482 research outputs found

    Ontology Alignment using Biologically-inspired Optimisation Algorithms

    Get PDF
    It is investigated how biologically-inspired optimisation methods can be used to compute alignments between ontologies. Independent of particular similarity metrics, the developed techniques demonstrate anytime behaviour and high scalability. Due to the inherent parallelisability of these population-based algorithms it is possible to exploit dynamically scalable cloud infrastructures - a step towards the provisioning of Alignment-as-a-Service solutions for future semantic applications

    Scalable parallel evolutionary optimisation based on high performance computing

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to solve various challenging optimisation problems. Due to their stochastic nature, EAs typically require considerable time to find desirable solutions; especially for increasingly complex and large-scale problems. As a result, many works studied implementing EAs on parallel computing facilities to accelerate the time-consuming processes. Recently, the rapid development of modern parallel computing facilities such as the high performance computing (HPC) bring not only unprecedented computational capabilities but also challenges on designing parallel algorithms. This thesis mainly focuses on designing scalable parallel evolutionary optimisation (SPEO) frameworks which run efficiently on the HPC. Motivated by the interesting phenomenon that many EAs begin to employ increasingly large population sizes, this thesis firstly studies the effect of a large population size through comprehensive experiments. Numerical results indicate that a large population benefits to the solving of complex problems but requires a large number of maximal fitness evaluations (FEs). However, since sequential EAs usually requires a considerable computing time to achieve extensive FEs, we propose a scalable parallel evolutionary optimisation framework that can efficiently deploy parallel EAs over many CPU cores at CPU-only HPC. On the other hand, since EAs using a large number of FEs can produce massive useful information in the course of evolution, we design a surrogate-based approach to learn from this historical information and to better solve complex problems. Then this approach is implemented in parallel based on the proposed scalable parallel framework to achieve remarkable speedups. Since demanding a great computing power on CPU-only HPC is usually very expensive, we design a framework based on GPU-enabled HPC to improve the cost-effectiveness of parallel EAs. The proposed framework can efficiently accelerate parallel EAs using many GPUs and can achieve superior cost-effectiveness. However, since it is very challenging to correctly implement parallel EAs on the GPU, we propose a set of guidelines to verify the correctness of GPU-based EAs. In order to examine these guidelines, they are employed to verify a GPU-based brain storm optimisation that is also proposed in this thesis. In conclusion, the comprehensively experimental study is firstly conducted to investigate the impacts of a large population. After that, a SPEO framework based on CPU-only HPC is proposed and is employed to accelerate a time-consuming implementation of EA. Finally, the correctness verification of implementing EAs based on a single GPU is discussed and the SPEO framework is then extended to be deployed based on GPU-enabled HPC

    A survey of task allocation techniques in MAS

    Get PDF
    Multi-agent systems and especially unmanned vehicles, are a crucial part of the solution to a lot of real world problems, making essential the improvement of task allocation techniques. In this review, we present the main techniques used for task allocation algorithms, categorising them based on the techniques used, focusing mainly on recent works. We also analyse these methods, focusing mainly on their complexity, optimality and scalability. We also refer to common communication schemes used in task allocation methods, as well as to the role of uncertainty in task allocation. Finally, we compare them based on the above criteria, trying to find gaps in the literature and to propose the most promising ones

    Asymmetrical three-phase fault evaluation in a distribution network using the genetic algorithm and the particle swarm optimisation

    Get PDF
    Abstract: Modern electric power systems are made up of three main sub-systems: generation; transmission; and distribution. The most common faults in distribution sub-systems are asymmetrical three-phase short circuit faults due to the fact that asymmetrical three-phase faults can be: line-to-line faults; two lines-to-earth faults; and single line-to-earth faults. This increases their probability of occurrence, unlike symmetrical three-phase faults which can only occur when all the three phases have been simultaneously shorted. Standard IEC 60909 and IEC 61363 provide all the basic information that is used for the detection of short circuit faults. However, the two standards use numerous estimates in their faults evaluation procedures. They estimate voltage factors (c), impedance correction factors (k), resistance to reactance ratios (R/X), resistance to impedance ratios (R/Z) and various other scaling factors for rotating machines. These IEC estimates are not evenly distributed throughout the 550kV and as such, they do not sufficiently cater for every nominal voltage. When the need arises, the user has to estimate these values accordingly. This research presents a genetic algorithm (GA) and a particle swarm optimisation (PSO) for the detection of asymmetrical three-phase short circuit faults within electric distribution networks of power systems with nominal voltages less than 550kV. GA and PSO are nature-inspired optimisation techniques. Although PSO has quick convergence, it suffers from partial optimism and premature stagnation. Some innovative coding adjustments were made in the creation of initial positions and particle distribution within the swarm. The GA struggles with: survival rates of individuals; stalling during optimisation; and proper gene replacements. Coding adjustments were also made to GA with regards to: strategic gene replacements; crossover when combining the properties of parents; and the arrangement of scores and expectation. Pattern search and Fmincon algorithms were also added to both algorithms as minimisation functions that commence after the evolutionary algorithms (EAs) terminate. The EAs were initially tested on the Rastrigin and Rosenbrock functions to ensure their efficiencies. During fault detection, the developed EAs were used to stochastically determine some of the most crucial estimates (R/X and R/Z ratios). The proposed methodology would compute these values on a case-to-case basis for every optimisation case with regards to the parameters and unique specifications of the power system. The EAs were tested on a nominal voltage that is properly catered for by Standard IEC. They obtained ratios, impedances and currents that were within an approximate range to the IEC values for that nominal voltage. This further implies that EAs can be reliably used to: stochastically determine these ratios; compute impedances; and detect fault currents for all the nominal voltages including those that are not sufficiently catered for by Standard IEC. Since R/X and R/Z ratios play a key role in determining the upstream and fault point impedances, the proposed methodology can be used to compute much more precise fault magnitudes at various network levels thereby setting up and repairing power systems sufficiently.M.Ing. (Electrical and Electronic Engineering Science

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    • …
    corecore