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ABSTRACT4

The augmentation of new global navigation satellite systems (GNSS) and regional navigation satellite systems (RNSS) to exist-5

ing GPS enhances the availability of satellite based positioning, navigation, and timing (PNT) solutions. A combined GNSS con-6

stellation will significantly increase the number of visible satellites and thus will improve the geometry of observed satel-7

lites, enabling improvements in PNT solution availability, reliability, and accuracy. Among existing systems, the European8

Galileo system, the Japanese quasi-zenith satellite system (QZSS), and satellite based augmented system (SBAS) share at9

least one frequency (L1/E1) with GPS. In this contribution, we analyse the robustness of pure single-frequency carrier-phase at-10

titude determination using these four systems under constrained environments.11

The successful resolution of the integer carrier phase ambiguities is the key to precise attitude determination using multiple12

GNSS antennas mounted on a platform. Making use of the known baseline length of rigidly fixed antennas, the constrained13

Least-squares AMBiguity Decorrelation Adjustment (C-LAMBDA) method yields high integer resolution success rates.14

In this contribution we analyse the performance of the C-LAMBDA method and compare it to the standard LAMBDA15

method using single-frequency data from four systems (GPS/Galileo/QZSS/SBAS) under constrained environments. Our16

analyses include robustness studies of C-LAMBDA method under various satellite deprived environments such as satellite17

outage, open-pit and urban canyon environments using real data consisting of L1/E1 observations from GPS, Galileo, QZSS,18

GAGAN, and MSAS collected for ten days at Curtin University, Australia. The results demonstrate the enhanced robustness19

that four systems bring to single-epoch single-frequency attitude determination.20

Keywords: GPS, Galileo, QZSS, SBAS, single-frequency attitude determination, C-LAMBDA21
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INTRODUCTION1

Single-frequency positioning, navigation, and timing (PNT) using global navigation satellite systems (GNSS) is of interest2

for low-cost applications such as navigating unmanned aerial vehicles (UAVs). Augmenting new GNSS and regional navi-3

gation satellite systems (RNSS) to existing GPS enhances the availability of PNT solutions. Among existing systems, the4

European Galileo system, the Japanese quasi-zenith satellite system (QZSS), and satellite based augmentation system (SBAS),5

which includes the US WAAS, the European EGNOS, the Japanese MSAS, and the Indian GAGAN, share at least L1/E1 frequency6

with GPS. In this contribution, we analyse the robustness of pure single-frequency (L1/E1) instantaneous attitude determi-7

nation under constrained environments using current constellations of the above systems.8

GNSS attitude determination is a rich field of current studies, with a wide variety of challenging (terrestrial, sea, air and9

space) applications [1–9]. Carrier phase integer ambiguity resolution is the key to fast and high-precision GNSS positioning10

and attitude determination. Once this has been done successfully, the carrier phase data will act as very precise pseudo range11

data, thus making very precise positioning and attitude determination possible. Recent attitude determination methods make12

use of the popular LAMBDA method, see e.g. [10–13], as this method is known to be efficient and known to maximize13

the ambiguity success rate [14–17]. However, the standard LAMBDA method has been developed for unconstrained GNSS14

models. The method is therefore not necessarily optimal for the GNSS attitude determination problem, for which often the15

baseline length is provided as well. The Constrained (C-) LAMBDA method [18–22] makes use of this information and16

finds the optimal nonlinear constrained integer least-squares solution. This paper demonstrates the effectiveness of the C-17

LAMBDA method compared to the standard LAMBDA method in resolving integer ambiguities for attitude determination18

using pure single-frequency observations from multi-GNSS, consisting of GPS, Galileo, QZSS, and SBAS.19

Analyses of PNT solutions using dual system (GPS with one of the other systems) have been reported in various studies. The20

performance of the combined GPS-Galileo PNT solutions has been analyzed in [23–27]. The benefit of augmenting GPS21

with QZSS is demonstrated in [28]. Beyond the intended functionality, which is to broadcast GNSS error corrections, SBAS22

has been proven to contribute to PNT [29–31]. In this contribution, we analyze the performance of combined four-system23

attitude determination using real data from identical receivers. Since intersystem biases (ISBs) [26, 32] vanish between24

receivers of same type [25, 29], we consider intersystem double differencing, which uses a single pivot satellite for all four25

systems and yields a higher level of redundancy than system-specific differencing. In the case of mixed receiver attitude26

determination, however, non-zero ISBs must be corrected to retain the advantage of intersystem double differencing [25].27

In this contribution we concentrate on single-epoch, i.e. instantaneous, attitude determination, as this is the most challeng-28

ing for integer ambiguity resolution. Moreover, when successful, it has the additional benefit of making the solutions insensitive29

to cycle slips. Our analyses consist of a robustness study of the C-LAMBDA method under different constrained environ-30

ments, such as open-pit tracking, the presence of satellite outages, and urban canyon applications. We simulate satellite outages,31

open-pit masking, and the urban canyon effect using real data consisting of L1/E1 observations from GPS, Galileo, QZSS,32
2



GAGAN, and MSAS, collected for ten days at Curtin University, Perth, Australia. We analyse the corresponding performance1

of the C-LAMBDA method and demonstrate the enhanced robustness of multi-GNSS, single-epoch single-frequency attitude2

determination under such constrained environments. This study is believed to be the first four-system attitude determination anal-3

ysis. This contribution is organized as follows: Section “GNSS-Based Attitude Determination” describes the functional and stochas-4

tic model for GPS/Galileo/QZSS/SBAS observations. It also describes the C-LAMBDA method using the quadratically constrained5

GNSS model for attitude determination. Section “Real-Data Analysis” presents the results of attitude determination reveal-6

ing improved performance of combined system. Finally, Section “Conclusions” contains the summary and conclusions of7

this contribution.8

GNSS-BASED ATTITUDE DETERMINATION9

In this section we present our attitude determination method using the single frequency combined GPS/Galileo/QZSS/SBAS10

system. First we describe the functional and stochastic model for the combined observations and then we present the steps11

for solving the baseline constrained, mixed-integer attitude model.12

GPS/Galileo/QZSS/SBAS Observations13

Let us consider two identical GPS/Galileo/QZSS/SBAS receivers r and 1 with identical antennas forming a short baseline

and collecting observations at L1-frequency. Double differencing is used to eliminate satellite/receiver clock errors and

instrumental hardware delays. When combining common frequency observations from multiple systems, one can perform

either system-specific double differencing [33] or inter-system double differencing [34,35]. In the latter case, which yields a

higher level of redundancy than the former, one should, however, take into account the inter-system bias (ISB) due to system

specific hardware delays, more so when mixed receiver types are used. In this work, we consider identical receivers/antennas

for which ISBs are known to be absent [25,29]. Also, since attitude determination is based on short baselines, the differential

atmospheric delays can be neglected [36]. Hence, the double differenced (DD) pseudo-range and carrier-phase observations

for satellite pairs 11-sΦ of GNSS system pairs 1-Φ with a single pivot satellite, denoted as p11sΦ

1r and φ
11sΦ

1r respectively, are

given as [25, 27]

E
(

p11sΦ

1r

)
= ρ

11sΦ

1r , sΦ =

 2, . . . ,mΦ for Φ = 1

1, . . . ,mΦ otherwise
(1)

E
(

φ
11sΦ

1r

)
= ρ

11sΦ

1r +λN11sΦ

1r , (2)

where E(·) denotes the expectation operator, ρ
11sΦ

1r is the DD topocentric distance, λ is the wave length, N11sΦ

1r is the14

time-invariant integer DD carrier-phase ambiguity, and mΦ is the number of satellites from system Φ. For simplicity of15

formulation, we assume that satellites are ordered such that first m1 satellites are of system 1, next m2 satellites are of16
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system 2, and so on (∑M
Φ=1 mΦ = m+1, the number of tracked satellites), where M is the number of systems.1

The linearized DD observation equations corresponding to (1) and (2), read2

E
(

∆p11sΦ

1r

)
= g11sΦ

r
T
b, (3)

E
(

∆φ
11sΦ

1r

)
= g11sΦ

r
T
b+λN11sΦ

1r , (4)

where ∆p11sΦ

1r and ∆φ
11sΦ

1r are the observed-minus-computed code and phase observations, b is the baseline vector containing3

relative position components, and g11sΦ
r is the geometry vector given as g11sΦ

r = e11
r −esΦ

r with esΦ
r the unit line-of-sight vector4

between receiver-satellite pair r− sΦ. The vectorial forms of the DD observation equations read5

E(yp) = Grb (5)

E(yφ) = Grb+λz (6)

with

yp =
[
∆p1121

1r , . . . , ∆p11m1
1r , ∆p1112

1r , . . . , ∆p11m2
1r , . . . ,

∆p111M
1r , . . . , ∆p11mM

1r

]T
(7)

yφ =
[
∆φ

1121
1r , . . . , ∆φ

11m1
1r , ∆φ

1112
1r , . . . , ∆φ

11m2
1r , . . .

∆φ
111M
1r , . . . , ∆φ

11mM
1r

]T
(8)

Gr =
[
g1121

r , . . . , g11m1
r , g1112

r , . . . , g11m2
r , . . . ,

g111M
r , . . . , g11mM

r
]T

(9)

z =
[
N1121

1r , . . . , N11m1
1r , N1112

1r , . . . ,N11m2
1r , . . .

N111η

1r , . . . , N11mM
1r

]T
(10)

For the stochastic modelling (e.g. thermal noise, multipath), we apply elevation dependent weighting [37]. That is, the6

standard deviation of the undifferenced observable ς can be written as7

σς(θ) = σς0

(
1+aς0 exp

(
−θ

θς0

))
(11)

where θ is the elevation angle of the corresponding satellite, and σς0 , aς0 , and ες0 are model parameters. We further assume8

that the receivers have similar characteristics and that the observation noise standard deviations can be decomposed as9

4



follows:1

σ
φ

sΦ
r

= σrσ
,Φ
φ0

νsΦ

σp
sΦ
r

= σrσ
,Φ
p0νsΦ

νsΦ =
(

1+a0 exp
(
−θ

sΦ

θ0

)) (12)

where σr is the receiver, and σ
,Φ
φ0

and σ
,Φ
p0 are observation dependent weightings.2

The GPS/Galileo/QZSS/SBAS Constrained Baseline Model3

When combining the single-epoch linearized DD GNSS code and phase observation equations of (5) and (6), we obtain the4

mixed integer model of observation equations:5

E(y) = Az+Gb,
z ∈ Zm

b ∈ R3
with m =

M

∑
Φ=1

mΦ−1 (13)

where y = [yT
φ
, yT

p]
T is the 2m× 1 vector of linearized (observed-minus-computed) DD carrier-phase and pseudorange6

observations, z is the m×1 vector of unknown DD integer ambiguities, b is 3×1 vector of unknown baseline parameters,7

G = e2⊗Gr is the 2m×3 geometry matrix with en the n×1 vector of 1’s and ⊗ denoting the Kronecker product [38, 39],8

A = [λIm, 0T ]T is the 2m×m design matrix with In the identity matrix of size n.9

To construct the stochastic model for the observations in (13), consider the undifferenced observations reading as10

ζ = [ζT
1 , ζ

T
2 ]

T (14)

where ζr = [φT
r , pT

r ]
T , φr = [φ,1r

T
, . . . ,φ,Mr

T
]T , φ

,Φ
r = [φ1Φ

r , . . . ,φmΦ
r ]T , pr = [p,1r

T
, . . . , p,Mr

T
]T , p,Φr = [p1Φ

r , . . . , pmΦ
r ]T , and psΦ

r11

and φ
sΦ
r are the undifferenced code and phase observations for r− sΦ receiver-satellite pair. Using the noise characteristics12

of (12) and assuming the observables to be mutually uncorrelated, the dispersion matrix of the observation vector ζ can be13

written as14

D(ζ) = Qr⊗blockdiag(Qφ,Qp) (15)

where D(·) denotes the dispersion operator, Qr = diag[σ2
1, σ2

2], Qφ = blockdiag(Q,1
φ
, . . . , Q,M

φ
), Q,Φ

φ
=
(

σ
,Φ
φ0

)2
diag

[(
ν1Φ

)2
, . . . ,(νmΦ)2

]
,

Qp = blockdiag(Q,1
p , . . . , Q,M

p ), and Q,Φ
p =

(
σ
,Φ
p0

)2
diag

[(
ν1Φ

)2
, . . . ,(νmΦ)2

]
are the co-factor matrices. Using the DD op-
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erator DT = DT
1⊗ I2⊗DT

m, the dispersion matrix of the DD observations can be written as

D(y) = Qyy = D(DT
ζ)

= (σ2
1 +σ

2
2)I2⊗DT

mblockdiag(Qφ,Qp)I2⊗Dm (16)

with DT
n = [−en, In] the differencing matrix.1

The DD observation equations of (13) form, together with the dispersion matrix of (16), a mixed-integer Gauss-Markov2

model with unknown integer vector z ∈ Zm and unknown baseline vector b ∈ R3. This model can be strengthened with the3

known baseline length. With the inclusion of the baseline length constraint, we obtain the GNSS compass model [19, 20]4

E(y) = Az+Gb ‖b‖= l,z ∈ Zm,b ∈ R3

D(y) = Qyy (17)

where l is the known baseline length and ‖ · ‖ denotes the unweighted norm. Hence, the baseline is thus now constrained to5

lie on a sphere with radius l (Sl =
{

b ∈ R3| ‖b‖= l
}

). Our objective is to solve for b in a least-squares sense, thereby taking6

the integer constraints on z and the quadratic constraint on vector b into account. Hence, the least-squares minimization7

problem that will be solved reads8

min
z∈Zm,b∈Sl

‖y−Az−Gb‖2
Qyy

(18)

with || · ||2Q = (·)T Q−1(·). It is a quadratically constrained (mixed) integer least-squares (QC-ILS) problem [18], for which9

no closed-form solution is available. In the following sections, we describe the method for solving (18).10

The Ambiguity Resolved Attitude11

We now describe the steps for computing the integer ambiguity resolved attitude angles.12

The real-valued float solution13

The float solution is defined as the solution of (18) without the constraints. When we ignore the integer constraints on z and14

the quadratic constraint on b, the float solutions ẑ and b̂, and their variance-covariance matrices are obtained as follows:15

 Qẑẑ Qẑb̂

Qb̂ẑ Qb̂b̂


−1

·

 ẑ

b̂

 =

 AT

GT

Q−1
yy y (19)
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with1

 Qẑẑ Qẑb̂

Qb̂ẑ Qb̂b̂

 =


 AT

GT

Q−1
yy

[
A G

]
−1

The z-constrained solution of b and its variance-covariance matrix can be obtained from the float solution as follows2

b̂(z) = b̂−Qb̂ẑQ
−1
ẑẑ (ẑ− z) (20)

Qb̂(z)b̂(z) = Qb̂b̂−Qb̂ẑQ
−1
ẑẑ Qẑb̂

=
(
GT Q−1

yy G
)−1

(21)

Using the above estimators, the original problem in (18) can be decomposed as [20]

min
z∈Zm,b∈Sl

‖y−Az−Gb‖2
Qyy

=

= ‖ê‖2
Qyy

+ min
z∈Zm

(
‖ẑ− z‖2

Qẑẑ
+min

b∈Sl

∥∥b̂(z)−b
∥∥2

Qb̂(z)b̂(z)

)
(22)

with ê = y−Aẑ−Gb̂ being the vector of least-squares residuals. Note that the first term on the right hand side of (22) does3

not depend on the unknown parameters z and b and is therefore constant.4

The integer ambiguity resolution5

Based on the orthogonal decomposition (22), the quadratic constrained integer minimization can be formulated as:6

ž = arg min
z∈Zm

C(z) (23)

with ambiguity objective function7

C(z) = ‖ẑ− z‖2
Qẑẑ

+
∥∥b̂(z)− b̌(z)

∥∥2
Qb̂(z)b̂(z)

(24)

where8

b̌(z) = argmin
b∈Sl

∥∥b̂(z)−b
∥∥2

Qb̂(z)b̂(z)
(25)
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The cost function C(z) is the sum of two coupled terms: the first weighs the distance from the float ambiguity vector ẑ to the1

nearest integer vector z in the metric of Qẑẑ, while the second weighs the distance from the conditional float solution b̂(z) to2

the nearest point on the sphere Sl in the metric of Qb̂(z)b̂(z).3

Unlike with the standard LAMBDA method [40], the search space of the above minimization problem is non-ellipsoidal due4

to the presence of the second term in the ambiguity objective function C(z). Moreover, its solution requires the computation5

of a nonlinear constrained least-squares problem (25) for every integer vector in the search space. In the C-LAMBDA6

method, this problem is mitigated through the use of easy-to-evaluate bounding functions [20, 41]. Using these bounding7

functions, two strategies, namely the Expansion and the Search and Shrink strategies, were developed, see e.g. [18, 42].8

These techniques avoid the computation of (25) for every integer vector in the search space, and compute the integer9

minimizer ž in an efficient manner.10

The ambiguity resolved attitude11

For a single baseline, b is related to the Euler-angles ξ = [ψ, θ]T , with ψ the heading and θ the elevation, as b(ξ) =12

lu(ξ), where u(ξ) =
[
cθcψ, cθsψ, −sθ

]T with sα = sin(α) and cα = cos(α). The sought-for attitude angles ξ(ž) are the13

reparametrized solution of (25). Using a first order approximation, the formal variance-covariance matrix of the ambiguity14

resolved, least-squares estimated heading and elevation angles is given by15

Q
ξ̌ξ̌
≈ 1

l2

(
Ju,ξ(ξ̌)

T Q−1
b̂(z)b̂(z)

Ju,ξ(ξ̌)
)−1

(26)

with Jacobian matrix16

Ju,ξ(ξ) =


−sψcθ −cψsθ

cψcθ −sψsθ

0 −cθ

 (27)

As the results in the next section show, this first order approximation works well. This is due to the fact that the ambiguity17

resolved solution is driven by the high precision of the carrier phase observables.18

REAL-DATA ANALYSIS19

In this section the performance analyses of GPS/Galileo/QZSS/SBAS attitude determination using real data are presented.20

The data was collected from two TRM59800.00-SCIS antennas mounted on the roof of the Bentley campus building 402 of21

Curtin University in Perth, Australia. As shown in Figure 1(a), they form a short baseline (l = 8.418 m, Figure 1(b)).22

These antennas are connected to two TRIMBLE NETR9 GNSS receivers continuously tracking all available GNSS satellites.23
8



(a)
An-
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(b)
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Figure 1. Curtin GNSS antennas used for the real data campaign

System (Frequency) Code σ
,Φ
p0 [cm] Phase σ

,Φ
φ0

[mm]
GPS (L1), Galileo
(E1), and QZSS (L1) 20 1

SBAS (L1) 240 7

Table 1. Elevation dependent stochastic model parameters (cf., equation 12) for undifferenced observables with σr = 1 for r = 1, 2,
ap0 = aφ0 = 5 and εp0 = εφ0 = 20

The stochastic model parameters of the elevation dependent model (11) for the receivers are reported in Table 1. The large1

parameter values for SBAS are due to the narrower transmitted signal bandwidth (2.2 MHz) compared to that of other sys-2

tems (e.g., 20 MHz for GPS) [29, 43].3

We considered data from Curtin’s stations for ten days from June 9 to 18, 2013 with a sampling interval of 30 seconds.4

Figure 2 shows the GPS/Galileo/QZSS/SBAS satellite visibility for June 9 (the skyplots, the number of satellites, and the5

PDOP values) demonstrating improved satellite visibility of the combined system.6

We consider two performance measures for our analyses; the first one is the empirical instantaneous ambiguity success

(a)
Sky-
plot
(GPS)

(b)
Sky-
plot
(Galileo:
E11,
E12,
E19,
and
E20,
QZSS:
J1,
GAGAN:
S27
and
S28,
and
MSAS:
S29
and
S37)

(c)
Num-
ber
of
satel-
lites
and
PDOP
(Com-
bined)

Figure 2. Satellite visibility of GPS, Galileo, QZSS, and SBAS (GAGAN+MSAS) constellations on June 9, 2013 for 10◦ elevation
cut-off
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Systems (PDOP) Success Fraction Angular Standard deviation [deg]
LAMBDA C-LAMBDA Heading Elevation

GPS (2.00) 0.85 0.99 0.01 (0.02) 0.04 (0.04)
GPS/Galileo (1.87) 0.92 1.00 0.01 (0.01) 0.03 (0.03)
GPS/QZSS (1.87) 0.94 1.00 0.01 (0.01) 0.03 (0.03)
GPS/GAGAN (1.72) 0.93 1.00 0.01 (0.02) 0.04 (0.04)
GPS/MSAS (1.87) 0.95 1.00 0.01 (0.02) 0.04 (0.04)
GPS/SBAS (1.63) 0.98 1.00 0.01 (0.01) 0.04 (0.04)
GPS/Galileo/QZSS/SBAS (1.50) 1.00 1.00 0.01 (0.01) 0.03 (0.03)
Galileo/QZSS/SBAS (5.75)/0.88 0.07 0.34 0.07 (0.07) 0.25 (0.20)

Table 2. Instantaneous ambiguity success fractions (relative frequencies) and angular accuracy measured by empirical and formal
(given in brackets) angular standard deviations. SBAS consists of two GAGAN and two MSAS satellites. For the combined
Galileo/QZSS/SBAS constellation, only a fraction of epochs (given in emphasized text) was processed due to the poor satellite
geometry (PDOP > 100)

fraction (relative frequency), which is defined as

success fraction =
number of correctly fixed epochs

total number of epochs
(28)

where the true ambiguities are computed using known antenna coordinates in WGS84 as the antennas used are part of Curtin’s1

permanent stations. However, only length information is used for C-LAMBDA processing. The second performance mea-2

sure is the ambiguity fixed angular estimation accuracy, which is given by the formal and empirical standard deviations of3

attitude angular estimates.4

Table 2 summarizes the benefits of augmenting different systems. Augmenting GPS with one or more systems improves5

ambiguity resolution. Especially with C-LAMBDA, instantaneous ambiguity resolution is possible (indicated in blue text)6

for the scenario considered (Figure 1). Furthermore, SBAS significantly contributes to improved ambiguity resolution7

even though it has less precise observations than that of other systems (Table 1). Although augmentation significantly8

improves ambiguity resolution and thus the ability to achieve instantaneous results, augmenting GPS with one or more9

systems does not significantly improve the ambiguity-fixed angular accuracy. This is understandable as any ambiguity-fixed10

solution is driven by the highly precise carrier-phase data. Also note that combining L1/E1-observations from non-GPS11

satellites does not yet offer continuous attitude solution (indicated in emphasized text) due to the poor satellite geometry12

with current Galileo and QZSS constellations, which are under development. By combining all four systems, one can13

achieve instantaneous single-frequency attitude determination even with the unconstrained LAMBDA method (indicated in14

bold text) for the scenario considered (Figure 1). With this clear indication of benefits from augmenting multiple system,15

we further analyse the performance of the augmented system under various satellite deprived environments in the following16

sections and compare with that of GPS-only solutions.17
10



Number of GPS Success Fraction Angular Standard deviation [deg]
satellites (PDOP) LAMBDA C-LAMBDA Heading Elevation
0 (5.75)/0.88 0.07 0.34 0.07 (0.07) 0.25 (0.20)
2 (3.07) 0.25 0.73 0.03 (0.04) 0.08 (0.12)
4 (2.23) 0.67 0.97 0.02 (0.02) 0.06 (0.06)
6 (1.81) 0.96 1.00 0.02 (0.02) 0.04 (0.04)
8 (1.56) 1.00 1.00 0.01 (0.01) 0.03 (0.03)
10 (1.51) 1.00 1.00 0.01 (0.01) 0.03 (0.03)

Table 3. Instantaneous single-frequency ambiguity success fractions (relative frequencies) and angular accuracy measured by empirical
and formal (given in brackets) angular standard deviations for simulated GPS satellite outage. For some cases, a fraction of
epochs (given in emphasized text) were processed due to a poor satellite geometry for positioning (PDOP > 100)

Number of SBAS Success Fraction Angular Standard deviation [deg]
satellites (PDOP) LAMBDA C-LAMBDA Heading Elevation
0 (2.00) 0.85 0.99 0.01 (0.02) 0.04 (0.04)
1 (1.92) 0.91 1.00 0.01 (0.02) 0.04 (0.04)
2 (1.87) 0.95 1.00 0.01 (0.02) 0.04 (0.04)
3 (1.81) 0.97 1.00 0.01 (0.01) 0.04 (0.04)
4 (1.63) 0.98 1.00 0.01 (0.01) 0.04 (0.04)

Table 4. The contribution SBAS: Instantaneous single-frequency ambiguity success fractions (relative frequencies) and and angular ac-
curacy measured by empirical and formal (given in brackets) angular standard deviations for the augmentation of GPS with
different number of SBAS satellites

Satellite Outages1

We simulated this satellite deprived environment by arbitrarily removing a number of visible GPS satellites. Note that,2

arbitrary removal of satellites over long period (ten days) enables us to evaluate average performance. Table 3 reports the3

LAMBDA and C-LAMBDA ambiguity success fractions for single-frequency processing and ambiguity resolved attitude4

angular accuracy (angular standard deviation). The benefits of using C-LAMBDA are highlighted using bold text. For the5

scenario considered (Figure 1), the C-LAMBDA method on average offers instantaneous attitude solution with all visible6

satellites from current non-GPS constellations and with as few as six GPS satellites, while LAMBDA method on average7

requires at least eight GPS satellites together with all visible satellites from current non-GPS constellations to achieve8

instantaneous solution. The formal standard deviations (terms in brackets) are well in line with the empirical standard9

deviations confirming the assumed stochastic model parameters in Table 1. A slight degradation of the angular accuracy10

with the number of satellites can be observed.11

We also analysed the contribution of SBAS system for instantaneous attitude determination by augmenting GPS with different12

number of SBAS satellites. Table 4 summarizes the contribution of SBAS satellites highlighting benefits of using C-LAMBDA13

method (indicated using bold text). With C-LAMBDA processing, single-frequency user can achieve instantaneous attitude14

determination by augmenting GPS L1-observations with that of as few as one SBAS satellite for the scenario considered (Fig-15

ure 1). This is an interesting boost for single-frequency users, as at least one SBAS satellite (from WAAS, EGNOS, MSAS, and16

GAGAN) is uninterruptedly visible almost anywhere in the world enabling instantaneous attitude determination, which is im-17

mune to cycle slips.18
11



Elevation Cut-off GPS only GPS+Galileo+QZSS+SBAS
[deg] PDOP LAMBDA C-LAMBDA PDOP LAMBDA C-LAMBDA
10 2.00 0.85 0.99 1.50 1.00 1.00
20 3.13 0.56 0.93 2.36 0.96 1.00
30 6.64 (0.94) 0.25 0.75 3.52 0.82 0.98
40 12.65 (0.65) 0.08 0.56 7.70 (0.90) 0.45 0.86
50 21.35 (0.23) 0.02 0.46 16.37 (0.26) 0.23 0.74

Table 5. Instantaneous ambiguity success fractions (relative frequencies) for the real data with simulated open-pit using elevation mask-
ing; For some cases, a fraction of epochs (given in brackets) were processed due to a lack of sufficient visible satellites for
positioning (requires at least four satellites) or due to a poor satellite geometry (PDOP > 100)

Elevation cut-off GPS only GPS+Galileo+QZSS+SBAS
[deg] Heading Elevation Heading Elevation
10 0.01 (0.02) 0.04 (0.04) 0.01 (0.01) 0.03 (0.03)
20 0.02 (0.02) 0.04 (0.04) 0.01 (0.01) 0.04 (0.04)
30 0.02 (0.02) 0.06 (0.06) 0.02 (0.02) 0.06 (0.06)
40 0.03 (0.04) 0.11 (0.12) 0.03 (0.03) 0.11 (0.13)
50 0.04 (0.04) 0.17 (0.18) 0.03 (0.03) 0.15 (0.15)

Table 6. Empirical and formal (given in brackets) angular standard deviations [deg] of the ambiguity fixed attitude angles for single-
frequency data with simulated open-pit using elevation masking

Open-pit Problem1

We simulated this constrained environment using elevation angle masking. Table 5 reports the ambiguity resolution success2

fractions for single-frequency processing with different elevation angle maskings. The benefit, improved availability of3

attitude solutions, of using a combined system is highlighted (in bold text).4

Note that, for large elevation masking angles, a fraction of epochs (given in brackets) were processed due to a lack of5

sufficient visible satellites for positioning (requires at least four satellites) or due to a poor satellite geometry (PDOP > 100).6

For the scenario considered (Figure 1), the single-frequency C-LAMBDA processing of a combined system enables the7

availability of instantaneous attitude solutions for an open-pit with up to 20 deg elevation masking, while it is not possible8

for GPS-only processing even with 10 degree elevation masking.9

The angular accuracies (standard deviations) of the single frequency processing are reported in Table 6. As shown, increas-10

ing elevation masking degrades both ambiguity resolution and the angular accuracy. But note that the combined system an-11

gular accuracy for a 20 degree mask angle is the same as that of GPS for only a 10 degree mask angle.12

Urban Canyon13

In this section we analyze the robustness of the C-LAMBDA method under an urban canyon effect, which is a well-14

known problem depriving GNSS based navigation solutions in urban environments [44–47]. We simulate the urban canyon15

blockage effect using a simple model, where we have two buildings as shown in Figure 3 placed symmetrically with respect16

to the attitude platform on an urban road. The blockage is defined by three angles: γ0 the azimuth of the center of the17

first building (defining the direction of the road), α0 the elevation at the center of the building (defining the height of the18

buildings), and β0 the azimuth angle (defining the width of the buildings). For example, in the case of γ0 = 90◦, α0 = 60◦,19
12



Figure 3. Simulated urban canyon: Buildings on both sides of an urban road blocking satellite visibility; Angle γ0 defines the direction
of the road, while angles α0 and β0 define the height and the width of the buildings, respectively.

α0 β0 GPS only GPS+Galileo+QZSS+SBAS
(deg) (deg) LAMBDA C-LAMBDA LAMBDA C-LAMBDA

20

20
40
60
80

0.80 0.99
0.67 0.96
0.55 0.90
0.50 (0.99) 0.86 (0.99)

0.99 1.00
0.98 1.00
0.95 1.00
0.93 0.99

40

20
40
60
80

0.75 0.99
0.43 0.85
0.21 (0.87) 0.70 (0.87)
0.14 (0.81) 0.58 (0.81)

0.99 1.00
0.93 1.00
0.69 (0.99) 0.94 (0.99)
0.58 (0.93) 0.92 (0.93)

60

20
40
60
80

0.72 0.98
0.26 (0.99) 0.68 (0.99)
0.03 (0.52) 0.39 (0.52)
0.00 (0.13) 0.14 (0.13)

0.99 1.00
0.86 0.99
0.17 (0.55) 0.68 (0.55)
0.02 (0.14) 0.37 (0.14)

80

20
40
60
80

0.72 0.98
0.23 (0.98) 0.66 (0.98)
0.02 (0.45) 0.36 (0.45)
0.00 (0.02) 0.27 (0.02)

0.99 1.00
0.83 0.98
0.14 (0.46) 0.58 (0.46)
0.00 (0.02) 0.40 (0.02)

Table 7. Instantaneous single-frequency ambiguity success fractions (relative frequencies) and the average computation time [sec] (given
in brackets) for simulated urban canyon (Figure 3); For some cases, only a fraction of epochs (given in brackets) were processed
due to the absence of sufficient satellites for positioning (requires at least four satellites) or due to a poor satellite geometry for
positioning (PDOP > 100)

and β0 = 60◦, the model represents two buildings with a height of 9 meters and a width of 17 meters on both sides of a1

ten-meter wide road in the North-South direction. Urban canyons can also introduce multi-path effects [46] and sometimes2

other types of interferences [48] that are not considered in this contribution. The robustness of the C-LAMBDA method3

against multi-path effects has already been studied and demonstrated in [49, 50] using a simulation study.4

We considered the urban canyon along a road in North-South direction (γ0 = 90◦). This corresponds to the worst case5

deprivation due to a lack of visible satellites towards the South direction in Perth, Australia (South polar region). Table 76

summarizes the ambiguity resolution success fraction for the simulated urban canyon scenario demonstrating the benefits7

(highlighted using bold text) of augmenting systems. Note that, for large values of α0 and β0, only a fraction of epochs8

(given in brackets) were processed due to the absence of sufficient satellites for positioning (requires at least four satellites)9

or due to a poor satellite geometry (PDOP > 100). For almost all other cases of combined system with the scenario10

considered (Figure 1), instantaneous ambiguity resolution is possible due to the exploitation of the geometry constraints in11

the C-LAMBDA method. The corresponding angular accuracies (standard deviations) are reported in Table 8, showing that12

empirical values are in line with formal values (given in brackets). A combined system processing not only improves the13

success fraction, but also slightly improves the angular accuracies. Both the ambiguity resolution success fraction and the14

angular accuracy, however, degrade as the effect of the urban canyon increases (i.e., angles α0 and β0 increase).15
13



α0 β0 GPS only GPS+Galileo+QZSS+SBAS
(deg) (deg) Heading Elevation Heading Elevation

20

20
40
60
80

0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.05 (0.04)

0.01 (0.01) 0.03 (0.03)
0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.04 (0.04)

40

20
40
60
80

0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.05 (0.06)
0.03 (0.03) 0.05 (0.06)
0.03 (0.03) 0.06 (0.06)

0.01 (0.01) 0.04 (0.03)
0.02 (0.02) 0.05 (0.05)
0.03 (0.03) 0.05 (0.05)
0.03 (0.03) 0.05 (0.05)

60

20
40
60
80

0.02 (0.02) 0.04 (0.04)
0.02 (0.02) 0.06 (0.07)
0.09 (0.10) 0.10 (0.11)
∗ (∗) ∗ (∗)

0.01 (0.01) 0.04 (0.04)
0.02 (0.02) 0.05 (0.05)
0.07 (0.07) 0.08 (0.08)
∗ (∗) ∗ (∗)

80

20
40
60
80

0.02 (0.02) 0.04 (0.04)
0.02 (0.03) 0.07 (0.07)
0.10 (0.11) 0.12 (0.12)
∗ (∗) ∗ (∗)

0.01 (0.01) 0.04 (0.04)
0.02 (0.02) 0.05 (0.06)
0.08 (0.08) 0.10 (0.10)
∗ (∗) ∗ (∗)

Table 8. Empirical and formal (given in brackets) angular standard deviations [deg] of the ambiguity fixed attitude angles for simulated
urban canyon (Figure 3); ∗ refers to the cases with not enough samples to compute reliable statistics.

CONCLUSIONS16

In this contribution we analysed the performance of the C-LAMBDA method for instantaneous attitude determination using17

single-frequency (L1/E1) observations from GPS/Galileo/QZSS/SBAS. Using real data from a rooftop experiment, we18

demonstrated that through any of the given augmentations of GPS, instantaneous single-frequency attitude determination is19

achieved with the C-LAMBDA method. We also demonstrated that such is even possible with the unconstrained LAMBDA20

method, at least in the Asia-Pacific region, when all four systems are combined in a mild multipath environment. We further21

analysed the performance of single-frequency attitude determination under various satellite deprived environments. The1

C-LAMBDA method offers instantaneous attitude solution with all visible satellites from current non-GPS constellations2

and with as few as six GPS satellites, while the LAMBDA method requires at least eight GPS satellites together with all3

visible satellites from current non-GPS constellations to achieve instantaneous solution.4

The single-frequency C-LAMBDA processing of a combined system enables the availability of instantaneous attitude solu-5

tions for an open-pit with up to 20 degree elevation masking, while it is not possible for GPS-only processing even with 106

degree elevation masking. We also showed that the use of a combined constellation significantly improves the attitude so-7

lution availability under satellite masking effect in urban environment. Overall, this study demonstrated the realization of instan-8

taneous attitude determination by combining single-frequency (L1/E1) observations from all available systems in a mild mul-9

tipath environment.1
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