1,001 research outputs found

    Attitude determination of GPS satellite vehicles

    Get PDF
    There is an increasing demand for navigation systems that has led to rapid development of Global Positioning System (GPS) across industries. Apart from position and speed, precise attitude measurements are needed for many GPS applications. This thesis presents techniques for attitude determination of satellite vehicles in both real-time and stand-alone positioning applications. The GPS system used is a differential GPS system that estimates the body frame baselines using at least four receivers. The attitude information is obtained using these baselines and projecting them onto a local level frame. Integer ambiguity is a major constraint in attitude determination. Least Squares Ambiguity Deco-relation method is implemented to fix the ambiguities prior to baseline estimation. Estimation techniques such as Least Squares and Kalman Filter are implemented for deriving baseline components. Finally, this system will compute body frame coordinates and attitude components in reference to the desired coordinate frames.Engineering Technology, Department o

    Precise GPS Position and Attitude

    Get PDF

    Instantaneous GPS/Galileo/QZSS/SBAS Attitude Determination: A Single-Frequency (L1/E1)Robustness Analysis under Constrained Environments

    Get PDF
    The augmentation of new global navigation satellite systems (GNSS) to existing GPS enhances the availability of satellite based positioning, navigation, and timing (PNT) solutions. Among existing systems, the European Galileo system, the Japanese quasi-zenith satellite system (QZSS), and satellite based augmented systems (SBAS) share at least one frequency (L1/E1) with GPS. In this contribution we analyse the robustness of single-frequency instantaneous carrier-phase attitude determination using data from some or all of the four systems GPS/Galileo/QZSS/SBAS. The performance of the constrained (C)-LAMBDA method is studied under various satellite deprived environments and compared to that of the standard LAMBDA method, using L1/E1 data that was observed for ten days at Curtin University, Perth, Australia. The results demonstrate the enhanced robustness that combinations of the four systems bring to single-epoch single-frequency attitude determination

    Real-time relative positioning of spacecraft over long baselines

    Get PDF
    This paper deals with the problem of real-time onboard relative positioning of low Earth orbit spacecraft over long baselines using the Global Positioning System. Large inter-satellite separations, up to hundreds of kilometers, are of interest to multistatic and bistatic Synthetic Aperture Radar applications, in which highly accurate relative positioning may be required in spite of the long baseline. To compute the baseline with high accuracy the integer nature of dual-frequency, double-difference carrier-phase ambiguities can be exploited. However, the large inter-satellite separation complicates the integer ambiguities determination task due to the presence of significant differential ionospheric delays and broadcast ephemeris errors. To overcome this problem, an original approach is proposed, combining an extended Kalman filter with an integer least square estimator in a closed-loop scheme, capable of fast on-the-fly integer ambiguities resolution. These integer solutions are then used to compute the relative positions with a single-epoch kinematic least square algorithm that processes ionospheric-free combinations of de-biased carrier-phase measurements. Approach performance and robustness are assessed by using the flight data of the Gravity Recovery and Climate Experiment mission. Results show that the baseline can be computed in real-time with decimeter-level accuracy in different operating conditions

    Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines

    Get PDF
    GPS relative navigation filters could benefit notably from an accurate modeling of the ionospheric delays, especially over large baselines (>100 km) where double difference delays can be higher than several carrier wavelengths. This paper analyzes the capability of ionospheric path delay models proposed for spaceborne GPS receivers in predicting both zero-difference and double difference ionospheric delays. We specifically refer to relatively simple ionospheric models, which are suitable for real-time filtering schemes. Specifically, two ionospheric delay models are evaluated, one assuming an isotropic electron density and the other considering the effect on the electron density of the Sun aspect angle. The prediction capability of these models is investigated by comparing predicted ionospheric delays with measured ones on real flight data from the Gravity Recovery and Climate Experiment mission, in which two satellites fly separated of more than 200 km. Results demonstrate that both models exhibit a correlation in the excess of 80% between predicted and measured double-difference ionospheric delays. Despite its higher simplicity, the isotropic model performs better than the model including the Sun effect, being able to predict double differenced delays with accuracy smaller than the carrier wavelength in most cases. The model is thus fit for supporting integer ambiguity fixing in real-time filters for relative navigation over large baselines. Concerning zero-difference ionospheric delays, results demonstrate that delays predicted by the isotropic model are highly correlated (around 90%) with those estimated using GPS measurements. However, the difference between predicted and measured delays has a root mean square error in the excess of 30 cm. Thus, the zero-difference ionospheric delays model is not likely to be an alternative to methods exploiting carrier-phase observables for cancelling out the ionosphere contribution in single-frequency absolute navigation filters

    GNSS-Based Attitude Determination Techniques - A Comprehensive Literature Survey

    Get PDF
    GNSS-based Attitude Determination (AD) of a mobile object using the readings of the Global Navigation Satellite Systems (GNSS) is an active area of research. Numerous attitude determination methods have been developed lately by making use of various sensors. However, the last two decades have witnessed an accelerated growth in research related to GNSS-based navigational equipment as a reliable and competitive device for determining the attitude of any outdoor moving object using data demodulated from GNSS signals. Because of constantly increasing number of GNSS-based AD methods, algorithms, and techniques, introduced in scientific papers worldwide, the problem of choosing an appropriate approach, that is optimal for the given application, operational environment, and limited financial funding becomes quite a challenging task. The work presents an extensive literature survey of the methods mentioned above which are classified in many different categories. The main aim of this survey is to help researchers and developers in the field of GNSS applications to understand pros and cons of the current state of the art methods and their computational efficiency, the scope of use and accuracy of the angular determination.https://doi.org/10.1109/ACCESS.2020.297008

    Instantaneous GPS-Galileo attitude determination: single-frequency performance

    Get PDF
    New and modernized global navigation satellite systems (GNSSs) are paving the way for an increasing number of applications in positioning, navigation, and timing (PNT). A combined GNSS constellation will significantly increase the number of visible satellites and, thus, will improve the geometry of observed satellites, enabling improvements in navigation solution availability, reliability, and accuracy. In this paper, a global positioning system (GPS) +Galileo robustness analysis is carried out for instantaneous single-frequency GNSS attitude determination. Precise attitude determination using multiple GNSS antennas mounted on a platform relies on successful resolution of the integer carrier-phase ambiguities. The multivariate-constrained least squares ambiguity decorrelation adjustment (MC-LAMBDA) method has been developed to resolve the integer ambiguities of the nonlinearly constrained GNSS attitude model that incorporates the known antenna geometry. In this paper, the method is used to analyze the attitude determination performance of a combined GPS +Galileo system. Special attention is thereby given to the GPS and Galileo intersystem biases (ISBs).The attitude determination performance is evaluated using GPS/Galileo data sets from a hardware-in-the-loop experiment and two real-data campaigns. In the hardware-in-the-loop experiment, a full GPS/Galileo constellation is simulated, and performance analyses are carried out under various satellite-deprived environments, such as urban canyons, open pits, and other satellite outages. In the first real-data experiment, single-frequency GPS data, combined with the data of Galileo in-orbit validation element (GIOVE) satellites GIOVE-A/GIOVE-B (the two experimental Galileo satellites), are used to analyze the two constellation attitude solutions. In the second real-data experiment, we present the results based on single-frequency data from one of the Galileo IOV satellites, combined with the data of GIOVE-A and GPS. We d- monstrate and quantify the improved availability, reliability, and accuracy of attitude determination using the combined constellation

    GPS multipath errors in the precision landing environment

    Get PDF
    Aircraft guidance and positioning during the final approach and landing phases of flight requires a high degree of accuracy. The Global Positioning System operating in differential mode (DGPS) is being considered for this application. Prior to implementation, all sources of error must be considered. Multipath has been shown to be the dominant source of error for DGPS. Theoretical studies have verified the severity of multipath within the final approach and landing regions. This paper presents a study of GPS multipath errors during these critical phases of flight. A discussion of GPS multipath error characteristics will be presented along with actual multipath data. The data was collected using P-code and C/A-code receiver architectures. Data was collected onboard a dual-engine fixed-wing research aircraft. Aircraft dynamics are considered in the data analysis

    Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    Get PDF
    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved
    • …
    corecore