2,635 research outputs found

    Atmospheric Correction of Landsat ETM+ Land Surface Imagery: II. Validation and Applications

    Get PDF
    This is the second paper of the series on atmospheric correction of ETM+ land surface imagery. In the first paper, a new algorithm that corrects heterogeneous aerosol scattering and surface adjacency effects was presented. In this study, our objectives are to 1) evaluate the accuracy of this new atmospheric correction algorithm using ground radiometric measurements; 2) apply this algorithm to correct MODIS and SeaWiFS imagery; and 3) demonstrate how much atmospheric correction of ETM+ imagery can improve land cover classification, change detection, and broadband albedo calculations. Validation results indicate that this new algorithm can retrieve surface reflectance from ETM+ imagery accurately. All experimental cases demonstrate that this algorithm can be used for correcting both MODIS and SeaWiFS imagery. Although more tests and validation exercises are needed, it has been proven promising to correct different multispectral imagery operationally. We have also demonstrated that atmospheric correction does matter.This work was supported in part by the U.S. National Aeronautics and Space Administration (NASA) under grants NAG5-6459 and NCC5462

    Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations

    Get PDF
    A practical atmospheric correction algorithm, called Coupled Moderate Products for Atmospheric Correction (CMPAC), was developed and implemented for the Multispectral Camera (MUX) on-board the China-Brazil Earth Resources Satellite (CBERS-4). This algorithm uses a scene-based processing and sliding window technique to derive MUX surface reflectance (SR) at continental scale. Unlike other optical sensors, MUX instrument imposes constraints for atmospheric correction due to the absence of spectral bands for aerosol estimation from imagery itself. To overcome this limitation, the proposed algorithm performs a further processing of atmospheric products from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors as input parameters for radiative transfer calculations. The success of CMPAC algorithm was fully assessed and confirmed by comparison of MUX SR data with the Landsat-8 OLI Level-2 and Aerosol Robotic Network (AERONET)-derived SR products. The spectral adjustment was performed to compensate for the differences of relative spectral response between MUX and OLI sensors. The results show that MUX SR values are fairly similar to operational Landsat-8 SR products (mean difference \u3c 0.0062, expressed in reflectance). There is a slight underestimation of MUX SR compared to OLI product (except the NIR band), but the error metrics are typically low and scattered points are around the line 1:1. These results suggest the potential of combining these datasets (MUX and OLI) for quantitative studies. Further, the robust agreement of MUX and AERONET-derived SR values emphasizes the quality of moderate atmospheric products as input parameters in this application, with root-mean-square deviation lower than 0.0047. These findings confirm that (i) CMPAC is a suitable tool for estimating surface reflectance of CBERS MUX data, and (ii) ancillary products support the application of atmospheric correction by filling the gap of atmospheric information. The uncertainties of atmospheric products, negligence of the bidirectional effects, and two aerosol models were also identified as a limitation. Finally, this study presents a framework basis for atmospheric correction of CBERS-4 MUX images. The utility of CBERS data comes from its use, and this new product enables the quantitative remote sensing for land monitoring and environmental assessment at 20 m spatial resolution

    Modeling Land-Cover Types Using Multiple Endmember Spectral Mixture Analysis in a Desert City

    Get PDF
    Spectral mixture analysis is probably the most commonly used approach among sub-pixel analysis techniques. This method models pixel spectra as a linear combination of spectral signatures from two or more ground components. However, spectral mixture analysis does not account for the absence of one of the surface features or spectral variation within pure materials since it utilizes an invariable set of surface features. Multiple endmember spectral mixture analysis (MESMA), which addresses these issues by allowing endmembers to vary on a per pixel basis, was employed in this study to model Landsat ETM+ reflectance in the Phoenix metropolitan area. Image endmember spectra of vegetation, soils, and impervious surfaces were collected with the use of a fine resolution Quickbird image and the pixel purity index. This study employed 204 (=3x17x4) total four-endmember models for the urban subset and 96 (=6x6x2x4) total five-endmember models for the non-urban subset to identify fractions of soil, impervious surface, vegetation, and shade. The Pearson correlation between the fraction outputs from MESMA and reference data from Quickbird 60 cm resolution data for soil, impervious, and vegetation were 0.8030, 0.8632, and 0.8496 respectively. Results from this study suggest that the MESMA approach is effective in mapping urban land covers in desert cities at sub- pixel level.

    Remote sensing of energy and water fluxes over Volta Savannah catchments in West Africa

    Get PDF
    The deterioration of the West African savannah in the last three decades is believed to be closely linked with about 0.5 C rise in temperature leading to evaporation losses and declining levels of the Volta Lake in Ghana. Although hydrological models can be used to predict climate change impacts on the regional hydrology, spatially-observed ground data needed for this purpose are largely unavailable. This thesis seeks to address this problem by developing improved methods for estimating energy and water fluxes (e.g. latent heat [ET]) from remotely sensed data and to demonstrate how these may be used to parameterize hydrological models. The first part of the thesis examines the potential of the Penman-Monteith method to estimate local-scale ET using groundbased hydrometeorological observations, vegetation coefficients and environmental data. The model results were compared with pan observations, scintillometer (eddy correlation) measurements and the Thomthwaite empirical method. The Penman- Monteith model produced better evaporation estimates (~3.90 mm day(^-1) for the Tamale district) than its counterpart methods. The Thomthwaite, for example, overestimated predictions by 5.0-11.0 mm day(^-1). Up-scaling on a monthly time scale and parameterization of the Grindley soil moisture balance model with the Thomthwaite and Penman-Monteith data, however, produced similar estimates of actual evaporation and soil moisture, which correlated strongly (R(^2) = 0.95) with water balance estimates. To improve ET estimation at the regional-scale, the second part of the thesis develops spatial models through energy balance modelling and data up-scaling methods, driven by radiometric measurements from recent satellite sensors such as the Landsat ETM+, MODIS and ENVISAT-AATSR. The results were validated using estimates from the Penman-Monteith method, field observations, detailed satellite measurements and published data. It was realised that the MODIS sensor is a more useful source of energy and water balance parameters than AA TSR. For example, stronger correlations were found between MODIS estimates of ET and other energy balance variables such as NDVI, surface temperature and net radiation (R(^2) = 0.67-0.73) compared with AATSR estimates (R(^2) = 0.31-0.40). There was also a good spatial correlation between MODIS and Landsat ETM+ results (R(^2) = 0.71), but poor correlations were found between AATSR and Landsat data (R(^2) = 0.0-0.13), which may be explained by differences in instrument calibration. The results further showed that ET may be underestimated with deviations of ~2.0 mm day 1 when MODIS/AATSR measurements are validated against point observations because of spatial mismatch. The final part of the thesis demonstrates the application of the ET model for predicting runoff (Q) using a simplified version of the regional water balance equation. This is followed byanalysis of flow sensitivity to declining scenarios of biomass volume. The results showed the absence of Q for >90% of the study area during the dry season due largely to crude model approximation and lack of rainfall data, which makes model testing during the wet season important. Runoff prediction may be improved if spatial estimates of rainfall, ET and geographical data (e.g. land-use/cover maps, soil & geology maps and DEM) could be routinely derived from satellite imagery

    Landsat and local land surface temperatures in a heterogeneous terrain compared to MODIS values

    Get PDF
    Land Surface Temperature (LST) as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra or Aqua, pixels have resolutions near 1 km2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same observation time, for the very heterogeneous Campus of the University of the Balearic Islands (Mallorca, Western Mediterranean), with an area of about 1 km2 , for a period between 2014 and 2016. Variations of LST between 10 and 20 K are often found at the sub-kilometre scale. In addition, MODIS values are compared to the ground truth for one point in the Campus, as obtained from a four-component net radiometer, and a bias of 3.2 K was found in addition to a Root Mean Square Error (RMSE) of 4.2 K. An indication of a more elaborated local measurement strategy in the Campus is given, using an array of radiometers distributed in the area

    Mass balance of the Greenland ice sheet from GRACE and surface mass balance modelling

    Get PDF
    The Greenland Ice Sheet (GrIS) is losing mass at a rate that represents a major contribution to global sea-level rise in recent decades. In this study, we used GRACE data to retrieve the time series variations of the GrIS from April 2002 to June 2017. We also estimate the mass balance from the RACMO2.3 and ice discharge data in order to obtain a comparative analysis and cross-validation. A detailed analysis of long-term trend, seasonal and inter-annual changes of the GrIS is implemented by GRACE and surface mass balance (SMB) modeling. The results indicate a decrease of -267.77±8.68 Gt/yr of the GrIS over the 16-year period. There is a rapid decline from 2002-2008, which even accelerated from 2009 to 2012, before declining relatively slowly from 2013 to 2017. The mass change inland is significantly smaller than that detected along coastal regions, especially in southeastern, southwestern, and northwestern regions. The mass balance estimates from GRACE and SMB-D are highly consistent. The ice discharge manifests itself mostly as a long-term trend, whereas seasonal mass variations are largely attributed to surface mass processes. The GrIS mass changes are mostly attributed to mass loss during summer. Summer mass changes are highly correlated with climate changes

    Development of cloud removal and land cover Change extraction algorithms for remotely-sensed Landsat imagery

    Get PDF
    Land cover change monitoring requires the analysis of remotely-sensed data. In the tropics this is difficult because of persistent cloud cover, and data availability. This research focuses on the elimination of cloud cover as an important step towards addressing the issue of change detection. The result produced clearer images, whereas some persistent cloud remains. This persistent cloud and the cloud adjacency effects diminish the quality of image product and affect the change detection quality
    corecore