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Abstract 

 

This paper focuses on the analysis of ionospheric path delay models for GPS-based relative navigation applications. In 

particular, the paper aims at assessing if existing ionospheric delay models are suitable for use in real time filtering schemes 

for the relative navigation of Low Earth Orbit (LEO) satellites flying in formations with large baselines. We specifically refer 

to real-time filtering schemes, which thus call for relatively simple ionospheric models. We also focus on a navigation 

scheme that processes double-differenced code and carrier-phase measurements, which, as well known, allow determining the 

baseline with high accuracy thanks to the possibility of exploiting the integer nature of the double-difference carrier cycle 

ambiguities. Nevertheless, over large baselines, the success in ambiguity fixing largely depends on the capability of 

estimating the double-difference ionospheric delays with adequate accuracy. The paper analyzes the capabilities of 

ionospheric path delay models proposed for spaceborne GPS receivers in predicting both zero-difference and double 

difference ionospheric delays. Specifically, two models are evaluated, one assuming an isotropic electron density and the 

other considering the effect on the electron density of the Sun aspect angle. The prediction capability of these models is 

investigated by comparing predicted ionospheric delay with measured ones on real flight data from the Gravity Recovery and 

Climate Experiment mission, in which two satellites fly separated of more than 200 km. Results demonstrate that both models 

exhibit high correlation between predicted and measured ionospheric delays, with the isotropic model performing better than 

the model including the Sun effect. Moreover, the precision in the estimate is compatible with the use of this model in real-

time filtering applications for integer ambiguity fixing.  

 

Keywords: Ionospheric path delays, spaceborne GPS receivers, formation flying, relative navigation, large baseline, double-

difference 

 

 

1 Introduction  

 

Many present and future space missions require the navigation solution to be achieved autonomously on board the 

satellites. Both absolute and relative navigation are of interest due to the fact that an increasing number of space missions are 

based on cooperating satellites. For the autonomous navigation of Earth orbiting satellites the GPS plays a crucial role, 

although some technological and implementation challenges must be faced in order to come to an accurate and robust 

navigation solution. For instance, the possibility of extracting accurate estimates of the geometric ranges from the GPS 

observables (code and carrier phase) depends on the capability of properly modeling and predicting some systematic effects, 

like the ionospheric delay, and estimating biases, like the cycle ambiguities in the carrier-phase observables. In this context, 

the paper main goal is assessing if existing ionospheric path delay models are suitable for use in real-time filtering schemes 

for the relative navigation of Low Earth Orbit (LEO) satellites flying in formation with large baselines. Indeed, the 

differential ionospheric delay caused by the large inter-satellite separation can seriously impact the quality of the relative 

navigation solution if not properly modeled and predicted.  

Formation flying is a topic that is receiving great attention from the international scientific community due to the 

performance and operational advantages deriving from flying multiple platforms, like increased system flexibility and 

robustness to failures. Many present and future space missions for Earth remote sensing (Krieger et al. 2007; Moccia and 

D’Errico, 2008), observation of the universe (Fridlund and Capaccioni, 2002), and Earth gravity field mapping (Tapley et al. 

2004) can take advantage from formation flying. In such missions, formation flying requirements can be largely different, 

with particular concern to the inter-satellite separation and formation navigation and control. We focus on applications that 

require the satellites to fly at large distances all the time or for a significant fraction of the orbital period, as a result of 

mission scientific goals. This is the case of remote sensing applications in which parallel or pendulum orbits are considered to 

reflect next generation monostatic/bistatic spaceborne Synthetic Aperture Radar (SAR) mission needs in LEO. In these 

applications the baseline can range from a few kilometers to hundreds of kilometers during a single orbit or keep large values 

during the whole mission (Moccia and D’Errico, 2008; Renga et al. 2008; Renga and Moccia, 2009).  

Despite of many performance and operational advantages with respect to traditional space systems, formation flying poses 

a number of important technology issues, one of which is determining and controlling in real-time the relative positions of the 

various platforms to maintain or change the formation geometry. Many applications require the determination of the satellite 

separations with accuracy at the centimeter level to control the satellite relative positions, especially when they come closer 



as a result of the relative orbital path, or at the sub-centimeter level to achieve challenging scientific goals (Gill and Runge, 

2004; Krieger et al. 2007). Carrier-phase Differential GPS (CDGPS) is a promising technology to implement relative 

navigation of LEO formations with high accuracy (Busse, 2003; Leung and Montenbruck, 2005). In particular, previous 

studies show that filtering Double Difference (DD) carrier-phase observables allows determining the satellite relative position 

with high accuracy, thanks to the possibility of exploiting the integer nature of the related cycle ambiguities (Ebinuma et al. 

2003; Leung and Montenbruck , 2005).  

A high success rate in fixing the integer ambiguities is crucial to perform the relative navigation with high accuracy. A 

fundamental contribution to the process of determining the cycle ambiguities is given by the estimation of the DD 

ionospheric delays. Indeed, DD ionospheric delays scale with the baseline between the receivers, being very small (order of 

centimeters) only over short baselines (<10 km) (Ebinuma et al. 2003; Leung and Montenbruck , 2005). Over larger baselines 

(>100 km) they can be higher than several carrier wavelengths, thus seriously impacting the integer ambiguity solution. In 

presence of large baselines, DD measurements on both frequencies can be exploited to compensate for the DD ionospheric 

delays. Nevertheless, in order to preserve the integer nature of DD cycle ambiguities, this cannot be achieved by processing 

the DD measurements by means of ionosphere-free combinations. In addition, ionosphere-free combinations introduce 

additional noise in the observables, thus affecting the accuracy of the cycle ambiguity fixing process. Therefore, different 

solutions must be envisaged, such as incorporating in the relative navigation filter suitable ionospheric path delay models. For 

real-time navigation, such models have to be as simple as possible, while being capable of describing the ionospheric delay 

with accuracy adequate to the scope, which is fixing the DD integer ambiguities. 

In the authors’ knowledge, no references can be found in the open literature concerning the use of ionospheric path delay 

models to predict the DD ionosphere delays for LEO receivers over long baselines. Only a few works report the utilization of 

ionospheric path delay models in real-time filters for the relative navigation of formation flying satellites. In Ebinuma et al. 

(2003) and Leung and Montenbruck (2005), the model developed by Lear (1988) is adopted to model the DD ionospheric 

delay in real-time Extended Kalman Filter applications to formation flying satellites with short inter-satellite separations 

(<10km), in which single-frequency DD carrier-phase measurements are processed in the filter. Specifically, in Leung and 

Montenbruck (2005) the filter state vector incorporates a correction term to the nominal vertical delay, whereas in Ebinuma et 

al. (2003) the vertical ionospheric delay is estimated by the filter, even if it is assumed constant over the baseline due to the 

short inter-satellite separation. In van Barneveld et al. (2009) two methods for predicting Single Difference (SD) ionospheric 

delays are reported which can be applied to filtering schemes for the real-time or post-facto relative navigation of satellites 

with small separations (up to tens of kilometers). 

The paper main contribution to the field is assessing the capability of existing ionospheric path delay models to predict 

DD ionosphere delays with accuracy adequate for use in filters for the relative navigation of LEO receivers. Based on the 

previous discussion, we specifically refer to LEO satellites flying in formation with large separations and real-time filtering 

schemes that process DD measurements. The two models of ionosphere path delays developed for LEO receiver applications 

and described in Lear (1988) are evaluated, based on prediction accuracy requirements complying with the considered 

relative navigation application. Although primary focus is on DD ionospheric delay prediction, the capability of the two 

models in predicting the Zero Difference (ZD) ionosphere delays is evaluated as well. Indeed, ZD analysis is instrumental to 

the interpretation of the results on DD ionospheric delays, and also of potential interest for absolute navigation applications 

relying on filtering schemes which process data on one frequency (Bock et al. 2009; Psiaki, 2002).  Models for ZD and DD 

ionospheric delay estimate are developed and described in the paper. Finally, the prediction capability of these models is 

verified by using real flight data from the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002.  

 

2 Prediction of ionospheric delays  
 

The effect of the ionosphere on GPS signals is the most important systematic error affecting the GPS signal transmission 

for LEO receivers. It is well-known that Earth’s ionosphere induces a dispersive effect on microwave signals, denoted as 

ionospheric path delay, and resulting in the phase of the transmitting GPS signal being advanced and in the code transmitted 

within the GPS signal being delayed. Additional effects (Klobuchar, 1996), such as scintillation and fading, are also present, 

but are out of the scope of this paper since they are not characterized by systematic and deterministic features. 

The availability of dual-frequency GPS signals allows the users to exploit ionospheric-free measurement combinations for 

substantially cutting down the ionospheric path delay. However, as already outlined in the introduction, in high performance 

relative positioning and navigation filters, the integer nature of the carrier phase DD ambiguities is exploited to improve the 

relative navigation accuracy. In this respect, ionospheric-free combinations are challenging since they include a non-integer 

term involving carrier phase DD ambiguities. When the separations among the satellites are reduced, i.e. for baseline shorter 

than a few kilometers, the ionospheric contribution to the DD observables is usually on the centimeter scale and therefore it 

does not affect the integer ambiguity fixing process (Ebinuma et al. 2003; Leung and Montenbruck, 2005). For larger 

separations (tens to hundreds kilometers) the DD ionospheric delays can be in the order of 30-40 cm or larger, that is, they are 

larger than the carrier wavelength. In this regard, previous works demonstrate that the relative navigation filter performance is 

strongly dependent on the baseline, and the filter may diverge for large baselines due to the increasing ionospheric delay error 

(Bamford, 2004). Different solutions have been therefore envisaged in the open literature to deal with differential ionospheric 

path delays effects on the integer ambiguity estimation. In Kroes et al. (2005), Kroes and Montenbruck (2004), ionospheric 

path delays are included in the state vector and for each differential measurement a relevant differential delay is estimated 

before integer ambiguities are computed. Ionospheric path delays are instead expressed as a function of a reduced number of 



parameters that are part of the filter state and are computed before integer ambiguity fixing in Leung and Montenbruck (2005) 

and Tancredi et al. (2010). In Wolfe et al. (2007) ionospheric path delays are neglected and DD integer ambiguities are 

derived from wide and narrow lane combinations. The effect of the differential ionospheric path delays are implicitly 

considered since noise levels about 3 times higher than the actual noise of the measurements have to be used during the 

ambiguity fixing process, thus resulting in long integer ambiguities estimation times. Each of these solutions has been 

investigated and proposed as a valid relative navigation scheme for LEO formation flying satellites. However, all these filter 

structures could benefit notably from an accurate modeling  of the ionospheric delays in terms of both speeding up the integer 

ambiguity estimation process and making it more robust. 

 

2.1 Accuracy requirements 

From a quantitative point of view, a proper metric can be introduced to assess if a given ionospheric delay model is 

suitable for relative navigation. With reference to dual-frequency, double-differenced dynamic (Busse, 2003; Tancredi et al. 

2010) and kinematic (Kroes and Montenbruck, 2004) filtering schemes, the usual procedure is to use pseudorange and carrier 

phase DD measurements simultaneously to estimate a single DD ionospheric delay via a dedicated model. It is expected, 

therefore, that the measured DD ionospheric delays must be strongly correlated to those predicted by the model. The 

correlation coefficient is commonly utilized to measure the linear association between two variables. A correlation coefficient 

greater than 0.8 is usually reckoned to be indicative of strong correlation (Walpole and Myers, 1993), and is considered 

satisfactory in the remainder of the paper. An additional metric is represented by the root-mean-square (RMS) error of the 

residuals between the measured and the predicted ionospheric delays, which provides an estimate of the precision in the 

ionospheric delay prediction. Because the predicted DD ionospheric delays support the integer ambiguity estimation process, 

a ionospheric delay model can be considered satisfactory if the RMS error is well below the wavelength of the relevant 

carrier. For instance, under the assumption of normal distribution of the residuals and requiring the three-sigma (3 σ) bounds 

to be within the 19 cm L1 wavelength, it is desirable that the RMS error of the L1 delay prediction is within one sixth of the 

wavelength, i.e. ~ 3 cm. 

The focus of the present investigation is on the prediction of differential ionospheric delays, but, as it will be shown in 

section 4, the analysis of ZD ionospheric delays, i.e. ionospheric delays affecting the un-differenced GPS observables, is 

essential to highlight some peculiarities of the DD delay analysis and aids in interpreting the relevant results. For this reason, 

it is also worth defining accuracy requirements for ionospheric models applied to ZD observables, which are utilized in 

absolute navigation filtering schemes. For absolute positioning, the filter can take advantage of ionospheric-free combinations 

if dual-frequency receivers are available. This means that accurate estimates of ZD ionospheric delays may be of interest only 

for filters processing single-frequency observables. However, most of last generation single-frequency GPS receivers for 

space applications are characterized by carrier-phase tracking capability, so that GRAPHIC (Group and Phase Ionospheric 

Corrections) combination of pseudorange and carrier phase observables can be formed to cancel the ZD ionospheric term. 

This results in observables having the form of biased carrier phase delays (Yunck 1996) with half of the pseudorange noise. A 

filtering scheme processing GRAPHIC observables has to estimate those biases to produce accurate navigation solutions. If a 

ionospheric model capable of estimating ZD ionospheric delays with a RMS error lower than that of GRAPHIC observables 

(10-20 cm) might represent a valid alternative to GRAPHIC combination for absolute navigation, since quite accurate 

solutions might be generated by a simple filter structure, that does not need to manage biased observables. This topic was 

investigated in (Bock et al. 2009) where a ionospheric delay model was used based on the Global Ionosphere Map (GIM) 

delivered by IGS. That model is developed for Earth-based application, thus the predicted delays were reduced accordingly to 

match the typical LEO ionospheric path delays by means of a constant, empirically determined, scaling factor ranging from 

0.3 to 0.4 depending on the receiver altitude. The reported results show that the accuracy of such a model is limited, and 

therefore GRAPHIC combination should be preferred. The ionospheric models introduced in the following, however, do not 

rely on GIM data. They have been developed specifically for LEO GPS receivers, but their potential application for single 

frequency orbit determination in LEO has not been yet investigated. Finally, it is important to point out that, even if marginal, 

a further application exists that can take advantage of accurate estimations of ZD ionospheric delay. Indeed, single-channel 

GPS receivers have been proposed (Psiaki, 2002) as a low-power solution for autonomous orbit determination of 

nanosatellites. In this case 0.5-1 m RMS error in ZD ionospheric delay prediction could be considered satisfactory. 

 

2.2 Selected Models 

The first order ZD ionospheric delay in the signal from the GPS satellite i to the receiver A is generally related to the slant 

Total Electron Content (TEC), i.e. the total electron density along the signal propagation path. For the purposes of the 

analysis presented in this paper, the inverse-square frequency dependency of the ionospheric delay is deemed adequate, 

representing first-order ionospheric effects. Higher-order effects are smaller than 1 % of the first-order term at GPS 

frequencies (sub-millimeter level) and therefore they are neglected in the following (Klobuchar 1996). The ionospheric delay 

on the L1 frequency, denoted as I, is related to the slant TEC by: 
3 2
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where f1 is the L1 carrier frequency in Hz and the slant TEC is expressed as the number of electrons per square meter. The 

superscript refers to the GPS satellite vehicle (SV) transmitting the ranging signal and the subscript to the receiver. Eq. (1) is 

rarely utilized in navigation filters as it simply transforms the unknown ZD delay in an unknown slant TEC. Models capable 



of predicting different ionospheric delays, relevant to different tracked GPS satellites, as a function of a single unknown 

parameter are instead desirable for navigation filters. A common approach is to linearly relate the different slant TEC to a 

single Vertical Total Electron Content (VTEC), which depends on time and on the receiver position but not on the observed 

GPS satellite. Thus, the ionospheric delay can be re-written in terms of the VTEC as: 

 
i i
A A AI a VTEC=  (2) 

 

where the linear coefficient i
Aa  includes a mapping function, A

iM , from VTEC to slant TEC, via the formula 

 
3 2

2
1

40.3i A
A i

m s
a M

f
=  (3) 

 

DD ionospheric delays can be derived accordingly by linearly combining ZD ionospheric delays (see section 4), thus 

resulting in a linear model also for the DD delays. 

The most used VTEC-based model for LEO receivers is based on the following mapping function proposed by Lear 

(1988). 
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where i
AE  is the elevation of the GPS satellite i with respect to the receiver A, and the subscript refers to the fact that this 

mapping function implicitly assumes the electron density to be isotropic. Indeed, it can be shown that Lear’s mapping 

function represents the relationship between the vertical and slant TEC of a ionosphere confined in a shell in whom the 

electron density is uniform. More precisely, the ionosphere is assumed to be enclosed into a spherical shell of thickness Δh in 

whom the electron density is uniform both horizontally and vertically. The raypath between the GPS satellite vehicle and the 

receiver is assumed to be a straight and to fully cross the shell. The latter condition holds because the GPS SV are well above 

any meaningful maximum ionosphere altitude and the receiver can be assumed to be at an altitude equal to the shell lower 

bound, since for a LEO receiver the observations are made within the ionosphere and the portion of the ionosphere shell that 

is below the receiver is unessential. Under these assumptions, the mapping function can be simply expressed as the ratio 

between the length of the raypath S within the ionosphere and the shell thickness, i i
A AM S h= ∆ . Expressing the length S in 

terms of the shell thickness and of the SV elevation angle one gets (Spilker, 1996): 
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where Δη stands for the shell thickness normalized w.r.t. the receiver distance from Earth’s center. As such, Lear’s isotropic 

mapping function can be seen as a particular case of the more general isotropic thick shell model. For instance, for a receiver 

at an altitude of 450 km, Eq.(5) matches Lear’s mapping function for ∆h ~ 250 km. Note that, by evaluation of Eq. (5), the 

variation of hA and ∆h have very limited effects on the values attained by the thick shell mapping function for LEO receivers. 

Figure 1 compares the thin shell mapping function with the isotropic one for a receiver altitude of 450 km and for reasonable 

shell thicknesses. Results show that limited differences exist between the two, especially for GPS satellite elevations higher 

than 10-20 degrees. This suggests that tuning of the shell thickness parameter for the specific application under analysis is of 

scarce importance, and will not be attempted within this paper. 



 

Figure 1. Contour plot of the thick shell mapping function (solid) vs. the isotropic one (dashed) for a receiver altitude of 450 

km.  

 

The isotropic mapping function is thus taken as a reference throughout the following analyses. This mapping function is 

implemented in LEO GPS/GNNS simulators (Leung and Montenbruck, 2005), and ZD ionospheric delays predicted by this 

model have been demonstrated to be in strong agreement with the results of a rigorous raytracing through a Chapman profile 

(Garcia-Fernandez and Montenbruck, 2006). However, degraded performance is expected for the isotropic VTEC model at 

high latitudes, over polar regions, where the ionosphere profile cannot be represented with a Chapman function and important 

spatial variations of the ionosphere profiles may be observed. The prediction accuracy achieved by the isotropic mapping 

function has also been assessed for differential ionospheric delays in van Barneveld et al. (2009), but only with reference to 

single-difference GPS observables and for short baselines (few tens of kilometers). Thus, the evaluation of the mapping 

function of Eq.(4) in the prediction of DD ionospheric delay and long baselines represents an original contribution of the 

paper to the field. 

In order to overcome some limitations of the isotropic mapping function a different model was proposed by Lear (1988), 

as well. This mapping function is aimed at including the spatial intensity variation of the ionosphere and the relevant effects 

on ionospheric delays. The main source of spatial variation of the ionosphere intensity is the night-day cycle. Indeed the 

atmosphere ionization depends on the Sun position and it is maximum in daylight. For taking into account the average Sun 

effect, the isotropic mapping function is modified by a multiplying coefficient depending on the local hour 
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where nA is the unit vector of the equatorial projection of the Sun in the Earth-center Earth-fixed (ECEF) reference frame and 

ui
A is the unit vector pointing towards the i-th GPS satellite vehicle from the receiver A. This model predicts at the local noon 

ZD ionospheric delays about 3 times higher than the ones at the local dusk or dawn. The average Sun model seems to rely on 

a more faithful representation of the VTEC spatial variations due to the day-night cycle, so it is expected to perform better 

than the isotropic one. However, it neglects the delay (of about 2 hours) existing between the maximum of atmosphere 

ionization and the local noon and uses the equatorial projection of the Sun unit vector, further neglecting the contribution to 

the atmosphere ionization coming from the actual sun declination. The mapping function corrected for Sun effects is also 

included in the following analyses. The prediction accuracy of the ionospheric delay model including the average Sun effect 

has never been investigated with reference to real-world data, and thus represents an additional original contribution of the 

paper to the field. 

Finally, it is worth stressing that the above ionospheric delay models are specifically selected aiming at relative and 

absolute positioning of LEO satellites. The selected models might not be adequate for a comprehensive analysis of the 

ionosphere status, but this is not of interest herein. Also note that, due to the geometrical interpretation of the isotropic 

mapping function, the VTEC estimated by the selected models might not represent the electron content of the vertical column 

above the receiver. This would be the case if the VTEC distribution around the receiver were not uniform. Instead, the 

estimated VTEC represents an average value of the actual VTEC distribution in the surroundings of the receiver, weighted by 

the mapping function. 

 

3 GRACE Data Set Description  

The performance of the isotropic and average Sun models is evaluated against actual flight data from spaceborne GPS 

receivers. According to the previous sections, evaluation of the models is of interest for two receivers flying in formation and 



separated by a large baseline, in the order of hundreds of km. Flight data matching these requirements is made available by 

the Gravity Recovery and Climate Experiment (GRACE) mission, launched in 2002. An overview of the GRACE mission 

can be found in Tapley et al. (2004). It consists of two identical satellites, GRACE A and GRACE B, in near circular orbits at 

an initial altitude of approximately 500 km and 89.5 deg. inclination. The satellites are nominally separated from each other 

by 220 km in the along track direction. The primary mission objective is to map the Earth’s gravity field, which is 

accomplished by the mission’s key instruments, the Ka-Band Ranging System (KBR) and high-precision accelerometers. 

Each spacecraft is also equipped with identical NASA JPL BlackJack GPS receivers (Davis et al. 2000). A post-processed 

version of GRACE data, known as Level 1B (L1B) data, is made available to the scientific community by JPL’s Physical 

Oceanography Distributed Active Archive Center (PODAAC). The Level 1B data are derived from the processing applied to 

the raw data described by Wu et al. (2006).  

A one-day-long dataset has been selected for the analysis presented in this paper from all available GRACE L1B data. 

Because GPS receivers’ L1B data are available at a sampling rate of 0.1 Hz, this results in more than 8000 samples. The 

dataset refers to December 1st, 2005, in which GRACE A leads the formation and GRACE B follows at a distance in the 

order of 202 ± 2.5 km. The orbit altitude ranges between ~450 km and ~490 km during the day, and the mean local time at 

the ascending node is about 7 AM. GPS L1B data consist of three pseudorange measurements and three carrier phase 

measurements from code observations on the L1 frequency and semi-codeless tracking on the L1 and L2 frequencies, all at 

10-second intervals. As with all GRACE Level 1B data, the time-tags are corrected to GPS time using GPS clock solutions 

computed in post-processing (Case et al. 2010). A data-editing step has been performed on GPS L1B data, in order to detect 

and remove outliers in the pseudorange measurements and to discard all observations from GPS satellites whose elevation 

above the local horizon is smaller than 15 deg. The GRACE GPS measurement noise standard deviation has been found to be 

smaller for code than for semi-codeless tracking and to be elevation dependant (Kroes, 2006). Representative constant values 

for the noises standard deviations are 10 cm for pseudorange measurements and 7 mm for carrier phase ones (Tapley et al. 

2004).  

The KBR data have been also used in the following for validating the integer ambiguities (see section 5). The KBR 

instrument measures the change in distance between the spacecraft, also known as the biased range, with a precision of 10 

μm. The biased range can be seen as the true range plus an unknown bias. The bias is arbitrary for each piecewise continuous 

segment of phase change measurements and has to be compensated by a specially designed procedure, described in detail by 

Kroes (2006). The Level 1B data includes also a GPS Navigation (GNV) data product, which contains an estimate of the two 

spacecraft Center of Mass (CoM) position and velocity vectors. These estimates are obtained as a product of a precision orbit 

determination tool (see Wu et al. 2006) and typically have a time-varying accuracy of a few centimeters in position. Both 

KBR and GNV data allow estimating the baseline between the spacecraft CoM, whereas GPS measurements allow 

reconstructing the baseline between the two GPS antennas. Therefore, the GPS antenna offset w.r.t. the CoM is compensated 

when necessary taking into account each spacecraft attitude, which is provided in GRACE L1B data as well. 

 

4 Zero Difference ionospheric delays analysis 

The capability of the selected ionospheric delay models in predicting Zero Difference (ZD) delays is evaluated by 

comparing “measured” ionospheric delays, estimated from GRACE measurements, with “predicted” ionospheric delays, 

which are those computed by the two models presented in section 2.2. Only pseudorange observables are processed for 

estimating the measured ZD delays. Even though this approach limits the accuracy of the estimated delays, it is coherent with 

the objective of evaluating the prediction capability for a filter that does not manage biased observables (as discussed in 

section 2.1). Given the common structure of the two ionosphere models under analysis, the VTEC for the two GRACE 

receivers shall be estimated before predicting ZD delays. The procedure for estimating the VTEC profiles, originally 

proposed in van Barneveld et al. (2008), employs only pseudorange measurements as well. Pseudorange measurements on the 

L1 and L2 frequencies, P1 and P2, respectively, are modeled by the following equations (Mannucci et al. 1999), which refer 

only to GRACE A, for brevity. 
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Each observable depends on a non-dispersive delay term C, which lumps together the line-of sight geometric distance ρ 

between the receiver A and the SV i and clock errors, and non-dispersive delays in the hardware signal paths. The L2 

ionospheric delay is expressed in terms of I and of the ratio of the two carrier frequencies, γ = f2 / f1. Dispersive receiver and 

satellite hardware effects are accounted for in the b terms, and the measurement thermal noise is enclosed in the term η. The 

measured ionospheric delay can be estimated by using the geometry free combination of pseudorange measurements P1 and 

P2 on both GPS frequencies f1 and f2: 
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where the dispersive hardware effects are grouped within the receiver and the satellite inter-frequency biases bA = (b1)A – 

(b2)A and bi = (b1)i – (b2)i, respectively. The combined effect of the two inter-frequency biases might result in a term in the 

order of several meters (Choi and Glenn Lightsey, 2008). Therefore, their effect has to be compensated for. From inspection 

of Eq. (7), the geometry-free combination in Eq. (8), compensated for the inter-frequency biases, is an unbiased estimate of 

the true ionospheric delay (Farrell, 2008), but it has a considerably higher variance than the uncombined measurements. 

Using GRACE receivers’ noise levels, the above estimate of the ionospheric delay has a standard deviation in the order of 30 

cm. The satellite vehicle inter-frequency biases are provided as part of the IONEX products by the International GNSS 

Service (IGS). The receiver inter-frequency biases shall, instead, be estimated from flight data.  

The technique for estimating such biases has been originally proposed by van Barneveld et al. (2008), to which we refer 

the interested reader for the details. It is based on assuming a linear relationship between the ionospheric delay and the VTEC 

of the receiver, as in Eq.(2). More specifically, by noting that the VTEC is a function only of the receiver position, all 

ionospheric delays extracted from the n receiver’s measurements at each time epoch shall agree with the same VTEC value, 

on average. Enforcing this condition one can sample the receiver inter-frequency bias for the k-th measurement of the n 

available as: 
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Receiver inter-frequency biases can be considered as constant over a period of one day (Heise et al. 2005; Sardón and 

Zarraoa, 1997). This allows having many samples of the bias, and thus estimating it as the mean value by assuming an 

unbiased samples’ distribution. Since each sample’s value requires the computation of the linear coefficients of Eq.(2), the 

inter-frequency biases will be different for the two ionospheric delay models. Table 1 shows the values found using the 

selected GRACE dataset for the inter-frequency biases, which substantially differ depending on the ionospheric delay model 

used.  

 

Table 1. GRACE receivers’ inter-frequency biases 

Ionospheric Delay Model bA , m. bB , m. 
Isotropic – 6.239  – 4.781 

Average Sun – 6.557 – 5.056 

 

Once the inter-frequency biases have been retrieved and measured delays computed by Eq.(8), the VTEC of each receiver 

can be estimated at each time epoch by averaging over the visible satellites the values inferred by inverting the ionospheric 

delay model of Eq.(2). This allows also predicting the delays with the models under consideration. The ZD ionospheric 

delays predicted by the isotropic and Sun-effect mapping functions are compared with the measured ones in Figures 2, 3. 

Results demonstrate that delays predicted by the isotropic model are highly correlated with those estimated using GPS 

measurements. The RMS value is consistent with the variance affecting measured ionospheric delays, suggesting that a 

substantial fraction of the RMS could be due to the process of extracting ionospheric delays from GRACE measurements 

rather than to the accuracy of the prediction model. In this perspective, the RMS value of the prediction error can be 

considered to be a conservative assessment of the model’s prediction capability. Nonetheless, the RMS value of the delays 

prediction error is noteworthy, being a substantial fraction of a meter. Ninety percent of the samples exhibit prediction errors 

of ± 55 cm at most, being enclosed within the 90th percentile of the prediction error’s absolute value distribution (highlighted 

in dark grey in Figure 2). Considering the 99th percentile, this value increases to about one meter. These results suggest that 

the isotropic mapping function is not likely to be an alternative to GRAPHIC combinations for absolute navigation by single-

frequency code/phase receivers. The attained accuracy, however, could be suitable for single-channel GPS filtering schemes. 

Including a model of the Sun effect in the ionospheric electron density such as in Eq.(6) does not provide any advantage in 

predicting the ionospheric delays. On the contrary, the mapping function corrected for Sun effects shows a worse capability 

of predicting the ionospheric delays, in terms of a 10 % loss in correlation, and, more significantly, of a 90 % increase in the 

RMS error w.r.t. the isotropic one.  

Results point out also a significant limitation of the procedure for computing measured delays. Indeed, the estimated 

measured delays attain negative values during the day, which is clearly unrealistic. The reason for the negative values of the 

delays is suspected to be a poor compensation of the receivers’ inter-frequency biases. As suggested by Mushini et al. (2009), 

when the receiver is at higher latitudes (above 60 deg N), there is no proven method for computing an accurate receiver bias, 

and the estimated bias can be affected by errors that can cause negative estimates of ZD ionospheric delays, as documented in 

the literature for ground-based receivers (see, e.g., Dyrud et al. 2008). As a consequence of the negative measured ZD 

ionospheric delays, also the VTEC profile for the receivers attains negative values. The VTEC estimates, shown in Figure 4, 

exhibit two peaks in each orbit, occurring when the GRACE satellites move near the equatorial bulk of the ionosphere. The 

VTEC profiles of the two receivers are very similar, except for a slight time delay in the order of tens of seconds, which is 

consistent with the time necessary for GRACE B to cover the along-track separation distance of ~200 kilometers. When the 

satellites are above the polar regions, the VTEC attains its minimum (and negative) values, especially in the north pole, since 

in winter the atmosphere ionization is more intense in the southern hemisphere. These results are in agreement with 



previously published VTEC estimates for the GRACE receivers in the same month of December 2005 (van Barneveld et al. 

2009). The maximum estimated VTEC value is about 15 TECU (Total Electron Content Unit, corresponding to 1016 electrons 

per square meter) which is well below terrestrial based VTEC levels. This is because the receivers are orbiting at an altitude 

between 450 and 490 km, which is above a large portion of the ionosphere, and typically above the peak electron density 

altitude.  

 

 
Figure 2. Correlation plot between measured ZD ionospheric delays and those predicted by the isotropic mapping function. 

Data is colored for enhancing percentiles of the prediction error’s absolute value distribution. 

 

 
Figure 3. Correlation plot between measured ZD ionospheric delays and those predicted by the Sun-effect mapping function. 

Data is colored for enhancing percentiles of the prediction error’s absolute value distribution. 

 



 
Figure 4. VTEC estimated by the isotropic mapping function. 

 



5 Double Difference ionospheric delays analysis 

As previously discussed, prediction of the double difference ionospheric delays is of great importance for relative 

positioning applications. As for ZD delays, the prediction capabilities of the two ionospheric delay models are evaluated by 

comparing predicted DD delays with measured ones. Figure 5 shows a schematic of the observation geometry used for 

computing double differences. SD observations are obtained from ZD ones by taking the difference of measurements from 

the same GPS satellite vehicle j between the two receivers A and B. Double difference observations are obtained as the 

difference of the single difference observations between a GPS satellite j, denoted as the pivot, and any other visible satellite 

k. For simplicity, the pivot is selected as the highest GPS satellite above the horizon. Double difference observations, denoted 

by a subscript referring to the receivers used in the single difference and by a superscript referring to the couple of GPS 

satellites used for the double differencing operation, are modeled as: 
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where L1 and L2 refer to ZD carrier phase measurements on the L1 and L2 carrier frequencies, with wavelengths λ1 and λ2, 

respectively, N stands for the integer carrier cycle ambiguity, and β encloses un-modeled systematic errors on carrier-phase 

measurements as well as measurement thermal noise. DD observation equations are advantageous over ZD ones thanks to 

cancellation of most common error terms, such as receiver and satellite biases. The DD ionospheric delay 
jk
ABI  is also much 

smaller than its ZD counterpart, but still significant and larger than the measurement noise when the two receivers are 

separated by large baselines (tens to hundred kilometers). On the other hand, the differencing operation increases the noise 

affecting the observation well above the ZD noise level. For instance, in case the noise terms of each ZD observation are 

considered as uncorrelated zero-mean white noises with same variance, the DD observation noise variance increases of a 

factor of four. Furthermore, inclusion of the carrier-phase measurements requires estimating and removing the integer 

ambiguities, and using the same pivot SV j in forming DD observables implies mutual correlation, which shall be carefully 

considered. 

In order to analyze the ionospheric delays, DD observations are compensated for all terms except the ionospheric terms 

and random noises, yielding the following compensated observations. 
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External data sources are used for compensating the DD geometry term. More precisely, the GRACE GNV Data Product is 

used for obtaining an estimate of the CoM of each receiver. Such estimate is provided with accuracy in the order of few 

centimeters. Then, the GPS antenna position is computed for each receiver, by adding the relative offset of the GPS antenna 

w.r.t. the satellite CoM, taking into account attitude flight data. For computing the ZD line-of-sight geometric ranges, IGS 

final products are used, which allow estimating the GPS satellite vehicles positions with an accuracy of few centimeters, as 

well. The DD geometry term is then estimated by the difference of the ZD geometric ranges. 

For compensating the carrier cycle ambiguity terms, a standard technique is used for fixing integer ambiguities. The 

previous estimates of the DD geometric term are used to simplify the integer search procedure. The technique is based (see 

Goad, 1996) on computing first the wide-lane integer ambiguities, using a weighted least squares solution followed by an 

exhaustive integer search method. Then, ionospheric-free combinations of DD carrier phase observables are processed in a 

similar fashion to estimate the integer ambiguities on the L1 and L2 carrier frequencies. This procedure, while being simple 

and effective thanks to the compensation of the geometry term, does not assure a correct fix of all the integer ambiguities 

involved in the selected GRACE dataset. Thus, an additional step is performed for validating the computed integer solutions, 

and eventually discarding the invalid ones. The validation step is based on comparing an estimate of the baseline between the 

two GRACE receivers obtained by the computed integer ambiguities with an independent accurate estimate of its magnitude, 

made available by GRACE KBR Data Product. The former estimate builds upon the dependency of the DD geometry term on 

the baseline, given by: 

 

( ) ( )jk k k j j
A A A AABρ = − + − − − − + + −R r B R r R r B R r  (12) 



where B is the baseline vector, rA is GRACE A position vector, and Ri stands for the i-th GPS satellite vehicle position 

vector. Thus, the baseline can be estimated as the Weighted-Least-Square (WLS) solution of ionospheric-free combinations 

of the DD carrier phase measurements in Eq.(9c,d), compensated for the computed cycle ambiguity terms. The validation step 

results on the selected dataset suggest that the procedure successfully fixes the ambiguities in 89% of the cases, which implies 

that 11% of the data samples are discarded. Figure 6 shows the error between the baseline magnitude estimated by KBR data 

products and the one computed using the validated ambiguities. The RMS error is consistent with the expected accuracy for 

valid ambiguities, and the lack of jumps in the solution confirms the fixed ambiguities are valid. 

 

 

 

 
Figure 5. Observation geometry 

 

 
Figure 6. Baseline Magnitude Estimation Error 

 

Measured DD ionospheric delays are obtained taking advantage of geometry and carrier cycle compensation in DD 

measurements. This approach allows avoiding geometry-free combinations, with related benefits on reducing the noise 

corrupting the delays estimation procedure, which is particularly desirable when using DD observations. Indeed, due to the 

double differencing operation, the variance of each measurement increases of a factor of four. On the other hand, for 

rigorously processing compensated DD measurements, one should take into account the errors introduced by the 

compensation step. Compensation of the cycle ambiguity terms can contribute, in principle, to the ionospheric delay 

estimation error. However, the integer nature of the ambiguities implies that effective validation tests can be made on the 

estimated integer values for identifying and isolating erroneously fixed ambiguities. This allows one to assume meaningfully 

perfect compensation of the cycle ambiguities terms. The downside of this approach is the appearance in the data of time 

intervals in which the correct integer ambiguities are not available. In such time intervals, ionospheric delay estimation 

cannot be attempted. Compensation of the DD geometric term instead introduces an error that can be assumed to be in the 

order of centimeters. This implies that it can have a non-negligible magnitude with respect to DD carrier phase measurements 

noise. Nonetheless, modeling this error is not trivial, since it arises because of complex estimation techniques (see, e.g., Wu 

et al. (2006) for a description of GNV errors). To avoid excessive complication in the estimation procedure, this error term is 

neglected, and the geometric term is assumed to be perfectly compensated. 

In the light of the above remarks, we assume compensated DD measurements to have the same covariance matrix of the 

uncompensated ones. We assume that the ZD measurements are independent among different receiver-SV couples. However, 

since DD measurements are obtained by combination of the ZD ones, and the pivot SV j occurs in all measurements at each 



time epoch, the DD measurements at a certain time epoch are mutually correlated. In case we have n visible SV, taking j=1, 

denoting generically as X the observation type, i.e. X = P1 , … , L2, and as σX its standard deviation, the covariance matrix of 

compensated measurements is as follows. 
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Exploiting the knowledge of the compensated measurements, at each time epoch the n-1 DD ionospheric delays can be 

estimated using a WLS approach. Let us introduce the following definitions, referring to a single common time epoch, where 

I stands for the identity matrix of opportune dimensions: 
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An epochwise estimate x̂  of the measured DD ionospheric delays’ vector and of its covariance can be obtained as the WLS 

solution of the linear system obtained by Eq.(10), using the inverse of b covariance matrix as the weighing matrix. 
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Then, for predicting the DD ionospheric delays using Eq.(2), it is necessary to estimate the VTEC profiles over the two 

receivers. Analogously to the approach used for ZD delays, the VTEC can be estimated by exploiting the estimates available 

for measured DD delays. In this case, the VTEC estimates can be obtained as the WLS solution of the linear equations (2), 

using the above estimates. More specifically, let us introduce the epochwise VTEC vector v and the Av matrix as 
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Taking into account the dependency of the measured DD delays covariance matrix in Eq.(14), the estimate of the VTEC 

above the two receivers is given by: 
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The above equation allows estimating the two VTEC from the n-1 measured DD ionospheric delays. On the other hand, 

there are n equations for estimating each of the two VTEC from ZD measurements. This loss in the number of equations per 

each unknown clearly results in a noisier estimate of the VTEC from DD measurements when compared to ZD ones. In 

addition, double differencing the observables increases of a factor of four the noise variance, further worsening the accuracy 

of the VTEC estimates from DD measurements. As such, it is mandatory to attempt the VTEC estimation exploiting 

compensated carrier phase measurements. There are time epochs in which the compensated carrier phase measurements are 

less than the number of visible DD couples, because of the integer ambiguities validation procedure. On the other hand, the 

number of pseudorange measurements is always equal to the number of visible DD couples. Because of their substantial noise 

level w.r.t. the magnitude of DD ionospheric delays, DD pseudorange observable alone are of limited usefulness in the 

present context. We thus choose to discard pseudorange measurements that do not have a carrier phase counterpart. This 



implies that measured DD ionospheric delays might not be always available for a visible SV couple jk, depending on the 

availability of a valid ambiguity solution. Moreover, we also choose to avoid attempting estimation of the two VTEC when 

less than three measured DD ionospheric delays are available, implying that the VTEC could not be estimated for all time 

epochs. 

The DD ionospheric delays predicted by the isotropic and the Sun effect mapping functions are compared with the 

measured ones in figures 6, 7. The isotropic mapping function yields predictions of the DD delays that largely correlate with 

the measured ones. The RMS of the prediction error is in the order of few centimeters, and, as for the ZD case, this is 

consistent with the variance affecting compensated DD carrier phase observables. More importantly, even this conservative 

figure for the prediction accuracy is well below the L1 wavelength of 19 cm. By analysis of the prediction error’s absolute 

value distribution, whose 90th and 99th percentiles are shown by color coding in Figures 7,8, it turns out that 97.5 % of the 

predicted delay are enclosed within the measured ones ± λ1/2, allowing for a correct disambiguation of the carrier cycles. As 

such, the isotropic mapping function is fit for estimating DD integer ambiguities in a relative positioning filter. As for the ZD 

delays, the Sun effect correction in the mapping function causes a loss in correlation and degrades the delays prediction 

accuracy, even though to a less extent. Concerning the VTEC that allows obtaining such performances, results show that 

completely unrealistic spikes affect the estimated time profiles. The VTEC obtained by Eq.(16) for GRACE A is shown in 

Figure 9 against the one determined by processing ZD observables. The DD-derived VTEC is seen to be consistent with the 

ZD one, but much noisier, as expected due to the smaller number of equations and higher noise levels. Nonetheless, there are 

abrupt oscillations in the VTEC profile when the receiver is above the polar regions. Such huge fluctuations do not cause 

correspondingly unrealistic DD delays. Indeed, by inspection of Figure 10, it is seen that measured DD delays are reasonable 

over polar regions, even though they exhibit a qualitatively similar fluctuation. The isotropic mapping function is thus 

capable of predicting with satisfactory accuracy the measured delays in mid-latitude and equatorial areas. In polar regions, the 

model still predicts a large part of the fluctuating DD delays, even though with a degraded accuracy. This behavior is 

consistent with the fact that, as discussed in section 2, the isotropic mapping function is known to work poorly at high 

latitudes. On the one hand, the unrealistic spikes in the VTEC profile are probably due to the limitations of the model in 

describing the polar ionosphere, but, on the other hand, are instrumental for reproducing the measured DD delays behavior in 

the polar regions. We can thus claim that the isotropic model structure still allows to satisfactorily predict the DD delays in 

these regions, but at the price of an unrealistic VTEC estimation. 

The analysis of DD ionospheric delays suggests thus that the two models proposed in section 2 have similar 

performances. Nonetheless, incorporating the Sun effect in the isotropic mapping function complicates the evaluation of the 

mapping coefficients a  and yields a prediction slightly worse than the un-corrected model. As such, the isotropic mapping 

function is preferable. By using this model, the DD L1 ionospheric delays between two receivers separated of ~200 km can 

be predicted with an accuracy that is well below the L1 carrier wavelength. This implies that the mapping function can be 

useful for removing ionosphere delays from un-combined DD carrier phase measurements, and, thus, for streamlining the 

estimation of the integer ambiguities. For instance, one could include the VTEC of the two receivers in the state of an 

Extended Kalman Filter, taking advantage of Eq.(2) linearity, as well as of the ease of computation of the mapping 

coefficients ai. Whilst results suggest that the DD delays could be predicted with a satisfactory accuracy, they also point out 

that the estimated VTEC will not resemble the true one, but it will be characterized by abrupt oscillations and negative values 

in the polar regions. As such, the VTEC should be modeled within the filter so that the estimate is able to follow such 

unrealistic dynamics. This could be done, for instance, using a random walk model with a sufficiently large process noise, or, 

for a more complex model, letting the process noise to be time varying, increasing as the receiver approaches the polar 

regions.  

 



 
Figure 7. Correlation plot between measured DD ionospheric delays and those predicted by the isotropic mapping function. 

Data is colored for enhancing percentiles of the prediction error’s absolute value distribution. 

 
Figure 8. Correlation plot between measured DD ionospheric delays and those predicted by the Sun effect mapping function. 

Data is colored for enhancing percentiles of the prediction error’s absolute value distribution. 



 
Figure 9. VTEC estimated by the isotropic mapping function from measured DD and ZD ionospheric delays. 

 
Figure 10. DD ionospheric delays prediction. 

 

 

6 Conclusion  

 

This paper has investigated existing ionospheric path delay models for spaceborne receivers in terms of their capability of 

predicting zero difference and double difference ionospheric delays for real-time navigation applications in LEO. Specific 

attention was given to the prediction of double-differenced ionospheric delays since this is of crucial importance for the 

relative navigation of LEO satellites flying in formation with large separations. Indeed, in these applications high accuracy in 

the relative navigation can be achieved by implementing filtering schemes that process double-differenced GPS code and 

carrier phase observations, in order to exploit the integer nature of the double-difference cycle ambiguities. Nevertheless, the 

ambiguity fixing process success is strongly influenced by the capability of estimating the double-difference ionospheric 

delays, which can be of several carrier wavelengths for baselines of hundreds of kilometers. As described in the paper, a 

mean of predicting these delays with accuracy adequate for the ambiguity fixing is to use a suitable model of the ionospheric 

path delay. To this end, in the paper two models developed for LEO receiver have been evaluated, one assuming a uniform 

distribution of the electron density around the receiver (isotropic model), the other considering the effect on this distribution 

of the Sun aspect angle. Both models have the peculiarity of linearly relating the path delay to the VTEC at the receiver by 

means of a mapping function, thus being well suited for the implementation into a real-time filter. The test of the prediction 

performance of these two models on real flight data from the GRACE mission, in which two satellite fly separated of more 

than 200 km, show that both models are capable of predicting the double-differenced ionospheric delay with accuracy 

adequate to the considered applications. Nevertheless, the higher correlation between predicted and measured ionospheric 

delays and precision exhibited by the isotropic model make this last one particularly suited for removing ionospheric delays 

from DD carrier phase measurements, thus aiding the estimation of the DD integer ambiguities in  Extended Kalman filters 

for relative navigation over large baselines. This could be achieved by augmenting the filter state with the VTEC of each 

receiver. In this regard, it is worth noting that, as shown in the paper, the VTEC corresponding to the predicted ionospheric 

delays exhibits an unrealistic behavior, characterized by sudden oscillations and negative values especially in the polar 

regions, where the adopted models are known to work poorly. Nevertheless, results demonstrate that in these regions the 



isotropic model is still capable of predicting the DD ionospheric delays with adequate accuracy, at the price of having an 

unrealistic VTEC estimation. Therefore, if included in the filter, the VTEC shall be modeled so that its estimate be able to 

follow such unrealistic dynamics. This could be done, for instance, using a random walk model with a sufficiently large 

process noise, or letting the process noise to be time varying and increasing as the receiver approaches the polar regions. 

Finally, the paper shows that the isotropic mapping function exhibits good performance also in the prediction of zero-

difference ionospheric delays and the correction for Sun effects worsens the model’s performances. However, the isotropic 

model is not likely to be an alternative to GRAPHIC combinations for absolute navigation by single-frequency code/phase 

receivers, since it provides a less sharp estimation. The attained accuracy, however, could be suitable for single-channel GPS 

filtering schemes, which have been proposed as a low-power solution for autonomous orbit determination of nanosatellites. 
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