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This paper describes a carrier-phase differential GPS approach for real-time relative 

navigation of LEO satellites flying in formation with large separations. These applications are 

characterized indeed by a highly varying number of GPS satellites in common view and large 

ionospheric differential errors, which significantly impact relative navigation performance 

and robustness. To achieve high relative positioning accuracy a navigation algorithm is 

proposed which processes double-difference code and carrier measurements on two 

frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-

loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities 

produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter 

for improving the float estimate at successive time instants. The approach also benefits from 

the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical 

Total Electron Content of each satellite. The navigation algorithm performance is tested on 

actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed 

approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and 

that centimeter-level accuracy can be achieved in real-time also with large separations. 

Keywords: Formation Flying, Relative Navigation, Carrier-based Differential GPS, Vertical Total Electron Content, 

Integer Ambiguity Estimation, GRACE mission  

1 Introduction 

In recent years formation flying has attracted the interest of the international scientific community due to the 

advantages over traditional space systems offered by flying multiple platforms to perform advanced space missions 

for Earth, universe observation, and gravity field mapping [1-3]. Nevertheless, formation flying requires high levels 

of relative motion coordination in order to perform common tasks. Autonomous navigation and control is required to 

fully exploit the advantages offered by flying multiple platforms. Indeed, maintaining specific relative orbital 

geometries and performing maneuvers as proximity flight or fly around are peculiar aspects of formation flying.  

Many applications require the determination of the satellite separations with accuracy at the centimeter level to 

control the satellite relative positions, especially when they come closer as a result of the relative orbital path, or at 

the sub-centimeter level to achieve scientific goals [1,2]. For determining the relative position, advanced technologies 

based on differential GPS and vision and laser systems have been proposed, and a number of missions have been 

performed for in flight demonstration of these technologies [4]. Whereas laser and vision systems are best suited for 

close proximity operations, differential GPS techniques can be effectively used for relative navigation with large inter-

satellite separations. Of course, accurate relative navigation with the GPS can be only performed in LEO, where the 

GPS signal strength and the GPS constellation visibility and observation geometry are the most favorable.   

Precise relative navigation requires adopting Carrier-phase Differential GPS (CDGPS) techniques which process 

differential code and carrier-phase measurements [5]. Previous studies focusing on real-time relative navigation of 

formations in LEO have developed various filtering approaches prevalently for formations of two or more satellites 

separated of a few kilometers [5,7]. These approaches process double-difference carrier-phase measurements on the 

L1 frequency within Extended Kalman Filters (EKF), and include in the filter state simplified models of the 

ionospheric delay to improve estimate accuracy [7]. Numerical and laboratory tests conducted within these works 
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demonstrate that sub-centimeter level accuracy can be achieved in real time, even if some effects, such as multipath 

and large Vertical Total Electron Content (VTEC) variations, have not been taken into account. Instead, other studies 

have achieved similar accuracies for formations with large baselines (> 100 km) only in post-processing [8]. Indeed, 

for large separations a major technical problem is preserving accuracy and robustness of the integer solution against 

the increasingly varying number of common-in-view satellites, and ionospheric differential errors.  

Only a few studies deal with the real-time relative navigation of large-baseline formations [9, 10]. In these cases 

measurements on both frequencies are exploited to achieve high accuracy. Nevertheless, performance have been 

demonstrated on constant baselines only by numerical simulations, using either non linear filtering approaches [9] or 

complex filter structures based on processing both differenced and un-differenced measurements. Results show that 

filter performance depends on the baseline, and the filter may diverge for baselines larger than 100 km due to the 

increasing ionospheric delay error. Finally, it is worth outlining that, to achieve high accuracy, in all the cited works 

the satellites’ absolute orbits are propagated to predict the relative state. This, of course, increases the computation 

load for real-time applications. 

This paper presents a CDGPS-based filtering approach for precise relative navigation of LEO formations with 

large baselines (in the order of hundreds of kilometers), with computational load compatible with a real-time 

application. Specifically, a closed-loop navigation scheme is proposed in which the float estimate performed by an 

Extended Kalman Filter is improved by feeding back the fixed estimates of the baseline and Integer Ambiguities (IA) 

obtained with a partial integer fixing step. To this end, the proposed approach combines an EKF with the Least-squares 

AMBiguity Decorrelation Adjustment [11] (LAMBDA) method, which is used for integer ambiguity determination. 

The management of both real-valued and integer parameters within the same filtering scheme requires the 

implementation of specific procedures which are also thoroughly analyzed and described in the paper. Approach 

effectiveness strongly depends on the accuracy of the float ambiguity estimate performed with the EKF, which in 

turns is affected by the large inter-satellite separation. Thus, to improve the float ambiguity estimate accuracy, double 

difference ionospheric delay terms are specifically modeled in terms of the VTEC, which is assumed variable over 

the baseline and introduced in the filter state [12-13]. Finally, the performance of the developed filtering approach is 

assessed by using real flight data from the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 

2002. 

The paper is organized as follows: in section 2 the solution approach and the EKF structure are presented, instead 

sections 3 and 4 describe in detail the proposed navigation scheme and the integer validation strategy; finally results 

of approach testing on flight data are presented in section 5. 

2 EKF-based Real-time Relative Navigation 

Precise real-time relative navigation builds upon the exploitation of the integer nature of Double Difference (DD) 

integer ambiguities. The relative navigation filter must be therefore able to manage both real-value (e.g. relative 

position and velocity) parameters and integer (DD ambiguities) ones. However, there are no known methods that allow 

estimating at the same time both real-valued parameters and integer ones. The prominent approaches in geodetic 

applications (see [14], for instance) perform a float estimate of all parameters, integer ambiguities included, as a first 

step. This is commonly referred to as the float estimate. Then, integer estimates of the cycle ambiguities are obtained 

applying an integer estimation algorithm to the float estimate. The reliability of this approach is strongly affected by 

the capability of delivering an accurate float estimate of the integer ambiguities, typically provided by non linear 

dynamic filters. Large inter-satellite separations (~ 100km) may degrade the accuracy of the float estimate unless 

highly accurate dynamics and stochastic models are used within the filter. This approach may not be suitable for real 

time applications, due to the inherent high computational load. Hence, an alternative approach is investigated in this 

paper able to exploit the integer nature of the DD ambiguity to correct the real-valued float estimate derived by the 

EKF and thus yielding a fixed estimate. The integration of an integer estimation step, based on LAMBDA, with a 

dynamic filter, such as an EKF, can be interpreted as a solution able to reduce the need for high accuracy dynamic 

and stochastic models and therefore to guarantee precise real-time relative navigation. The remainder of this section 

deals with the EKF whereas specific issues relevant to the integration with the LAMBDA method are presented in 

section 3. 

2.1 EKF Process and Observation Models 

The relative navigation problem is defined with reference to the ECEF reference frame and a formation of two 

satellites, named chief and deputy. The problem is described by the following standard nonlinear discrete stochastic 

model 
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where x is the system state vector, y is the measurement vector, g is the non-linear state propagation function, h is the 

non-linear observation function, w is the process noise vector, v is measurement noise vector, and the subscript k is 

used to denote the variable value at the time tk. Both noises are assumed to be additive, white, Gaussian with zero 

mean, uncorrelated in time, mutually uncorrelated and uncorrelated with the state vector at the same time sample. The 

selected state and measurements vector are 
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where p is the number of DD observations of each kind. A single difference can be formed by subtracting two 

undifferenced measurements of the same type and frequency, which are taken by two different receivers at the same 

time from the same GPS satellite. A double difference can be formed by subtracting two single difference equations 

of the same type and frequency, which are taken by the same two GPS receivers at the same time from two different 

GPS satellites, one of which, named pivot, is taken as a reference. Thus the number of available DD observations of 

each kind is equal to the number of GPS satellites in view of both receivers at the same time, minus one. In Eq.s(2),(3), 

b’ stands for the augmented baseline vector (comprising the relative positioning vector from the chief to the deputy 

and the relative velocity vector), VTEC is the vector including the two vertical total electron contents above the 

receivers, aw and a1 represent the vector of wide-lane and L1 DD ambiguities, respectively. 
1

j
P  and 

2

j
P  are DD 

pseudorange measurement vectors, whereas 
1

jL  and 
2

jL  are DD carrier phase measurement vectors. 

The nonlinear dynamics model foresees Keplerian + J2 relative orbital motion and null nominal (i.e. no errors) 

dynamics for the other state components 

 ( ) 1, 0 , 0 , 0
w

f′ ′ ′ ′= = = =b b VTEC a a
i

� � �  (4) 

Non-zero process noise is assigned to VTECs and to cycle ambiguities. The selected model has to be interpreted 

as a trade-off between using a nonlinear model to improve accuracy and having a computational load adequate for 

real-time implementation. In this way it is possible to get good performance by modeling differential perturbations 

(e.g. differential drag) as process noise while keeping low the computational effort. Indeed, formation flying satellites 

usually lie on orbits whose parameters slightly differ and have similar ballistic coefficients so to minimize control 

efforts to maintain the formation. 

As shown in [11], in order to maintain accuracy and robustness in the estimate of double-difference integer 

ambiguities over large baselines the ionosphere delay terms must be included in the filter state. Specifically, to improve 

both state vector observability and sensitivity of the dynamic filter baseline variations, double difference ionospheric 

delay terms are expressed in terms of the VTEC which is then included in the filter state and assumed variable over 

the baseline. Lear mapping function [15] is used to express the ionospheric delay as a function of VTEC. Actually, the 

higher correlation [13] between predicted and measured ionospheric delays and precision exhibited by Lear model 

makes it particularly suited for removing ionospheric delays from DD carrier phase measurements, thus aiding the 

estimation of the DD integer ambiguities in Extended Kalman Filters for relative navigation over large baselines. 

On this basis the nonlinear observation model is given by 
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where Ip is the p-dimensional identity matrix, λ1 and λ2 are L1 and L2 signal wavelength and 1 2γ λ λ=  and j

AB
I can 

be derived from Lear mapping function [12]. The observation model relating the state vector to the observables is 

nonlinear due to the geometric term dependency on the baseline vector. 

The Extended Kalman Filter estimates the baseline components, the ionospheric delays (in terms of VTEC for the 

two satellites) and the DD ambiguities. This is done by applying the Kalman Filter estimation theory to the nonlinear 

dynamical system defined by Eq.(4) augmented with ambiguities and VTEC terms, and by employing the observation 

model described by Eq.(5). EKF models and relations can be founded in classic textbooks (see [16,17], for instance), 

and will not be discussed herein. As mentioned earlier, the EKF is, however, capable of estimating real-valued 

parameters, and does not take into account that the DD cycle ambiguities are integer. Thus, the EKF yields a float 

estimates, both of the real valued parameters (the baseline, baseline rate and the two VTECs) and of the integer ones. 

For fully exploiting the high accuracy of the carrier phase measurements, the DD ambiguities must be fixed to their 

integer values, and the float solution updated to reflect this change, yielding the fixed solution. 

3 Relative Positioning Approach 

The LAMBDA [11] method is used to conduct the integer fixing step. This is an Integer Least Squares (ILS) 

estimator searching for the optimum integers into a transformed integer space. More specifically, LAMBDA applies 

the so-called Z-transformation. Z-transformation has the property of preserving the integer nature of the ambiguities 

while heavily decorrelating the ambiguity vector components, which results in a more efficient way of determining 

the ILS solution. As a result, LAMBDA outputs the integer estimate of DD ambiguities. However, LAMBDA does 

not provide a stochastic characterization of those estimates thus complicating the integration with EKF results. 

A practical solution is to assume the integer estimates generated by LAMBDA to be deterministic. This approach 

is not fully justified from a theoretical point of view. In practice, the IA estimated by LAMBDA could be considered 

deterministic if the float estimates of the ambiguities are unbiased and their distribution is sufficiently sharp about the 

(integer) mean [14]. This does not happen in real world data, where the float distribution can be biased and converge 

to a non-integer value. In order for ascertaining if this is the case, validation tests must be used. Validation tests will 

be analyzed in the following section, while the remainder of this section specifically deals with different schemes for 

correcting real-valued float estimate to obtain fixed estimates based on the fixed (and validated) ambiguities. 

There are three main approaches that have been applied in problems that show similarities with the application 

considered in the present paper. The simplest approach is to disregard the integer nature of the DD carrier phase 

ambiguities. This has been proved to work for relative positioning with centimeter accuracy [5,18] , but for relatively 

short baselines of the order of 1 km and not using real-world GPS measurements. As such it is not suitable for long-

baseline applications. 

As an alternative, an integer-fixing algorithm, such as LAMBDA, can be used to fix the integer values of the 

ambiguities using their float estimates. In case enough ambiguities are fixed to integers, the float baseline can be 

corrected for obtaining a sharper “fixed” estimate. This step can be carried out exploiting the estimates of the cross-

correlation between the float baseline and the float ambiguities. Indeed, when the ambiguities are successfully fixed, 

the error affecting the float ambiguities is known (i.e. is the difference of fixed and float values). Thus, the error on 

the float baseline can be estimated and compensated, yielding the fixed baseline. Let us consider a state vector x, in 

which the baseline vector b comprises all real-valued component of the state x (i.e. the baseline, the baseline rate and 

the two VTECs in our case) and the integer vector a includes both WL and L1 carrier-phase ambiguities. Denote by a 

circumflex accent the float estimate, by a breve accent the fixed estimate, and by Pcd the covariance matrix between 

two generic vector variables c and d. The fixed baseline is related to the float one and to the fixed integer ambiguities 

as follows [14]: 

 ( )1ˆ ˆba aab b P P a a
−= + −

� �
 ; 1

bb ba aa abb aP P P P P
−= −�  (6) 

Thus, Eq.(6) allows improving the baseline accuracy beyond that of a purely float approach. One can imagine to 

let a dynamic filter (e.g. an EKF) run undisturbed and provide a float estimate of the baseline and of the DD 

ambiguities. An integer-fixing algorithm, such as LAMBDA, tries to fix the integer values of the ambiguities based 

on the float estimate. Integer validation tests might be used to increase the probability of correct IA estimation, by 

accepting only promising LAMBDA solutions. This corresponds to the “open-loop” approach depicted in Figure 1. It 

has been applied in several relative kinematic positioning applications [9,19–21], including relative spacecraft 

positioning. However, this approach requires that the float ambiguities estimates are sufficiently close to the exact 

integer. If this is not the case, either numerous LAMBDA solutions will be rejected by the validation tests or cycle 
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ambiguity errors will be incorporated into the fixed baseline via Eq.(6), thus degrading the overall accuracy of the 

estimated baseline. 

 
Figure 1. Open-loop baseline fixing approach flow diagram. 

 

As an alternative to the approach of Fig.1, many references in spaceborne GPS receivers applications [8,22–28] 

do exploit the knowledge of the fixed integer ambiguities and the fixed baseline estimate (with the relevant covariance 

matrix) as feedback signals for improving the float estimates in the following time instants. In practice, Eq.(6) is used 

at a certain time epoch not only for obtaining the fixed solution, but also for modifying the EKF state vector and 

covariance matrix. Note that some authors [8,22–23] propose a  pseudo-measurement step for implementing this 

update of the state vector. By carrying out Kalman filter’s algebra, it is easy to verify that these pseudo-measurement 

steps are equivalent to Eq.(6). This approach, which feeds back the fixed estimates to the EKF, can be viewed as a 

“closed-loop” scheme, and is depicted in Figure 2. 

 
Figure 2. Closed-loop baseline fixing approach flow diagram. 

 

For completeness it is important to point out that in [8] a comparison has been conducted between an open-loop 

solution and its closed-loop one, showing that the open-loop solution is not capable of performing as the closed loop 

one. Its performances were found to be somehow in between the float and the closed loop approaches. From these 

considerations, it is possible to conclude that the aiding of the float estimate with the integer fixing step results is 

necessary in long-baseline application as the present one. This claim is also supported by [22], which states that in the 

absence of such state-vector updates (by means of the fixed integer ambiguities) orbit solutions converge only with 

precise initialization and dynamics modeling. 

The selection of a closed-loop approach requires the implementation of proper strategies to manage integer 

fixing/validation steps within the EKF, that is, which ambiguities continue to keep in the filter state and to feed 

LAMBDA and the validation step. First of all, following the results shown in [8,22,25], it seems advisable to foresee 

a capability of partial integer fixing, i.e. being capable of fixing only a subset of the float ambiguities when validation 

of the whole set, i.e. vector integer validation, fails (see next section for the details). Thus, the navigation algorithm 

will deal with a mixed array of fixed and un-fixed ambiguities, representing both not yet validated ambiguities and 

ambiguities related to newly acquired satellites. The overall logic of the navigation algorithm can be summarized as 

in Figure 3. In this scheme, only a subset 
k

a
�

 of the float ambiguities ˆ
k

a  is fixed, leaving the other non-validated 

ambiguities ˆ
k

a′  as float estimates. Once the fixed ambiguities 
k

a
�

 are used for updating the float variables vector 

( )ˆ ˆ ˆ
k k k

b b a′ ′=  into the fixed one 
k

b′
�

 by Eq.(6), they become uncorrelated with the fixed baseline, and can be dropped 

from the EKF state vector. Their fixed value will be then used only for unbiasing the relevant DD carrier phase 

measurements, which become highly accurate pseudorange measurements, until one of the two GPS satellites forming 

the DD couple is lost. 
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Figure 3. Proposed Algorithm Logic: Flow Diagram 

 

Finally, it is worth noting that Eq.(6) updates the inter-satellite distance, the relative velocity and ionospheric 

delays through VTECs. The final baseline accuracy is then also limited by the accuracy of VTEC-based ionospheric 

model (and Lear mapping function too). As shown in [12], the VTEC-based model is accurate enough to aid integer 

ambiguity resolution, but it can be unsatisfactory to correct the baseline estimate (especially over polar areas) once 

integer ambiguities have been fixed and validated. For this reason, the fixed ambiguities are used for performing a 

refinement of the EKF solution. More precisely, when the fixed integer ambiguities allow for obtaining more than 3 

ionospheric-free combinations of the unbiased carrier phase measurements, a kinematic filter, based on a Weighted 

Least Square (WLSQ) algorithm processing such ionospheric-free combinations, is applied to refine the baseline 

estimation. 

 

4 Integer Ambiguity Validation Strategy 

Different strategies are available to perform integer ambiguity validation. The classical approach is to test if all 

the integer ambiguities are simultaneously valid. These “vector” validation tests operate on the whole vector of integer 

ambiguities, and do not discriminate between ambiguities within the vector: if only one ambiguity within the vector 

is deemed erroneous, the whole vector does not pass the test. An example of vector validation test is the so-called 

Minimum Required Success Rate [8,14] that computes the theoretical success rate of the integer ambiguity, and does 

not require the integer estimate LAMBDA . This test could thus be useful for deciding if the computation burden 

needed for running LAMBDA is worth being spent, or if the expected outcome is unlikely to be useful in any case. 

Other validation tests exist, but they all lack a sound theoretical basis (see [14] for a detailed discussion of this topic). 

A potential alternative is represented by the so-called Integer Aperture estimators [14]. Unlike classical integer 

estimators that always provide an integer solution, regardless of the quality of the float estimate, Integer Aperture 

estimators explicitly consider that in some cases it is better not to fix the float estimate. [14] proves that the classical 

integer estimator followed by a validation step belong to the class of Integer Aperture. An important limitation of the 

Integer Aperture estimators is that the value of the “aperture parameter”, which plays the role of the threshold 

acceptance values in validation tests, is difficult to compute rigorously. The aperture parameter is determined by 

Monte Carlo simulation in most cases, which prevents considering Integer Aperture estimators from being used in 

real-time applications. 

On the other hand, when not all the integer ambiguities are correctly fixed, there is the possibility that a subset of 

the integer ambiguity vector is instead correct. Partial integer ambiguity validation tests are concerned with 

discriminating between the single ambiguities, i.e. separating the correct from the incorrect ones. Concerning this, it 

is well-known that wide-lane integer ambiguities are more easily estimated than other ambiguities by any integer 

ambiguity estimator thanks to their wavelength, which significantly exceeds the typical pseudorange measurement 

error. In addition, the results presented in [29] suggest that the most accurate LAMBDA estimate is equal to the wide-

lane one when the ionosphere error contribution is higher than the measurement noise. This result allows claiming 

also that the wide-lane ambiguities estimates have almost uncorrelated variance, which further strengthens the 

theoretical consistency of partial validation tests. 
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According to this analysis only partial integer ambiguity validation tests are taken into account and implemented 

in the algorithm logic reported in Figure 3. More in detail, first wide-lane float ambiguities are tested, and only for 

those DD couples with a validated wide-lane ambiguity additional tests are performed to validate also L1 integer 

ambiguities.Wide-lane ambiguities are validated only if the following two tests are passed: 

- Float wide-lane ambiguity residuals [8] 

- Instantaneous residuals of Melbourne-Wubbena (MW) observables [30,31] 

The first test evaluates the difference between the float estimate of the wide-lane ambiguity and its integer one. In 

practice, a threshold is introduced as the maximum difference under which an integer value is deemed correct. The 

second test checks the residual of Melbourne-Wubbena observables representing a direct, unbiased but noisy, measure 

of wide-lane integer ambiguities. It is worth noting that the first test is strongly influced by EKF float estimate of 

integer ambiguities while the second one only depends on pseudorange and carrier phase measurements. The 

combination of these tests can potentially reduce the probability that a bias in the float estimate of the ambiguity lead 

to the validation of wrong integer ambiguities. 

In order to validate the integer estimate of L1 ambiguities, for all the DD couples passing the former two tests, two 

additional tests are performed: 

- Distance between the float and the integer value of narrow-lane combinations [16] of wide-lane and L1 

integer ambiguity 

- Instantaneous residuals on ionospheric-free DD carrier-phase measurements [8] 

Again the first test is dominated by the EKF float estimates of integer ambiguities, whereas the second one is affected 

also by the baseline estimate and carrier-phase measurements. 

5 Approach Test on Flight Data 

The performance of the proposed approach is evaluated using actual flight data from spaceborne GPS receivers. 

According to the previous sections, evaluation of the models is of interest for two receivers flying in formation and 

separated by a large baseline, in the order of hundreds of km. Flight data matching these requirements is made available 

by the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002. An overview of the GRACE 

mission can be found in [32]. It consists of two identical satellites, GRACE A and GRACE B, in near circular orbits 

at an initial altitude of approximately 500 km and 89.5 deg. inclination. The satellites are nominally separated of 220 

km in the along track direction. The primary mission objective is to map the Earth’s gravity field, which is 

accomplished by the mission’s key instruments, the Ka-Band Ranging System (KBR) and high-precision 

accelerometers. Each spacecraft is also equipped with identical NASA JPL BlackJack GPS receivers [33]. A post-

processed version of GRACE data, known as Level 1B (L1B) data, is made available to the scientific community by 

JPL’s Physical Oceanography Distributed Active Archive Center (PODAAC). The Level 1B data are derived from 

the processing applied to the raw data described by [34].  

A specific dataset has been selected from all available GRACE L1B data for the analysis presented in this paper. 

The dataset refers to January 14th, 2009, in which GRACE B leads the formation and GRACE A follows at a distance 

of 266 ± 1.8 km and the orbit altitude ranges between ~450 km and ~480 km during the day, which yields an orbital 

period of about 1 hour 34 minutes. This data set is representative of a formation of two satellite with a large separation. 

Indeed, the maximum separation between the two GRACE satellites is expected to be about 270 km. The selected 

dataset comprises 5 complete orbital revolutions of the GRACE satellites. Because GPS receivers’ L1B data are 

available at a sampling rate of 0.1 Hz, this results in more than 2800 samples. GPS L1B data used by the filter consists 

of two pseudorange measurements and two carrier phase measurements from code observations on the L1 frequency 

and semi-codeless tracking on the L2 frequency. As with all GRACE Level 1B data, the time-tags are corrected to 

GPS time using GPS clock solutions computed in post-processing [35]. A data-editing step, compatible with real-time 

implementation, has been performed on GPS L1B data, in order to detect and remove outliers in the pseudorange 

measurements and to discard all observations from GPS satellites whose elevation above the local horizon is smaller 

than 10 deg.  

The relative navigation filter estimation performances are quantified by comparing the baseline estimated by the 

filter to a reference solution provided as part of GRACE L1B data. In particular, KBR data have been used for 

assessing the accuracy in determining the baseline magnitude. The KBR instrument measures the change in distance 

between the spacecraft, also known as the biased range, with a precision of 10 μm. The biased range can be seen as 

the true range plus an unknown bias. The bias is arbitrary for each piecewise continuous segment of phase change 

measurements and has to be compensated by a specially designed procedure, described in detail by [8]. The Level 1B 

data includes also a GPS Navigation (GNV) data product, which contains an estimate of the two spacecraft Center of 

Mass (CoM) position and velocity vectors. These estimates are obtained as a product of a precision orbit determination 
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tool [34] and typically have a time-varying accuracy of a few centimeters in position. Both KBR and GNV data allow 

estimating the baseline between the spacecraft CoM, whereas GPS measurements allow reconstructing the baseline 

between the two GPS antennas. Therefore, the GPS antenna offset w.r.t. the CoM is compensated when necessary 

taking into account each spacecraft attitude, which is provided in GRACE L1B data as well. For providing additional 

insight into the filter performances, its capability of fixing the correct integer ambiguities is also analyzed. For this 

purpose, reference values of all integer ambiguities have been obtained. These reference ambiguities are computed 

taking advantage of the knowledge of the observation geometry given by the KBR and GNV data. The procedure is 

described in [13], to which we refer the interested reader.  

The proposed relative navigation filter has been run on the selected dataset. Numerical simulation of the complete 

data took less than 2 minutes to be completed in Matlab®, (in face of a simulated time span of ~ 8 hours) on a standard 

desktop PC equipped with a Pentium IV 2.4 GHz processor and 2GB RAM. For having an indication of how these 

execution times scale when the algorithm is run on a different machine, such as a real-time onboard computer for 

space applications, the FLoating point OPerations per Second (FLOPS) necessary to the relative navigation algorithm 

are also estimated. More precisely, the FLOPS required to run the algorithm continuously on the 8-h dataset are 

estimated based on the computing power of the above PC, on the algorithm’s execution time, and on the dataset 

duration, yielding an average value of ~ 40 MFLOPS. This value is fully compatible with state-of-the-art, space-

qualified CPUs (e.g. [36]). It shall be also considered that the algorithm is implemented in MATLAB with virtually 

no software coding optimization. This implies that the FLOPS strictly necessary to the algorithm for computing the 

baseline are probably significantly less. All the above considerations suggest that the computational load is adequate 

for providing real-time relative positioning. 

 Figure 4 shows the percentage of integer ambiguities which are fixed by the filter w.r.t. the total number of 

available ambiguities at each time epoch. The filter is capable of fixing almost the 90% of the total ambiguities in the 

selected dataset, 88.4% of WL ambiguities and 86.1% of L1 ambiguities, with zero fail rate. It is apparent, however, 

that there are several time intervals in which the ambiguity fixing percentage drops down significantly. In these time 

epochs, the number of iono-free combinations of unbiased carrier phase measurements is lower than four, implying 

that the kinematic correction cannot be applied to refine the EKF results. It is outlined that the null fail rate for both 

WL and L1 ambiguities implies that the validation tests do not allow passing any incorrect ambiguity. This feature is 

crucial for establishing the performance of the proposed filter, and, more broadly, of filters arranged in the closed-

loop scheme presented in Figure 2. Indeed, an erroneously fixed integer ambiguity will worsen the filter capability of 

estimating the remaining ambiguities in the subsequent time epochs, further decreasing the estimation accuracy as 

more integer ambiguities become erroneously fixed, possibly leading to divergence of the solution. However, the 

presence of the MW validation test limits the magnitude of these divergence phenomena, thanks to the independence 

from the filter estimates of MW combinations. 

Figure 5 shows the baseline magnitude estimation error, obtained comparing the filter’s solution to the highly 

accurate KBR one. The time epochs in which the kinematic correction is not available are highlighted in red. Thanks 

to the IA fixing performances, the kinematic correction is available in more than 85 % of the time epochs. Results also 

confirm that the kinematic correction is useful in refining the EKF solution. Despite a baseline of more than 250 km, 

the baseline magnitude is estimated with a RMS error of about 3.4 cm. and the maximum error is below 20 cm.  

The baseline vector estimation performances are plotted in Figure 6 together with the 3σ bounds predicted by the 

navigation filter (shown as the shaded gray area). Note that the baseline estimation error is obtained using the GNV 

data products as a reference. These have a typical accuracy of a few centimeters, which is comparable to the baseline 

estimation error order of magnitude. From this perspective, these results are less significant than the ones presented 

for the baseline magnitude. Figure 6 depicts the baseline error components in the Orbital Reference Frame (ORF), 

whose x axis is directed along-track, its y-axis is directed cross-track, and the z one is in the radial direction. The 

relative navigation performances are higher in the cross-track direction and worse in the radial one, due to GPS 

observation geometry. Nonetheless, all three components are estimated with a RMS error in the order of few 

centimeters, and almost always smaller than 20 centimeters. Moreover, the filter predicts an error variance that is 

consistent with the actual error, confirming the robustness of the filter estimates. 
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Figure 4 Percentage of Integer Ambiguities (IA) fixed by the filter 

 
Figure 5 Baseline magnitude estimation error 
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Figure 6 Baseline estimation error in ORF. Gray shaded area stands for ±3σ bounds predicted by the filter. 

 

The relative navigation performances are summarized in Table 1.  

 

Table 1. Relative Navigation Performances 

Baseline Component 
Estimation Error 

Max, cm. RMS, cm. 

Magnitude (||B||) 18.8 3.4 

Along Track (Bx) 20.4 3.8 

Cross Track (By) 16.8 1.9 

Radial (Bz) 24.6 4.4 

Kin. Correction Availability 85.6 % 

 

6 Conclusion 

A filtering approach relying on Carrier-based Differential GPS for relative navigation of LEO formations with 

large inter-satellite separations has been presented. Approach requirements are real-time operation and precise 

baseline determination. To this end the proposed navigation algorithm adopts a simplified nonlinear model of the 

satellite relative dynamics and exploits the integer nature of the double-difference carrier-phase ambiguities.  

A major technical problem when dealing with large baseline formations is preserving accuracy and robustness of 

integer ambiguity solution against the increasingly varying number of common-in-view satellites and large 

ionospheric differential errors. To overcome limitations of the adopted relative dynamics model and problems caused 

by the large inter-satellite separation, the proposed navigation filter adopts a closed-loop scheme in which fixed 

estimates of the baseline and integer ambiguities, obtained with a partial integer fixing step, are fed back to an 

Extended Kalman Filter in order to improve the float estimate at successive time instants. To manage both real-valued, 

including double-difference ionospheric terms, and integer parameters, the navigation filter integrates the Extended 

Kalman Filter with an Integer Least Squares estimator based on the LAMDBA method. In addition, different tests are 

performed to effectively validate such integer estimates. 

Filter performance has been evaluated on actual flight data from spaceborne GPS receivers. Flight data from the 

GPS receivers on board the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002, have 
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been used. GRACE consists of two satellites flying in a leader-follower formation. The analyzed data set is relevant 

to a condition of maximum separation between the two satellites (about 270 km), which is of interest for testing the 

relative navigation approach presented in the paper.  

Results show that the proposed filtering scheme is able to fix almost the 90% of the total ambiguities in the selected 

dataset, being also able to recognize and discard wrong estimates of integer ambiguities. This performance is, of 

course, crucial to get an accurate baseline determination. As a consequence, despite the inter-satellite large separation 

(about 266 km), the baseline components are estimated with RMS errors between 2 cm and 4.5 cm and maximum 

errors between 17 cm and 25 cm, being the errors higher in the radial components. Finally, the comparison of the time 

required by numerical simulation of the complete data set (about 2 minutes) with the simulated time span (about 8 

hours) suggests that the computational load is adequate to using the proposed approach in real-time applications. 
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