occurred. The

personal best positions and values of the velocity weights and the global best position and value

of the velocity weights are reset because if their values were discovered in the attractive phase,

they cannot be used in the repulsive phase and vice versa. In case a switch from the repulsive to

the attractive phase occurs, i.e., one phase cycle is finished, the mean separation absolute lower

and upper threshold are updated using Equations (3.10b) and (3.10c). If no phase switch occurs,

RSOPSO follows the flow of SOPSO in optimizing the velocity weights; however, it uses Equation

(3.9) instead of Equation (3.2) as the objective function for the velocity weights.

3.1.5 Moving Bound Repulsive Step-Optimized PSO

Moving Bound Repulsive SOPSO (MRSOPSO) is the combination of MSOPSO and RSOPSO; i.e.,

the search space for the velocity weights is moved as described for MSOPSO and an attractive and

a repulsive phase are used as described for RSOPSO. Therefore, all novel parts of MSOPSO and

RSOPSO are novel for MRSOPSO, and all known parts of MSOPSO and RSOPSO are adapted

for MRSOPSO.

MRSOPSO typically uses the mean separation instead of the percentage of remaining iterations

for calculating the search space for the velocity weights because the mean separation is calculated

for the RSOPSO part of MRSOPSO. The mean separation used for MRSOPSO is different from

the one used for MSOPSO and RSOPSO. The normalized mean separation s(n) is replaced by a

proposed normalized mean separation s̄(n) relative to the mean separation absolute lower sl(n) and

upper threshold su(n), thereby yielding values better distributed in [0, 1]. The normalized mean

separation s̄(n) is calculated using the following equation:

s̄(n) =























s(n)−sl(n)
su(n)−sl(n) , if sl(n) < s(n) < su(n),

0, if s(n) ≤ sl(n),

1, if s(n) ≥ su(n).

(3.11)

MRSOPSO uses the following equations instead of Equations (3.5c), (3.6c), and (3.7c) used by
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Figure 3.4: Flowchart of RSOPSO.
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MSOPSO:

mw(n) =











1 − s̄(n), if w̌f < 0,

s̄(n), otherwise,

mc1(n) =











1 − s̄(n), if č1f < 0,

s̄(n), otherwise,

mc2(n) =











1 − s̄(n), if č2f < 0,

s̄(n), otherwise.

The values of the absolute lower inertia weight w̌l, the absolute upper inertia weight w̌1, the inertia

weight bound width w̌w, the inertia weight bound flag w̌f , and accordingly č1l, č1u, č1w, č1f , č2l,

č2u, č2w, and č2f are different for the repulsive and the attractive phase. Specifically, these values

are set to create positive personal and global best weights in the attractive phase but negative

personal and global best weights in the repulsive phase. Phase switches are detected according to

Figure 3.3. Like RSOPSO, MRSOPSO uses Equation (3.9) as objective function for the velocity

weights.

Figure 3.5 shows the flowchart of MRSOPSO. Steps that have an orange background are also

part of MSOPSO (Figure 3.2), and steps that have a cyan background are also part of RSOPSO

(Figure 3.4). The only difference with RSOPSO is that MRSOPSO calculates the mean separation

to set the search space for the velocity weights before initializing the positions of the velocity weights.

MRSOPSO calculates the search space for the velocity weights based on the mean separation.

3.2 Standard Settings and Implementation Details

This section focuses on the implementation details and standard settings used. If individual PSO

variants share the same argument settings, they are not repeated. The parameters of SOPSO,

MSOPSO, RSOPSO, and MRSOPSO have been optimized empirically and set to good, general-

purpose settings; i.e., we tried different settings for every parameter and chose the best performing

one. Implementation details and settings used for GBPSO are described in Section 3.2.1, for

DWPSO in Section 3.2.2, for TVACPSO in Section 3.2.3, for GCPSO in Section 3.2.4, for SOPSO

in Section 3.2.5, for MSOPSO in Section 3.2.6, for RSOPSO in Section 3.2.7, and for MRSOPSO

in Section 3.2.8.

3.2.1 Global Best Particle Swarm Optimization

For PSO, certain aspects, such as when the algorithm is stopped or how search space violations are

handled, can be implemented differently. We stop GBPSO if the iteration number n reaches the
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Figure 3.5: Flowchart of MRSOPSO.
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total number of iterations N . If a particle leaves the search space, it is returned along the path

from which it left; that is, ever smaller parts of the negated velocity are applied to the particle. In

particular, we use the following iteration:

x̆(i)(ň + 1) = x̆(i)(ň) − v̆(i)(ň + 1), ň = 0, 1, ..., N̆ − 1, (3.12a)

where x̆(i) is the reduced position, which will be taken as position x(i) as soon as it is in the search

space, v̆(i) is the reduced velocity, ň is the reducing iteration count, and N̆ is the total number

of reducing iterations. The initial reduced position x̆(i)(0) is set to the position x(i)(n + 1) that

violated the search space. The reduced velocities v̆(i) are calculated using:

v̆(i)(ň + 1) = αv̆(i)(ň), ň = 0, 1, ..., N̆ − 1, (3.12b)

where α is the reduction factor, and the initial reduced velocity v̆(i)(0) is set to the velocity v(i)(n+1)

that caused the search space violation. Equation (3.12a) is applied starting with the first reducing

iteration ň = 1, until the reduced position x̆(i) is in the search space or the limit on the total number

of reducing iterations N̆ is reached. In the unlikely case that the final reduced position x̆(i)(N̆) is

not in the search space, it is reinitialized at the components for which it violates the search space.

By using this technique instead of simply setting the particle to the bound for which it violated

the search space, we decrease the low chance of having all positions on a bound and stopping the

optimization for that dimension. In particular, we use this technique and the values chosen for the

reduction factor α and for the total number of reducing iterations N̆ based on rudimentary tests.

Therefore, it might be possible to find better settings for the reduction factor α and for the total

number of reducing iterations N̆ using additional tests. Better settings for the reduction factor

α and for the total number of reducing iterations N̆ would likely increase the performance of all

eight implemented PSO variants because all variants use the same search space violation handling

settings.

We set the values of the inertia weight w, the personal best weight c1, the global best weight

c2, the reduction factor α, and the total number of reducing iterations N̆ according to Table 3.1.

Some papers propose to set the personal best weight c1 and the global best weight c2 to 2 [64] but

we set the personal best weight c1 and the global best weight c2 to 1.49618 as proposed in [52] from

their observations in tests.

3.2.2 Decreasing Weight Particle Swarm Optimization

DWPSO shares many of its implementation details with GBPSO. DWPSO differs from GBPSO in

that the inertia weight w is decreased for increasing iterations n using Equation (2.4). DWPSO is

configured according to Table 3.2.
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Table 3.1: GBPSO Settings

Parameter Label Setting

inertia weight w 0.7298 [52]

personal best weight c1 1.49618 [52]

global best weight c2 1.49618 [52]

reduction factor α 0.54

total number of reducing iterations N̆ 4

Table 3.2: DWPSO Settings

Parameter Label Setting

inertia weight designated for the first iteration ws 0.9 [13]

inertia weight for the last iteration we 0.4 [13]

personal best weight c1 2 [60]

global best weight c2 2 [60]

3.2.3 Time-Varying Acceleration Coefficients PSO

TVACPSO shares many of its implementation details with DWPSO. TVACPSO differs from DW-

PSO in that the personal best weight c1 and global best weight c2 are changed depending on the

iteration n. TVACPSO is configured according to Table 3.3.

Table 3.3: TVACPSO Settings

Parameter Label Setting

inertia weight designated for first iteration ws 0.9 [13]

inertia weight designated for last iteration we 0.4 [13]

personal best weight designated for first iteration c1s 2.5 [55]

personal best weight designated for last iteration c1e 0.5 [55]

global best weight designated for first iteration c2s 0.5 [55]

global best weight designated for last iteration c2e 2.5 [55]
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3.2.4 Guaranteed Convergence Particle Swarm Optimization

GCPSO shares many of its implementation details with DWPSO. GCPSO only differs from DWPSO

in that it uses Equation (2.7a) to update the position of the global best particle. GCPSO is

configured according to Table 3.4.

Table 3.4: GCPSO Settings

Parameter Label Setting

inertia weight designated for the first iteration ws 0.9 [13]

inertia weight for the last iteration we 0.4 [13]

personal best weight c1 2 [64]

global best weight c2 2 [64]

initial search radius argument ρ(0) 1 [64]

failure threshold ac 5 [64]

success threshold sc 15 [64]

3.2.5 Step-Optimized Particle Swarm Optimization

If positions of the velocity weights leave the search space, they are moved back according to the

principles used for positions that leave the search space. In particular, we use a reduction factor

for the velocity weights α̃ that can have a different value than the reduction factor α.

SOPSO can be used with different objective functions for the velocity weights; we use Equation

(3.2). This concept can be helpful to evaluate what entities can be used to measure the performance

of particles.

SOPSO has the option to configure the number of iterations after which the velocity weights

are optimized and an option to configure the number of iterations used for optimizing the velocity

weights. Both options are set to 1, meaning that Equation (3.4a) is applied exactly once for every

iteration. SOPSO offers different methods for normalizing the objective values of the velocity

weights; we use the normalization as in Equations (3.3). All other parameters of SOPSO are set

according to Table 3.5.

3.2.6 Moving Bound Step-Optimized Particle Swarm Optimization

The implementation of MSOPSO follows the implementation of SOPSO closely. The only difference

is that the search space used for optimizing the velocity weights is changed based on the mean

separation during optimization. The search space for the velocity weights is used to determine the
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Table 3.5: SOPSO Settings

Parameter Label Setting

search space for the velocity weights - [−0.5, 2.0]

search space for the personal best weights - [−1.0, 4.2]

search space for the global best weights - [−1.0, 4.2]

weight factor for the local updates ľ 1

weight factor for the global updates ǧ 6

number of iterations after which velocity weights are optimized - 1

number of iterations for which velocity weights are optimized - 1

method for normalizing the objective values of the velocity weights - Equations (3.3)

inertia weight for optimizing velocity weights for first iteration ws 0.9

inertia weight for optimizing velocity weights for last iteration we 0.4

personal best weight for optimizing velocity weights for first iteration c1s 2.5

personal best weight for optimizing velocity weights for last iteration c1e 0.5

global best weight for optimizing velocity weights for first iteration c2s 0.5

global best weight for optimizing velocity weights for last iteration c2e 2.5

percent of velocity weights reinitialized after every iteration - 33%

iterations after which to reset best positions & values of velocity weights - 50

initialization space for inertia weights - [0.4, 0.9]

initialization space for personal best weights - [0.5, 2.5]

initialization space for global best weights - [0.5, 2.5]

reinitialization space for inertia weights - [0.5, 0.8]

reinitialization space for personal best weights - [0.6, 2.4]

reinitialization space for global best weights - [0.6, 2.4]

reduction factor of the velocity weights α̃ 0.5
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bounds for initializing and reinitializing positions of the velocity weights at all times. MSOPSO is

configured according to Table 3.6.

Table 3.6: MSOPSO Settings

Parameter Label Setting

absolute lower inertia weight bound w̌l 0.3

absolute upper inertia weight bound w̌u 0.9

inertia weight bound width w̌w 0.2

inertia weight bound flag w̌f −1

absolute lower personal best weight bound č1l 0.5

absolute upper personal best weight bound č1u 2.5

personal best weight bound width č1w 0.2

personal best weight bound flag č1f −1

absolute lower global best weight bound č2l 0.6

absolute upper global best weight bound č2u 2.4

global best weight bound width č2w 0.2

global best weight bound flag č2f 1

3.2.7 Repulsive Step-Optimized Particle Swarm Optimization

The implementation of RSOPSO follows the implementation of SOPSO. RSOPSO differs from

SOPSO by using two phases. The idea of RSOPSO is to move the velocity weights towards

convergence-yielding velocity weights in the attractive phase and towards diversity-yielding ve-

locity weights in the repulsive phase. Phases are changed based on the mean separation. Further,

RSOPSO uses Equation (3.9) as the objective function for the velocity weights instead of Equation

(3.2) used by SOPSO. RSOPSO provides the option to stop the algorithm after a set number of

complete phase cycles, i.e., completion of one attractive phase and one repulsive phase, without

improvement in the global best position and value. Because we compare the PSO variants by look-

ing at the results given a fixed number of function evaluations, RSOPSO is stopped if the iteration

number n reaches the total number of iterations. RSOPSO is configured according to Table 3.7.

3.2.8 Moving Bound Repulsive Step-Optimized PSO

The implementation of MRSOPSO follows the implementation of SOPSO, RSOPSO, and MSOPSO

closely. The search space used for optimizing the velocity weights is calculated at every iteration
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Table 3.7: RSOPSO Settings

Parameter Label Setting

mean separation absolute upper threshold su(n) mean separation after initialization

mean separation absolute lower threshold sl(n) su(n)
100

mean separation absolute lower divisor s̆l 10

mean separation absolute upper divisor s̆u 2.5

and used to determine the bounds for initializing and reinitializing position of the velocity weights.

MRSOPSO is configured according to Table 3.8.

3.3 Software Package

From the many known PSO variants, we implemented GBPSO [28], DWPSO [13], TVACPSO [55],

and GCPSO [64] and use them for comparison. We further implemented the proposed APSO

variants SOPSO, MSOPSO, RSOPSO, and MRSOPSO. The PSO variants implemented can be

used in different combinations; see Appendix A. The arguments of the PSO software package

implemented in Fortran are described in Appendix A, and a sample call to the PSO software

package is found in Appendix B.

Although we only test the implemented PSO software package on common unimodal and multi-

modal continuous optimization test problems, the implemented PSO software package can be used

to solve convex, linear programming, smooth non-linear, quadratic programming, mixed-integer,

combinatorial, global, non-smooth, dynamic, and multi-objective optimization problems.

All PSO variants in the implemented PSO software package can be used to solve global and

non-smooth optimization problems [23, 73]. The proposed RSOPSO can be used to solve dynamic

optimization problems because it uses a repulsive phase. Although the implemented software pack-

age can be applied to solve smooth non-linear optimization and quadratic programming problems,

there are optimization techniques specialized for solving smooth non-linear and quadratic program-

ming optimization problems. Such optimization techniques usually use gradient information. The

implemented PSO software package can be used for solving convex and linear programming opti-

mization problems. However, there are specialized techniques that can be expected to solve convex

optimization problems more efficiently using the specific structure of such problems.

The implemented PSO software package does not implement any PSO variant that can find the

Pareto front to multi-objective problems, but it could be extended to include such a PSO variant.

The implemented PSO software package cannot be used to solve dynamic dimension optimiza-

tion problems, but it could be extended to address such problems.
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Table 3.8: MRSOPSO Settings

Parameter Label Setting

absolute lower inertia weight bound for attractive phase w̌l 0.3

absolute upper inertia weight bound for attractive phase w̌u 0.9

inertia weight bound width for attractive phase w̌w 0.2

inertia weight bound flag for attractive phase w̌f −1

absolute lower personal best weight bound for attractive phase č1l 0.5

absolute upper personal best weight bound for attractive phase č1u 2.5

personal best weight bound width for attractive phase č1w 0.2

personal best weight bound flag for attractive phase č1f −1

absolute lower global best weight bound for attractive phase č2l 0.6

absolute upper global best weight bound for attractive phase č2u 2.4

global best weight bound width for attractive phase č2w 0.2

global best weight bound flag for attractive phase č2f 1

absolute lower inertia weight bound for repulsive phase w̌l 0.3

absolute upper inertia weight bound for repulsive phase w̌u 0.9

inertia weight bound width for repulsive phase w̌w 0.2

inertia weight bound flag for repulsive phase w̌f −1

absolute lower personal best weight bound for repulsive phase č1l −2.5

absolute upper personal best weight bound for repulsive phase č1u −0.5

personal best weight bound width for repulsive phase č1w 0.2

personal best weight bound flag for repulsive phase č1f 1

absolute lower global best weight bound for repulsive phase č2l −2.5

absolute upper global best weight bound for repulsive phase č1u −0.5

global best weight bound width for repulsive phase č2w 0.2

global best weight bound flag for repulsive phase č2f −1
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Chapter 4

Experiments

To compare the implemented PSO variants, 22 optimization benchmark problems have been

selected based on their use in the literature. PSO variants that perform well for the 22 optimization

benchmark problems will likely perform well for other optimization problems such as found in

industry because the benchmark problems cover a wide range of topographies. This chapter includes

descriptions of the 22 optimization benchmark problems in Section 4.1, the experimental setup in

Section 4.2, and the optimization results in Section 4.3.

4.1 Test Functions

Twenty-two optimization test problems have been implemented and are used to compare different

PSO and proposed APSO variants. The sources for the benchmark problems are as follows. All the

test problems from the semi-continuous challenge [8] have been implemented, including the Ackley

test problem Equation (4.1), the Alpine test problem Equation (4.2), the Griewank test problem

Equation (4.9), the Parabola test problem Equation (4.14), the Rosenbrock test problem Equation

(4.16), and the Tripod test problem Equation (4.22).

Further, some of the optimization test problems described in [41] have been selected based on

their topography to guarantee a diverse set of problems, including the Six-hump Camel Back test

problem Equation (4.3), the De Jong 5 test problem Equation (4.4), the Deceptive test problem

Equation (4.5), the Drop Wave test problem Equation (4.6), the Easom test problem Equation (4.7),

the Goldstein–Price test problem Equation (4.10), the Axis Parallel Hyper-ellipsoid test problem

Equation (4.11), the Michalewicz test problem Equation (4.12), and the Shubert test problem

Equation (4.19) [8].

We also use some of the optimization test problems from [81], where we selected diverse test

problems to expand our benchmark set. These include the Generalized Penalized test problem

Equation (4.8), the Non-continuous Rastrigin test problem Equation (4.13), the Rastrigin test

problem Equation (4.15), the Schwefel’s P2.22 test problem Equation (4.18), the Sphere test prob-

lem Equation (4.20), and the Step test problem Equation (4.21) [81].

We use one optimization problem from [40], namely Schaffer’s F6 test problem Equation (4.17).
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In the following equations, x ∈ R
d is the position of a particle, xd is the component of x at index

d, and auxiliary functions are labeled g. For uniformity, benchmark problems that have a optimum

different from 0 were shifted so that their optimum is located at 0.

The Ackley test problem has the following objective function [8]:

f1(x) = −20 exp

(

− 0.2

√

∑D
d=1 x2

d

D

)

− exp

(

∑D
d=1 cos(2πxd)

D

)

+ 20 + exp(1). (4.1)

Ackley is used in the search space [−30, 30]30 and its minimum is given in [8, 81]. Ackley can be

generalized to search spaces of arbitrary dimension. Ackley is said to be difficult to solve because

the global optimum has a narrow neighborhood [8]. Figure 4.1 shows Ackley for two dimensions.
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Figure 4.1: The topography of Ackley, Equation (4.1), for two dimensions.

The Alpine test problem has the following objective function [8]:

f2(x) =

D
∑

d=1

|xd sin(xd) + 0.1xd|. (4.2)

Alpine is used in the search space [−10, 10]10 and its minimum is given in [8]. Alpine can be

generalized to search spaces of arbitrary dimension. Alpine has multiple local optima [8]. Figure

4.2 shows Alpine for two dimensions.

The Six-hump Camel Back test problem has the following objective function [41]:

f3(x1, x2) =
(

4 − 2.1x2
1 +

x4
1

3

)

x2
1 + x1x2 + (−4 + 4x2

2)x
2
2 + 1.03162845348987734475. (4.3)
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Figure 4.2: The topography of Alpine, Equation (4.2), for two dimensions.

Six-hump camel back is used in the search space [−2, 2]2 and the optimum is given in [41]. Six-hump

Camel Back cannot be generalized to search spaces of arbitrary dimension. Two of the six local

minima of Six-hump Camel Back are global minima [41].

The De Jong 5 test problem has the following objective function [41]:

f4(x1, x2) =
(

0.002 +

25
∑

ď=1

[

ď + (x1 − ǎď)
6 + (x2 − b̌ď)

6
]

−1
)

−1

−0.99800383779444934440, (4.4)

where the constant vectors ǎ and b̌ are set according to Appendix C. De Jong 5 is used in the

search space [−65.536, 65.536]2 and the optimum is given in [11]. De Jong 5 cannot be generalized

to search spaces of arbitrary dimension. De Jong 5 is multimodal [41].
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The Deceptive Type 3 test problem has the following objective function [41]:

f5(x) = −
[

1

n

30
∑

d=1

g1(xd)

]β

, (4.5)

where g1(xd) =







































−xd

čd
+ 4

5 , if 0 ≤ xd ≤ 4
5 čd,

5xd

čd
− 4, if 4

5 čd < xd ≤ čd,

5∗(xd−čd)
čd−1 + 1, if čd < xd ≤ 1+4čd

5 ,

xd−1
1−čd

+ 4
5 , if 1+4čd

5 < xd ≤ 1,

where β = 2.5 and č is a constant vector containing unique numbers randomly selected and set

according to Appendix C. Setting č guarantees reproducible and comparable results for solving

Deceptive Type 3 with different solvers. Deceptive Type 3 is used in the search space [0, 1]30

and its minimum is determined via optimization using multiple PSO variants and many number

of function evaluations. Deceptive Type 3 cannot be generalized to search spaces of arbitrary

dimension. Deceptive Type 3 has a total of 330 −1 local optima and the neighborhoods of the local

optima are 530 − 1 times larger than the neighborhood of the global optimum [41].

The Drop Wave test problem has the following objective function [41]:

f6(x1, x2) = −1 + cos
(

12 +
√

x2
1 + x2

2

)

1
2 (x2

1 + x2
2) + 2

+ 1. (4.6)

Drop Wave is used in the search space [−5.12, 5.12]2 and the optimum is given in [57]. Drop Wave

cannot be generalized to search spaces of arbitrary dimension. Drop Wave is multimodal [41].

The Easom test problem has the following objective function [41]:

f7(x1, x2) = − cos(x1) cos(x2) exp−(x1−π)2−(x2−π)2 +1. (4.7)

Easom is used in the search space [−100, 100]2 and the optimum is given in [41]. Easom cannot be

generalized to search spaces of arbitrary dimension. Easom has only one minimum, but the area

leading towards this minimum is small compared to the complete search space [41].
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The Generalized Penalized test problem has the following objective function [81]:

f8(x) =
π

D

[

10 sin2(πg1(x1))

+
D−1
∑

d=1

[

(g1(xd) − 1)2(1 + 10 sin2(πg1(xd+1)))
]

+(g1(xd) − 1)2

]

+

D
∑

d=1

g2(xd, 10, 100, 4), (4.8)

where g1(z) = 1 +
1

4
(z + 1),

g2(y1, y2, y3, δ) =























y3(y1 − y2)
δ, if y1 > y2,

0, if − y2 ≤ y1 ≤ y2,

y3(−y1 − y2)
δ, if y1 < −y2,

where the auxiliary function g2 has exactly one input value labeled z and the auxiliary function g3

has exactly four input values labeled y1, y2, , y3, and δ. Generalized Penalized is used in the search

space [−50, 50]30 and its minimum is given in [81]. Generalized Penalized can be generalized to

search spaces of arbitrary dimension. Generalized Penalized is multimodal [81].

The Griewank test problem has the following objective function [8]:

f9(x) =

∑D
d=1(xd − 100)2

4000
−

D
∏

d=1

cos
(xd − 100√

d

)

+ 1. (4.9)

Griewank is used in the search space [−300, 300]30 and its minimum is given in [8, 81]. Griewank

can be generalized to search spaces of arbitrary dimension. Griewank has many local optima with

small neighborhoods [8].

The Goldstein–Price test problem has the following objective function [41]:

f10(x1, x2) =
[

1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

·
[

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
]

− 3. (4.10)

Goldstein–Price is used in the search space [−2, 2]2 and the optimum is given in [41]. Goldstein–

Price cannot be generalized to search spaces of arbitrary dimension. Goldstein–Price is unimodal

[41].

The Axis parallel Hyper-ellipsoid test problem has the following objective function [41]:

f11(x) =

D
∑

d=1

(dx2
d). (4.11)

Axis parallel hyper-ellipsoid is used in the search space [−5.12, 5.12]100 and its minimum is given in

[51]. Axis parallel Hyper-ellipsoid can be generalized to search spaces of arbitrary dimension. Axis

parallel Hyper-ellipsoid is continuous, convex, and unimodal [41].
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The Michalewicz test problem has the following objective function [41]:

f12(x) = −
D
∑

d=1

sin(xd)

[

sin

(

dx2
d

π

)]2m

+ 9.6601517156413477494, (4.12)

where m defines the steepness of slopes, and larger m settings yield increased steepness and difficulty

[41]. Michalewicz is used in the search space [0, π]10, m is set to 10, and the optimum is given in

[41]. Michalewicz can be generalized to search spaces of arbitrary dimension. Michalewicz has D!

local optima [41].

The Non-continuous Rastrigin test problem has the following objective function [81]:

f13(x) =
D
∑

d=1

[

g1(xd)
2 − 10 cos(2πg1(xd)) + 10

]

, (4.13)

where g1(z) =











z, if |z| < 0.5,

round(2z)
2 , if |z| ≥ 0.5,

and round is a function rounding the given value to the next closest integer value. Non-continuous

Rastrigin is used in the search space [−5.12, 5.12]30 and its minimum is given in [81]. Non-continuous

Rastrigin can be generalized to search spaces of arbitrary dimension. Non-continuous Rastrigin is

multimodal [81].

The Parabola test problem has the following objective function [8]:

f14(x) =

D
∑

d=1

x2
d. (4.14)

Parabola is used in the search space [−20, 20]200 and its minimum is given in [8]. Parabola can

be generalized to search spaces of arbitrary dimension. Parabola is a convex optimization problem

and should be solvable by local optimization techniques. However, random-based optimization

techniques may not be able to solve the problem accurately [8]. Figure 4.3 shows Parabola for two

dimensions.

The Rastrigin test problem has the following objective function [55]:

f15(x) =

D
∑

d=1

[

x2
d − 10 cos(2πxd) + 10

]

. (4.15)

Rastrigin is used in the search space [−10, 10]30 and its minimum is given in [41, 81]. Rastrigin can

be generalized to search spaces of arbitrary dimension. Rastrigin is based on De Jong 5, but it has

more local minima due to the cosine term [41, 55]. Figure 4.4 shows Rastrigin for two dimensions.

The Rosenbrock test problem has the following objective function [8]:

f16(x) =

D−1
∑

d=1

(

(1 − xd)
2 + 100(x2

d − xd+1)
2
)

. (4.16)

Rosenbrock is used in the search space [−10, 10]30 and its minimum is given in [8]. Rosenbrock can

be generalized to search spaces of arbitrary dimension. Rosenbrock is said to be misleadingly flat
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Figure 4.3: The topography of Parabola, Equation (4.14), for two dimensions.

towards the global optimum, and the exact optimum is hard to find for high dimensions [8]. Figure

4.5 shows Rosenbrock for two dimensions.

The Schaffer’s F6 test problem has the following objective function [40]:

f17(x1, x2) = 0.5 +
sin2

(
√

x2
1 + x2

2

)

− 0.5

(1 + 0.001(x2
1 + x2

2))
2

. (4.17)

Schaffer’s F6 is used in the search space [−100, 100]2 and its minimum is given in [39]. Schaffer’s F6

cannot be generalized to search spaces of arbitrary dimension. Schaffer’s F6 is multimodal [33, 40].

The Schwefel’s P2.22 test problem has the following objective function [81]:

f18(x) =

D
∑

d=1

|xd| +
D
∏

d=1

|xd|. (4.18)

Schwefel’s P2.22 is used in the search space [−10, 10]30 and its minimum is given in [81]. Schwefel’s

P2.22 can be generalized to search spaces of arbitrary dimension. Schwefel’s P2.22 is unimodal [81].

The Shubert test problem has the following objective function [41]:

f19(x1, x2) = −
5
∑

d=1

d cos((d + 1)x1 + d)

5
∑

d=1

d cos((d + 1)x2 + d)

+186.73090883102399029667. (4.19)
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Figure 4.4: The topography of Rastrigin, Equation (4.15), for two dimensions.

Shubert is used in the search space [−10, 10]2 and the optimum is given in [19]. Shubert cannot be

generalized to search spaces of arbitrary dimension. Shubert is multimodal [41].

The Sphere test problem has the following objective function [55]:

f20(x) =

D
∑

d=1

x2
d. (4.20)

Sphere is used in the search space [−100, 100]100 and its minimum is given in [81]. Sphere can be

generalized to search spaces of arbitrary dimension. Sphere is unimodal [55].

The Step test problem has the following objective function [81]:

f21(x) =
D
∑

d=1

(⌊xd + 0.5⌋)2, (4.21)

where ⌊ ⌋ is the floor function, meaning ⌊xd + 0.5⌋ results in the largest integer y such that y ≤
xd + 0.5. Step is used in the search space [−100, 100]30 and its minimum is given in [81]. Step can

be generalized to search spaces of arbitrary dimension. Step is unimodal [81].
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Figure 4.5: The topography of Rosenbrock, Equation (4.16), for two dimensions.

The Tripod test problem has the following objective function [8]:

f22(x1, x2) = g1(x2)(1 + g1(x1)) + |x1 + 50g1(x2)(1 − 2g1(x1))|

+|x2 + 50(1 − 2g1(x2))|, (4.22)

where g1(z) =











1, if z ≥ 0,

0, if z < 0.

Tripod is used in the search space [−100, 100]2 and its minimum is given in [8]. Tripod cannot

be generalized to search spaces of arbitrary dimension. Tripod is discontinuous [8]. Even though

Tripod has only two dimensions, global optimization techniques might get trapped in the large

neighborhoods of the two local minima [8].

4.2 Experimental Setup

If not stated otherwise, the parameters are set to the values described in Section 3.2. We compare

all PSO variants on four test cases using four different, fixed numbers of function evaluations.

The first test uses np = 100 particles and N = 74, 999 iterations for a total of 7,500,000 function

evaluations (including initialization). The second test uses np = 100 particles and N = 14, 999
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iterations N for a total of 1,500,000 function evaluations (including initialization). The third test

uses np = 100 particles and N = 2, 499 iterations for a total of 250,000 function evaluations

(including initialization). The fourth test uses np = 30 particles and N = 99 iterations for a total

of 3,000 function evaluations (including initialization). We use double precision instead of real

precision. Double precision has 15 significant digits, a sign indicator, and a range of approximately

10−308 to 10308, compared to real which has 7 significant digits, a sign indicator, and a range of

approximately 1038 to 10−38 [70]. The accuracy has an influence on the optimization results as

shown by rudimentary experiments. The reason for choosing double precision is that the results

are less affected by rounding errors, thus increasing the versatility of the PSO software package.

Due to space considerations, solutions are reported to an accuracy of 10 decimal places.

4.3 Results

Optimization techniques are usually evaluated by comparing them to other optimization techniques

in terms of the number of function evaluations required to find a given optimum or the best

objective value found [69]. We follow the approach of reporting the optimum given a certain

number of function evaluations. We particularly focus on results given for large numbers of function

evaluations (FE), i.e., one to several million, because the proposed APSO variants were developed

with a focus on efficiently and effectively solving difficult problems that require such high numbers

of function evaluations for their solution.

We look at the minimum and average solutions. The minimum solutions are the best solutions

from three optimization runs using different random seeds. The average (mean) solutions are the

average over the solutions from three optimization runs using different random seeds. The minimum

solutions are important if users are interested in the real optimum. The average solutions are

important for applications where the objective function is not certain or only an approximation to

the real world, such as for minimizing the risk of a portfolio. In that case, the average might be a

more useful measure for the user. Additionally, the average can give insights into the robustness of

the optimization technique; i.e., independence of the solution from the random seeds used.

Tables 4.1–4.4 compare the minimum solutions found by the implemented known PSO and

proposed APSO variants by means of wins, draws, and losses. A particular PSO or APSO variant

gets a win in case it only found the best solution, a draw in case it and at least another PSO or

APSO variant found the best solution, and a loss in case the PSO or APSO variant did not find

the best solution. Similarly, Tables D.1–D.4 in the Appendix D compare the average solutions by

means of wins, draws, and losses. Because the tables that compare the different techniques by count

of wins, draws, and losses compare as many as eight different solvers at the same time, and wins,

draws, and losses do not consider the relative difference that yielded them, these tables should only
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Table 4.1: Count of wins, draws, and
losses for 7,500,000 FE considering mini-
mum solutions.

Solver win draw loss

GBPSO 0 18 4

DWPSO 0 19 3

TVACPSO 0 19 3

GCPSO 0 18 4

SOPSO 0 22 0

MSOPSO 0 21 1

RSOPSO 0 22 0

MRSOPSO 0 19 3

Table 4.2: Count of wins, draws, and
losses for 1,500,000 FE considering mini-
mum solutions.

Solver win draw loss

GBPSO 1 17 4

DWPSO 0 17 5

TVACPSO 0 17 5

GCPSO 0 18 4

SOPSO 0 21 1

MSOPSO 0 18 4

RSOPSO 0 21 1

MRSOPSO 0 17 5

be interpreted using the other tables of this chapter; i.e., Tables 4.5–4.16 and D.5–D.16.

Tables 4.1 and D.1 compare the implemented known PSO and proposed APSO variants for

7,500,000 FE. The proposed SOPSO and RSOPSO win this comparison for large number of function

evaluations by suffering no losses considering the minimum solutions as shown in Table 4.1. These

results are supported by the comparison considering the average solutions, where SOPSO and

RSOPSO win by suffering only 2 losses as shown in Table D.1. Based on these results and on

the fact that SOPSO is faster than RSOPSO because it does not calculate the mean separation

for every iteration, we recommend the use of SOPSO for problems that require large numbers of

function evaluations such as several million. The timings for solving the optimization problems for

7,500,000 function evaluations showed that SOPSO is roughly 1.4 to 7.4 times faster than RSOPSO

depending on the problem.

Tables 4.2 and D.2 compare the implemented known PSO and proposed APSO variants for

1,500,000 FE. SOPSO and RSOPSO win this comparison for high number of function evaluations

by suffering only 1 loss considering the minimum solutions as shown in Table 4.2. Similarly, the

result of the comparison considering the average solutions is won by the RSOPSO, which scores 1

win and only 3 losses as shown in Table D.2. SOPSO performs similarly well by suffering only 4

losses. Based on these results and the fact that SOPSO is faster than RSOPSO, we recommend

the use of SOPSO for high numbers of function evaluations such as approximately one million.

Tables 4.3 and D.3 compare implemented known PSO and proposed APSO variants for 250,000

FE. GBPSO wins this comparison for low numbers of function evaluations by scoring 2 wins and

only 5 losses considering the minimum solutions as shown in Table 4.3. SOPSO performs similarly

well by scoring no wins and only 5 losses. This result is supported by the comparison considering

the average solutions, where GBPSO wins by scoring 3 wins and only 7 losses as shown in Table
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Table 4.3: Count of wins, draws, and
losses for 250,000 FE considering minimum
solutions.

Solver win draw loss

GBPSO 2 15 5

DWPSO 0 16 6

TVACPSO 1 16 5

GCPSO 0 16 6

SOPSO 0 17 5

MSOPSO 1 15 6

RSOPSO 0 17 5

MRSOPSO 1 15 6

Table 4.4: Count of wins, draws, and
losses for 3,000 FE considering minimum
solutions.

Solver win draw loss

GBPSO 1 5 16

DWPSO 0 4 18

TVACPSO 7 6 9

GCPSO 0 4 18

SOPSO 2 5 15

MSOPSO 4 3 15

RSOPSO 0 5 17

MRSOPSO 2 4 16

D.3. MSOPSO performs similarly by yielding 2 win and only 8 losses. Based on these results and

the more detailed results of Tables 4.7, 4.11, 4.15, D.7, D.11, and D.15, we suggest users using the

implemented PSO software package to either choose GBPSO or SOPSO if they require low numbers

of function evaluations such as few hundred thousand.

Tables 4.4 and D.4 compare implemented known PSO and proposed APSO variants for 3,000

FE. TVACPSO wins this comparison for a few thousand function evaluations by scoring 7 wins and

only 9 losses considering the minimum solutions as shown in Table 4.4. This result is supported

by the comparison considering the average solutions, where TVACPSO wins by scoring 8 wins and

only 9 losses as shown in Table D.4. Based on these results, we suggest users using the implemented

PSO software package to choose TVACPSO if they require few thousand function evaluations.

Tables 4.5–4.8 compare the best solution found by GBPSO, DWPSO, TVACPSO, and GCPSO

against the best solution found by SOPSO, RSOPSO, MSOPSO, and MRSOPSO given a certain

number of function evaluations. If the known PSO variants found the same minimum to a given

optimization test problem as the proposed APSO variants, that particular optimization test problem

is not included in the table. Similarly, Tables D.5–D.8 in the Appendix D compare the best average

solution found by any of the four implemented known PSO variants against the best average solution

found by any of the four implemented proposed APSO variants. Again, if the known PSO variants

found the same average optimum to a given optimization test problem as the proposed APSO

variants, that particular optimization test problem is not included in the table.

Tables 4.5 and D.5 show promising results of the proposed APSO variants for 7,500,000 FE.

The proposed APSO variants find the best objective values for two problems where the known

PSO variants do not locate the optima. These results show that the proposed APSO variants

clearly outperform the implemented known PSO variants for large number of function evaluations
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considering the minimum solutions. These results are supported by the comparison considering the

average solution, where the proposed APSO variants find the best objective value for four problems

and the known PSO variants find the best objective value for one problem as shown in Table 4.5.

Based on these results, we recommend the use of one proposed APSO for large numbers of function

evaluations such as several million.

Table 4.5: PSO variants vs. APSO variants for 7,500,000 FE considering minimum solution.

Test Problem known PSO variants proposed APSO variants

Rastrigin 0.9949590571 0.0

Rosenbrock 0.0000114199 0.0

Tables 4.6 and D.6 show promising results of the proposed APSO variants for 1,500,000 FE.

The proposed APSO variants find the best objective value for three problems compared to one for

the known PSO variants. These results are supported by the comparison considering the average

solution, where the proposed APSO variants find the best objective value for five problems compared

to one for the known PSO variants. Based on these results, we recommend the use of one proposed

APSO for high numbers of function evaluations such as approximately one million.

Table 4.6: PSO variants vs. APSO variants for 1,500,000 FE considering minimum solution.

Test Problem known PSO variants proposed APSO variants

Non-continuous Rastrigin 1.0 0.0

Parabola 0.0 0.0000215830

Rastrigin 8.9546315138 4.9747952855

Rosenbrock 0.0954049541 0.0000071796

Tables 4.7 and D.7 show a nearly equal performance of the known PSO variants and proposed

APSO variants for 250,000 FE. The proposed APSO variants find the best objective value for

three problems compared to three for the known PSO variants. These results are supported by

the comparison considering the average solution, where the proposed APSO variants find the best

objective value for five problems compared to four problems for the known PSO variants. Based

on these results, we recommend the use of one of the proposed APSO or one of the known PSO for

low numbers of function evaluations such as a few hundred thousand.

Tables 4.8 and D.8 show good performance of known PSO variants for 3,000 FE. The proposed

APSO variants find the best objective value for eight problems compared to eight for the known

PSO variants. Considering the average solution, the proposed APSO variants find the best objective
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Table 4.7: PSO variants vs. APSO variants for 250,000 FE considering minimum solution.

Test Problem known PSO variants proposed APSO variants

Hyper-ellipsoid 0.0000001135 0.0000080629

Non-continuous Rastrigin 6.0 1.0

Parabola 9.3296371480 4.1970400021

Rastrigin 11.9395086851 10.9698748650

Rosenbrock 8.2346336506 18.6604566082

Sphere 0.0000000647 0.0001059541

value for six problems compared to eleven for the known PSO variants. Based on these results, we

recommend the use of one known PSO for a few thousand function evaluations.

Tables 4.9–4.12 compare the best solutions found by SOPSO, MSOPSO, RSOPSO, and MR-

SOPSO; i.e., the tables compare the proposed APSO variants. If all four proposed APSO variants

found the same minimum to a given optimization test problem, that particular optimization test

problem is not included in the table. Similarly, Tables D.9–D.12 in the Appendix D compare the

best average solutions found by SOPSO, MSOPSO, RSOPSO, and MRSOPSO. Again, if all four

proposed APSO variants found the same average optimum to a given optimization test problem,

that particular optimization test problem is not included in the table.

Tables 4.9 and D.9 compare APSO variants for 7,500,000 FE. Considering the minimum solution

as shown in Table 4.9, SOPSO finds the best solution in three cases, MSOPSO finds the best solution

in two cases, RSOPSO finds the best solution in three cases, and MRSOPSO finds the best solution

in no cases. Considering the average solution as shown in Table D.9, SOPSO finds the best solution

in four cases, MSOPSO finds the best solution in one case, RSOPSO finds the best solution in

four cases, and MRSOPSO finds the best solution in one case. Based on these results and on that

SOPSO is faster than RSOPSO, we recommend the use of SOPSO if one of the proposed APSO is

used with several million function evaluations.

Tables 4.10 and D.10 compare the proposed APSO variants for 1,500,000 FE. Considering the

minimum solution as shown in Table 4.10, SOPSO finds the best solution in five cases, MSOPSO

finds the best solution in one case, RSOPSO finds the best solution in five cases, and MRSOPSO

finds the best solution in no cases. Considering the average solution as shown in Table D.10, SOPSO

finds the best solution in six cases, MSOPSO finds the best solution in one case, RSOPSO finds

the best solution in seven cases, and MRSOPSO finds the best solution in four cases. Based on

these results and on that SOPSO is faster than RSOPSO, we recommend the use of SOPSO if one

of the proposed APSO is used with approximately one million function evaluations.
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Table 4.8: PSO variants vs. APSO variants for 3,000 FE considering minimum solution.

Test Problem known PSO variants proposed APSO variants

Ackley 1.7535935539 2.5271868594

Alpine 0.0007749829 0.0003859068

Generalized Penalized 5.7588533203 8.4927368746

Griewank 1.0743647829 1.1644058859

Hyper-ellipsoid 1466.6333948600 1422.6001204600

Michalewicz 0.5441955682 0.3586014384

Non-continuous Rastrigin 72.5516666727 46.0000379643

Parabola 2530.0733023200 2480.6680864800

Rastrigin 84.1419055611 127.3033494730

Rosenbrock 262.9586718660 215.7469172450

Schaffer F6 0.0000001510 0.0003885796

Schwefel P2.22 2.7045438343 3.5953335808

Shubert 0.0000000006 0.0

Sphere 14235.7231372000 10954.0241478000

Step 48.0 73.0

Tripod 0.0000008724 0.0000152553

Table 4.9: Proposed APSO comparison for 7,500,000 FE considering minimum solutions.

Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Non-continuous Rastrigin 0.0 0.0 0.0 1.0

Rastrigin 0.0 0.0 0.0 3.9798362284

Rosenbrock 0.0 8.9247246703 0.0 15.0198240631

Table 4.10: Proposed APSO comparison for 1,500,000 FE considering minimum solutions.

Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Michalewicz 0.0 0.0 0.0 0.0398471887

Non-continuous Rastrigin 0.0 3.0 0.0 6.0

Parabola 0.0000215830 0.0141410461 0.0000215830 0.0008593517

Rastrigin 4.9747952855 10.9445496280 4.9747952855 7.9596724568

Rosenbrock 0.0000071796 0.7804030432 0.0000071796 4.7233727209
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Tables 4.11 and D.11 compare the proposed APSO variants for 250,000 FE. Considering the

minimum solution as shown in Table 4.11, SOPSO finds the best solution in four cases, MSOPSO

finds the best solution in two cases, RSOPSO finds the best solution in four cases, and MRSOPSO

finds the best solution in four cases. Considering the average solution as shown in Table D.11,

SOPSO finds the best solution in six cases, MSOPSO finds the best solution in four cases, RSOPSO

finds the best solution in six cases, and MRSOPSO finds the best solution in two cases. These results

show that SOPSO and RSOPSO perform best for low numbers of function evaluations. Based on

these results and on that SOPSO is faster than RSOPSO, we recommend the use of SOPSO if one

of the proposed APSO is used with few hundred thousand function evaluations.

Table 4.11: Proposed APSO comparison for 250,000 FE considering minimum solutions.

Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Griewank 0.0 0.0073960421 0.0 0.0

Hyper-ellipsoid 0.0008089862 0.0259443600 0.0008089862 0.0000080629

Michalewicz 0.0 0.0 0.0 0.1549133090

Non-continuous Rastrigin 1.0 8.0121094750 1.0 12.0

Parabola 41.8289099310 7.2349444553 6.6096926430 4.1970400021

Rastrigin 15.9193401243 10.9698748650 15.9193401243 13.9295140273

Rosenbrock 18.6604566082 23.7945552332 18.6604566082 22.3616219354

Sphere 0.0025875183 0.4123413985 0.0025875183 0.0001059541

Tables 4.12 and D.12 compare the proposed APSO variants for 3,000 FE. Considering the

minimum solution as shown in Table 4.12, SOPSO finds the best solution in six cases, MSOPSO

finds the best solution in eight cases, RSOPSO finds the best solution in four cases, and MRSOPSO

finds the best solution in five cases. Considering the average solution as shown in Table D.12,

SOPSO finds the best solution in six cases, MSOPSO finds the best solution in ten cases, RSOPSO

finds the best solution in five cases, and MRSOPSO finds the best solution in seven cases. Based

on these results, we recommend the use of MSOPSO if one of the proposed APSO is used with few

thousand function evaluations.

Tables 4.13–4.16 compare the best solutions found by GBPSO, DWPSO, TVACPSO, and

GCPSO; i.e., the tables compare the implemented known PSO variants. Tables D.13–D.16 in the

Appendix D compare the average solutions found by GBPSO, DWPSO, TVACPSO, and GCPSO.

Again, if all four known PSO variants found the same minimum or average solution to a given

optimization test problem, that particular optimization test problem is not included in the table.

Tables 4.13 and D.13 compare PSO variants for 7,500,000 FE. Considering the minimum solution

as shown in Table 4.13, GBPSO finds the best solution in two cases, DWPSO finds the best solution
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Table 4.12: Proposed APSO comparison for 3,000 FE considering minimum solutions.

Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Ackley 4.1442049449 2.5271868594 4.1442049449 2.5749522063

Alpine 0.0003859068 0.0056322613 0.0022785970 0.0040930549

Drop Wave 0.0 0.0000000012 0.0 0.0000000101

Easom 0.0000000003 0.0000000001 0.0000000003 0.0

Gen... Penalized 11.9013451744 11.1778530240 11.9013451744 8.4927368746

Griewank 1.4105078803 1.1644058859 1.4105078803 1.1956777995

Goldstein–Price 0.0 0.0000000012 0.0 0.0000000001

Hyper-ellipsoid 2650.1932225500 1422.6001204600 2650.1932225500 1943.5890664600

Michalewicz 1.3477754937 0.4216800896 1.3477754937 0.3586014384

Non... Rastrigin 81.1015672036 46.0000379643 81.1015672036 87.3824192870

Parabola 3390.4652516200 2480.6680864800 3390.4652516200 2962.9491670500

Rastrigin 175.8517446580 127.3033494730 175.8517446580 135.6464539510

Rosenbrock 1029.2307493200 493.9609483910 1029.2307493200 215.7469172450

Schaffer F6 0.0003885796 0.0056596624 0.0003885796 0.0006701637

Schwefel P2.22 9.5389890792 3.5953335808 9.5389890792 7.1101007289

Shubert 0.0 0.0000000698 0.0000000001 0.0000000006

Sphere 16294.3398457000 10954.0241478000 16294.3398457000 15067.1131472000

Step 527.0 102.0 527.0 73.0

Tripod 0.0000152553 0.0004487209 0.0000152553 0.0000315142
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in two cases, TVACPSO finds the best solution in two cases, and GCPSO finds the best solution in

two cases. Considering the average solution as shown in Table D.13, GBPSO finds the best solution

in one case, DWPSO finds the best solution in four cases, TVACPSO finds the best solution in three

cases, and GCPSO finds the best solution in two cases. Based on these results, we recommend the

use of DWPSO if one of the known PSO variants is used with several million function evaluations.

Table 4.13: PSO comparison for 7,500,000 FE considering minimum solutions.

Test Problem GBPSO DWPSO TVACPSO GCPSO

Griewank 0.0 0.0073960403 0.0 0.0073960403

Michalewicz 0.2525725259 0.0 0.0 0.0

Non-continuous Rastrigin 6.0 0.0 3.0 0.0000000369

Rastrigin 25.8688951364 1.9899181142 3.9798362284 0.9949590571

Rosenbrock 0.0000114199 7.3443347199 13.9586009312 16.0244141123

Tables 4.14 and D.14 compare PSO variants for 1,500,000 FE. Considering the minimum solution

as shown in Table 4.14, GBPSO finds the best solution in three cases, DWPSO finds the best

solution in two cases, TVACPSO finds the best solution in one cases, and GCPSO finds the best

solution in three cases. Considering the average solution as shown in Table D.14, GBPSO finds

the best solution in four cases, DWPSO finds the best solution in four cases, TVACPSO finds the

best solution in three cases, and GCPSO finds the best solution in four cases. Based on these

results, we recommend the use of GBPSO or GCPSO if one of the known PSO variants is used

with approximately one million function evaluations.

Table 4.14: PSO comparison for 1,500,000 FE considering minimum solutions.

Test Problem GBPSO DWPSO TVACPSO GCPSO

Griewank 0.0 0.0 0.0073960403 0.0

Michalewicz 0.2525725259 0.0049111478 0.0 0.0

Non-continuous Rastrigin 6.0 4.0 11.0 1.0

Parabola 0.0 0.0000002112 0.0030505369 0.0000000870

Rastrigin 25.8688951364 8.9546315138 10.9445445902 9.9495855331

Rosenbrock 0.0954049541 19.6918183861 3.9869199112 4.1464319620

Tables 4.15 and D.15 compare PSO variants for 250,000 FE. Considering the minimum solution

as shown in Table 4.15, GBPSO finds the best solution in four cases, DWPSO finds the best solution

in one case, TVACPSO finds the best solution in three cases, and GCPSO finds the best solution in

one case. Considering the average solution as shown in Table D.15, GBPSO finds the best solution
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in five cases, DWPSO finds the best solution in three cases, TVACPSO finds the best solution in

two cases, and GCPSO finds the best solution in four cases. Based on these results, we recommend

the use of GBPSO if one of the known PSO variants is used with few hundred thousand function

evaluations.

Table 4.15: PSO comparison for 250,000 FE considering minimum solutions.

Test Problem GBPSO DWPSO TVACPSO GCPSO

Hyper-ellipsoid 0.0000001135 0.0061106210 0.0034030448 0.0024181041

Michalewicz 0.2574836737 0.0 0.0 0.0

Non-continuous Rastrigin 6.0 16.0000003717 22.0 21.0017979253

Parabola 9.3296371480 16.6223866133 17.7093667245 9.4273873954

Rastrigin 25.8688951364 15.9193398757 11.9395086851 24.8739663523

Rosenbrock 15.6856726242 18.4717862358 8.2346336506 22.6233668383

Sphere 0.0000000647 0.2551991869 0.1273730986 0.0402738382

Tables 4.16 and D.16 compare PSO variants for 3,000 FE. Considering the minimum solution as

shown in Table 4.16, GBPSO finds the best solution in two cases, DWPSO finds the best solution in

one case, TVACPSO finds the best solution in fifteen cases, and GCPSO finds the best solution in

one case. Considering the average solution as shown in Table D.16, GBPSO finds the best solution

in three cases, DWPSO finds the best solution in three cases, TVACPSO finds the best solution

in sixteen cases, and GCPSO finds the best solution in three cases. Based on these results, we

recommend the use of TVACPSO if one of the known PSO variants is used with few thousand

function evaluations.

All figures compare the best of the proposed APSO variants against the best of the known PSO

variants for selected, difficult optimization problems. The comparisons in Figures 4.6–4.8 consider

minimum solutions and the comparisons in Figures 4.9–4.12 consider average solutions. All figures

support the results of the previous sections; i.e., they show that the proposed APSO variants, in

particular SOPSO, outperform the known PSO variants for increasing number of function evalua-

tion. Because certain entities such as the inertia weight for DWPSO are different depending on the

total number of iterations N used, results using more function evaluations may be worse (higher

objective value) than results using fewer number of function evaluations.

Figure 4.6 shows the comparison of GCPSO and SOPSO depending on the number of function

evaluations on Rastrigin considering the minimum solutions. Figure 4.7 shows the comparison of

GBPSO and SOPSO on Rosenbrock considering the minimum solutions. Figure 4.8 shows the

comparison of DWPSO and SOPSO depending on the number of function evaluations on Non-

continuous Rastrigin considering the minimum solutions.

56



Table 4.16: PSO comparison for 3,000 FE considering minimum solutions.

Test Problem GBPSO DWPSO TVACPSO GCPSO

Ackley 2.7864164356 2.7872954929 1.7535935539 3.4478779286

Alpine 0.0053181546 0.0285053980 0.0007749829 0.0243886490

Drop Wave 0.0 0.0000000008 0.0 0.0000000001

Easom 0.0000000957 0.0000000091 0.0 0.0000000184

Gen... Penalized 15.5799816557 23.2912583962 5.7588533203 19.6150447267

Griewank 1.3657400968 1.9707144262 1.0743647829 2.3992904992

Hyper-ellipsoid 1838.0238219300 2132.7192963100 1466.6333948600 1706.0779538200

Michalewicz 0.9988765596 0.5441955682 0.8847682876 0.9090513559

Non... Rastrigin 79.9054137431 96.2457432624 74.0262751250 72.5516666727

Parabola 3127.9040880900 3576.9163285500 2530.0733023200 2977.8936030400

Rastrigin 141.0597885160 182.3730264280 84.1419055611 123.8922789690

Rosenbrock 310.9464581860 1455.3539688200 262.9586718660 975.3149869380

Schaffer F6 0.0000001510 0.0097159308 0.0000003462 0.0097159099

Schwefel P2.22 4.1215510202 6.1703772446 2.7045438343 7.6256666346

Shubert 0.0000000242 0.0000000110 0.0000000006 0.0000000306

Sphere 16637.4774400000 16456.0655813000 14235.7231372000 21493.2244294000

Step 212.0 878.0 48.0 461.0

Tripod 0.0000762325 1.0000070836 0.0000008724 0.0000162968

Figure 4.9 shows the comparison of TVACPSO and SOPSO depending on the number of function

evaluations on Michalewicz considering the average solutions. Figure 4.10 shows the comparison of

DWPSO and SOPSO depending on the number of function evaluations on Non-continuous Rastrigin

considering the average solutions. Figure 4.11 shows the comparison of DWPSO and RSOPSO

depending on the number of function evaluations on Rastrigin considering the average solutions.

Figure 4.12 shows the comparison of GBPSO and SOPSO depending on the number of function

evaluations on Rosenbrock considering the average solutions.

By roughly doubling the number of dimensions for all benchmark problems that allow arbitrary

dimensionality, we looked at more difficult, higher-dimensional problems. In particular we used

Ackley for 100 dimensions, Alpine for 30 dimensions, Generalized Penalized for 60 dimensions,

Griewank for 60 dimensions, Hyper-ellipsoid for 200 dimensions, Michalewicz for 30 dimensions,

Non-continuous Rastrigin for 60 dimensions, Parabola for 250 dimensions, Rastrigin for 60 dimen-

sions, Rosenbrock for 60 dimensions, Schwefel P2.22 for 60 dimensions, Sphere for 200 dimensions,

and Step for 60 dimensions. We optimized the more difficult problems using 15,000,000, 7,500,000,

and 250,000 function evaluations. The results show that the proposed APSO variants outperform

the known PSO variants for such problems, supporting the results of this thesis. The results can

be found in Appendix E.
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Figure 4.6: GCPSO vs. SOPSO on Rastrigin considering minimum solutions.
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Figure 4.7: GBPSO vs. SOPSO on Rosenbrock considering minimum solutions.
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Figure 4.8: DWPSO vs. SOPSO on Non-continuous Rastrigin considering minimum solu-
tions.
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Figure 4.9: TVACPSO vs. SOPSO on Michalewicz considering average solutions.
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Figure 4.10: DWPSO vs. SOPSO on Non-continuous Rastrigin considering average solu-
tions.
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Figure 4.11: DWPSO vs. RSOPSO on Rastrigin considering average solutions.
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Figure 4.12: GBPSO vs. SOPSO on Rosenbrock considering average solutions.

4.3.1 Summary of Results

Given the results, we can conclude that the proposed APSO variants perform best for high numbers

of function evaluations, on the order of several million, that are required for the solution of difficult

optimization problems. For such difficult optimization problems the concept of optimizing the

velocity weights improves the performance of PSO. The proposed APSO variants perform similarly

to slightly better for lower numbers of function evaluations such as a few hundred thousand. For

a few thousand function evaluations, the known PSO variants outperform the proposed APSO

variants.

In particular, we recommend users to choose SOPSO if they would like to run the implemented

PSO software package to solve hard problems that require high numbers of function evaluations

such as on the order of one to several million. We recommend users to either choose GBPSO or

SOPSO to solve problems that require low numbers of function evaluations such as a few hundred

thousand. We recommend users to choose TVACPSO if they would like to run the implemented

PSO software package to solve problems that require a few thousand function evaluations. For

problems of unknown difficulty or no good estimate of the required number of function evaluations,

we recommend to choose SOPSO and to use high numbers of function evaluations, such as one

million or several million, and increase the numbers of function evaluations if necessary.
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Chapter 5

Conclusion

We propose the four APSO variants SOPSO, MSOPSO, RSOPSO, and MRSOPSO. The idea

behind SOPSO is to give every particle its own velocity weights and to treat the problem of finding

good velocity weights as an optimization problem. MSOPSO adds the notion of a controllable

search space for the velocity weights to the concepts of SOPSO. RSOPSO adds the concept of an

attractive and a repulsive phase to the concepts of SOPSO. MRSOPSO combines the concepts of

SOPSO, the controllable search space for the velocity weights of MSOPSO, and the attractive and

repulsive phase of RSOPSO.

We combined the four proposed APSO variants with the four known PSO variants GBPSO, DW-

PSO, TVACPSO, and GCPSO into one PSO software package. Experiments using this software

package showed that the proposed APSO variants outperform the implemented known PSO variants

for high numbers of function evaluations. For lower numbers of function evaluations, the perfor-

mances are similar. For low numbers of function evaluations, the known PSO variants outperform

the proposed APSO variants. These results are supported by experiments on higher-dimensional

problems.

5.1 Contributions

The following concepts have been developed in this thesis. First, the concept of optimizing the

velocity weights. This optimization of the velocity weights includes the proposed objective func-

tion for the velocity weights; i.e., Equation (3.2), the proposed normalization employed to the

improvements in the objective values as shown in Equations (3.3), and the proposed concept of

taking one step of optimizing the velocity weights after every iteration. In addition, we developed

the MSOPSO concept of using moving bounds with the optimization of the velocity weights as

in Equations (3.5), (3.6), and (3.7). We further proposed the RSOPSO concept of combining the

optimization of the velocity weights with the concept of an attractive and a repulsive phase as used

in the attractive-repulsive PSO [56]. This concept includes the use of the mean separations s(i)(n)

as objective value of the velocity weights in the repulsive phase as shown in Equation (3.9). The

RSOPSO concept of setting the mean separation absolute upper threshold su(n) to the mean sepa-
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ration after initialization of the positions and setting the mean separation absolute lower threshold

sl(n) to the mean separation absolute upper threshold su(n) divided by a set divisor, is novel to the

best of our knowledge. Additionally, RSOPSO proposes using a mean separation absolute lower

s̆l and upper divisor s̆u to adaptively change the mean separation absolute lower sl(n) and upper

threshold su(n) as shown in Equations (3.10). MRSOPSO combines the optimization of the veloc-

ity weights from SOPSO, moving bounds as employed for MSOPSO, and attractive and repulsive

phases as employed for RSOPSO. Further, MRSOPSO introduces the normalization of the mean

separation s(n) relative to the mean separation absolute lower sl(n) and upper threshold su(n) as

shown in Equation (3.11).

For using the PSO software package we make the following recommendations. For difficult

problems that require high numbers of function evaluations such as one to several million we

recommend SOPSO, for problems that require lower numbers of function evaluations such as few

hundred thousand we recommend GBPSO and SOPSO, for problems that require low numbers of

function evaluations such as few thousand we recommend TVACPSO, and for problems with no

good estimate on the required number of function evaluations we recommend SOPSO and high

numbers of function evaluations.

5.2 Further Work

The parameters of the four proposed APSO variants have been empirically optimized. We found

good, general-purpose settings for the proposed APSO variants by empirically trying different

settings. Settings that performed well for all 22 test problems were selected. The settings were

optimized with focus on good performance for high numbers of function evaluations. Not all possible

parameter settings could be evaluated. Therefore, it might be possible to find better settings but

finding such settings is a difficult task.

The further work includes the comparison of the PSO software package to other optimization

software packages, such as LGO [49] and VTDirect [17]. To make the MSOPSO, RSOPSO, and

MRSOPSO variants faster, the mean separation s(n) could be replaced by a less expensive indicator

of the distribution of the positions in the search space. For example, such an indicator could be

computed by looking at the separation between randomly selected particles instead of looking at

the separation between all particles. The change of the indicator would need to be accompanied

by experiments to determine whether it changes the performance of RSOPSO or any other SOPSO

variant using that indicator. Further, we propose the addition of parallel PSO techniques to the

software package.
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Appendix A

PSO Software Package Parameters

The implemented PSO software package has the following input parameters (parameters are in
capital letters in the style of Fortran coding practices):

1. SEED defines the random seed used.

2. MAXIMIZATION defines whether maximization or minimization is used. If set to true, the
optimization problem to be solved is treated as a maximization problem. If set to false, the
optimization problem to be solved is treated as a minimization problem.

3. W RANGE is a two-dimensional array. The first value defines the inertia weight for the first
iteration ws, and the second value defines the inertia weight for the last iteration we, see
Equation (2.4). Set ws = we for a constant inertia weight such as in GBPSO.

4. C1 RANGE is a two-dimensional array. The first value defines the personal best weight for the
first iteration c1s, and the second value defines the personal best weight for the last iteration
c1e, see Equation (2.6a). Set c1s = c1e for a constant personal best weight such as in GBPSO.

5. C2 RANGE is a two-dimensional array. The first value defines the global best weight for the
first iteration c2s, and the second value defines the global best weight for the last iteration
c2e, see Equation (2.6b). Set c2s = c2e for a constant global best weight such as in GBPSO.

6. NPARTICLES defines the number of particles np used, that is it defines the swarm size. Particles
are numbered from 1 to np using i.

7. MAXITERATIONS defines the total number of iterations used. All PSO variants iterate from
one to the maximum number of iterations.

8. GUARANTEED CONVERGENCE defines whether Equation (2.7a) is used for calculating the velocity
of the global best particle; i.e., whether guaranteed convergence is used. Set to true for using
GCPSO.

9. RHO sets the search radius parameter ρ, see Equations (2.7).

10. GC FAILURE NUMBER defines the guaranteed convergence failure threshold ac, see Equations
(2.7).

11. GC SUCCESS NUMBER defines the guaranteed convergence success threshold sc, see Equations
(2.7).

12. DIMENSIONS specifies the dimensionality of positions.

13. REDUCTION FACTOR defines the reduction factor α, see Equations (3.12).

14. LOWER BOUNDS defines the lower bounds of the optimization problem.

15. UPPER BOUNDS defines the upper bounds of the optimization problem.

16. OBJECTIVE DIMENSIONS defines the dimensionality of the objective values returned by the
objective function. This parameter is required to make it possible to add a PSO variation,
capable of finding the Pareto front for multi-objective optimization problems, to our PSO
software package.

17. OBJECTIVE defines the number of the objective that has to be optimized if only one objective
from a multi-objective optimization problem has to be optimized.
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18. ADAPTIVE defines whether adaptive concepts are used. Set to zero for using no adaptive
concepts and to one for using the optimization of velocity weights.

19. DISTRIBUTION defines which distribution is used to initialize the positions of the velocity
weights. Set to zero for using a Gaussian distribution and to one for using a uniform distri-
bution.

20. DISTRIBUTION PARAMETERS is a six-dimensional array that holds mean and variance values
if a Gaussian distribution is used for initializing the positions of the velocity weights, and
holds lower and upper bounds if a uniform distribution is used for initializing the positions
of the velocity weights. If a uniform distribution is used, the first value in the array is the
lower bound value for initializing the inertia weights w(i), the second value in the array is the
upper bound value for initializing the inertia weights, the third value in the array is the lower

bound value for initializing the personal best weights c
(i)
1 , the fourth value in the array is the

upper bound value for initializing the personal best weights, the fifth value in the array is the

lower bound value for initializing the global best weights c
(i)
2 , the sixth value in the array is

the upper bound value for initializing the global best weights. If a Gaussian distribution is
used, the first value in the array is the mean value for initializing the inertia weights w(i), the
second value in the array is the variance for initializing the inertia weights, the third value in

the array is the mean value for initializing the personal best weights c
(i)
1 , the fourth value in

the array is the variance for initializing the personal best weights, the fifth value in the array

is the mean value for initializing the global best weights c
(i)
2 , the sixth value in the array is

the variance for initializing the global best weights.

21. RANDOM PERCENT defines the percentage of particles that have their position of the velocity
weights reinitialized randomly.

22. AFTERX defines after how many iterations velocity weights should be optimized.

23. FORX defines for how many iterations the velocity weights should be optimized.

24. SCALE POTENCY defines a scale potency that is used in certain objective functions of the
velocity weights.

25. LOWER BOUNDS PARAMETERS defines the lower bounds for optimizing the velocity weights. The
first value in this array defines the lower bound for the inertia weights w(i), the second value

the lower bound for the personal best weights c
(i)
1 , and the third value the lower bound for

the global best weights c
(i)
2 .

26. UPPER BOUNDS PARAMETERS defines the upper bounds for optimizing the velocity weights. The
first value in this array defines the upper bound for the inertia weights w(i), the second value

the upper bound for the personal best weights c
(i)
1 , and the third value the upper bound for

the global best weights c
(i)
2 .

27. REDUCTION FACTOR PARAMETER defines the reduction factor for the velocity weights α̃.

28. NUMBER ADAPTIVE PARAMETERS defines the number of parameters that are adaptively changed
(optimized) for every particle. Has to be set to three if using any proposed APSO variant.

29. REINITIALIZE PARAMETERS BEST AFTER defines the number of iterations after which to reini-
tialize the personal best positions and the global best position of the velocity weights, and
reset the personal best values and the global best values of the velocity weights. Is set to the
total number of iterations for no reinitialization.

30. WEIGHT HISTORY GLOBAL defines the global weight factor ǧ which is used to weigh the number

of global best updates u
(i)
g in certain objective functions of the velocity weights, see Equation

(3.2).

70



31. WEIGHT HISTORY LOCAL defines the local weight factor ľ which is used to weigh the number

of local best updates u
(i)
p in certain objective functions for the velocity weights, see Equation

(3.2).

32. IMPROVEMENT NORMALIZATION defines how the differences in the objective values d(i)(n) are
normalized between iterations. If set to zero, the differences in the objective values d(i)(n)
are divided by the sum of the absolute value of all good and bad differences in the objective
values. Where good means that the current objective value f (i)(n) is better than the previous
objective value f (i)(n − 1), and bad means that the current objective value f (i)(n) is worse
than the previous objective value f (i)(n − 1). If set to one, the differences in the objective
values d(i)(n) are divided by the absolute value of the sum of all good differences in the
objective values, see Equations (3.3). If set to three, the differences in the objective values
d(i)(n) are divided by the sum of the absolute value of all differences in the objective values
scaled by the iteration number. If set to four, the differences in the objective values d(i)(n)
are divided by the sum of the absolute value of all good differences in the objective values
scaled by the iteration number.

33. PHASE TYPE sets whether different phases are used. If set to zero, no different phases are used.
If set to one, a repulsive and an attractive phase such as described for RSOPSO are used;
change in phases are detected based on the iteration count n; and the attractive phase uses
an improvement and history-based objective function for the velocity weights, whereas the
repulsive phase uses a mean separation based objective function for the velocity weights. If
set to two, a repulsive and an attractive phase are used; change in phases are detected based
on the iteration count n; and the attractive phase uses an improvement and history-based
objective function for the velocity weights, whereas the repulsive phase sets the positions of
the velocity weights to random negative values. If set to three, a repulsive and an attractive
phase are used; change in phases are detected based on the mean separation s(n) as calculated
in Equations (3.8a); and the attractive phase uses an improvement and history-based objective
function for the velocity weights, whereas the repulsive phase sets the positions of the velocity
weights to random negative values. If set to four, a repulsive and an attractive phase are used;
change in phases are detected based on the mean separation s(n), see Equation (3.10); and the
attractive phase uses an improvement and history-based objective function for the velocity
weights, whereas the repulsive phase uses a mean separation based objective function for the
velocity weights, see Equation (3.9).

34. FIRST PHASE ITERATIONS defines the number of iterations spent in the attractive phase before
switching to the repulsive phase. This parameter is only used if phase changes are based on
the iteration count n.

35. SECOND PHASE ITERATIONS defines the number of iterations spent in the repulsive phase before
switching to the attractive phase. This parameter is only used if phase changes are based on
the iteration count n.

36. DISTRIBUTION REINITIALIZATION defines which kind of distribution is used to reinitialize
positions of the velocity weights. Set to zero for using a Gaussian distribution and to one for
using a uniform distribution.

37. DISTRIBUTION PARAMETERS REINITIALIZATION is a six-dimensional array that holds mean
and variance values if a Gaussian distribution is used for reinitializing the positions of the
velocity weights, and holds lower and upper bounds if a uniform distribution is used for
reinitializing the positions of the velocity weights. If a uniform distribution is used, the first
value in the array is the lower bound value for reinitializing the inertia weights w(i), the
second value in the array is the upper bound value for reinitializing the inertia weights, the
third value in the array is the lower bound value for reinitializing the personal best weights

c
(i)
1 , the fourth value in the array is the upper bound value for reinitializing the personal

best weights, the fifth value in the array is the lower bound value for reinitializing the global
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best weights c
(i)
2 , the sixth value in the array is the upper bound value for reinitializing the

global best weights. If a Gaussian distribution is used, the first value in the array is the
mean value for reinitializing the inertia weights w(i), the second value in the array is the
variance for reinitializing the inertia weights, the third value in the array is the mean value

for reinitializing the personal best weights c
(i)
1 , the fourth value in the array is the variance

for reinitializing the personal best weights, the fifth value in the array is the mean value

for reinitializing the global best weights c
(i)
2 , the sixth value in the array is the variance for

reinitializing the global best weights.

38. CHANGE MEAN is a two-dimensional array. The first value sets the mean separation absolute
lower threshold sl(n) and the second value sets the mean separation absolute upper threshold
su(n) as used in Equations (3.10). If the first value is set to a negative number, the mean
separation absolute lower threshold sl(n) is set to the mean separation after initializing divided
by the absolute value of the given negative number. If the second value is set to a negative
number, the mean separation absolute upper threshold su(n) is set to the mean separation
after initializing the particles in the search space s(0).

39. CHANGE MEAN SCALE is a two-dimensional array. The first value sets the mean separation
absolute lower divisor s̆l as used in Equation (3.10b) and the second value sets the mean
separation absolute upper divisor s̆u as used in Equation (3.10c).

40. STOP NUMBER UNIMPROVED PHASE CYCLES defines after how many phase cycles without im-
provement of the global best value xg, a PSO variants using phases such as RSOPSO has to
stop. Is set to the total number of iterations if PSO variants should not stop before reaching
the total number of iterations.

41. BOUNDS BY TYPE defines whether the bounds in which the velocity weights are optimized, are
changed during optimization. If set to zero, bounds for optimizing the velocity weights are
fixed and do not change. If set to one, moving bounds based on the mean separation s(n)
(Equation (3.8a)) and a uniform distribution for reinitializing the positions of the velocity
weights are used. If set to two, moving bounds based on the mean separation and a Gaussian
distribution for reinitializing the positions of the velocity weights are used. If set to three,
moving bounds based on the percentage of remaining iterations m(n) (Equation (3.9)) and
a uniform distribution for reinitializing the positions of the velocity weights are used. If
set to four, moving bounds based on the percentage of remaining iterations and a Gaussian
distribution for reinitializing the positions of the velocity weights are used.

42. W BOUNDS BY MEAN is an eight-dimensional array. If any PSO variation with moving bounds,
but no different phases is used, only the first four values are used where the first value defines
the absolute lower inertia weight w̌l, the second value defines the absolute upper inertia weight
w̌u, the third value defines the inertia weight width w̌w, and the fourth value defines the inertia
weight bound flag w̌f , see Equations (3.5). If any PSO variation with moving bounds and
different phases is used, the first value defines the absolute lower inertia weight w̌l used in the
attractive phase, the second value defines the absolute upper inertia weight w̌u used in the
attractive phase, the third value defines the inertia weight width w̌w used in the attractive
phase, the fourth value defines the inertia weight bound flag w̌f used in the attractive phase,
the fifth value defines the absolute lower inertia weight w̌l used in the repulsive phase, the
sixth value defines the absolute upper inertia weight w̌u in the repulsive phase, the seventh
value defines the inertia weight width w̌w used in the repulsive phase, and the eighth value
defines the inertia weight bound flag w̌f used in the repulsive phase, see Equations (3.5).

43. C1 BOUNDS BY MEAN is an eight-dimensional array. If any PSO variation with moving bounds,
but no different phases is used, only the first four values are used where the first value defines
the absolute lower personal best weight č1l, the second value defines the absolute upper
personal best weight č1u, the third value defines the personal best weight width č1w, and the
fourth value defines the personal best weight bound flag č1f , see Equations (3.6). If any PSO
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variation with moving bounds and different phases is used, the first value defines the absolute
lower personal best weight č1l used in the attractive phase, the second value defines the
absolute upper personal best weight č1u used in the attractive phase, the third value defines
the personal best weight width č1w used in the attractive phase, the fourth value defines the
personal best weight bound flag č1f used in the attractive phase, the fifth value defines the
absolute lower personal best weight č1l used in the repulsive phase, the sixth value defines the
absolute upper personal best weight č1u used in the repulsive phase, the seventh value defines
the personal best weight width č1w used in the repulsive phase, and the eighth value defines
the personal best weight bound flag č1f used in the repulsive phase, see Equations (3.6).

44. C2 BOUNDS BY MEAN is an eight-dimensional array. If any PSO variation with moving bounds,
but no different phases is used, only the first four values are used where the first value defines
the absolute lower global best weight č2l, the second value defines the absolute upper global
best weight č2u, the third value defines the global best weight width č2w, and the fourth value
defines the global best weight bound flag č2f , see Equations (3.7). If any PSO variation with
moving bounds and different phases is used, the first value defines the absolute lower global
best weight č2l used in the attractive phase, the second value defines the absolute upper global
best weight č2u used in the attractive phase, the third value defines the global best weight
width č2w used in the attractive phase, the fourth value defines the global best weight bound
flag č2f used in the attractive phase, the fifth value defines the absolute lower global best
weight č2l used in the repulsive phase, the sixth value defines the absolute upper global best
weight č2u used in the repulsive phase, the seventh value defines the global best weight width
č2w used in the repulsive phase, and the eighth value defines the global best weight bound
flag č2f used in the repulsive phase, see Equations (3.7).

45. SOPSO STYLE GLOBAL BEST PARAMETER defines how to choose the global best velocity weights.
If set to true, uses the objective function for the velocity weights Equation (3.2) to determine
the global best velocity weights. If set to false, sets the global best velocity weights to the
velocity weights of the global best particle. Typically, set to true.

46. MOVE BACK TYPE defines how to move particles back into the search space if they try to leave it.
Set to 0 for moving the particle recursively back using the reduction factor α with Equations
(3.12) and to 1 for putting the particle to the bound in the dimension it violated the search
space.

47. MOVE BACK TYPE PARAMETER defines how to move velocity weights back into the search space
for the velocity weights if they try to leave it. Set to 0 for moving the velocity weight
recursively back using the reduction factor α̃ with Equations (3.12) and to 1 for putting the
velocity weights to the bound in the dimension they violated the search space for the velocity
weights.

48. DEBUG LEVEL defines what debug information is printed. Set to 0 for no debugging. Set to
a value larger than 0 for printing the setting. Set to a value larger than 1 for printing the
global best value after every iteration.

The PSO software package has the following output parameters:

1. G BEST VALUE the global best value found by the algorithm.

2. G BEST POSITION the global best position found by the algorithm.
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Appendix B

Sample Call to PSO Software Package

PROGRAM mainSer ia l

INTEGER , PARAMETER : : NUMBER ADAPTIVE PARAMETERS = 3
INTEGER : : SEED, NPARTICLES, MAXITERATIONS, OBJECTIVE DIMENSIONS, I ,

OBJECTIVE, FUNCTION EVALUATIONS, AFTERX, FORX,
REINITIALIZE PARAMETERS BEST AFTER, IMPROVEMENT NORMALIZATION,
DIMENSIONS, PHASE TYPE, FIRST PHASE ITERATIONS, SECOND PHASE ITERATIONS,
DISTRIBUTION, DISTRIBUTION REINITIALIZATION ,

STOP NUMBER UNIMPROVED PHASE CYCLES, BOUNDS BY TYPE, GC FAILURE NUMBER,
GC SUCCESS NUMBER, MOVE BACK TYPE, MOVE BACK TYPE PARAMETER, END TIME(8)
, START TIME(8) , TIME NEEDED, DEBUG LEVEL

INTEGER(2 ) : : i o s t a t u s

CHARACTER (LEN = 10) CHARS(3)

LOGICAL : : MAXIMIZATION, GUARANTEEDCONVERGENCE, ADAPTIVE,
SOPSO STYLE GLOBAL BEST PARAMETER

DOUBLE PRECISION : : REDUCTION FACTOR, REDUCTION FACTOR PARAMETER,
G BEST VALUE, RANDOMPERCENT, SCALE POTENCY, WEIGHT HISTORY GLOBAL, RHO,
WEIGHT HISTORY LOCAL, CHANGEMEAN(2) , CHANGE MEAN SCALE(2) , WRANGE(2) ,
C1 RANGE(2) , C2 RANGE(2) , DISTRIBUTION PARAMETERS(

NUMBER ADAPTIVE PARAMETERS∗2) , LOWER BOUNDS PARAMETERS(
NUMBER ADAPTIVE PARAMETERS) , UPPER BOUNDS PARAMETERS(
NUMBER ADAPTIVE PARAMETERS) , DISTRIBUTION PARAMETERS REINITIALIZATION(
NUMBER ADAPTIVE PARAMETERS∗2) , W BOUNDS BY MEAN(8) , C1 BOUNDS BY MEAN(8)
, C2 BOUNDS BY MEAN(8)

DOUBLE PRECISION , ALLOCATABLE : : LOWERBOUNDS( : ) , UPPER BOUNDS( : ) ,
G BEST POSITION ( : )

DIMENSIONS = 30
ALLOCATE(LOWERBOUNDS(DIMENSIONS) , UPPER BOUNDS(DIMENSIONS) , G BEST POSITION

(DIMENSIONS) )
SEED = 55
NPARTICLES = 100
MAXITERATIONS = 74999
OBJECTIVE DIMENSIONS = 1
OBJECTIVE = 1
REDUCTION FACTOR = 0.54 d0
LOWERBOUNDS = −10.0d0
UPPER BOUNDS = 10.0 d0
WRANGE(1) = 0.7298 d0
WRANGE(2) = 0.7298 d0
C1 RANGE(1) = 1.49618 d0
C1 RANGE(2) = 1.49618 d0
C2 RANGE(1) = 1.49618 d0
C2 RANGE(2) = 1.49618 d0
MAXIMIZATION = . Fal se .
GUARANTEEDCONVERGENCE = . Fal se .
RHO = 1.0 d0
GC FAILURE NUMBER = 5
GC SUCCESS NUMBER = 15
ADAPTIVE = . Fal se .
DISTRIBUTION = 1
DISTRIBUTION PARAMETERS(1) = 0 .4 d0
DISTRIBUTION PARAMETERS(2) = 0 .9 d0
DISTRIBUTION PARAMETERS(3) = 0 .5 d0
DISTRIBUTION PARAMETERS(4) = 2 .5 d0
DISTRIBUTION PARAMETERS(5) = 0 .5 d0
DISTRIBUTION PARAMETERS(6) = 2 .5 d0
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RANDOMPERCENT = 0.33 d0
AFTERX = 1
FORX = 1
SCALE POTENCY = 0.5 d0
LOWER BOUNDS PARAMETERS(1) = −0.5d0
UPPER BOUNDS PARAMETERS(1) = 2 .0 d0
LOWER BOUNDS PARAMETERS(2) = −1.0d0
UPPER BOUNDS PARAMETERS(2) = 4 .2 d0
LOWER BOUNDS PARAMETERS(3) = −1.0d0
UPPER BOUNDS PARAMETERS(3) = 4 .2 d0
REDUCTION FACTOR PARAMETER = 0.50 d0
WEIGHT HISTORY GLOBAL = 6.0 d0
WEIGHT HISTORY LOCAL = 1.0 d0
REINITIALIZE PARAMETERS BEST AFTER = 50
IMPROVEMENT NORMALIZATION = 1
PHASE TYPE = 0
FIRST PHASE ITERATIONS = 36
SECOND PHASE ITERATIONS = 2
DISTRIBUTION REINITIALIZATION = 1
DISTRIBUTION PARAMETERS REINITIALIZATION(1) = 0 .5 d0
DISTRIBUTION PARAMETERS REINITIALIZATION(2) = 0 .8 d0
DISTRIBUTION PARAMETERS REINITIALIZATION(3) = 0 .6 d0
DISTRIBUTION PARAMETERS REINITIALIZATION(4) = 2 .4 d0
DISTRIBUTION PARAMETERS REINITIALIZATION(5) = 0 .6 d0
DISTRIBUTION PARAMETERS REINITIALIZATION(6) = 2 .4 d0
CHANGEMEAN(1) = −100.0d0
CHANGE MEAN SCALE(1) = 10 .0 d0
CHANGEMEAN(2) = −1.0d0
CHANGE MEAN SCALE(2) = 2 .5 d0
STOP NUMBER UNIMPROVED PHASE CYCLES = 40
BOUNDS BY TYPE = 0
W BOUNDS BY MEAN(1) = 0 .3 d0
C1 BOUNDS BY MEAN(1) = 0 .5 d0
C2 BOUNDS BY MEAN(1) = 0 .6 d0
W BOUNDS BY MEAN(2) = 0 .9 d0
C1 BOUNDS BY MEAN(2) = 2 .5 d0
C2 BOUNDS BY MEAN(2) = 2 .4 d0
W BOUNDS BY MEAN(3) = 0 .2 d0
C1 BOUNDS BY MEAN(3) = 0 .2 d0
C2 BOUNDS BY MEAN(3) = 0 .2 d0
W BOUNDS BY MEAN(4) = −1.0d0
C1 BOUNDS BY MEAN(4) = −1.0d0
C2 BOUNDS BY MEAN(4) = 1 .0 d0
W BOUNDS BY MEAN(5) = 0 .3 d0
C1 BOUNDS BY MEAN(5) = −2.5d0
C2 BOUNDS BY MEAN(5) = −2.5d0
W BOUNDS BY MEAN(6) = 0 .9 d0
C1 BOUNDS BY MEAN(6) = −0.5d0
C2 BOUNDS BY MEAN(6) = −0.5d0
W BOUNDS BY MEAN(7) = 0 .2 d0
C1 BOUNDS BY MEAN(7) = 0 .2 d0
C2 BOUNDS BY MEAN(7) = 0 .2 d0
W BOUNDS BY MEAN(8) = −1.0d0
C1 BOUNDS BY MEAN(8) = 1 .0 d0
C2 BOUNDS BY MEAN(8) = −1.0d0
SOPSO STYLE GLOBAL BEST PARAMETER = . True .
MOVE BACK TYPE = 0
MOVE BACK TYPE PARAMETER = 0
DEBUG LEVEL = 0

CALL DATE AND TIME(CHARS(1) , CHARS(2) , CHARS(3) , START TIME)

CALL runPsoSer i a l (SEED, MAXIMIZATION, WRANGE, C1 RANGE, C2 RANGE,
NPARTICLES, MAXITERATIONS, GUARANTEEDCONVERGENCE, RHO,
GC FAILURE NUMBER, GC SUCCESS NUMBER, DIMENSIONS, LOWER BOUNDS,
UPPER BOUNDS, REDUCTION FACTOR, OBJECTIVE DIMENSIONS, OBJECTIVE,
ADAPTIVE, DISTRIBUTION, DISTRIBUTION PARAMETERS, RANDOMPERCENT

, AFTERX, FORX, SCALE POTENCY, LOWER BOUNDS PARAMETERS,
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UPPER BOUNDS PARAMETERS, REDUCTION FACTOR PARAMETER,
NUMBER ADAPTIVE PARAMETERS, REINITIALIZE PARAMETERS BEST AFTER,
WEIGHT HISTORY GLOBAL, WEIGHT HISTORY LOCAL,
IMPROVEMENT NORMALIZATION, PHASE TYPE, FIRST PHASE ITERATIONS,
SECOND PHASE ITERATIONS, DISTRIBUTION REINITIALIZATION ,
DISTRIBUTION PARAMETERS REINITIALIZATION, CHANGEMEAN,
CHANGE MEAN SCALE, STOP NUMBER UNIMPROVED PHASE CYCLES,
BOUNDS BY TYPE, W BOUNDS BY MEAN, C1 BOUNDS BY MEAN,
C2 BOUNDS BY MEAN, SOPSO STYLE GLOBAL BEST PARAMETER,
MOVE BACK TYPE, MOVE BACK TYPE PARAMETER, DEBUG LEVEL,
G BEST VALUE, G BEST POSITION)

CALL DATE AND TIME(CHARS(1) , CHARS(2) , CHARS(3) , END TIME)

FUNCTION EVALUATIONS = NPARTICLES ∗ (MAXITERATIONS + 1)

OPEN(UNIT=103 , FILE=’result . txt ’ , STATUS=’NEW’ , IOSTAT=i o s t a t u s )

WRITE (UNIT=103 , FMT=100) G BEST VALUE
WRITE (UNIT=103 , FMT=105) FUNCTION EVALUATIONS
WRITE (UNIT=103 , FMT=101)

DO I = 1 ,DIMENSIONS
WRITE (UNIT=103 , FMT=102) G BEST POSITION( I )

END DO

CALL COMPUTE TIME(TIME NEEDED, END TIME, START TIME)

WRITE(UNIT=103 , FMT=103) TIME NEEDED

100 FORMAT( ’ gBestValue : ’ , F50 . 2 0 )
101 FORMAT( ’ position Vector : ’ )
102 FORMAT(F50 . 2 0 )
103 FORMAT( ’ time r equ i e r ed : ’ , I30 )
105 FORMAT( ’ f unc t i onEva lua t i on s : ’ , I50 )

CLOSE(UNIT=103)

DEALLOCATE(LOWER BOUNDS, UPPER BOUNDS, G BEST POSITION)

END
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Appendix C

Test Function Configurations

The values of vector ǎ of De Jong 5, Equation (4.4), are set to:

ǎ1, ǎ6, ǎ11, ǎ16, ǎ21 =
ǎ2, ǎ7, ǎ12, ǎ17, ǎ22 =
ǎ3, ǎ8, ǎ13, ǎ18, ǎ23 =
ǎ4, ǎ9, ǎ14, ǎ19, ǎ24 =
ǎ5, ǎ10, ǎ15, ǎ20, ǎ25 =

32
16
0
16
32

The values of vector b̌ of De Jong 5, Equation (4.4), are set to:

b̌1, b̌2, b̌3, b̌4, b̌5 =

b̌6, b̌7, b̌8, b̌9, b̌10 =

b̌11, b̌12, b̌13, b̌14, b̌15 =

b̌16, b̌17, b̌18, b̌19, b̌20 =

b̌21, b̌22, b̌23, b̌24, b̌25 =

32
16
0
16
32

The values of vector č of Deceptive Type 3, Equation (4.5), are set to:

č =

















































































































0.56
0.65
0.12
0.98
0.44
0.34
0.59
0.79
0.88
0.04
0.25
0.81
0.30
0.49
0.53
0.21
0.61
0.86
0.31
0.29
0.84
0.72
0.92
0.77
0.39
0.11
0.01
0.03
0.43
0.80
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
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
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






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Appendix D

Result Tables considering Average Solutions

Table D.1: Count of wins, draws, and
losses for 7,500,000 FE considering average
solutions.

Solver win draw loss

GBPSO 0 16 6
DWPSO 0 17 5
TVACPSO 1 17 4
GCPSO 0 17 5
SOPSO 0 20 2
MSOPSO 0 16 6
RSOPSO 0 20 2
MRSOPSO 0 17 5

Table D.2: Count of wins, draws, and
losses for 1,500,000 FE considering average
solutions.

Solver win draw loss

GBPSO 1 15 6
DWPSO 0 16 6
TVACPSO 0 14 8
GCPSO 0 16 6
SOPSO 0 18 4
MSOPSO 0 14 8
RSOPSO 1 18 3
MRSOPSO 1 16 5

Table D.3: Count of wins, draws, and
losses for 250,000 FE considering average
solutions.

Solver win draw loss

GBPSO 3 12 7
DWPSO 0 14 8
TVACPSO 0 14 8
GCPSO 0 14 8
SOPSO 0 15 7
MSOPSO 2 12 8
RSOPSO 0 15 7
MRSOPSO 0 12 10

Table D.4: Count of wins, draws, and
losses for 3,000 FE considering average
solutions.

Solver win draw loss

GBPSO 1 1 20
DWPSO 1 3 18
TVACPSO 8 5 9
GCPSO 1 3 18
SOPSO 1 5 16
MSOPSO 3 1 18
RSOPSO 0 5 17
MRSOPSO 1 4 17

Table D.5: PSO variants vs. APSO variants for 7,500,000 FE considering average solutions.

Test Problem known PSO variants proposed APSO variants

Griewank 0.0024653468 0.0057470070
Michalewicz 0.0016370493 0.0

Non-continuous Rastrigin 0.3355457426 0.0

Rastrigin 4.6431422664 0.3316530190

Rosenbrock 0.7611433973 0.0
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Table D.6: PSO variants vs. APSO variants for 1,500,000 FE considering average solutions.

Test Problem known PSO variants proposed APSO variants

Griewank 0.0090172271 0.0032857615

Michalewicz 0.0141742391 0.0139209371

Non-continuous Rastrigin 3.3333333365 0.6666666667

Parabola 0.0000000246 0.0003476957
Rastrigin 11.2761992885 7.6280194377

Rosenbrock 2.2940880387 1.3388943063

Table D.7: PSO variants vs. APSO variants for 250,000 FE considering average solutions.

Test Problem known PSO variants proposed APSO variants

Ackley 0.0 0.0000000007
Griewank 0.0114923776 0.0114809353

Hyper-ellipsoid 0.0000004069 0.0050324897
Michalewicz 0.0294789235 0.0

Non-continuous Rastrigin 11.3333333333 10.6666666667

Parabola 9.9445068671 7.8283158568

Rastrigin 17.3599442294 14.6057951797

Rosenbrock 15.9563162600 19.3760885214
Sphere 0.0000055749 0.0042017392

Table D.8: PSO variants vs. APSO variants for 3,000 FE considering average solutions.

Test Problem known PSO variants proposed APSO variants

Ackley 2.3471185663 2.8503274229
Alpine 0.0410857362 0.0019377298

Drop Wave 0.0000003024 0.0

Generalized Penalized 8.1764346980 15.0314828781
Griewank 1.1419446639 1.3269625993
Hyper-ellipsoid 1491.2270736500 1751.5966941000
Michalewicz 1.0209907626 1.0428209165
Non-continuous Rastrigin 87.6822596283 64.0808451603

Parabola 2773.0872997900 2670.2379967400

Rastrigin 121.5536371850 162.9028143630
Rosenbrock 416.6967614490 338.5360761200

Schaffer F6 0.0032388438 0.0066067998
Schwefel P2.22 4.8289577581 5.0141165042
Shubert 0.0000000044 0.0000000128
Sphere 16484.4946035000 14264.7843282000

Step 90.0 188.3333333330
Tripod 0.0000749267 0.6666788690
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Table D.9: Proposed APSO comparison for 7,500,000 FE considering average solutions.
Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Griewank 0.0057511083 0.0057470070 0.0057511083 0.0235910931
Michalewicz 0.0 0.1032496660 0.0 0.0149194455
Non-continuous Rastrigin 0.0 1.0 0.0 11.0
Parabola 0.0000000089 0.0000044325 0.0000000089 0.0

Rastrigin 0.3316530190 1.9899181142 0.3316530190 8.9546264760
Rosenbrock 0.0 11.1545012133 0.0 15.9014241671

Table D.10: Proposed APSO comparison for 1,500,000 FE considering average solutions.
Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Generalized Penalized 0.0345563401 0.0 0.0345563401 0.0

Griewank 0.0131250469 0.0114850364 0.0131250469 0.0032857615

Hyper-ellipsoid 0.0 0.0000002060 0.0 0.0

Michalewicz 0.0139209371 0.0288403826 0.0139209371 0.0981156218
Non-continuous Rastrigin 0.6666666667 5.6666666667 0.6666666667 7.6666666667
Parabola 0.0003476957 0.0494831227 0.0003476957 0.0011841635
Rastrigin 8.2913254758 13.2661123649 7.6280194377 12.2711566457
Rosenbrock 1.3388943063 13.7875290787 1.3388943063 14.0506079977
Sphere 0.0 0.0000000160 0.0 0.0

Table D.11: Proposed APSO comparison for 250,000 FE considering average solutions.
Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Ackley 0.3850506364 0.0000000007 0.3850506364 0.0000001240
Generalized Penalized 0.1036546596 0.0 0.1036546596 0.0

Griewank 0.0114809353 0.0278590931 0.0114809353 0.0252899560
Hyper-ellipsoid 0.0050324897 0.0530336489 0.0050324897 0.0108978670
Michalewicz 0.0 0.1686187550 0.0 0.1858121646
Non-continuous Rastrigin 10.6666666667 12.4595934528 10.6666666667 14.3333333333
Parabola 60.4532748691 7.8283158568 43.3526420540 19.5380423103
Rastrigin 27.8594261633 14.6057951797 27.8594261633 18.5725813378
Rosenbrock 19.3760885214 23.8375488671 19.3760885214 22.9722357465
Schwefel P2.22 0.0 0.0000000243 0.0 0.0000001654
Sphere 11.0227659992 1.3606351705 11.0227659992 0.0042017392
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Table D.12: Proposed APSO comparison for 3,000 FE considering average solutions.
Test Problem SOPSO MSOPSO RSOPSO MRSOPSO

Ackley 4.2259047998 2.8503274229 4.2259047998 2.9884090174
Alpine 0.0019377298 0.0272875912 0.0032733162 0.0459792947
Camel Back 0.0 0.0000000007 0.0 0.0

De Jong 5 0.0 0.0000000055 0.0 0.0

Drop Wave 0.0 0.0000002114 0.0 0.0212515714
Easom 0.0100008239 0.0000002062 0.0100008239 0.0

Gen... Penalized 1552.9890236400 15.0314828781 1552.9890236400 15.6108038420
Griewank 2.4082685107 1.3269625993 2.4082685107 1.3795156439
Goldstein–Price 0.0 0.0000000022 0.0 0.0000000063
Hyper-ellipsoid 3013.8873529400 1751.5966941000 3013.8873529400 2353.1607630600
Michalewicz 1.4705368726 1.0428209165 1.4709665130 1.2753618142
Non... Rastrigin 87.9851645311 64.0808451603 87.9851645311 105.1007572380
Parabola 3538.5208554600 2670.2379967400 3538.5208554600 3243.1342495000
Rastrigin 197.4109640190 191.6116738170 197.4109640190 162.9028143630

Rosenbrock 2407.0916692800 1484.7810176200 2407.0916692800 338.5360761200

Schaffer F6 0.0066067998 0.0083638294 0.0066067998 0.0067012035
Schwefel P2.22 12.8455019338 5.0141165042 12.8455019338 13.2568263189
Shubert 0.0079415086 0.0000003066 0.0079415088 0.0000000128

Sphere 20253.4693065000 14264.7843282000 20253.4693065000 15926.9121206000
Step 889.3333333330 188.3333333330 889.3333333330 247.6666666670
Tripod 0.6666808227 1.3336440366 0.6670358543 0.6666788690

Table D.13: PSO comparison for 7,500,000 FE considering average solutions.
Test Problem GBPSO DWPSO TVACPSO GCPSO

Ackley 0.8318565969 0.0 0.0 0.0

Griewank 0.0114923776 0.0139479208 0.0024653468 0.0131430472
Michalewicz 0.6046982133 0.0016370493 0.0016370493 0.0016370493

Non-continuous Rastrigin 11.0 0.3355457426 4.6666666667 2.4219316921
Rastrigin 49.4161921649 4.6431422664 6.3014073616 5.6381013235
Rosenbrock 0.7611433973 14.9739373973 16.6608073244 16.8734217044

Table D.14: PSO comparison for 1,500,000 FE considering average solutions.
Test Problem GBPSO DWPSO TVACPSO GCPSO

Ackley 0.8318565969 0.0 0.0 0.0

Griewank 0.0114923776 0.0090172271 0.0196810216 0.0098507281
Hyper-ellipsoid 0.0 0.0 0.0000000002 0.0

Michalewicz 0.6046982133 0.0292622922 0.0141742391 0.0171950356
Non-continuous Rastrigin 11.0 5.3341696440 12.3333333333 3.3333333365

Parabola 0.0000000246 0.0000048125 0.0046133849 0.0000001343
Rastrigin 49.4161921649 14.2610764598 11.2761992885 15.5876851774
Rosenbrock 2.2940880387 20.1826294789 13.5157019334 14.4290959807
Sphere 0.0 0.0 0.0000000002 0.0
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Table D.15: PSO comparison for 250,000 FE considering average solutions.
Test Problem GBPSO DWPSO TVACPSO GCPSO

Ackley 0.8318565969 0.0 0.0 0.0

Griewank 0.0114923776 0.0155789208 0.0139462640 0.0156075740
Hyper-ellipsoid 0.0000004069 0.0127858108 0.0083253120 0.0029690743
Michalewicz 0.6063352625 0.1202174767 0.2031683446 0.0294789235

Non-continuous Rastrigin 11.3333333333 22.0000122989 26.3333333333 23.6685015395
Parabola 18.6038582709 27.1141543332 30.3665861017 9.9445068671

Rastrigin 49.4161921649 17.3599442294 22.5523935435 27.5271821093
Rosenbrock 15.9563162600 29.6712060238 31.7944580444 23.6019738315
Schaffer F6 0.0064772733 0.0 0.0 0.0

Sphere 0.0000055749 0.2673301964 2.4584737455 0.0724461950

Table D.16: PSO comparison for 3,000 FE considering average solutions.
Test Problem GBPSO DWPSO TVACPSO GCPSO

Ackley 3.3231476775 3.6656615782 2.3471185663 3.7993752264
Alpine 0.0410857362 0.1058583180 0.0489896309 0.0571767603
Camel Back 0.0000000001 0.0 0.0 0.0

De Jong 5 0.0000000002 0.0 0.0 0.0

Drop Wave 0.0000003024 0.0000008637 0.0212515574 0.0000007274
Easom 0.0000687258 0.0000019163 0.0 0.3333333707
Gen... Penalized 23.4135697727 53.4320077974 8.1764346980 8299.8282069000
Griewank 1.7871371729 3.3811418140 1.1419446639 2.4779785042
Goldstein–Price 0.0000000006 0.0000000009 -0.0 0.0000000005
Hyper-ellipsoid 1888.4448456100 2656.9726578100 1491.2270736500 2029.5556637500
Michalewicz 1.4969071235 1.0209907626 1.7178090452 1.5065032175
Non... Rastrigin 103.6141028050 111.2885407850 87.6822596283 88.6883789954
Parabola 3418.9600152500 3915.7299502000 2773.0872997900 3125.3379437400
Rastrigin 164.5950651960 220.1112387230 121.5536371850 183.5392534760
Rosenbrock 710.1925387090 3773.9246038000 416.6967614490 2260.2515227600
Schaffer F6 0.0032388438 0.0097160726 0.0064773888 0.0097159102
Schwefel P2.22 6.2583974875 9.0250784778 4.8289577581 8.9679435527
Shubert 0.0000001906 0.0000007514 0.0000000044 0.0000009211
Sphere 20007.8587830000 26557.2125230000 16484.4946035000 26966.8690771000
Step 434.0 1152.3333333300 90.0 802.6666666670
Tripod 0.3339944284 1.3333832000 0.3333365596 0.0000749267
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Appendix E

Comparison considering Harder Problems

Results for Ackley in the search space [−30, 30]100, Alpine in the search space [−10, 10]30,
Generalized Penalized in the search space [−50, 50]60, Griewank in the search space [−300, 300]60,
Hyper-ellipsoid in the search space [−5.12, 5.12]100, Michalewicz in the search space [0, π]30, Non-
continuous Rastrigin in the search space [−5.12, 5.12]60, Parabola in the search space [−20, 20]200,
Rastrigin in the search space [−10, 10]60, Rosenbrock in the search space [−10, 10]60, Schwefel P2.22
in the search space [−10, 10]60, Sphere in the search space [−100, 100]200, and Step in the search
space [−100, 100]60 are presented here. Michalewicz is the only problem for which changing the
dimensionality caused a change in the optimum.

Table E.1: PSO vs. APSO for 15,000,000 FE, minimum solution, and increased dimension-
ality.

Test Problem known PSO variants proposed APSO variants

Michalewicz −18.9908267260 -19.9701269255

Non-continuous Rastrigin 10.7183844953 0.0000000000

Rastrigin 24.8739713895 0.0000000000

Table E.2: PSO vs. APSO for 7,500,000 FE, minimum solution, and increased dimension-
ality.

Test Problem known PSO variants proposed APSO variants

Michalewicz −19.3037120865 -19.3075176872

Non-continuous Rastrigin 19.0000000000 0.0000000000

Rastrigin 27.8588535986 6.9647133997

Table E.3: PSO vs. APSO for 250,000 FE, minimum solution, and increased dimensionality.

Test Problem known PSO variants proposed APSO variants

Ackley 0.0461864348 1.2371933991
Generalized Penalized 0.0000000000 0.0000000003
Hyper-ellipsoid 5.4276934402 13.6767854595
Michalewicz −18.2583876155 -18.8608458011

Non-continuous Rastrigin 50.0000000000 50.0018868437
Parabola 31.3746026486 27.7319112256

Rastrigin 67.7114779078 62.7110070117

Rosenbrock 58.6327166169 52.3783792300

Schwefel P2.22 0.0000000376 0.0000055684
Sphere 176.4354493410 104.9260000520
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Table E.4: PSO vs. APSO for 15,000,000 FE, average solution, and increased dimension-
ality.

Test Problem known PSO variants proposed APSO variants

Michalewicz -18.8069840625 −18.7896250155
Non-continuous Rastrigin 22.0781662916 0.0000000000

Rastrigin 27.1955273941 1.6582650952

Rosenbrock 2.6577492362 0.0000000000

Table E.5: PSO vs. APSO for 7,500,000 FE, average solution, and increased dimensionality.

Test Problem known PSO variants proposed APSO variants

Griewank 0.0024653468 0.0090311322
Michalewicz -18.7883124811 −18.7385036744
Non-continuous Rastrigin 42.3333333333 0.0000000000

Parabola 0.0000000000 0.0000093869
Rastrigin 38.1400753429 10.6128966090

Rosenbrock 2.6577492362 0.0000013250

Table E.6: PSO vs. APSO for 250,000 FE, average solution, and increased dimensionality.

Test Problem known PSO variants proposed APSO variants

Ackley 0.4290640146 1.6542867757
Generalized Penalized 0.0000397997 0.0000002838

Griewank 0.0000001342 0.0024653468
Hyper-ellipsoid 21.1553302540 28.2536405278
Michalewicz −16.8733335825 -17.8030058809

Non-continuous Rastrigin 65.6666666667 64.0056749278

Parabola 83.0347416149 56.1199292424

Rastrigin 86.3060586187 95.3170764763
Rosenbrock 87.0409065313 86.5998983637

Schwefel P2.22 0.0000173135 0.0002465545
Sphere 285.6889640510 195.7078964200

Step 0.0000000000 0.3333333333
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