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Abstract  

 

Modern electric power systems are made up of three main sub-systems: generation; 

transmission; and distribution. The most common faults in distribution sub-systems are 

asymmetrical three-phase short circuit faults due to the fact that asymmetrical three-phase 

faults can be: line-to-line faults; two lines-to-earth faults; and single line-to-earth faults. This 

increases their probability of occurrence, unlike symmetrical three-phase faults which can 

only occur when all the three phases have been simultaneously shorted. Standard IEC 60909 

and IEC 61363 provide all the basic information that is used for the detection of short circuit 

faults. However, the two standards use numerous estimates in their faults evaluation 

procedures. They estimate voltage factors (c), impedance correction factors (k), resistance to 

reactance ratios (R/X), resistance to impedance ratios (R/Z) and various other scaling factors 

for rotating machines. These IEC estimates are not evenly distributed throughout the 550kV 

and as such, they do not sufficiently cater for every nominal voltage. When the need arises, 

the user has to estimate these values accordingly. This research presents a genetic algorithm 

(GA) and a particle swarm optimisation (PSO) for the detection of asymmetrical three-phase 

short circuit faults within electric distribution networks of power systems with nominal 

voltages less than 550kV. GA and PSO are nature-inspired optimisation techniques. Although 

PSO has quick convergence, it suffers from partial optimism and premature stagnation. Some 

innovative coding adjustments were made in the creation of initial positions and particle 

distribution within the swarm. The GA struggles with: survival rates of individuals; stalling 

during optimisation; and proper gene replacements. Coding adjustments were also made to 

GA with regards to: strategic gene replacements; crossover when combining the properties of 

parents; and the arrangement of scores and expectation. Pattern search and Fmincon 

algorithms were also added to both algorithms as minimisation functions that commence after 

the evolutionary algorithms (EAs) terminate. The EAs were initially tested on the Rastrigin 

and Rosenbrock functions to ensure their efficiencies. During fault detection, the developed 

EAs were used to stochastically determine some of the most crucial estimates (R/X and R/Z 

ratios). The proposed methodology would compute these values on a case-to-case basis for 

every optimisation case with regards to the parameters and unique specifications of the power 

system. The EAs were tested on a nominal voltage that is properly catered for by Standard 

IEC. They obtained ratios, impedances and currents that were within an approximate range to 

the IEC values for that nominal voltage. This further implies that EAs can be reliably used to: 

stochastically determine these ratios; compute impedances; and detect fault currents for all 

the nominal voltages including those that are not sufficiently catered for by Standard IEC. 

Since R/X  and R/Z  ratios play a key role in determining the upstream and fault point 

impedances, the proposed methodology can be used to compute much more precise fault 

magnitudes at various network levels thereby setting up and repairing power systems 

sufficiently.  

 

Keywords: Asymmetrical, Autonomy, Genetic Algorithm, Particle Swarm Optimisation, 

Robust, Short Circuit Fault, Standard IEC 60909, Standard IEC 61363, Stochastic. 
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CHAPTER 1 

                                       INTRODUCTION 

1.1   Research background  
 

Modern electric power systems are made up of three main sub-systems: generation; 

transmission; and distribution. Electricity distribution can either be by symmetrical 

(balanced) phase systems or asymmetrical (unbalanced) phase systems (Tleis, 2008). For 

balanced systems, the line voltages and the line currents are equal to each other whereas, for 

unbalanced systems, the line voltages and currents are not equal (Sallam et al., 2011). 

Unbalanced systems occur as a result of asymmetrical loads or some faults within the system 

and its components. Symmetrical three-phase short circuit current can be detected using the 

‘Direct’ method or the ‘Per-Unit’ method. These two methods draw the system on a one-line 

diagram and basic electrical equations are used to calculate the fault magnitude (Das, 2017). 

To detect asymmetrical three-phase short circuit faults, one can apply the symmetric 

components technique or one can represent the system on a three-phase plane and retain the 

identities of all the phases and use them in the fault evaluation procedures (Tleis, 2008). Both 

methods give an approximate value of the asymmetrical fault current. Both methods are 

difficult to implement, data-intensive and not easily tractable (Cai et al., 2017). The 

complexity of the situation increases when more than one device is contributing to the fault 

(Tan, 2015). 

 

 Electrical distribution can either be by a radial system, a ring system or a meshed system 

(Das, 2017). In the radial and ring distribution sub-systems, it is less complicated to detect the 

fault current magnitude. For meshed systems, it becomes more difficult because many 

components feed and inter-depend in supplying the distribution zone (Han et al., 2016). 

Meshed systems are nowadays commonly used because of their improved reliability (Ashish, 

2015). However, it is difficult to precisely detect their short circuit currents. This gives rise to 

using the most advanced techniques because the basic methods cannot give very precise 

results (Malik et al., 2011).  
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1.2    Motivations 

 

There is a continuously increasing demand in the energy which is generated, transmitted and 

distributed by modern electric power systems (Cai et al., 2017). This increase in power 

causes overheating of components and rapid degradation of equipment insulation which 

results in unexpected equipment deterioration. Detecting short circuit faults and their 

magnitude becomes more complicated because of the numerous fault causes and uncertainties 

that come along with them. Short circuits may be generated within the system or outside the 

system (Mathur et al., 2015). This also makes it difficult to predict when and where they will 

occur and compute their magnitude. Short-circuit faults can be caused by lightning, 

temperature rise within the system, partial discharges within the system, a connection of two 

conductors caused by external bodies, faults on motors, faults on generators and 

ferromagnetic resonance (Das, 2012; Zhang et al.,2014). A power system is also made up of a 

lot of nonlinear components which present transient behaviour e.g. capacitors, inductors and 

transistors (Folarin et al., 2018). Due to all these factors, the conventional methods cannot 

swiftly handle these short circuit currents during abnormal operating conditions (Osowski et 

al., 2002; Sing et al., 2016). Conventional methods for detecting short circuit faults found 

from the literature include: 

i. The Direct method, Per-Unit method and Symmetric Components Technique (Das, 

2017; Sallam et al., 2011). 

ii. Computer methods i.e. Time-domain fault analysis and Quasi steady-state fault 

analysis (Kono et al., 2016; Malik et al., 2011). 

iii. Software tools e.g. Matlab, Easy-Power and ETAP (Electrical Transient Analysis 

Program) (Soroudi et al., 2016). 

 

The detection of short circuit faults in the real world should consider noise and dynamic 

environments since they adversely affect the fault evaluation processes of these methods 

(Ghaderi et al., 2015). During the fault evaluation processes of the conventional methods, 

they try to address the problems of adaptivity to uncertain environments, parameter 

sensitivity, data intensity, autonomy and multi-objective optimisation (Costa et al., 2015; 

Debowski et al., 2009). However, they fail to do so sufficiently. The conventional methods 

struggle with trade-off analysis for higher dimension problems (Kono et al., 2016). For every 

problem, they need all the characteristics of the function i.e. the task processing periods, data 

dependencies and synchronisation requirements before they can begin execution (Campoccia 
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et al., 2007). This means that they cannot provide a valuable mean artificial creativity 

approach. This inhibits their function maximisation (Imoru et al., 2017).  

 

However, there is a great need for precisely calculated values of short circuit current because 

one needs to know the specifications of elements to use when designing and repairing power 

systems. Whenever there is a short circuit fault, one needs to have the root mean square 

(RMS) value of maximum short circuit current to determine the breaking capacity and 

temperature stress of the system equipment (Das, 2012). One also needs to have the first peak 

values of fault current to evaluate the design capacity of switching devices (Gao et al., 2015).  

 

When there is little reliability of methods and all of them giving approximate values, one will 

have to look at new techniques to deal with the problem and obtain more precise global 

optimum solutions (Ashish, 2015). Evolutionary algorithms such as the genetic algorithm and 

the particle swarm optimisation are meta-heuristic tools that help to solve complex 

optimisation problems. They use the stochastic approach (the process of maximising or 

minimising the value of a mathematical or statistical function when one or more variables are 

subject to randomness) (Mishra et al., 2015). For every problem, they commence with a set of 

randomly populated solutions that under-go initialisation, selection, mutation and 

recombination (Zhu, 2015). They use the Pareto sense in prioritising the solutions (Yao et al., 

2015). This whole procedure makes the least fit solutions to be eliminated by an abstract test 

of fitness and the strong ones reproduce to give a better solution set than the previous ones. 

Short circuit faults occur unexpectedly and it is very difficult to precisely predict their point 

of occurrence and magnitude (Sallam et al., 2011). Therefore one needs to use a method that 

has a wide range of operating conditions and henceforth, evolutionary computational methods 

could be applicable. 

 

1.3   Research problems 

 
 

The detection of asymmetrical three-phase short circuit faults in the real world is a complex 

problem. In the real world, there are a lot of uncertainties and adverse conditions (Malik et 

al., 2011). These negative factors interfere with any fault evaluation procedure (Das, 2017; 

Sheng et al., 2016). There is a strong need for deep research to seek and address the following 

problems in electrical power distribution sub-systems: 
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i. Conventional methods of detecting asymmetrical three-phase short circuit faults are not 

very precise and reliable. In their fault evaluation procedures, they depend on numerous 

estimations from Standard IEC 60909 and IEC 61313. These estimates (R/X values, R/Z 

values and voltage factors) do not sufficiently cater for all the nominal voltages (Das, 

2016). This gives rise to investigating other alternative methodologies that can 

sufficiently cater for all the nominal voltages (Sallam et al., 2011).  

ii. The precision of the conventional methods decreases with an increase in the network size. 

Their precision also decreases with an increase in the number of machines contributing to 

the fault current (Das, 2016). This gives rise to look into other optimisation techniques 

that can attain more precise results (Ashvini et al., 2015).  

iii. The conventional methods of detecting asymmetrical three-phase short circuit faults from 

the point of inception are not very robust in dealing with noise and uncertainties e.g. 

simultaneously occurring faults or consecutive faults within a short time, they often need 

human intervention i.e. they lack autonomy (Tleis, 2008). This gives rise to using more 

advanced, precise and reliable fault evaluation techniques (Tan, 2015). 

 

1.4   Research objectives 

 
 

The main objective of this dissertation was to develop a methodology that can sufficiently 

detect asymmetrical three-phase short circuit faults for every nominal voltage of distribution 

sub-systems within 550kV. During fault detection, the methodology would use 

conscientiously modelled GA and PSO to stochastically determine R/Z  and R/X  values. 

These values play a key role in determining the upstream and fault point impedances. Precise 

R/Z  and R/X  values lead to precise fault current magnitudes. These values would be 

determined on a case-to-case basis for every optimisation case with regards to the parameters 

and unique specifications of the power system. The methodology would test the effects of 

including non-spinning loads during fault detection at various network levels. It would also 

test the effects of including upstream reactances when detecting faults at points that are far 

away from the sources. The methodology would check if the inclusion of the above-

mentioned factors leads to obtaining more precise fault magnitudes. 

1.4.1   PSO modelling objectives 
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PSO would be modelled and implemented with the following objectives: 

 To check the effects of creating a lot of particle positions and giving the particles a wide 

exploration range with regards to ensuring that all the search space is fully exploited. 

 To check the effects of influencing particle distribution within the swarm with regards to 

enhancing its manipulation. 

 To check the effects of continuously influencing the regulation of particle velocity and 

direction with regards to eliminating partial optimism and premature stagnation. 

 The check the effects of adding a minimisation function that commences when the 

algorithm terminates (Hybrid functions e.g. Pattern search and Fmincon). 

1.4.2   GA modelling objectives 

 

GA would be modelled and implemented with the following objectives: 

 To check the effects of arranging expectation over the use of probabilities with regards to 

stalling and degenerate scenarios during optimisation. 

 To check the effects of arranging scores over the use of probabilities with regards to 

survival rates of individuals. 

 To check if it is possible to continuously influence the number of individuals that can be 

created at each evolution stage to ensure search efficiency until the end of optimisation. 

 To check if it is possible to sufficiently replace genes and achieve population diversity 

throughout optimisation and maintain it. 

 To check the effects of implementing advanced gene concatenation when combining the 

properties of parents through crossover to form a single gene for the child. 

 The check the effects of adding a minimisation function that commences when the 

algorithm terminates (hybrid functions e.g. Pattern-search and Fmincon). 

 

1.5   Research significance 

 

The fault evaluation procedures given by Standard IEC 60909 and IEC 61313 do not 

sufficiently cater for all the nominal voltages (this is shown in Chapter 3.6). Moreover, the 

IEC fault evaluation procedures do not account for all the possible operating scenarios. They 

are limited to a small range. Nonetheless, there remains a need for precisely detecting fault 

magnitudes at all times. If the proposed methodology is implemented correctly, it can offer 

reliable and precise solutions for all the nominal voltages within 550kV. It can also cater for a 
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wider range of operating scenarios e.g. fault evaluation whilst considering many machines 

contributing to the fault current and simultaneously occurring faults. This helps in the 

designing, setting up and repairing of power systems sufficiently.  

 

1.6    Delimitations (Scope of study) 

 
 

i. This research only focuses on short circuit faults. 

ii. Asymmetrical three-phase faults can be classified as single phase-to-earth faults, 

phase-to-phase faults and two phases-to-earth faults. Not all the fault types could be 

tested and analysed in depth because of the limited time duration of this research. 

iii. Not all possible operating scenarios and uncertainties that come along with short 

circuit faults could be covered by this research.  

iv. Only a limited number of network schematics could be optimised because of the 

limited time duration. 

 

1.7   Outline of the dissertation 

 

This dissertation is organised as follows; 

 Chapter 1, ‘Introduction’, presents the research background, research motivations, 

research problems, research objectives, its scope and the outline of the dissertation. 

 Chapter 2, ‘Literature review’, presents a detailed review of the current fault 

evaluation methods and their weaknesses. It also gives suggestions for the 

computational problem and a detailed overview of the GA and PSO.  

 Chapter 3, ‘Research methodology’, gives the research approach and the details of the 

proposed modelling and modifications that were implemented on the GA and PSO. 

The algorithms are also tested on the Rastrigin and Rosenbrock benchmark functions. 

 Chapter 4, ‘Computational procedures’, gives the short circuit fault benchmark 

functions, optimisation problem, fault detection procedures and the tables of results. 

 Chapter 5, ‘Research findings discussions’, discusses the computed coefficients, 

computed impedances and the computed currents. It also evaluates the best and worst 

algorithms for the computational problem that was under investigation. 

 Chapter 6, ‘Conclusion’, presents the conclusions, recommendations and the list of 

publications. 
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CHAPTER 2 
 

                                             LITERATURE REVIEW 

 

2.1   Review of the short circuit fault characteristics 

 

Short circuit faults can transpire in any part of the power system but faults within the 

distribution sub-systems have the most complexity (Juszczak et al., 1992). Electrical 

distribution can either be by radial systems, ring systems or meshed systems (Das, 2017). 

Regardless of being the most complex, most electricity distribution is by the meshed system 

because of its improved reliability (Sallam et al., 2011). Distribution sub-systems have a lot 

of components that maintain a continuous flow of current and bring stability to power 

systems e.g. backup generators, isolators, circuit breakers, relays, stabilisers, meters, earthing 

gears and other auxiliary supplies (Das, 2016). Some of the equipment have non-linear 

properties and presents transient behaviour e.g. capacitors. A short circuit fault may be 

generated within the system or outside the system and this makes it very difficult to predict 

when and where the fault will occur and compute its magnitude (Sarlak et al., 2011). It is 

difficult for one to detect simultaneously and consecutively occurring faults. Asymmetrical 

three-phase short circuit faults can be phase-to-phase faults, single phase-to-earth faults or 

two phases-to-earth faults (Tleis, 2008). Whenever a fault occurs it divides the power system 

into an upstream network and a downstream network. Figure 2.1 illustrates how a fault 

divides a network system (Das, 2017).  In Figure 2.1(a), the short circuit fault is located far 

from the sources and in Figure 2.1(b); the fault is located at the generator terminals. For faults 

far away from the sources, the effects of the parameters of the sources as rotating machines 

can be ignored, but for faults located at the generator terminals, the effects of the generator 

parameters should be taken into account (Das, 2017). 

 
Figure 2.1 The characteristics of short circuit faults (Das, 2017) 
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When a short circuit fault occurs close enough to the terminals of a generator, the generator 

will produce four components of short circuit fault i.e. the aperiodic component, the sub-

transient component, the transient component and the steady-state component (Sallam et al., 

2011). Figure 2.2 is an illustration of the individual components. As seen in Figure 2.2, these 

components have different decay time constants. These decaying patterns are produced as a 

result of the non-instantaneous change in magnetic flux in machine windings (armature 

windings) (Ashish, 2015). The four components sum up to give the full short circuit spectrum 

shown in Figure 2.3. 

 
Figure 2.2 Short circuit sub-components (Sallam et al., 2011) 

 

 

 
Figure 2.3 Full short circuit spectrum (Sallam et al., 2011) 
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Figure 2.4 shows the behaviour of short circuit faults from the point of inception (Malik et 

al., 2011). It can be seen that the fault current is the sum of a sinusoidal component and an 

exponential component. The sinusoidal component is the sinusoidal steady-state current 

resulting from the sinusoidal applied voltage (Costa et al., 2015). Figure 2.4 clearly shows 

that the fault current commences as an asymmetrical sinusoidal wave and becomes 

symmetrical as the transient exponential component dies away. 

 

Figure 2.4 Short circuit faults from the moment of inception (Malik et al., 2011) 

 

According to Standard IEC 60909 (IEC 60909-0, 2016; Das, 2017), when a short circuit fault 

occurs in a large network, with more than one device contributing to the fault, it is very 

difficult to compute the fault current magnitude because obtaining a Thevenin’s equivalent 

circuit is complex (Costa et al., 2016). The process is data-intensive. Regardless of all that, 

there remains a strong need for precise fault magnitudes to calculate current flow into 

different elements of the power system during these abnormal operating conditions. The 

computed fault magnitudes are used in coordinating protection devices (Bakshi et al., 2012).  

They aid in defining the design specifications and repairs of the electric power system. The 

precise values also help to determine the temperature stress and breaking capacity of the 

system equipment and protective equipment (Ashish, 2015). 

There are four main steps used in detecting fault currents and voltages. The steps remain 

almost the same regardless of the method, software or algorithm used. The steps are (Das, 

2016; IEC 60909-0, 2001; IEC 60909-0, 2016): 

i. Compute the various bus impedance matrices for the networks’ sequences. 

ii. Extract the Thevenin equivalent impedances for the faulted bus or buses. 
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iii. Use the sequence equivalent networks to calculate fault currents for individual 

sequences on faulted buses. 

iv.  Use the obtained sequence currents as the compensating currents to calculate the 

post-fault currents and voltages 

           

 
2.2   Review of the current fault computational methods 

 

 
2.2.1   Traditional methods  

 
 

For the detection of asymmetrical three-phase short-circuit faults, symmetric components 

technique is the most commonly used method whereby any set of unbalanced phases is made 

to be represented by a set of balanced phases (Zhang et al., 2017). The system will be 

represented on a one-line diagram. After the representation, Kirchhoff’s laws, Integral 

transformations or Laplace transformations can be used to calculate the fault magnitude (IEC 

60909-0, 2016). One main weakness of this method is that a Thevenin equivalent voltage is 

used to represent all the sources before and at the fault point. A Thevenin impedance is used 

to obtain the fault current. A Thevenin equivalent circuit only accounts for the main sources 

and neglects the transient behaviour of some smaller components within the power system 

e.g. capacitors and inductors which store and discharge energy into the system (Tleis, 2008). 

This results in the obtained short circuit value being an approximate value and not the exact 

magnitude (Folarin et al., 2018). Another weakness is that in large networks, in trying to 

break down the system to compute ‘Per-Unit’ values, some important information which is 

supposed to be included is neglected i.e.  Charging currents within the lines are totally 

neglected and load currents are considered to be negligible whilst the fault current is what is 

mainly considered in the fault evaluation processes (Ghaderi et al., 2015). This also decreases 

the precision of the obtained fault magnitudes. The network breakdown in large systems to 

obtain ‘Per-Unit’ values is a process that is difficult to implement and not easily tractable 

(Efe, 2015). Obtaining impedances could seem easy but in practice, it is very difficult 

because a lot of different voltage sources i.e. main power sources, sub-stations, transformers, 

rotating machines and loads are connected into a vast network by numerous cables (Ghaderi 

et al., 2015). Another weakness is that when an asymmetrical three-phase fault occurs in a 

supposedly balanced system, the fault location is considered to be the only point of 

interconnection for the sequence networks and the other parts of the network are neglected in 
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the fault detection procedures. This also decreases the precision of the obtained fault 

magnitudes (Chavali et al., 2011). 

 

2.2.2    Computer applications 

 

Some computers are programmed to perform a time-domain fault analysis or a quasi steady-

state fault analysis (Das, 2017). These computer programs are mainly used for vast and 

complicated network systems. 

2.2.2.1    Time-domain fault analysis 

Time-domain fault analysis requires all the details of the system model and network 

components. In its detection of asymmetrical three-phase short-circuit faults, it uses current 

and voltage signals obtained during the steady states and transient states (IEC 60909-0, 

2001). It detects faults through a time and phasor domain iterative analysis. At each sampling 

time, an estimate of the load dynamics is considered. Accuracy of the technique depends on 

the fault database of the bus distribution system in use (Sanseverino et al., 2012). A limited 

number of uncertainties with relation to the fault resistance, voltage magnitude at source, 

angle unbalance at source, fault type, power system frequency, power factor and load 

magnitude can be tested. Accuracy of the obtained results greatly depends on the time of data 

acquisition (Leva et al., 2005). The major weakness of this method is its sensitivity to 

parameters. Another weakness is the need for accurate sampling intervals and data 

acquisition times. An error in obtaining these values results in obtaining an approximate fault 

value and not the precise fault magnitudes (Costa et al., 2016). 

2.2.2.2    Quasi Steady-State Fault Analysis 

Quasi steady-state fault analysis does calculations by considering linear models and 

performing fault analysis at a steady-state (Varun et al., 2016). When a fault occurs, there 

will be a rise in current and transient behaviour for a certain time (Tleis, 2008). Quasi steady-

state fault analysis detects a fault when one part of the system reacts differently to the other 

parts i.e. mainly changes in timescale (period and duration of wave cycles). Simplification of 

the time dependence of the faster-reacting parts (fault) of the system to the slower reacting 

parts (unfaulty) reduces the number of variables to be solved (Leva et al., 2005). The main 
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weakness of this method is in detecting very small faults and very large faults. This is 

because some of the faults do not present sufficient enough transient behaviour for the 

method to be able to detect (Sanseverino et al., 2012). Also, faults with a similar frequency to 

the main wave but with a difference in amplitude could be neglected by the method. In 

uncertain environments e.g. consecutive occurring faults, the method can confuse the fault 

state to the unfaulty state thereby producing imprecise results (Tleis, 2008).  

 

The main weakness of the above-mentioned computer methods is that they are sensitive to 

the initial parameters, meaning that they do not offer conceptual simplicity (Das, 2012). Also, 

these computer methods employ static heuristics whereby they begin with a single solution 

whilst searching for a single solution. This means that these computer methods do not offer 

function maximisation. Another weakness is that in optimising functions in uncertain 

environments e.g. a network that has multiple components contributing to the fault, they 

struggle to determine the global optimum solutions and often need human intervention (lack 

autonomy) (Malik et al., 2011).  

 

2.2.3    Recent software tools 

 

 

ETAP software, Easy-Power software and Matlab software are power system analysis 

software tools which are also commonly used for short circuit fault analysis (Costa et al., 

2016). These software tools have various toolboxes and libraries which assist in the 

prediction; calculation and plotting of short circuit faults.  These software tools are very 

recent and they are constantly updated to try and keep up with the market trends and 

complexity of the real-world power systems. 

2.2.3.1    ETAP software 

ETAP (Electrical Transient Analysis Program) has key features which include ANSI/IEEE 

Standards C37 and UL49, IEC Standards 60909 and 61363 and GOST Standards R-52735 

(Das, 2016). These standards are quite conservative in some cases which is positive for 

calculating symmetrical short circuit faults and less complex asymmetrical short circuit faults 

(Kim et al., 2016). For large and complicated networks, they do not give explicit details. This 

leaves the user to devise and formulate the most appropriate steps depending on the 

complexity of the situation (Das, 2017; Kim et al., 2016). 
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2.2.3.2    EasyPower software 

EasyPower software is mainly based on ANSI/IEEE standard 141. It gives the steps and 

procedures for detecting fault currents (Das, 2017). It lays out the stage by stage processes 

and sub-divides large circuits on the schematic drawer. This makes the whole process data-

intensive and difficult to implement (Han et al., 2016). 

2.2.3.3    Matlab software 

Matlab has toolboxes and libraries for power system and short circuit analysis which include 

Simulink and M-Script Files. Matlab can be used to create and analyse various network 

schematics. It can also be used to process bus-admittance and bus-impedance matrices of 

high dimensions (Dall’Anese et al., 2016). However, in simulating a network system in an 

environment with uncertainties, it does not give reasonable results e.g. if a network system 

has simultaneously occurring faults or consecutive faults within a short window, there might 

be signal attenuation within Matlab Simulink and all the values go to zero. This is not 

necessarily true for real world power systems (Tleis, 2008). 

Easy-Power and ETAP do not support parallel computing which can give precise results 

quickly. Parallel computing gives options to filter starting points based on feasibility (Li et 

al., 2015). All the three software, just like the traditional methods, can only retain one 

minimum which could not be the global minimum (Samson et al., 2016). They rely on the 

user to balance the optimisation problem. On their own, they cannot reach a balance point. 

They are not robust in dealing with noise and uncertainties and they are not adaptive and 

cannot deal with dynamic environments (Sarlak et al., 2011). They are not suitable for odd-

behaving functions i.e. non-linear, non-convex, non-differentiable and discontinuous 

functions (Li et al., 2015). They cannot offer function maximisation. They offer single-

objective optimisation but cannot offer multi-objective optimisation (Prince et al., 2014).  

 

 

2.3    Weaknesses of conventional methods and software 
 

 

A method is expected to balance, schedule and prioritise an optimisation problem. A method 

is expected to provide reasonable and satisfactory results via a computational process that is 

fast, accurate, reliable and relatively simple (Tan, 2015). The conventional methods make 
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some assumptions during their fault evaluation procedures and neglect some important 

aspects of power systems (Das, 2016; Das, 2017; Tan, 2015):  

 They consider all the sources to be balanced and to be of equal phase and magnitude. 

 A Thevenin voltage is used to represent all sources at the fault point and prior to the fault. 

 An infinite bus-bar is used to represent large size networks. 

 Reactances are considered during fault detection whilst resistances are considered to be 

negligible. 

 Fault currents are considered during fault detection whilst load currents are considered to 

be negligible. 

 Charging currents within the lines are neglected during the calculation processes. 

 Transformers are considered to be on a nominal tap position. 

 All the three phases are assumed to have the same impedance and the lines of 

transmission are also considered to be fully transposed. 

 

The assumptions listed above show that the conventional methods neglect and overlook some 

important aspects of the power system and its components. This reduces the precision of the 

obtained fault magnitude. This results in getting an approximate fault magnitude that greatly 

deviates from the exact value. Apart from the assumptions made in their fault evaluation 

processes, the various methods are not robust in dealing with uncertainties and non-linearity 

and this gives rise to the problems of convergence (Shou et al., 2015). The traditional 

methods and software tools employ static heuristics in their search for solutions. They begin 

with a single candidate solution and search iteratively for a single solution. They also do not 

offer conceptual simplicity (Nitin et al., 2015). In big network problems, they fail to perform 

autonomously and often need human intervention. They are not robust to dynamic changes. 

Even when the fitness function is defined they are still very sensitive to parameters (Sahoo et 

al., 2014). In these traditional methods and software, it is also very difficult to employ 

hybridization (Elmqvist et al., 2016; Gast et al., 2014). 

 

2.4    Suggestions for the optimisation problem 
 

 

When there is little reliability of methods and all of them just giving approximations, one will 

have to look at new optimisation techniques. The main issues that have to be addressed by an 

optimisation method include robustness to noise, non-linearity, local minima trapping, 

convergence, autonomy, conceptual simplicity, parameter sensitivity, hybridization, 
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tractability, data intensiveness, computational time, application of static or dynamic 

heuristics, single-objective or multi-objective optimisation and reliability when handling both 

large and small networks (Lim et al., 2014). Other factors which could also be considered 

might be in the method being a stochastic direct approach and/or the ability to use the Pareto 

sense in its optimisation processes (Zhang et al., 2014). Numerous existing approaches try to 

address these problems. However, they do not sufficiently do so (Smriti et al., 2014). With 

the various methods analysed in this paper, the genetic algorithm and the particle swarm 

optimisation have been suggested as optimisation techniques to be explored for this 

computational problem. 

 

2.4.1      Detailed overview of the GA 

 

The genetic algorithm commences by randomly creating an initial population. It goes on to 

create new populations by exploiting members of the present generation to create the 

subsequent populations. The procedures that are followed in creating the new populations are 

as follows (Sahoo et al., 2014; Yao et al., 2015): 

 Computation of the fitness values of the current members (population) and assigning 

‘scores’ with regards to the computed fitness levels. 

 The raw fitness scores are ‘scaled’ so that they can be converted into an operable 

range of values. 

 Members called parents are selected based on their fitness. These members are the 

only ones who can contribute their genes for making the next generations. 

 A limited amount of individuals with lower fitness are also chosen and are allowed to 

pass into the next generation. 

 The parents produce children through a process whereby some random changes are 

made to a parent in a process called ‘mutation’ or children are made by combining 

properties of parents through a process called ‘crossover’. 

 The children replace the current population thus giving rise to the subsequent 

generations. 

 The procedures continue until a ‘termination criterion’ has been met. 

However, the genetic algorithm has some weaknesses. One of its main weaknesses is 

premature convergence (Yao et al., 2015). The chief cause of this is the loss of diversity. If 
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population diversity can be achieved throughout the optimisation procedures, the search path 

will become much better (Ghamisi et al., 2015). Trapping into a suboptimal solution will also 

be avoided (Zhu, 2015). Perfect mutation and crossover help to avoid the loss of genetic 

material by ensuring and maintaining diversity (Zhang et al., 2014). A user can modify the 

genetic algorithm to suit their optimisation problem. This proves to be very effective as some 

weaknesses of the genetic algorithm can easily be supplemented by these procedures (Javaid 

et al., 2017; Sahoo et al., 2014). A flow chart of the genetic algorithm optimisation 

procedures is given in Figure 2.5. 

 
Figure 2.5 GA optimisation procedures (Zhu, 2015) 

 

 
 

2.4.2     Detailed overview of the PSO   

 

The algorithm commences by creating some initial particles whilst simultaneously giving 

them some initial velocities and positions (Carvalho et al., 2009). The objective function 

under optimisation is evaluated at every particle location. This process helps in determining 

the best locations and the best function values (Vitorino et al., 2015). The particles are then 

assigned new velocities again. This velocity is derived based on the current particle velocity, 

the best locations of an individual particle and its neighbours’ best location (Zhang et al., 

2014). The algorithm keeps on iteratively updating the particles’ velocities and locations by 

the above-mentioned steps until a termination criterion has been reached. Termination 

criterion might be the maximum time, maximum stall time, an objective limit, maximum 
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iterations or any other custom made function with regards to the variables within the function 

under optimisation (Li et al., 2014; Shou et al., 2015). A flow chart of the PSO optimisation 

procedures is given in Figure 2.6. 

 

 

Figure 2.6 PSO optimisation procedures (Zhang et al., 2014) 

 

The advantages of PSO are: the optimisation procedures and calculations are very simple; it 

is conceptually simple; it is easy to implement; it is derivative-free; and it has very few 

parameters and these parameters do not impact the solutions greatly as in other evolutionary 

algorithms (Ghamisi et al., 2015). The disadvantages of PSO are: it suffers from partial 

optimism which degrades the regulation of its velocity and direction (Vitorino et al., 2015); it 

can often converge to local minima and not the global minima (Zhu, 2015); and it can often 

experience premature convergence if the parameters are not chosen meticulously (Ababneh, 

2015). 

 

 

2.5   Literature review conclusion 

 
The detection of asymmetrical three-phase short-circuit faults is a complex problem. In the 

real world, there are uncertain environments which adversely affect the current methods of 

asymmetrical three-phase fault evaluation (Tleis, 2008).  Nonetheless, a power system must 

be able to provide reliable and continuous power flow to consumers during either normal or 

abnormal operating conditions (Das, 2017). This influences the selection of an optimisation 
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tool based on its qualities and properties. Table 2.1 presents a survey and an analysis of the 

various computational tools. The information in Table 2.1 is obtained from (Ashvini et al., 

2015; Das, 2016;  Malik et a., 2011; Rao et al., 2016; Sallam et al., 2011; Soroudi et al., 2016; 

Tleis, 2008;  Yudong et al., 2014). For Table 2.1 below, ‘poor’ indicates the inapplicability or 

non-existence of a particular characteristic; ‘good’ indicates the existence and applicability of 

a particular property but with the computational approach often obtaining mediocre results; 

and ‘excellent’ indicates that a computational approach obtains precise results for a given 

characteristic. 

 

                                          Table 2.1: Computational methods and their properties 

 

Computational approach 

Direct 

method 

Easy-

Power 
ETAP EAs 

Per-Unit 

method 

Symmetric 

components 

Quasi 

analysis 

Time 

domain 

analysis 

Adaptivity Ø + + ++ Ø Ø Ø + 

Autonomy Ø + ++ ++        Ø Ø Ø + 

Convergence + + + ++  + + + + 

Heuristics S-H S-H S-H D-H  S-H S-H S-H S-H 

Hybridization Ø Ø + ++ Ø Ø Ø Ø 

Large networks Ø + ++ ++ Ø Ø + + 

Speed + ++ ++ ++ + + + ++ 

Objectivity S-Obj S-Obj S-Obj M-Obj S-Obj S-Obj S-Obj S-Obj 

Tractability Ø + + ++ Ø Ø Ø + 

odd-function 

evaluation 
Ø Ø Ø ++ Ø Ø Ø Ø 

Conceptual 

simplicity 
Ø + + ++ Ø Ø Ø Ø 

Robust to noise  Ø + + ++ Ø Ø Ø + 

Concurrent 

computing 
Ø Ø Ø ++ Ø  Ø Ø Ø 

                                                                                    
                                                                                    Key:           D-H       –   Dynamic heuristics 
                                                                                                                                                                                                      S-Obj      –   Single objective 

                                                                                                                                                                                                      M-Obj     –   Multi-objective 

                                                                                                                                                                                                      S-H         –   Static heuristics 

                                                                                                                                                                                                      ++           –   Excellent 

                                                                                                                                                                                                       +             –   Good 

                                                                                                                                                                                                      Ø             –   Poor 
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CHAPTER 3 

 

RESEARCH METHODOLOGY 

3.1   Research approach 

 

This study presents a detailed analytical modelling technique for detecting three-phase short 

circuit faults for distribution networks of power systems with nominal voltages less than 

550kV using evolutionary algorithms (GA and PSO). For electric distribution sub-systems, 

the resistances (R) are normally much smaller than the reactances (X). The resistances and 

reactances make up the impedance (Z) (Sing et al., 2016). Standard IEC 60909 and IEC 

61313 give the R/X and R/Z values for networks below 550kV nominal voltage. The R/Z 

ratios will always be a value between 0.1 and 0.3 (Sallam et al., 2011). The R/X ratios vary 

depending on the network configuration but they are generally in the range of 0.1 to 1 (Tleis, 

2008). These values are derived based on the source voltage of a network (Sallam et al., 

2011). Here, the modified evolutionary algorithms are used to stochastically determine the 

R/X and R/Z values during fault evaluation. The proposed methodology does not depend on 

the predefined estimated values from Standard IEC 60909 (alongside IEC 61363, IEC 60034 

and IEC 60076) but computes these values on a case-to-case basis for every optimisation 

case. This method brings about the inclusion of non-spinning loads in fault detection at 

various network levels and also the inclusion of upstream reactances when detecting faults at 

points that are far away from the sources. This leads to obtaining much more precise fault 

magnitudes (Costa et al., 2015). Conventional short-circuit detection methods with the guide 

of Standard IEC 60909, IEC 61363, IEC 60034 and IEC 60076 are used to separately obtain 

fault values for use in comparison with the results obtained by the EAs. Three main tools 

were used to detect fault values for evaluations and analysis i.e.  

1) Conventional methods i.e. Symmetric components technique and the Direct method. 

2) The Genetic Algorithm (GA) 

3) The Particle Swarm Optimisation (PSO) 

 

The tools were implemented using Matlab R2017a software installed on an Acer Aspire with 

Intel(R) Celeron(R) processor at 1.80GHz and 4.00GB Ram with Windows 10 Pro operating 

system.  Matlab can be utilized to perform fault analysis in an effective, well-organised and 

fast way (Costa et al., 2015). The goal of having several tools was to have a comparative 
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results analysis. The Matlab command window would initially assists in creating some fitness 

functions for evaluations. Matlab M-Script Files would also assist in the implementation of 

the conventional methods and the two evolutionary algorithms. Matlab and evolutionary 

algorithms can handle large systems which are not easily tractable using hand calculations. 

Codes on the command window can easily be edited therefore Matlab would be used to 

create and edit most of the functions.  

 

3.2      The proposed GA modifications  
 

The GA weaknesses mentioned in Chapter 2.4 led to the creation of modified custom 

mutation, selection, creation, crossover and fitness scaling functions. The details of the 

proposed modelling that was implemented in the custom functions are given below. Their 

accompanying motivations are also included.  

 

3.2.1     Creation function  

 

The genetic algorithm has two in-built creation options which are creation ‘uniform’ and 

creation ‘linear-feasible’. These in-built functions do not give satisfactory and explicit 

options with regards to altering and making amendments to some parameters (Ghamisi et al., 

2015). This proves to be a big limitation since they do not sufficiently address important 

factors. A custom creation function was developed to address two main defects that are not 

properly accounted for by the in-built functions i.e. 

 To continuously influence the number of individuals that can be created at each 

evolution stage which ensures search efficiency until termination of the optimisation 

process. 

 To create a sufficient initial population for linear-constrained cases and bound-

constrained cases. 

Since the genetic algorithm works as a multipath search algorithm, the above-mentioned 

changes would ensure search efficiency until termination of the optimisation processes (Parhi 

et al., 2019). This would greatly decrease the chances of local minima trapping (Zhu, 2015). 

This would also help the algorithm to effectively explore all the search spaces where the 

probability of finding optimum solutions is highest (Javaid et al., 2017). 
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For the first problem, subsequent individuals in the proposed creation function were created 

with regards to the total population and initial population provided. Two variables were 

created and added to help in making the adjustments when searching for optimum solutions. 

The proposed adjustments were implemented as follows:  

 

IndividualsToBeCreated =  ß ∗  (totalPopulation –  Ψ)                                      (3-1) 

                                                ß   ∈    [0    ;     infinity]        

                                                Ψ   ∈    [0    ;    InitialPopulationProvided]                                  

                                               

For the second problem, adjustments to the range of values used in creating the initial 

populations when considering bounds and constraints would give the desired outcomes when 

creating the population arrays. The proposed adjustments were implemented as follows: 

 

r =  ф ∗  (options. PopInitRange)                                                                         (3-2) 

        ф   ∈   [0  ;   infinity]          

L = r(1, : )                                                                                                                 (3-3) 

sp = r(2, : ) − L                                                                                                        (3-4) 

           

Population(initialPopulationProvided + 1: end, : ) =  repelem(L, individualsToBeCreated, 1)  +

repelem (sp, individualsToBeCreated, 1) ∗   rand (individualsToBeCreated, GenomeLength)  

                                                                                                                                              (3-5)  

where ‘sp’ is span, ‘L’ is the lowerbound and ‘r’ is the range. 

 

The magnitude of ф directly affected the selection of ß and Ψ because the subscripted 

assignment dimensions of the IndividualsToBeCreated were not supposed to mismatch the 

Population arrays. Although ф, ß and Ψ were in the range:  [0; infinity], small integer values 

were tested due to the large population sizes that were being used in the experiments. By trial 

and error, the optimum values were:  ф = 4, ß = 1 and Ψ = 0. 

 

3.2.2        Fitness scaling function 

 

In the proposed fitness scaling function, the best candidates would be given the highest 

chances of survivals and influencing reproduction. We proposed the use of a variable (μ). The 

variable was created to control the relationship between scores, expectation and the number 
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of parents. μ would determine the amount of expectation with regards to the population size. 

By trial and error, an optimum value between 0 and 1 could be determined. This value would 

select the optimum number of scores for the parents at any particular stage during the 

evolution cycles. For the proposed scaling function, when (μ <  1), then 

                        

μ = nearest(numel(scores)  ∗  μ ∗ rand)                                                               (3-6) 

 

Another unique characteristic of the proposed custom fitness scaling function was the 

arrangement of scores in descending order so that the top scores would always be given 

priority in influencing expectation. This eliminated the use of probabilities that are commonly 

used by the in-built functions (Parhi et al., 2019). The scores were sorted as follows: 

                                     

[~, i]  =  sort (scores, ′descend′)                                                                           (3-7) 

 

The biggest strength of the created custom fitness scaling function was that regardless of 

when raw scores were not in a good range, the best scores would still have precedence. 

Another advantage was that there would be no stalling during optimisation when there was a 

degenerate scenario i.e. when some of the scores had equal magnitudes. Stalling is a big 

problem for fitness scaling functions that use probabilities when assigning scores and 

arranging expectations (Ghamisi et al., 2015). Another advantage of the created function was 

that there were never any negative expectations because of   μ ∈  [0;  1]. 

This made the proposed scaling function have much better qualities than the traditional in-

built scaling functions e.g. shift-linear fitness scaling has problems with the survival rates of 

individuals, proportional and rank fitness scaling have problems when raw scores are not in a 

good range (Zhang et al., 2015). Top fitness scaling has problems in choosing the best 

quantity of scores for parents whilst it also does not have optimum default values for higher 

dimension instances (Javaid et al., 2017; Mishra et al., 2015). 

 

3.2.3        Selection function 

 

The proposed selection function would sort expectation in descending order by:           

  

expectation =  sort(expectation(: ,1) , ′descend′)′                                              (3-8) 
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This made it easier for parents to be selected with regards to their expectations. The best 

parents would be given top priority and they would be selected for crossover and mutation. 

This also excluded the need for selection probabilities that exist in the traditional selection 

functions e.g. selection roulette, selection remainder and selection stochastic uniform (Zhang 

et al., 2014). After sorting expectation, the parents were integers randomly chosen using the 

number of parents and the new expectation and they were limited to the interval: 

[1; populationSize]. 

 

By trial and error, this proposed custom selection function proved useful and better for the 

actual evolution of higher-performing individuals.  

 

3.2.4     Mutation function 

 

In the proposed mutation function, the genes that were mutated were equally spread 

throughout the genes’ range. The probability of a genome being mutated was controlled with 

the aid of a variable (η) within the range:  [0; 1]. By trial and error, values of η in the range:  

[0.05: 0.20] proved to give optimum results after setting all the other optional parameters.  

 

Secondly, a gene had to be replaced by a value randomly chosen from a guided range. The 

bigger the range implied more diversity since the probability of replacing a gene with a value 

(similar structure) that had already replaced another gene would be small (Zhang et al., 

2015). Variable ‘α’ was created and used for implementing that. η in conjunction with α was 

used as follows: 

 

mutationPoints =  nonzeros(rand(1, length(thisPopulation(parents(i), ∶)))  <  η)      (3-9)       

range =  α ∗  state. Generation ∗ ( options. PopInitRange(: , mutationPoints) )              (3-10) 

                α   ∈   [0  ;   infinity]                 

  

The optimum value of α was 8, with bigger values increasing the optimisation time without 

showing any significant improvement in the results. Very large values of α were not tried 

because of the large population size that was being used for the GA. Based on (3-10), another 

variable ‘γ’ was created and it was used to control the mutation process in the creation of 

children by the following procedures: 
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A = state. Generation ∗  range(1, : )                                                                              (3-11) 

B =  state. Generation ∗  range(2, : )                                                                              (3-12) 

 

spread =  γ ∗ state. Generation ∗  (B −  A)                                                                   (3-13) 

                   γ   ∈   [0  ;   infinity]                   

  

The optimum value of γ was 4 with bigger values of γ not suitable since the optimisation 

procedures had specific bounds and domains as constraints. Equation (3-13) would go on to 

be used as follows: 

child(MutPts) =  spread .∗ [ 
abs(randn(1,numel(MutPts)))

length(thisPopulation)
 ]                                             (3-14) 

MutChildren (i, : )  =  child  ∗  GenomeLength                                                           (3-15) 

         

Where ‘MutPts’ were the mutation points and ‘MutChildren’ were the mutated children 

 

3.2.5    Crossover function 

 

For this research, a five-point crossover was developed and used. The crossover function 

would start by creating a pointer which locates the two best parents. This was in coherence 

with the individuals with the best scores and best expectation in the selection and fitness 

scaling functions. The crossover function would then create the crossover points based on the 

length of either parent1 or parent2. For example, if Parent1 and Parent2 were the parents: 

 

Parent1   =    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]                                                              (3.16) 

Parent2   =    [A, B, C, D, E, F, G, H, I, J, K, L]                                                                     (3.17) 

 

In the crossover function, crossover would take place at intervals of: 

   Cross_Point   =    0.17 ∗  length(Parent1)  +   Cross_Point                                     (3.18) 

 

Therefore, the crossover points on Parent1 would be 2, 4, 6, 8 and 10. The crossover function 

would concatenate the genes from the parents and return the following child: 

 

Child_fivePoint   =    [1 2 C D 5 6 G H 9 10 K L]                                                           (3.19) 
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3.2.6     Parameter settings of the GA 

 

In this paper, the traditional genetic algorithm uses the reference GA; the genetic algorithm 

that has the proposed modifications to supplement some defects uses the reference MGA. For 

the optimisation problem within this research, hybrid functions that could be added since the 

optimisation procedures had bounds (as constraints) were pattern search and fmincon. These 

minimisation functions would run after the MGA terminates and retain a more accurate 

solution. MGA with the pattern search minimisation algorithm uses the reference MGAP. 

MGA with the fmincon minimisation algorithm uses the reference MGAF. Therefore, the 

four different genetic algorithms that were tested on the fitness functions evaluated within 

this research were GA, MGA, MGAF and MGAP. Table 3.1 gives the genetic algorithm 

parameters. Some parameters in Table 3.1 would be adjusted in various instances to suit the 

proposed modifications and hybrid functions. 

 
 

Table 3.1: Parameters of the Genetic algorithms 

 

Parameter Setting 

Creation function Custom (modified) 

Crossover function  Custom (modified) 

Population size & Type 1000  ;   Double Vector  

Initial population range [-10; 10] 

Pareto fraction 0.4  

Selection function Custom (modified) 

Penalty factor 100 

Initial penalty 10 

Migration fraction and interval 0.2 ;   20 

Fitness scaling function Custom (modified) 

Migration direction Both 

Mutation function Custom (modified) 

Stall test Geometric weighted 

Stall time limit & Time limit 60   ;   60 

Hybrid functions Fmincon and Pattern-search 

Non-linear constraint solver Augmented Lagrangian 
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3.3     The proposed PSO modifications  

 

The weaknesses mentioned in Chapter 2.4 led to the creation of a modified custom creation 

function. The details of the proposed modifications that were implemented and their 

motivations are given below.  

 

The particle swarm algorithm has one in-built creation function called ‘pswcreationuniform’ 

which does not satisfactorily address the weaknesses of the algorithm (Cvetkovski et al., 

2014). The proposed creation function was created to address three main defects that are not 

properly accounted for by ‘pswcreationuniform’. The three changes below would greatly 

diminish the weaknesses of the particle swarm optimisation i.e. 

 Creating the maximum number of initial positions. This would help the particles to 

avoid premature stagnation (Zhu, 2015). It would also give the particles a wide 

exploration range (Vitorino et al., 2015). A large number of initial positions would 

ensure that all the search space is exploited effectively (Zhang et al.,, 2014). 

 To effectively influence how the particles were distributed within the swarm. This 

would greatly enhance its manipulation (Li et al., 2014). 

 To create the remaining particles by randomly sampling a larger search space. This 

would ensure continuous diversity (Shou et al., 2015).  

For the first problem, the number of positions during each cycle was being created with 

regards to the number of particles present and the initial/current set positions. Two variables 

were used for making the adjustments. The proposed adjustments were implemented as 

follows: 

               numPositionsToCreate =  ß ∗  (numParticles –  Ψ)                           (3-20) 

                                                             ß   ∈    [0    ;     10]        

                                                             Ψ   ∈    [0    ;     numInitialPositions]                                  

                                               

For the second and third problems, adjustments were made to the span (sp) that was used in 

creating the remaining particles. The proposed adjustments were implemented as follows: 

 

sp =  ф ∗ ub  −   δ ∗ lb                                                                                          (3-21) 

          ф, δ  ∈    [0   ;    10] 
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The created span would go on to be used as follows: 

 

swarm(numInitPositions + 1: end, : ) = repelem(lb, numPositionsToCreate, 1) +

repelem(sp, numPositionsToCreate, 1) ∗ abs(randn(numPositionsToCreate, nvars))   

                                                                                                                                  (3-22) 

 

The magnitudes of ф and δ directly affected the selection of β and γ because the subscripted 

assignment dimensions were not supposed to mismatch i.e. the number of particles and the 

arrays of positions. By trial and error, the optimum values used in these experiments were: 

β = 1, γ = 0 and δ = ф = 2. 

 

Instead of using: ф, δ, ß   ∈    [0   ;    infinity] , the upper limit was set to 10 which was 

reasonable with regards to the large swarm sizes that were being used in the parameter box 

given in Table 3.2. A lot of parameters could be altered in the custom creation function, but 

the proposed adjustments highlighted above proved to give the best results. 

 

 

3.3.1     Parameter settings of the PSO 

 

In this paper, the traditional particle swarm algorithm uses the reference PSO and the particle 

swarm optimisation that has the proposed modifications to supplement some defects uses the 

reference MPSO. For the optimisation problem in this research, hybrid functions that could 

be added since the optimisation procedures had bounds (as constraints) were pattern search 

and fmincon. These minimisation functions would run after the MPSO terminates and retain a 

more accurate solution. MPSO with the patternsearch minimisation algorithm uses the 

reference MPSOP. MPSO with the fmincon minimisation algorithm uses the reference 

MPSOF. Therefore, the four different particle swarm algorithms that were tested on the 

fitness functions evaluated within this research were PSO, MPSO, MPSOF and MPSOP. 

 

Some parameters in Table 3.2 could be adjusted at various instances to suit the proposed 

modifications and hybrid functions. The acceleration constants were also varied adaptively 

during iterations to improve the quality of the solutions. 
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Table 3.2: Particle swarm algorithm parameters 

 

Parameter Setting 

Creation function Custom (modified) 

Swarm size 1000  

Initial swarm span 2000 

Self-Adjustment weight 1.65 

Social adjustment weight 1.55 

Min-Neighbors Fraction 0.30 

Inertia range [0.1,1.1] 

Max Stall time  60 

Max Time limit 60 

Hybrid functions Fmincon and Pattern-search 

 

 

 

3.4      Hybrid functions 

 

The main aim of hybridization is to lessen or mitigate the limitations of an algorithm with 

diversification aspects of another algorithm. In this paper, a hybrid function is a minimisation 

function that runs after the genetic algorithms or the particle swarm algorithms terminate. 

When EAs terminate, the hybrid function takes the final point of the EAs as its initial point 

and returns a more accurate result (Lim et al., 2014). Four hybrid functions that could be 

chosen were ‘fminsearch’, ‘fminunc’, ‘fmincon’ and ‘pattern-search’. For this research, only 

fmincon and pattern search could be used since they allow constrained minimisation. They 

were added to the EAs without any modifications or the inclusion of extra derivatives. 

 

 

3.5   Testing of the algorithms 

The GA, MGA, MGAF, MGAP, PSO, MPSO, MPSOF and MPSOP were first tested on two 

standard benchmark functions. This was done to confirm their robustness and accuracy. The 
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tests would also show if the proposed modelling of the algorithms and the conscientious 

parameter selection were good. The Rastrigin function and the Rosenbrock function were 

used as the benchmark test functions. The details are given below. 

 

3.5.1      The Rastrigin Function 

 

The Rastrigin function is given below (Yao et al., 2015). All the algorithms were run 5 times 

and their results are presented in Tables 3.3 and 3.4. 
 

 

𝑓(x)   =    20 + X1
2  +  X2

2    −   10(cos2πX1   +   cos2πX2)                                     (3.23) 

                  Xi  ϵ  [−5.12, 5.12] 
 

 

Table 3.3: Particle swarm results on the Rastrigin function 

 

 

 
First Run Second Run Third Run Fourth Run Fifth Run 

[ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] 

PSO [ 0.0027 ; -0.0052] [ 0 ;  0] [0.068 ; -0.14] [ 0 ;  -0.995] [ 0 ;  0] 

MPSO [ 0 ;  0] [0.364 ; -0.221] [ 0 ; 0] [ 0 ;  0] [ 0 ;  0] 

MPSOF [ -2.985 ;  0] [ 0 ;  0] [ 0 ;  0] [1.99 ;  -0.995] [ 0 ;  0] 

MPSOP [ 0 ;  0] [ 0 ;  0] [ 0 ;  0] [ 0 ;  0] [ 0.995 ;  0] 

 

 

 

Table 3.4: Genetic algorithm results on the Rastrigin function 

 

  

 
First Run Second Run Third Run Fourth Run Fifth Run 

[ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] 

GA [ 0 ; 0] [ 0 ; 1.99] [-2.43 ; 0.006] [ 0 ;  0] [0 ;  -0.743] 

MGA [ 0.645 ; 0.0015] [0.442 ; -0.351] [ 0 ; 0] [ 0 ;  0] [ 0 ;  0] 

MGAF [ 0 ;  0] [ 0.619 ;  -1.1] [ 0 ;  0] [1.99 ;  -0.995] [0 ;  0] 

MGAP [ 0 ;  0] [ 0 ; -0.995] [ 0 ;  0] [ 0 ;  0] [ 0 ;  0] 
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3.5.2     The Rosenbrock Function 

 

 

The Rosenbrock function is given below (Zhang et al., 2014). All the algorithms were run 5 

times and their results are presented in Tables 3.5 and 3.6. 

 

  𝑓(x)   =    100 ∗ (  X2   −  X1
2  )   +  (1 −  X1)2                                                       (3.24) 

                       Xi  ϵ  [−10, 10] 

 

 

Table 3.5: Particle swarm results on the Rosenbrock function 

 

 

 
First Run Second Run Third Run Fourth Run Fifth Run 

[ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] 

PSO [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MPSO [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MPSOF [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MPSOP [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

 

 

Table 3.6: Genetic algorithm results on the Rosenbrock function 

 

 

 
First Run Second Run Third Run Fourth Run Fifth Run 

[ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] [ X1  ;  X2 ] 

GA [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MGA [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MGAF [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 

MGAP [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] [ 1 ;  1] 
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3.5.3    Interpretation of the results 

The Rastrigin function has a global minimum of [0;  0] and the Rosenbrock function has a 

global minimum of [1; 1]. From Tables 3.3 and 3.4, it can be seen that PSO, GA and MGAF 

struggle with retaining the global minima. They sometimes converge to local minima. This 

makes them less reliable. For the Rosenbrock function which has results tabulated in Tables 

3.5 and 3.6, all the algorithms managed to converge to the global minima because the 

function is less complicated as compared to the Rastrigin function.  

One of the objectives of this research was to minimise the weaknesses of the genetic 

algorithm and the particle swarm optimisation. The proposed modelling in the created custom 

functions and the meticulous parameter selection proved to improve the algorithms 

significantly. The tests on the Rastrigin and Rosenbrock functions clearly show the 

improvement in the algorithms. 

The top 6 algorithms, from Tables 3.3 – 3.6, were selected for use in the optimisation 

procedures for this research. The selected algorithms were MPSO, MPSOF, MPSOP, MGA, 

MGAF and MGAP. In optimisation cases, an algorithm that converges poorly and settles to 

local minima is regarded as inaccurate and unreliable (Zhang et al., 2014). That particular 

algorithm must not be given much priority with regards to optimising much more 

sophisticated problems (Yao et al., 2015). Henceforth GA and PSO were discarded and not 

used for the remainder of the experiments. 

 

 

 

3.6    Implementation of the algorithms/methods 

 
 

The details for detecting short circuit faults based on Standard IEC 60909 and Standard IEC 

61363 are given below (Das, 2016; IEC 60909-0, 2001; IEC 60909-0, 2016; 2000; Sallam et 

al, 2011; Tleis, 2008):  

When  ∑ X   is the sum of reactances and  ∑ R  is the sum of resistances, short circuit 

impedance Zsc is given by: 

        ( Zsc)2 = ( ∑ R )
2

+ ( ∑ X )
2
                                                                         (3-25) 
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        Zsc = √( ∑ R )
2

+ ( ∑ X )
2
                                                                             (3-26) 

 
 

Here, we define:       Xup−stream =  upstream reactance 

                         Rup−stream =  upstream resistance 

                         Zup−stream =  upstream impedance 

 

For high voltage systems, Standard IEC 60909 and Standard IEC 61313 deduce upstream 

impedances and resistances from the following estimates (ratios): 

 

At 150 kV  →         
Rup−stream

Zup−stream
   ≈ 0.1        

 

                              Rup−stream  ≈  0.1 ∗ Zup−stream                                                   (3.27)  

 

At 20 kV   →          
Rup−stream

Zup−stream
    ≈  0.2               

 

                              Rup−stream   ≈  0.2 ∗ Zup−stream                                                  (3.28)  

 

At 6 kV      →          
Rup−stream

Zup−stream
   ≈  0.3               

 

                              Rup−stream   ≈  0.3 ∗ Zup−stream                                                  (3.29) 

 

According to (Tleis, 2008), nominal voltages that are not explicitly given in the ranges above 

can be estimated accordingly. 

 

Reactances can be obtained from (3-26) as follows: 

 

Xup−stream = √( Zup−stream)2 −  ( Rup−stream)2                                                     (3-30) 

 

The relationship between reactance and impedance can be further simplified to:  
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Xup−stream

Zup−stream
= √1 −  (

Rup−stream

Zup−stream
)  2         

                      

Xup−stream = [ √1 − (
Rup−stream

Zup−stream
)  2    ] ∗ Zup−stream                                                    (3-31) 

 

Standard IEC 60909, IEC 60034 and IEC 60076 also highlight the following two points (Das, 

2016; IEC 60909-0, 2001; IEC 60909-0, 2016): 

i. When R/X is small, in the order of 0.1 to 0.2 for low-voltage networks and 0.05 to 

0.1 for medium-voltage networks, for synchronous machines, the reactance may 

be considered to be comparable to the impedance and the following estimates can 

be applied: 

 

                              RGenerators   ≈  0.1 ∗ XGenerators                                                   (3.32) 

 

                              RMotors     ≈     0.2 ∗ XMotors                                                         (3.33)  

 

ii. In general, the transformer reactances are much greater than the resistances and 

the following estimates can be applied where XTransformer is the transformer 

reactance, RTransformer is the transformer resistance and ZTransformer  is the transformer 

impedance:  

                    

                              XTransformers    ≫≫≫   RTransformers                                                    

 

                              XTransformers   ≈  ZTransformers                                                   (3.34) 

 

                              RTransformers   ≈  0.2 ∗ XTransformers                                         (3.35) 

 

 

3.6.1    The computation process 

 

An overview of the fault detection procedures at various network levels is given in Figure 

3.1. It should be noted from Figure 3.1 that the total impedance at any fault point constitutes 

of: 
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 Up-stream resistances and reactances 

 The resistances and the reactances of all the other components at that particular fault 

point i.e. cables, breakers and bus-bars. 

 

 
 

Figure 3.1 Overview of the fault detection process 
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3.6.1.1     Conventional methods 

 

The first fault detection methodology was the use of conventional methods i.e. the Symmetric 

components technique and the Direct-Method. The conventional methods detected fault 

magnitudes entirely based on Standard IEC 60909 and IEC 61313 (alongside IEC 60034 and 

IEC 60076). The ratios of resistance to impedance that were substituted into (3-31) were 

obtained from the approximations given in (3-27) to (3-29) by Standard IEC 60909. There 

was a need for proper application of correct voltage factors and impedance correction factors 

since the proper implementation of these factors increases simplicity and technical accuracy 

during the fault evaluation processes of the conventional methods (Ashvini et al., 2015). 

 

3.6.1.2     Evolutionary algorithms (GA and PSO) 

 

The second fault detection methodology was the use of EAs i.e. the modified genetic 

algorithms and the modified particle swarm optimisation. From the IEC coefficients given in 

(3-27) and (3-28), there are some nominal voltages that are not properly accounted for, e.g. if 

a power system is of 85kV nominal voltage, it is difficult for a designer to choose either 

equation (3-27) or (3-28). Also, for nominal voltages that are over 200kV, there are no 

precise IEC values that a user can depend on. This greatly affects the precision of the 

computed fault impedances and currents for these nominal voltages. This influenced the 

development of the proposed fault detection approach that was used by the EAs. 

 

The evolutionary algorithms (EAs) detected fault values by recalculating impedances at each 

fault location taking into account the fault point impedances and the up-stream reactances. 

They also considered non-spinning loads and the effects of sources for fault points far away 

from the sources. They detected fault values based on (3.26). The coefficient values that can 

be seen in (3.27) to (3.35) were determined stochastically with regards to the parameters and 

unique specifications of the optimised network. The EAs obtained their coefficients 

independently and did not use the IEC estimate values. Their stochastically determined 

coefficients were further used to obtain the fault point impedances and currents. Comparisons 

between CMs and EAs results would help in determining if EAs and the proposed 

methodology could be further used to cater for voltage regions that are not sufficiently 

accounted for by Standard IEC and the conventional methods. To supplement Figure 3.1, 

Figure 4.11 in Chapter 4 gives more explicit details of the EAs fault evaluation procedures. 
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CHAPTER 4 

 

                                      COMPUTATIONAL PROCEDURES 
 

4.1   Background equations, benchmarks and their derivatives 
 

The functions that are analysed in this section are given by (Das, 2016; Das, 2017; IEC 

60909-0, 2001; IEC 60909-0, 2016; 2000; Malik et al., 2011; Sallam et al, 2011; Tleis, 2008). 

These equations supplement Standard IEC 60909 and IEC 61313 equations that are given in 

Section 3.5 i.e. equations (3.26) to (3.35). From these well-known benchmark functions, new 

functions for optimisation within this research could be derived. 

 

The periodic component is the AC component, non-periodic component is the decaying DC 

component and first cycle values are the RMS of max Ifault   and the initial peak magnitude of 

the transient period. The system impedance seen at the fault point characterises the amplitude 

and time of decay of fault current. The sub-components of short circuit current are given by: 

                            

Steady-state current component (Isteady-state) is given by: 

Isteady−state(t) =  
Vmax

X
cos(wt +  α)                                                                              (4.1) 

Sub-transient current component (Isub-transient)   is given by: 

Isub−transient(t) = Vmax[
1

X"
−  

1

X′] ∗ e−t/T" cos(wt +  α)                                                (4.2) 

Transient current component (Itransient) is given by: 

Itransient(t) = Vmax[
1

X′
− 

1

X
] ∗ e−t/T′ cos(wt +  α)]                                                      (4.3) 

Aperiodic current component (Iaperiodic) is given by: 

Iaperiodic(t) =
Vmax

X"
e−t/Tcos( α)                                                                                   (4.4) 

 

When α = 0 or when wt =  π(2k +  1), whereby k is an integer, peak fault current occurs: 

Ipeak =  [Vmax[
1

X
+ (

1

X′ −  
1

X
) ∗ e

−
t

T′ + (
1

X"
−  

1

X′) ∗ e−t/T" ] +
Vmax

X"
e−t/T                      (4.5)           

Ipeak = Ifault ∗ √2 ∗ (1.02 + 0.98e−
3R

X )                                                                        (4.6) 

 

X′′ is the sub-transient reactance, X′ is the transient reactance, X is the synchronous reactance, 

T′′ is the sub-transient time constant, T′ is the transient time constant, T is the aperiodic time 

constant, Vmax is the maximum phase voltage at the source terminals, Ifault is the normal fault 

current and α is the switching angle.  
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4.1.1   One line-to-earth fault 

 

Considering Figure 4.1 where a fault is assumed to have happened at node K which results in 

a single phase-to-earth fault through impedance;  

 
Figure 4.1 Asymmetrical one line-to-earth fault diagram 

 

Before the occurrence of a fault, the system is unloaded and no current flows in lines b and c 

Ifb = Ifc = 0                                                                                                                   (4.7) 

At the fault point, phase voltage is given by: 

Vka = Ifa ∗ Zf                                                                                                                  (4.8) 

Based on (4.7) and (4.8), the matrix equation for a line to earth fault will be (Das, 2016): 

Ifa012 =
1

3
∗ [

   Ifa

   0    
  0  

] ∗ [
1    1       1
1    a     a2

1    a2    a
]                                                                                (4.9) 

A Thevenin equivalent diagram of a single line-to-earth fault is given in Figure 4.2.  

 
Figure 4.2 A Thevenin equivalent circuit of the line-to-earth fault (Tleis, 2008) 
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It can be derived from Figure 4.2 that the currents for the three sequences during a one line-

to-earth fault are in series.  

From (4.9) the following equation can be obtained (Das, 2016): 

 Ifa2 =    Ifa1 =    Ifa0 =  
   Ifa

3
                                                                                     (4.10) 

 

From Figure 4.2 it can be derived that: 

Vka0 = −Ifa0 ∗ Zkk0                                                                                                  (4.11) 

Vka1 = Vf − (Ifa1 ∗ Zkk1)                                                                                          (4.12) 

Vka2 = −Ifa2 ∗ Zkk2 

 

Equations (4.10) to (4.12) assist in deriving the following: 

Vka =  Vka2 +  Vka1 +  Vka0 

       =   Vf − (Ifa1 ∗ (Zkk2 + Zkk1  + Zkk0))                                                              (4.13) 

 

Vka2 = Ifa ∗ Zf = Zf(Ifa2 + Ifa1 + Ifa0) =  3 ∗ Ifa0 ∗ Zf  

 

Therefore, in accordance with Kirchhoff’s laws the one line-to-earth fault current is given by: 

Ifa0 =
Vf

Zkk1+Zkk0+ 3Zf+ Zkk2
                                                                                         (4.14) 

 

Figure 4.3 is an illustration from Matlab Simulink of the single line-to-earth fault. 

 

 
Figure 4.3 A Matlab illustration of the Line-to-Earth fault 
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4.1.2    Line-to-line fault 

 

Considering Figure 4.4 where a fault is assumed to have happened at node K which results in 

a line-to-line fault between lines b and c;  

 
Figure 4.4 Asymmetrical Line-to-line fault diagram 

 

Before the occurrence of a fault, the system is unloaded and no current flows in line a: 

Ifa = 0                                                                                                                    (4.15) 

From the shorted phases b and c, one can derive that: 

Ifb = −Ifc                                                                                                               (4.16) 

Based on (4.15) and (4.16), the matrix equation for a line-to-line fault will be (Das, 2016): 

Ifa012 = D [
0

   Ifb    
−Ifb  

] =
1

3
[

0
   Ifb(a − a2)

Ifb(a2 − a)
]                                    (4.17) 

Taking corresponding elements, it can be derived that: 

    Ifa0 = 0                                                                                                             

−Ifa1 = Ifa2                                                                                                           (4-18) 

 

It can be noted that no current from the zero-sequence (line a) gets into node K. Henceforth, 

for a line-to-line fault, the zero-sequence can be considered to be a dead network. Negative 

and positive sequences (line b and line c) are negative/opposite to each other. 

 

Using equation (4.17) and Figure 4.4 and Figure 4.5, the voltage at the fault point is given by:                                                                              

 

Vkb−Vkc = Ifb ∗ Zf                                                                                                (4.19) 
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   Vkb−Vkc = Vka1(a2 − a) + Vka2(a − a2)                                                          (4.20) 

                     =  (a2 − a) ∗ (Vka1−Vka2) 

 

From (4.17), (4.19) and (4.20) it can be noted that:   −Ifa1 =  Ifb2    and    Ifb0 = 0 =  Ifa0    

Ifb2 + Ifb1 =  Ifb =  Ifa1 ∗ a2 +  Ifb2 ∗  a = Ifa1 ∗  (a2 − a)                                (4.21) 

Vka1−Vka2 = Ifa1 ∗ Zf                                                                                           (4.22) 

 

From (4.19) to (4.22), it can be derived that the negative sequence and the positive sequence 

are in parallel as illustrated in Figure 4.5 (Tleis, 2008): 

 

 
Figure 4.5 A Thevenin equivalent circuit of the line-to-line fault (Tleis, 2008) 

 

Therefore, in accordance with Kirchhoff’s laws, the line-to-line fault current is given by: 

−Ifa2 =  Ifa1 =
Vf

Zkk1+ Zf+ Zkk2
                                                                                (4.23) 

 

 

Figure 4.6 is an illustration from Matlab Simulink of the line-to-line fault. 

 

 
Figure 4.6 A Matlab illustration of the Line-to-Line fault 
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4.1.3    Two lines-to-earth fault 

 

Considering Figure 4.7 where a fault is assumed to have happened at node K resulting in a 

two lines-to-earth fault between lines c and b through impedance.  

 
Figure 4.7 Asymmetrical two-lines-earth fault 

 

Before occurrence of the fault, the system is unloaded, therefore:  

Ifa0 =
1

3
 (Ifb +  Ifa + Ifc) =  

1

3
( Ifc + Ifb)                                                                (4.24) 

 

Phase voltages for lines b and c are: 

Vkc = Vkb = (Ic + Ib) ∗ Zf = Ifao ∗ Zf ∗ 3                                                               (4.25) 

 

Based on (4.24) and (4.25), the matrix equation for a two lines-to-earth fault will be: 

 

Vka012 = D [
Vka

  Vkb    
Vkc  

] =
1

3
[

2Vkb+ Vka

   Vkb(a + a2) +  Vka

Vkb(a2 + a) + Vka

]                                         (4.26) 

 

The following two equations can be obtained from (4.26); 

Vka2 = Vka1                                                                                                              (4.27) 

 

Vka1 + Vka2 + Vka0 + 2Vkb = Vka + 2Vkb = 3Vka0                                                (4.28) 

 

By substituting (4.27) and (4.25) into (4.28) and grouping like terms: 

Vka1 = Vka2 = Vka0 − (Ifao ∗ Zf ∗ 3)                                                                       (4.29) 

 

Because     Ifa = 0, then 
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Ifao +  Ifa1 +  Ifa2 = 0                                                                                              (4.30) 

 

A Thevenin equivalent circuit of the two lines-to-earth fault is given in Figure 4.8. 

 
Figure 4.8 A Thevenin equivalent circuit of the two lines-to-earth fault (Tleis, 2008) 

 

 

From Figure 4.8, a new equation can be derived (Das, 2016): 

Ifao =
Vf

Zkk1+ Zkk2|| (Zkk0+ 3Zf)
=  

Vf

Zkk1+
Zkk2∗(Zkk0+ 3Zf)

Zkk2+(Zkk0+ 3Zf)

                                                  (4.31) 

 

Using current divider principles, the negative and zero sequences will be (Das, 2016): 

Ifa0 = −Ifa1
Zkk2

Zkk2+(Zkk0+ 3Zf)
                                                                                     (4.32) 

Ifa2 = −Ifa1
(Zkk0+ 3Zf)

Zkk2+(Zkk0+ 3Zf)
                                                                                     (4.33) 

 

Figure 4.9 is an illustration from Matlab Simulink of the two lines-to-earth fault. 

 

 
 

 
Figure 4.9 A Matlab illustration of the two lines-to-earth fault 
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4.2   Main optimisation problem 

  
4.2.1    Optimisation model 

 

The model of the network used in this work was created based on (Folarin et al., 2018; Prince 

et al., 2014; Sing et al., 2016). The model is shown in Figure 4.10. The model resembles a 

real-world system. It has all the basic components of a power system as well as some 

protection devices i.e. the main power supply, backup sources, transformers, synchronous 

machines, isolators, circuit breakers, relays, switches, earthing gears and loads. The 

algorithms/methods highlighted in Section 3 were all tested on the model for their robustness 

on the research problems highlighted in Section 1.3. The equations in Section 4.1 assisted in 

creating the fitness functions for evaluation.  

 

 
Figure 4.10 Line diagram for optimised network 
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The network above has an 18kV source supplying a high-voltage/low-voltage substation 

using a 1km overhead cable. Two 2000 kVA generators also supply as back-up power to the 

main source. The generators supply the substation busbars in parallel to the main source. 

Parallel-connected transformers of equal magnitude 1250kVA supply the LV busbars. The 

LV busbars supply feeders which go to 10 motors rated 100kW each. When the fault occurs, 

all the motors are running. All the connection cables are identical. Symmetrical three-phase 

short circuit current and asymmetrical three-phase line-to-line fault clear of the earth must be 

computed at: 

 Point W   i.e. at the HV bus-bars. 

 Point X   i.e. 15 meters from the transformer on the LV bus-bars. 

 Point Y   i.e. on the LV sub-distribution board bus-bars. 

 Point Z   i.e. at the motor terminals. 

 The reverse currents from the motors should also be computed at all the bus-bars. 

 

4.2.1.1       Detailed parameters of the network 

 

Generators                                2000kVA, Xsubtransient =20% 

Transformers                            1250kVA, Usc =5.5%, secondary winding 250/410V 

Motors                                      100kW, X=20%, cosØ=0.85, efficiency=0.9 

Source   Up-stream network     U=18kV, Ssc=500MVA 

              Overhead cables         1 km, 100mm2     

Main LV                                   3 bars, 15 meters, 400mm2/ph 

Circuit breakers                        X = 0.15mΩ         

Sub-distribution                       100 meters, 3 single-core cables, 400mm2 

Feeder cables to motors           50 meters, 3 single-core cables,   and 50mm2  

 

Up-stream impedance is given by:                          Zup−stream =
U2

Ssc
                                                                                                       

Symmetrical three-phase fault:                                   I3−phase =
U/√3

Zsc
 

Asymmetrical line-to-line fault clear of earth:           Iline−line =
U

2∗Zsc
 

                                                                                                   =  
√3

2
∗ I3−phase 

                                                                                                   ≈ 0.866 ∗ I3−phase  
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4.2.2      Optimisation procedures 

 

The short-circuit arc that occurs amongst bus-bars or conductors can reduce prospective fault 

current by a factor of 0.2 up to 0.5 (Tleis, 2008). When nominal voltages of the system are 

below 440 volts, the fault current can be decreased by a factor of more than 0.5. When 

computing fault values for use in determining the withstand capacity of equipment, the arc 

fault phenomenon may not be considered, but when computing minimum fault current, it can 

be taken into account (Das, 2017). In the above-mentioned problem, this phenomenon was 

considered at point X by all the computational methods. A magnitude factor of around 0.5 

was considered since the transformer had a secondary winding of 250/410V. The current 

magnitudes based on the arc fault phenomenon are tabulated in Section 4.3. 

 

4.2.2.1     Conventional methods 

 

The conventional methods calculated fault current values entirely based on the steps and 

procedures from Standard IEC 60909.  Equations (3.26) to (3.35) used in this section are 

found in Chapter 3 of this paper. 

 

The network has an 18 kV source and therefore it could be derived from (3.28) that the ratio 

of resistance to impedance would be 0.2. Therefore;  

 

               Rup−stream  =  0.2 ∗ Zup−stream                                                                   (4.34) 

 

Substituting 0.2 into (3.31) gives: 

 

              Xup−stream  =  0.98 ∗ Zup−stream                                                                  (4.35) 

 

Therefore, from (4.34) and (4.35), it could be derived that: 

 

     Rup−stream   ≈  0.2 ∗ Zup−stream   0.2 ∗ Xup−stream                                               (4.36) 

 

Equations (4.34) to (4.36) assisted the conventional methods in obtaining the fault point 

reactances, resistances and impedances. For fault at point W, the source voltage would be 

divided by the obtained impedances to get the fault current. Points X, Y and Z were on the 
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low-voltage side of the transformers. The stepped-down voltages were used when calculating 

the fault currents (Das, 2017). 

 

4.2.2.2      Evolutionary algorithms (GA and PSO) 

 
The EAs had to stochastically determine the coefficient values that are given by Standard IEC 

60909. These values would be determined with regards to the parameters and unique 

specifications of the power system in Section 4.2. 

 

A     Parameter Settings 

 

To eliminate stochastic discrepancies, all the EAs were repeated 20 times at each fault point. 

The R/X and R/Z ratios for the nominal voltage that was being investigated had values that 

were between 0.1 and 1 as seen in equations (3.27) to (4.36). Therefore, all the search bounds 

of the EAs used in this experiment were varied adaptively within the range of lower-bound = 

-1 and upper-bound = 1. Given the ‘quadratic nature’ of most of the fitness functions that 

were being evaluated, these bounds would result in all the values that the EAs would obtain 

having a final ‘absolute value’ that is greater than 0 but less than or equal to 1.   

 

The other parameter details have been provided in Tables 3.1 and 3.2 in Chapter 3. 

 

  B     Optimisation procedure for EAs (GA and PSO) 

 

   (i)     At point W:  

 

There was a need to obtain the value of Xup-stream from the value of Zup-stream. The value of Zup-

stream was obtained using the given parameters of U and Ssc. After obtaining the value of Zup-

stream, the EAs would not go on to use either of the Standard IEC 60909 coefficients that were 

given in (4.35) to obtain the value of Xup-stream. Instead, the coefficient was left as an unknown 

value within the objective function and it was determined stochastically using the procedures 

in Figure 4.11. The next step was to obtain Rup-stream from the computed values of Xup-stream   

and Zup-stream. EAs used (4.34) whereby they had to stochastically obtain the coefficient value. 

There was also a need to obtain the value of RGenerators from the value of XGenerators. The value 

of XGenerators was obtained from the given parameters about the power system. To obtain the 
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value of RGenerators, the EAs did not go on to use the R/X coefficient given in (3.32) but it was 

also determined stochastically using the procedures in Figure 4.11.  

 

    (ii)         At points X, Y, Z: 

 

For faults at points X, Y and Z, the reactances and the resistances were cumulative values i.e. 

they were comprised of the fault point values and the upstream values as illustrated by Figure 

3.2 in Chapter 3. However, at point X, there was a need to obtain the value of XTransformers 

from the value of ZTransformers. The obtained value of XTransformers would be further used to get 

the value of RTransformers. The above-mentioned steps, based on Figure 4.11, were done to 

(3.34) and (3.35) i.e. the given R/X value in (3.35) was determined stochastically when 

computing the value of RTransformers.  

 

The procedures highlighted above show that EAs had to determine coefficient values at fault 

points W and X only. At point W, the EAs were determining the coefficients that were in 

(3.32), (4.34) and (4.35). At point X, they were determining the coefficient that was in (3.35). 

However, the reactances and the resistances they computed at point W were used as upstream 

values for point X. The reactances and the resistances from point X were used as upstream 

values for point Y and finally, the reactances and the resistances from point Y were used as 

the upstream values for point Z. 
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Figure 4.11 Evolutionary algorithms optimisation procedures 
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4.2.3     Fault simulation 

 

4.2.3.1     Fault at point W 

 

Zup−stream =
U2

Ssc
                                                                                               

 X = √Z2 + R2 

Xup−stream

Zup−stream
= √1 − (

Rup−stream

Zup−stream
)2                                                                             

From Eq. (3.28) at 18kV       
Xup−stream

Zup−stream
= √1 − (0.2)2   = 0.980                                       

Therefore Xup−stream  =  0.98 ∗ Zup−stream                                                            

The resistivity of copper at 200C is 0.01851Ωmm2/m (Das, 2016; Tleis, 2008).                                                  

For low-voltage lines reactance is 0.3Ω/km, for high-voltage it is 0.4Ω/km (Das, 2016; 

Tleis, 2008).                                    

 

   (i)      Solution using conventional methods 

 

𝑍up−stream =
U2

Ssc
=

180002

500 ∗ 106
= 0.648𝛺 

Xup-stream = 0.98 *Zup-stream = 0.98 ∗ 0.648 =  0.63504Ω 

Rup-stream = 0.2 *Zup-stream   = 0.2 ∗ 0.648 =  0.1296Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   =0.01851 ∗
1000

100
= 0.1851𝛺 

Xw = 0.63504 +  0.4 =  1.03504 Ω 

Rw = 0.1296 +  0.1851 =  0.3147 Ω 

Zw=√Xw
2 +  Rw

2 = √0.31472 + 1.035042 = 1.0818𝛺 

Three phase steady-state short circuit current         Iw= 
18 000

1.0818∗√3
 =  9.606kA 

Asymmetrical line-to-line fault with no earth        Iline-line = 
𝑈

2∗𝑍𝑠𝑐
 

                                                                                           =  
√3

2
∗ I3−phase  

                                                                                           = 0.866 ∗ 9.606 = 8.319kA 

 

Ipeak = Ifault  ∗  √2 ∗  (1.02 +  0.98 ∗ e−
3R
X ) 
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R
X⁄ =  

0.3147

1.03504
= 0.304  

Peak current = √2 * (1.02 +   0.98 ∗  𝑒−3∗
𝑅

𝑋)  ∗  9.606 

Symmetrical three-phase peak current      = 19.2053 kA 

Asymmetrical line-to-line peak current    = 0.866 ∗  19.2053 

                                                                  =  16.6318kA 

 

  (ii)      Solution using MGA 

 

Let C1 be the coefficient in (4-35), C2 be the coefficient in (4-36) and C3 be the 

coefficient in (3-32). These coefficients were determined stochastically by use of the 

MGA. Table 4.1 below gives the magnitudes of the coefficient values that were 

obtained in 20 runs. 

 

Table 4.1: The coefficient values obtained by MGA for point W 

 

 

 

 

 

 

 

The obtained average values were now used alongside the parameters of the power 

system to obtain the fault values. 

 

XGenerators   = 
U2

2MVA
∗ 20% =

180002

2∗106
= 32.4Ω 

Xup-stream = C1*Zup-stream = 0.995* Zup-stream =0.995 ∗ 0.648 =  0.64476Ω 

Rup-stream = C2* Zup-stream   = 0.219* Zup-stream   =0.219 ∗ 0.648 = 0.141912Ω 

RGenerators = C3* XGenerators   = 0.107* XGenerators   = 0.107 ∗ 32.4 = 3.4668Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.1851Ω 

 

Xw = 0.64476 +  0.4 =  1.04476 Ω 

 

MGA coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.73 1 0.995 

C2 0.039 0.64 0.219 

C3 0.001 0.24 0.107 
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Rw = 0.141912 +  0.1851 =  0.327012 Ω 

Zw=√Xw
2 +  Rw

2 = √0.3270122 + 1.044762 = 1.095Ω  

Three phase steady-state short circuit current   Iw = 
18 000

1.095∗√3
 =  9.491kA 

Asymmetrical line-to-line fault with no earth        Iline-line = 
𝑈

2∗𝑍𝑠𝑐
 

                                                                                            = 0.866 ∗ 9.491 = 8.219kA 

R
X⁄ =  

0.327012

1.04476
= 0.313  

Peak current = √2 * (1.02 +   0.98 ∗  𝑒−3∗
𝑅

𝑋)  ∗  9.491kA 

Symmetrical three-phase peak current      =  18.834kA 

Asymmetrical line-to-line peak current    = 0.866 ∗  18.834kA 

                                                                  =  16.311kA 

 

 

   (iii)     Solution using MGAP 

 

Let C1 be the coefficient in (4-35), C2 be the coefficient in (4-36) and C3 be the 

coefficient in (3-32). These coefficients were determined stochastically by the MGAP. 

Table 4.2 below gives the magnitudes of the coefficient values that were obtained in 

20 runs. 

Table 4.2: The coefficient values obtained by MGAP for point W 

 

 

 

 

 

 

 

Xup-stream = C1*Zup-stream = 0.968* Zup-stream =0.968 ∗ 0.648 =  0.627264Ω 

Rup-stream = C2* Zup-stream   = 0.194* Zup-stream   =0.194 ∗ 0.648 =  0.125712Ω 

RGenerators = C3* XGenerators   = 0.0965* XGenerators   = 0.0965 ∗ 32.4 =  3.1266Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.1851Ω 

Xw = 0.627264 +  0.4 =  1.027264 Ω 

 

MGAP coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.91 1 0.968 

C2 0.063 0.48 0.194 

C3 0.0081 0.19 0.0965 
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Rw = 0.125712 +  0.1851 =  0.310812 Ω 

Zw=√Xw
2 +  Rw

2 = √0.3108122 + 1.0272642  =  1.07325Ω = 1.073 Ω  

Three phase steady-state short circuit current   Iw= 
18 000

1.073∗√3
 =  9.685kA 

Asymmetrical line-to-line fault with no earth        Iline-line = 
U

2∗Zsc
 

                                                                                           = 0.866 ∗ 9.685 = 8.388kA 

R
X⁄ =  

0.310812

1.027264
= 0.3026  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.685kA 

Symmetrical three-phase peak current      =  19.385kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  19.385kA 

                                                                  =  16.788kA 

 

   (iv)     Solution using MGAF 

 

Let C1 be the coefficient in (4-35), C2 be the coefficient in (4-36) and C3 be the 

coefficient in (3-32). These coefficients were determined stochastically by the MGAF. 

Table 4.3 below gives the magnitudes of the coefficient values that were obtained in 

20 runs. 

Table 4.3: The coefficient values obtained by MGAF for point W 

 

 

 

 

 

 

 

Xup-stream = C1*Zup-stream = 0.89* Zup-stream = 0.89 ∗ 0.648 =  0.57672Ω 

Rup-stream = C2* Zup-stream   = 0.163* Zup-stream   = 0.163 ∗ 0.648 =  0.105624Ω 

RGenerators = C3* XGenerators   = 0.086* XGenerators   =  0.086 ∗ 32.4 =  2.7864Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.1851Ω 

Xw =  0.57672 +  0.4 =  0.97672 Ω 

Rw =  0.105624 +  0.1851 =  0.290724 Ω 

 

MGAF coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.65 1 0.89 

C2 0.0294 0.301 0.163 

C3 0.0014 0.247 0.086 
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Zw=√Xw
2 +  Rw

2 = √0.2907242 + 0.976722  =  1.01907Ω = 1.019 Ω 

Three phase steady-state short circuit current   Iw= 
18 000

1.019∗√3
 =  10.198kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                       =  0.866 ∗ 10.198 =  8.832kA 

R
X⁄ =  

0.290724

0.97672
= 0.2977  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  10.198kA 

Symmetrical three-phase peak current      =  20.497kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  20.497kA 

                                                                  =  17.751kA 

 

    (v)     Solution using MPSO 

 

Let the number of variables be equal to 3. Let Var1 be the coefficient in (4-35), Var2 

be the coefficient in (4-36) and Var3 be the coefficient in (3-32). These coefficients 

were determined stochastically by use of the MPSO within Matlab software. Table 4.4 

below gives the magnitudes of the coefficient values that were obtained in 20 runs. 

 

Table 4.4: The coefficient values obtained by MPSO for point W 

 

 

 

 

 

 

 

XGenerators   = 
U2

2MVA
∗ 20% =

180002

2∗106 = 32.4Ω 

Xup-stream = Var1*Zup-stream = 1* Zup-stream = 1 ∗ 0.648 =  0.648Ω 

Rup-stream = Var2* Zup-stream   = 0.194* Zup-stream   = 0.194 ∗ 0.648 =  0.125712Ω 

RGenerators = Var3* XGenerators   = 0.098* XGenerators   =  0.098 ∗ 32.4 =  3.1752Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.1851Ω 

 

MPSO coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

Var1 0.963 1 1 

Var2 0.006 0.433 0.194 

Var3 0.0004 0.139 0.098 
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Xw =  0.648 +  0.4 =  1.048 Ω 

Rw =  0.125712 +  0.1851 =  0.310812 Ω 

Zw=√Xw
2 +  Rw

2 = √0.3108122 + 1.0482  =  1.093 Ω 

 

Three phase steady-state short circuit current   Iw= 
18 000

1.093∗√3
 =  9.508kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
𝑈

2∗𝑍𝑠𝑐
 

                                                                                       = 0.866 ∗ 9.508 = 8.234kA 

R
X⁄ =  

0.310812

1.048
=  0.2966 

Peak current = √2 * (1.02 +   0.98 ∗  𝑒−3∗
𝑅

𝑋)  ∗  9.508kA 

Symmetrical three-phase peak current      =  19.128kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  19.128kA 

                                                                  =  16.565kA 

 

   (vi)      Solution using MPSOP 

 

Let the number of variables be equal to 3. Let Var1 be the coefficient in (4-35), Var2 

be the coefficient in (4-36) and Var3 be the coefficient in (3-32). These coefficients 

were determined stochastically by use of the MPSOP within Matlab software. Table 

4.5 below gives the magnitudes of the coefficient values that were obtained in 20 

runs. 

 

Table 4.5: The coefficient values obtained by MPSOP for point W 

 

 

 

 

 

 

 

Xup-stream = Var1*Zup-stream = 1* Zup-stream = 1 ∗ 0.648 =  0.648Ω 

Rup-stream = Var2* Zup-stream   = 0.198* Zup-stream   = 0.198 ∗ 0.648 =  0.128304Ω 

RGenerators = Var3* XGenerators   = 0.099* XGenerators   =  0.099 ∗ 32.4 =  3.2076Ω 

 

MPSOP coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

Var1 1 1 1 

Var2 0.0424 0.343 0.198 

Var3 0.0001 0.176 0.099 
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Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.1851Ω 

Xw = 0.648 +  0.4 =  1.048 Ω 

Rw =  0.128304 +  0.1851 =  0.313404 Ω 

Zw=√Xw
2 +  Rw

2 = √0.3134042 + 1.0482  =  1.094 Ω 

Three phase steady-state short circuit current   Iw= 
18 000

1.094∗√3
 =  9.499kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                       = 0.866 ∗ 9.499 = 8.227kA 

R
X⁄ =  

0.313404

1.048
=  0.299 

Peak current = √2 * (1.02 +   0.98 ∗  𝑒−3∗
𝑅

𝑋)  ∗  9.499kA 

Symmetrical three-phase peak current      =  19.071kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  19.071kA 

                                                                  =  16.516kA 

 

 (vii)     Solution using MPSOF 

 

Let the number of variables be equal to 3. Let Var1 be the coefficient in (4-35), Var2 

be the coefficient in (4-36) and Var3 be the coefficient in (3-32). These coefficients 

were determined stochastically by use of the MPSOF within Matlab software. Table 

4.6 below gives the magnitudes of the coefficient values that were obtained in 20 

runs.  

 

Table 4.6: The coefficient values obtained by MPSOF for point W 

 

 

 

 

 

 

 

Xup-stream = Var1*Zup-stream = 1* Zup-stream = 1 ∗ 0.648 =  0.648Ω 

Rup-stream = Var2* Zup-stream   = 0.188* Zup-stream   = 0.188 ∗ 0.648 =  0.121824Ω 

 

MPSOF coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

Var1 0.989 1 1 

Var2 0.0019 0.442 0.188 

Var3 0.0074 0.204 0.105 
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RGenerators = Var3* XGenerators   = 0.105* XGenerators   =  0.105 ∗ 32.4 =  3.402Ω 

Xcopper-cable   = 0.4Ω/km ∗ 1km =  0.4Ω 

Rcopper-cable   = 0.01851*
1000

100
= 0.1851Ω 

Xw =  0.648 +  0.4 =  1.048 Ω 

Rw =  0.121864 +  0.1851 =  0.306924 Ω 

Zw=√Xw
2 +  Rw

2 = √0.3069242 + 1.0482  =  1.092 Ω 

Three phase steady-state short circuit current   Iw= 
18 000

1.092∗√3
 =  9.517kA 

Asymmetrical line-to-line fault with no earth    Iline-line = 
U

2∗Zsc
 

                                                                                        = 0.866 ∗ 9.517 = 8.242kA 

 

R
X⁄ =  

0.306924

1.048
=  0.2929 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.517kA 

Symmetrical three-phase peak current      =  19.206kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  19.206kA 

                                                                  =  16.633kA 

 

4.2.3.2      Fault at point X 

 

Point X is at the busbars for the main LV switchboard. The reactances and resistances of the 

high-voltage side should be recalculated for the low-voltage network (Tleis, 2008). 

 

410

18 000
∗

410

18 000
 =  0.5 ∗  10−3                                                                                                                                                                           

 Transformer impedance on LV side   𝑍𝑇 =
1

2
∗

5.5

100
∗

4102

106
= 4.6 ∗  10−3Ω          

                                                             XT ≈ ZT    ≈ 4.6 ∗  10−3 Ω                      

Circuit breaker                                      XCB =  0.15 ∗ 10−3 Ω                               

Busbars                                                 XBB = 0.15 ∗ 15 = 2.25 ∗ 10−3 Ω               

                                                              RBB = 0.023 ∗  10/400 =  0.575 m Ω      

 

  (i)     Solution using conventional methods 
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RT ≈ 0.2 * XT  ≈ 0.92 ∗  10−3 Ω              

Xx = [(Xw *0.5) + 4.6 +  0.15 +  2.25] ∗  10−3                                                      

     = 7.79m Ω 

Rx = [(Rw ∗ 0.5)  +  0.92 +  0.575] ∗  10−3                                                              

     = 1.93mΩ 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.792 + 1.932  =  8.01mΩ 

Three phase steady-state short circuit current   Ix= 
410

8.01∗√3
 =  29.552kA 

Asymmetrical line-to-line fault with no earth    Iline-line = 
U

2∗Zsc
 

                                                                                       = 0.866 ∗ 29.552 = 25.592kA 

R
X⁄ =  

1.93

7.79
=  0.24775 

Peak current =  √2 ∗ (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  29.552kA 

Symmetrical three-phase peak current      =  62.1065kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  62.1065kA 

                                                                  =  53.7842 kA 

 

 
(ii)      Solution using MGA 

 

 

Let C1 be the coefficient in (3-35). The coefficient was determined stochastically by 

use of the MGA. Table 4.7 below gives the magnitudes of the coefficient values that 

were obtained in 20 runs.  

 

Table 4.7: The coefficient values obtained by MGA for point X 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(1.04476 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

 

MGA coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.186 0.192 0.192 
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     = 7.522m Ω 

Rx =  [(0.327012 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                             

     = 1.6217m Ω 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.5222 + 1.62172  =  7.695mΩ 

 

Three phase steady-state short circuit current   Ix= 
410

7.695∗√3
 =  30.762kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
  

                                                                                    =  0.866 ∗ 30.762 = 26.641kA 

R
X⁄ =  

1.6217

7.522
=  0.2156 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.762kA 

Symmetrical three-phase peak current      =  66.702kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  67.702kA 

                                                                  =  57.766 kA 

 

 
 (iii)     Solution using MGAP 

 

 

Let C1 be the coefficient in (3-35). The coefficient was determined stochastically by 

use of the MGAP. Table 4.8 below gives the magnitudes of the coefficient values that 

were obtained in 20 runs.  

 

Table 4.8: The coefficient values obtained by MGAP for point X 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(1.027264 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

     = 7.514m Ω 

Rx =  [(0.310812 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                             

 

MGAP coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.192 0.192 0.192 
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     = 1.614mΩ 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.5142 + 1.6142  =  7.685mΩ 

 

Three phase steady-state short circuit current   Ix= 
410

7.685∗√3
 =  30.802kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                      = 0.866 ∗ 30.802 =  26.675kA 

R
X⁄ =  

1.614

7.514
=  0.2148 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.802kA 

Symmetrical three-phase peak current      =  66.843kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  66.843kA 

                                                                  =  57.888 kA 

 

 
 (iv)     Solution using MGAF 

 

 

Let C1 be the coefficient in (3-35). The coefficient was determined stochastically by 

use of the MGAF. Table 4.9 below gives the magnitudes of the coefficient values that 

were obtained in 20 runs. 

  

Table 4.9: The coefficient values obtained by MGAF for point X 

 

 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(0.97672 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

     = 7.488m Ω 

Rx =  [(0.2977 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                             

 

MGAF coefficient values for 20 runs 

 

Min value Max  value 
Average value 

for 20 runs 

C1 0.192 0.192 0.192 
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     = 1.607m Ω 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.4882 + 1.6072  =  7.659mΩ 

 

Three phase steady-state short circuit current   Ix= 
410

7.659∗√3
 =  30.907kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                    = 0.866 ∗ 30.907 = 26.766kA 

R
X⁄ =  

1.607

7.488
=  0.2146 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.907kA 

Symmetrical three-phase peak current      =  67.084kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  67.084kA 

                                                                  =  58.097 kA 

 

 
(v)      Solution using MPSO 

 

 

Let Var1 be the coefficient in (3-35). Table 4.10 below gives the magnitudes of the 

coefficient values that were obtained in 20 runs. 

 

Table 4.10: The coefficient values obtained by MPSO for point X 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(1.048 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

     = 7.524m Ω 

Rx =  [(0.310812 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                              

     = 1.614m Ω 

Zx=√Xx
2 +  Rx

2                                                                                             

 

MPSO coefficient values for 20 runs 

 

Min value Max  value 
Average value for 

20 runs 

Var1 0.192 0.193 0.192 
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ZX = √7.5242 + 1.6142  =  7.696mΩ 

 

Three phase steady-state short circuit current   Ix= 
410

7.696∗√3
 =  30.758kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                     = 0.866 ∗ 30.758 = 26.637kA 

 

R
X⁄ =  

1.614

7.524
= 0.2145  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.758kA 

Symmetrical three-phase peak current      =  66.767kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  66.767kA 

                                                                  =  57.822 kA 

 

 

 
(vi)      Solution using MPSOP 

 

 

Let Var1 be the coefficient in (3-35). Table 4.11 below gives the magnitudes of the 

coefficient values that were obtained in 20 runs.  

 

Table 4.11: The coefficient values obtained by MPSOP for point X 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(1.048 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

     = 7.524m Ω 

Rx =  [(0.313404 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                              

     = 1.615m Ω 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.5242 + 1.6152  =  7.695mΩ 

 

MPSOP coefficient values for 20 runs 

 

Min value Max  value 
Average value for 

20 runs 

Var1 0.192 0.193 0.192 
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Three phase steady-state short circuit current   Ix= 
410

7.695∗√3
 =  30.762kA 

Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                    = 0.866 ∗ 30.762 = 26.641kA 

R
X⁄ =  

1.615

7.524
= 0.2146  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.762kA 

Symmetrical three-phase peak current      =  66.769kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  66.769kA 

                                                                  =  57.824 kA 

 

 

(vii)     Solution using MPSOF 

 

 

Let Var1 be the coefficient in (3-35). Table 4.12 below gives the magnitudes of the 

coefficient values that were obtained in 20 runs. 

 

Table 4.12: The coefficient values obtained by MPSOF for point X 

 

 

 

 

 

 

RT = 4.6 ∗ 0.192 =  0.8832Ω 

Xx =  [(1.048 ∗ 0.5)  +  4.6 +  0.15 +  2.25] ∗  10−3                                                       

     = 7.524m Ω 

Rx =  [(0.306924 ∗ 0.5)  +  0.8832 +  0.575] ∗  10−3                                                              

     = 1.612m Ω 

Zx=√Xx
2 +  Rx

2                                                                                             

ZX = √7.5242 + 1.6122  =  7.6947 =  7.695mΩ 

Three phase steady-state short circuit current   Ix= 
410

7.695∗√3
 =  30.762kA 

 

MPSOF coefficient values for 20 runs 

 

Min value Max  value 
Average value for 

20 runs 

Var1 0.192 0.193 0.192 
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Asymmetrical line-to-line fault with no earth   Iline-line = 
U

2∗Zsc
 

                                                                                     = 0.866 ∗ 30.762 = 26.641kA 

R
X⁄ =  

1.612

7.524
= 0.2146  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  30.762kA 

Symmetrical three-phase peak current      =  66.769kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  66.769kA 

                                                                  =  57.824 kA 

 

 

4.2.3.3      Fault at point Y 

For fault at point Y, the reactances and resistances for the 400mm2 cables and circuit-

breakers must be added to Xy and Ry. 

 

Cable                                                         Xcable = 0.15 ∗ 100 =  15 m Ω                  

                                                                  Rcable = 0.036 ∗ 100/400 =  9 m Ω            

 

 

(i)     Solution using conventional methods 

 

Xy = [Xx +  0.15 +  15] ∗  10−3                                                                                  

     = 22.94m Ω 

Ry = [Rx +  9] ∗  10−3                                                                                                

     = 10.93m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.932 + 22.942  =  25.4108mΩ 

Three phase steady-state short circuit current   Iy= 
410

25.4∗√3
 =  9.319kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.319 =  8.070kA 

R
X⁄ =  

10.93

22.94
= 0.4765  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.319kA 

Symmetrical three-phase peak current      =  16.5347kA 
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Asymmetrical line-to-line peak current    =  0.866 ∗  16.5347 =  14.3191kA 

 

(ii)       Solution using MGA 

 

The values of XX and RX used are the values that were obtained by MGA at point X. 

 

Xy = [7.522 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.672m Ω 

Ry = [1.6217 +  9] ∗  10−3                                                                                                

     = 10.6217m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.62172 + 22.6722  =  25.037mΩ 

 

Three phase steady-state short circuit current   Iy= 
410

25.037∗√3
 =  9.455kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.455 =  8.188kA 

 

R
X⁄ =  

10.6217

22.672
=  0.4685 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.455kA 

Symmetrical three-phase peak current      = 16.852 kA 

Asymmetrical line-to-line peak current    =  0.866 ∗ 16.852kA  

                                                                  =  14.595 kA 

 

(iii)      Solution using MGAP 

 

The values of XX and RX used are the values that were obtained by MGAP at point X. 

 

Xy = [7.514 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.664m Ω 

Ry = [1.614 +  9] ∗  10−3                                                                                                

     = 10.614m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   
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𝑍𝑦 = √10.6142 + 22.6642  =  25.026mΩ 

 

Three phase steady-state short circuit current   Iy= 
410

25.026∗√3
 =  9.459kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.459 =  8.191kA 

 

R
X⁄ =  

10.614

22.664
=  0.4683 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.459kA 

Symmetrical three-phase peak current      = 16.862 kA 

Asymmetrical line-to-line peak current    =  0.866 ∗ 16.862kA  

                                                                  =  14.603 kA 

 

(iv)       Solution using MGAF 

 

The values of XX and RX used are the values that were obtained by MGAF at point X. 

 

Xy = [7.488 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.638m Ω 

Ry = [1.607 +  9] ∗  10−3                                                                                                

     = 10.607m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.6072 + 22.6382  =  25mΩ 

 

Three phase steady-state short circuit current   Iy= 
410

25∗√3
 =  9.469kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.469 =  8.2kA 

 

R
X⁄ =  

10.607

22.638
=  0.4686 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.469kA 

Symmetrical three-phase peak current      = 16.876 kA 

Asymmetrical line-to-line peak current    =  0.866 ∗ 16.876kA  

                                                                  =  14.615 kA 



75 
 

 
(v)       Solution using MPSO 

 

 

The values of XX and RX used are the values that were obtained by MPSO at point X 

 

Xy = [7.524 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.674m Ω 

Ry = [1.614 +  9] ∗  10−3                                                                                                

     = 10.614m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.6142 + 22.6742  =  25.035mΩ 

Three phase steady-state short circuit current   Iy= 
410

25.035∗√3
 =  9.455kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.455 =  8.189kA 

R
X⁄ =  

10.614

22.674
= 0.4681  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.455kA 

Symmetrical three-phase peak current      =  16.856kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  16.856kA 

                                                                  =  14.598 kA 

 

 
(vi)       Solution using MPSOP 

 

 

The values of XX and RX used are the values that were obtained by MPSOP at point X 

 

Xy = [7.524 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.674m Ω 

Ry = [1.615 +  9] ∗  10−3                                                                                                

     = 10.615m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.6152 + 22.6742  =  25.036mΩ 
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Three phase steady-state short circuit current   Iy= 
410

25.036∗√3
 =  9.455kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.455 =  8.188kA 

R
X⁄ =  

10.615

22.674
= 0.4682  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.455kA 

Symmetrical three-phase peak current      =  16.855kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  16.855kA 

                                                                  =  14.597 kA 

 

 

(vii)      Solution using MPSOF 
 

 

The values of XX and RX used are the values that were obtained by MPSOF at point X 

 

Xy =  [7.524 +  0.15 +  15] ∗  10−3                                                                                  

     = 22.674m Ω 

Ry = [1.612 +  9] ∗  10−3                                                                                                

     = 10.612m Ω 

Zy=√Xy
2 + Ry

2                                                                                                   

Zy = √10.6122 + 22.6742  =  25.034mΩ 

 

Three phase steady-state short circuit current   Iy= 
410

25.034∗√3
 =  9.456kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 9.456 =  8.189kA 

 

R
X⁄ =  

10.612

22.674
= 0.4680  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  9.456kA 

Symmetrical three-phase peak current      =  16.859kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  16.859kA 

                                                                  =  14.600 kA 
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4.2.3.4       Fault at point Z 

 

For fault at Z, the reactances and resistances for the 35mm2 cables and circuit-breakers must 

be added to Xz and Rz. 

 

Cable                                                         Xcable = 0.9 ∗ 50 =  4.5 m Ω                                

                                                                  Rcable = 0.023 ∗ 50/35 =  32.86 m Ω                    

 

 

(i)      Solution using conventional methods 

 

Xz = [Xy +  0.15 +  4.5] ∗  10−3                                                                                            

     = 27.59m Ω 

Rz = [Ry +  32.86] ∗  10−3                                                                                                   

     = 43.79mΩ 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.592 + 43.792 = 51.76mΩ  

 

Three phase steady-state short circuit current   Iz= 
410

51.76∗√3
 =  4.573kA 

Asymmetrical line-to-line fault   = 0.866 ∗ 4.573 = 3.960kA 

 

R
X⁄ =  

43.79

27.59
=  1.5872 

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X) ∗ 4.573kA 

Symmetrical three-phase peak current      =  6.651kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.651kA 

                                                                  =  5.7597 kA 

 

 

(ii)       Solution using MGA 

 

The values of XY and RY that are used are the values that were obtained by MGA at 

point Y. 
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Xz = [22.672 +  0.15 +  4.5] ∗  10−3                                                                                            

     = 27.322m Ω 

Rz = [10.6217 +  32.86] ∗  10−3                                                                                                   

     = 43.4817m Ω 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.3222 + 43.48172 = 51.353mΩ  

 

Three phase steady-state short circuit current   Iz= 
410

51.353∗√3
 =  4.610kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 4.610 =  3.992kA 

 

R
X⁄ =  

43.4817

27.322
= 1.5915  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  4.610kA 

Symmetrical three-phase peak current      =  6.704kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.704kA 

                                                                  =  5.806kA 

 

 

(iii)      Solution using MGAP 

 

The values of XY and RY that are used are the values that were obtained by MGAP at 

point Y. 

 

Xz = [22.664 +  0.15 +  4.5] ∗  10−3  

     = 27.314m Ω 

Rz = [10.614 +  32.86] ∗  10−3                                                                                                   

     = 43.474m Ω 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.3142 + 43.4742 = 51.342mΩ 

 

Three phase steady-state short circuit current   Iz= 
410

51.342∗√3
 =  4.611kA 
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Asymmetrical line-to-line fault   =  0.866 ∗ 4.611 =  3.993kA 

 

R
X⁄ =  

43.474

27.314
= 1.5916  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  4.611kA 

Symmetrical three-phase peak current      =  6.705kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.705kA 

                                                                  =  5.807kA 

 

 

(iv)       Solution using MGAF 

 

The values of XY and RY that are used are the values that MGAF obtained at point Y. 

 

Xz = [22.638 +  0.15 +  4.5] ∗  10−3                                                                                           

     = 27.288m Ω 

Rz =  [10.607 +  32.86] ∗  10−3                                                                                                   

     = 43.467m Ω 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.2882 + 43.4672 = 51.323mΩ 

 

Three phase steady-state short circuit current   Iz= 
410

51.323∗√3
 =  4.612kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 4.612 =  3.994kA 

 

R
X⁄ =  

43.467

27.288
= 1.5929  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  4.612kA 

Symmetrical three-phase peak current      =  6.707kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.707kA 

                                                                  =  5.808kA 

 

(v)      Solution using MPSO 
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The values of XY and RY used are the values that MPSO obtained at point Y. 

 

Xz = [22.674 +  0.15 +  4.5] ∗  10−3                                                                                            

     = 27.324m Ω 

Rz =  [10.614 +  32.86] ∗  10−3                                                                                                   

     = 43.474m Ω 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.3242 + 43.4742 = 51.345mΩ  

 

Three phase steady-state short circuit current   Iz= 
410

51.345∗√3
 =  4.610kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 4.610 =  3.993kA 

 

R
X⁄ =  

43.474

27.324
= 1.5912  

Peak current = √2 * (1.02 +   0.98 ∗  𝑒−3∗
𝑅

𝑋)  ∗  4.610kA 

Symmetrical three-phase peak current      =  6.704kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.704kA 

                                                                  =  5.806 kA 

 

 

(vi)      Solution using MPSOP 

 

The values of XY and RY used are the values that MPSOP obtained at point Y. 

 

Xz =  [22.674 +  0.15 +  4.5] ∗  10−3                                                                                            

     = 27.324m Ω 

Rz = [10.615 +  32.86] ∗  10−3                                                                                                   

     = 43.475m Ω 

 

Zz=√Xz
2 +  Rz

2                                                                                                              

Zz = √27.3242 + 43.4752 = 51.349mΩ 

 



81 
 

Three phase steady-state short circuit current   Iz= 
410

51.349∗√3
 =  4.610kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 4.610 =  3.992kA 

 

R
X⁄ =  

43.475

27.324
= 1.5911  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  4.610kA 

Symmetrical three-phase peak current      =  6.704kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.704kA 

                                                                  =  5.806 kA 

 

(vii)      Solution using MPSOF 

 

The values of XY and RY used are the values that MPSOF obtained at point Y. 

 

Xz = [(22.674 +  0.15 +  4.5] ∗  10−3                                                                                            

     = 27.324m Ω 

Rz = [(10.612 +  32.86] ∗  10−3                                                                                                   

     = 43.472m Ω 

Zz=√Xz
2 +  Rz

2                                                                                                              

𝑍𝑧 = √27.3242 + 43.4722 = 51.346mΩ 

 

Three phase steady-state short circuit current   Iz= 
410

51.346∗√3
= 4.610kA 

Asymmetrical line-to-line fault   =  0.866 ∗ 4.610 =  3.992kA 

 

R
X⁄ =  

43.472

27.324
= 1.5910  

Peak current = √2 * (1.02 +   0.98 ∗  e−3∗
R

X)  ∗  4.610kA 

Symmetrical three-phase peak current      =  6.704kA 

Asymmetrical line-to-line peak current    =  0.866 ∗  6.704kA 

                                                                  =  5.806 kA 
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4.2.4      Reverse motor currents 

 
This section computes the reverse motor currents at the various network levels highlighted in 

figure 4.10. The motor currents were added to the fault currents computed in Section 4.2.3 

and the total fault current is tabulated in Section 4.3 

 

      
4.2.4.1     Fault at point Z 

 
 

The motors can be considered as ‘generators’ that are supplying the fault points with a 

reverse current that is superimposed on the network fault current. 

Impedance considered is 
1

10
∗ 𝑍𝑀  for the 10 parallel motors plus cable impedance 

(because all the motors have separate feeders). 

 

Cable 35mm2                                                      Xcable = 0.9 ∗ 50 =  4.5 m Ω                      

                                                                            Rcable = 0.023 ∗ 50/35 =  32.86 mΩ        

Motor at 100kW                                                 X= 
20

100
∗

4102

100000/(0.9∗0.85)
 = 257.2 mΩ 

                                                                            R =  0.2 ∗ X =  51.44 m Ω          

Xm = [(257.2/10) + 4.5] ∗  10−3                                                                                           

     = 30.22mΩ 

Rm = [(51.44/10)  +  32.86] ∗  10−3                                                                                          

     = 38mΩ 

Zm=√Xm
2 +  Rm

2                                                                                             

𝑍𝑚 = √30.222 + 382 = 48.55𝑚Ω  

Steady-state short circuit current   Iz= 
410

48.55∗√3
 =  4.876kA 

That is the current expected from any of the motors onto the low-voltage busbar. 

 

4.2.4.2       Fault at point Y 

 

Cable 35mm2                                                      Xcable =  0.9 ∗ 50 =  4.5m Ω                      

                                                                            Rcable = 0.023 ∗ 50/35 = 32.86mΩ          

Xm = [257.2 + 4.5] ∗  10−3                                                                                           

     = 261.7m Ω 
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Rm =  [51.44 +  32.86] ∗  10−3                                                                                         

     = 84.3m Ω 

Zm = √84.32 + 261.72 = 274.9mΩ  

 

Steady-state short circuit current   Im= 
410

274.9∗√3
 =  861.1A 

For 10 motors =  8.611kA 

The total short circuit current on the sub-distribution board increases.  

                                                                                   

 

4.2.4.3       Fault at point X 

 

Cable 400mm2                                                       Xcable =  0.15 ∗ 100 = 15 mΩ              

                                                                               Rcable =  0.036 ∗
100

400
= 9 mΩ      

Cable 35mm2                                                         Xcable =  0.9 ∗ 50 =  4.5 mΩ                      

                                                                               Rcable = 0.023 ∗ 50/35 = 32.86mΩ          

Xm = [257.2 + 4.5 +  15] ∗  10−3                                                                                           

     =276.7m Ω 

Rm = [51.44 +  32.86 +  9] ∗  10−3                                                                                      

     =93.3m Ω 

𝑍𝑚 = √93.32 + 276.72  =  292mΩ  

Steady-state short circuit current   Im= 
410

292∗√3
 =  810.7𝐴 

For 10 motors =  8.107kA   

The short-circuit current on the main low-voltage switchboard busbars also increases. 

 

                                                                                  

4.2.4.4      Fault at point W 
 

When the low-voltage/high-voltage transformation value is multiplied by point X 

values, the fault current induced by the load on the high-voltage side of the source can 

be obtained (Sallam et al., 2011; Tleis, 2008). 

 

 8107 ∗ 410/18000 =  184.66A 
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4.3   Tables of results 

 

All the findings from the tables of results are discussed in Chapter 5. The abbreviation ‘AF’ 

used in this section stands for Arc Fault hazard. 

 

Table 4.13: The coefficients obtained by MGA compared to the IEC coefficients 

Equation 

with 

coefficient 

MGA coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation Min 

value 

Max 

value 

Average 

for 20 runs 

(3-32) 0.0006 0.24 0.107 0.1 7% 

(3-35) 0.186 0.192 0.192 0.2 4% 

(4-35) 0.73 1 0.995 0.98 1.5% 

(4-36) 0.039 0.64 0.219 0.2 9.5% 
 

Table 4.14: The coefficients obtained by MGAP compared to the IEC coefficients 

 

Equation 

with 

coefficient 

MGAP coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation Min 

value 

Max 

value 

Average for 

20 runs 

(3-32) 0.0081 0.19 0.0965 0.1 3.5% 

(3-35) 0.192 0.192 0.192 0.2 4% 

(4-35) 0.91 1 0.968 0.98 1.22% 

(4-36) 0.063 0.48 0.194 0.2 3% 

 

Table 4.15: The coefficients obtained by MGAF compared to the IEC coefficients 

 

Equation  

with 

coefficient 

MGAF coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation 
Min value Max value 

Average 

for 20 runs 

(3-32) 0.0014 0.247 0.086 0.1 14% 

(3-35) 0.006 0.192 0.192 0.2 4% 

(4-35) 0.65 1 0.89 0.98 9.18% 

(4-36) 0.0294 0.301 0.163 0.2 18.5% 
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Table 4.16: The coefficients obtained by MPSO compared to the IEC coefficients 

 

Equation 

 with 

coefficient 

MPSO coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation 
Min value Max value 

Average for 

20 runs 

(3-32) 0.0004 0.139 0.098 0.1 2% 

(3-35) 0.186 0.193 0.192 0.2 4% 

(4-35) 0.963 1 1 0.98 2% 

(4-36) 0.006 0.433 0.194 0.2 3% 

 

 

Table 4.17: The coefficients obtained by MPSOP compared to the IEC coefficients  

 

Equation  

with  

coefficient 

MPSOP coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation 
Min value Max value 

Average for 

20 runs 

(3-32) 0.001 0.176 0.099 0.1 1% 

(3-35) 0.192 0.192 0.192 0.2 4% 

(4-35) 1 1 1 0.98 2% 

(4-36) 0.0424 0.343 0.198 0.2 1% 

 

Table 4.18: The coefficients obtained by MPSOF compared to the IEC coefficients  

 

Equation  

with  

coefficient 

MPSOF coefficient values for 20 runs 
IEC 

value 

Percentage 

deviation 
Min value Max value 

Average for 

20 runs 

(3-32) 0.0074 0.204 0.105 0.1 5% 

(3-35) 0.192 0.192 0.192 0.2 4% 

(4-35) 0.989 1 1 0.98 2% 

(4-36) 0.0019 0.442 0.188 0.2 6% 
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Table 4.19: Comparison between the MGA and CM impedances 

 

 MGA  value CM value Difference 
Percentage 

deviation Fault 

Point 
Z Z Z 

W 1.095 Ω 1.082 Ω 0.013 Ω 1.2% 

X 
 

7.695 mΩ 

 

8.010 mΩ 

 

0.315 mΩ 
3.93% 

Y 
 

25.037mΩ 

 

25.411 mΩ 

 

0.374 mΩ 
1.47% 

Z 51.353mΩ 51.757 mΩ 0.404 mΩ 0.78% 

 

Table 4.20: Comparison between the MGAP and CM impedances 

 

 MGAP  value CM value Difference 
Percentage 

deviation Fault 

Point 
Z Z Z 

W 1.073 Ω 1.082 Ω 0.009Ω 0.83% 

X 
 

7.685 mΩ 

 

8.010 mΩ 

 

0.325mΩ 
4.06% 

Y 
 

25.026mΩ 

 

25.411 mΩ 

 

0.385mΩ 
1.52% 

Z 51.342mΩ 51.757 mΩ 0.415mΩ 0.80% 

 

Table 4.21: Comparison between the MGAF and CM impedances 

 MGAF  value CM value Difference  

Percentage 

deviation 
Fault 

Point 
Z Z Z 

W 1.019 Ω 1.082 Ω 0.063 Ω 5.82% 

X 
 

7.659 mΩ 

 

8.010 mΩ 

 

0.351mΩ 
4.38% 

Y 
 

25mΩ 

 

25.411 mΩ 

 

0.411mΩ 
1.62% 

Z 51.323mΩ 51.757 mΩ 0.434mΩ 0.83% 
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Table 4.22: Comparison between the MPSO and CM impedances 

 

 MPSO  value CM value Difference 
Percentage 

deviation Fault 

Point 
Z Z Z 

W 1.093 Ω 1.082 Ω 0.011Ω 1.02% 

X 
 

7.696 mΩ 

 

8.010mΩ 

 

0.314mΩ 
3.92% 

Y 
 

25.035mΩ 

 

25.411mΩ 

 

0.376mΩ 
1.48% 

Z 51.345mΩ 51.757mΩ 0.412mΩ 0.80% 

 

Table 4.23: Comparison between the MPSOP and CM impedances 

 

 MPSOP  value CM value Difference 
Percentage 

deviation Fault 

Point 
Z Z Z 

W 1.094 Ω 1.082 Ω 0.012Ω 1.11% 

X 
 

7.695mΩ 

 

8.010 mΩ 

 

0.315mΩ 
3.93% 

Y 
 

25.036mΩ 

 

25.411 mΩ 

 

0.375mΩ 
1.48% 

Z 51.349mΩ 51.757 mΩ 0.408mΩ 0.79% 

 

Table 4.24: Comparison between the obtained MPSOF and CM impedances 

 

 MPSOF  value CM value Difference 
Percentage 

deviation Fault 

Point 
Z Z Z 

W 1.092Ω 1.082 Ω 0.010Ω 0.92% 

X 
 

7.695mΩ 

 

8.010 mΩ 

 

0.315mΩ 
3.93% 

Y 
 

25.034mΩ 

 

25.411 mΩ 

 

0.377mΩ 
1.48% 

Z 51.346mΩ 51.757 mΩ 0.411mΩ 0.79% 
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Table 4.25: Genetic algorithms fault currents without reverse motor currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

CM 
9.606 8.319 29.552 25.592 15 13 9.319 8.070 4.573 3.960 

MGA 
9.491 8.219 30.762 26.641 15 13 9.455 8.188 4.610 3.992 

MGAP 
9.685 8.388 30.802 26.675 15 13 9.459 8.191 4.611 3.993 

MGAF 
10.198 8.832 30.907 26.766 15 13 9.469 8.200 4.612 3.994 

 

 

Table 4.26: Genetic algorithms fault currents with reverse motor currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

RMC 
 

0.185 

 

8.107 

 

8.611 

 

4.876 

CM 
9.791 8.504 37.659 33.699 20 18 17.930 16.681 9.449 8.836 

MGA 
9.676 8.404 38.869 34.748 20 18 18.066 16.799 9.486 8.868 

MGAP 
9.870 8.573 38.909 34.782 20 18 18.070 16.802 9.487 8.869 

MGAF 
10.383 9.017 39.014 34.873 20 18 18.080 16.811 9.488 8.870 
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Table 4.27: Particle Swarm fault currents without reverse motor currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

CM 
9.606 8.319 29.552 25.592 15 13 9.319 8.070 4.573 3.960 

MPSO 
9.508 8.234 30.758 26.637 15 13 9.455 8.188 4.610 3.993 

MPSOP 
9.499 8.227 30.762 26.641 15 13 9.455 8.188 4.610 3.992 

MPSOF 
9.517 8.242 30.762 26.641 15 13 9.456 8.189 4.610 3.992 

 

 

Table 4.28: Particle Swarm fault currents with reverse motor currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

RMC 
 

0.185 

 

8.107 

 

8.611 

 

4.876 

CM 
9.791 8.504 37.659 33.699 20 18 17.930 16.681 9.449 8.836 

MPSO 
9.693 8.419 38.865 34.744 20 18 18.066 16.799 9.486 8.869 

MPSOP 
9.684 8.412 38.869 34.748 20 18 18.066 16.799 9.486 8.868 

MPSOF 
9.702 8.427 38.869 34.748 20 18 18.067 16.800 9.486 8.868 
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Table 4.29: Genetic algorithms peak fault currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

CM 
19.205 16.632 62.107 53.784 35.00 30.00 16.535 14.319 6.651 5.760 

MGA 
18.834 16.311 66.702 57.766 35.00 30.00 16.852 14.595 6.704 5.806 

MGAP 
19.385 16.788 66.843 57.888 35.00 30.00 16.862 14.603 6.705 5.807 

MGAF 
20.497 17.751 67.084 58.097 35.00 30.00 16.876 14.615 6.707 5.808 

 

Table 4.30: Particle Swarm algorithms peak fault currents in kA 

 

 
FAULT POINT 

W 
FAULT POINT 

X 
FAULT POINT 

Y 
FAULT POINT 

Z 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

 

I3P 

AF 

 

ILL 

AF 

 

I3P 

 

ILL 

 

I3P 

 

ILL 

CM 
19.205 16.632 62.107 53.784 35.00 30.00 16.535 14.319 6.651 5.760 

MPSO 
19.128 16.565 66.767 57.822 35.00 30.00 16.856 14.598 6.704 5.806 

MPSOP 
19.071 16.516 66.769 57.824 35.00 30.00 16.855 14.597 6.704 5.806 

MPSOF 
19.206 16.633 66.796 58.824 35.00 30.00 16.859 14.600 6.704 5.806 
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CHAPTER 5 

 

                                   RESEARCH FINDINGS DISCUSSION 

 

5.1     The computed coefficients 

 

Tables 4.13 to 4.18 give the coefficient values that were obtained by all the evolutionary 

algorithms (EAs). The values in the tables are an average of 20 runs. A column of the 

predefined Standard IEC values is also included in the tables for comparison. From the tables, 

when all the EA coefficients are rounded off to one decimal place, they will be equal to the 

IEC coefficient values. This makes all the tested evolutionary algorithms capable of handling 

the computational problem that was being investigated. An analysis is made below as to 

which ones are the most suitable. 

 

The coefficient values that were obtained by the MGAP, MPSO, MPSOP and MPSOF are 

within an approximate range. There is a less than 7% deviation amongst them. This is 

because the convergence points of these algorithms were almost the same. The MGAF and 

MGA coefficient values deviate a lot more from those obtained by the other algorithms 

indicating that they struggled with convergence to the global minima. 

 

However, the coefficients obtained by the EAs are slightly different from the values given by 

Standard IEC 60909 and IEC 61363.  The MGAP, MPSO and MPSOP coefficients deviate 

from the IEC values by not more than 4% whilst the MPSOF coefficients deviate by up to 

6%. This makes the former three to be the much better EA options for the computational 

problem. The MGA and MGAF values deviate from the IEC values by up to 9.5% and 18.5% 

respectively. This makes them not suitable enough for the computational problem of 

detecting short circuit faults. Figure 5.1 is a plot of the optimisation tools against their 

maximum percentage deviation from the predefined IEC values. The trends in Figure 5.1 

explicitly show the best and worst algorithms when computing coefficient values. 
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Figure 5.1 Optimisation tools plotted against their maximum percentage deviations 

 

When running the algorithms to obtain the coefficient values, the average time per run was 

noted and it has been plotted in Figure 5.2. The MGAP, MPSO and MPSOP converged at a 

lesser number of iterations, thus their computational time was short. Computational time is a 

key element used when evaluating an algorithm.  

 

Moreover, when doing the runs, 18 or more times, the MGAP, MPSO and MPSOP 

algorithms would obtain a value that is almost equal or equal to the IEC given values. This 

gives the three algorithms a ‘confidence interval’ greater than 90% when searching for 

coefficients. This makes the three algorithms to be more reliable since they quickly attain 

stable and precise results and go on to consistently converge at the same point. This cements 

the three as the best performing and most suitable algorithms for the computational problem 

that was being investigated. 
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Figure 5.2 Optimisation tools plotted against their average computational time 

 

5.2       The computed impedances 

 

Tables 4.19 to 4.24 give the fault point impedances that were obtained by all the EAs and 

conventional methods (CMs). The impedances that were obtained using the EAs computed 

coefficients were almost equal to the impedances that the CMs obtained using IEC 

coefficients. This is because the coefficients that were used by the EAs and CMs were within 

an approximate range. 

 

Based on Tables 4.19 to 4.24, disregarding MGAF which has the most abnormal deviations 

stated in Section 5.1, for faults at the source terminals and faults at the load terminals i.e. at 

points W and Z in Figure 4.10, there was a small difference in the values of impedance 

obtained by the CMs and EAs. The percentage deviation between EAs and CMs impedance 

values are not more than 1.2% and 0.83% at points W and Z respectively. For faults on the 

low-voltage busbars and low-voltage subdistribution boards i.e. at points X and Y, the 

differences in the obtained values are significant. The percentage deviation between EAs and 

CMs values at point X is around 4% and at point Y it is around 1.5%. CMs give much larger 

impedance values as compared to the EAs.  
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Based on the trends mentioned above, it can be noted that at the beginning of the power line 

i.e. at the main source terminals (point W at 0km in Figure 4.10) and the end of the power 

line i.e. at the motor terminals (point Z at 1km in Figure 4.10), there are slight differences in 

the impedance values. For points X and Y that are in the middle of the power system and 

distant enough from the rotating machines, CMs give much larger impedance values as 

compared to the EAs. 

 

A large impedance value means that when that impedance value is substituted into 

Kirchhoff’s voltage and current laws, a small value of short circuit current will be obtained. 

This means that for faults on busbars and subdistribution boards, CMs tend to understate the 

magnitude of short circuit current. This is dangerous, especially in the setting of protection 

devices.  Figure 5.3 is the plot of the asymmetrical three-phase line-to-line currents (without 

the arc fault hazard) that were computed using the impedances from the genetic algorithms 

and CMs. Figure 5.4 is the plot of the asymmetrical three-phase line-to-line currents (without 

the arc fault hazard) that were computed using the impedances from the particle swarm 

algorithms and CMs. Figure 5.5 is the plot of the asymmetrical three-phase line-to-line 

currents (without the arc fault hazard) that were computed by all the methods. Peak fault 

currents and the symmetrical three-phase fault currents also give a similar trend to the 

asymmetrical three-phase line-to-line currents that have been plotted below. The only 

difference will be on the current magnitudes. 

 

 

Figure 5.3 GA and CM asymmetrical fault currents against distance from the rotating machines 
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Figure 5.4 PSO and CM asymmetrical fault currents against distance from the rotating machines 

 

 

 

Figure 5.5 EAs and CM asymmetrical fault currents against distance from the rotating machines 
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Figures 5.3 to 5.5 clearly show the sections of the power system that the CMs do not properly 

account for. At the terminals of the rotating machines, all the algorithms/methods give similar 

fault magnitudes but along the power system i.e. at the bus-bars and subdistribution boards, 

there are large variations with the CMs under-stating the fault current magnitudes.  

 

Standard IEC 60909 tries to rectify this problem but fails to do so sufficiently. Standard IEC 

60909 states that for faults at points far away from the sources where there is a considerable 

effect of spinning loads e.g. a motor: 

 It is easier for conventional methods to ‘estimate conservatively’ the fault currents 

than to calculate the equivalent impedances (Das, 2016; IEC 60909-0, 2016). This is 

because the fault evaluation procedures of CMs are not very precise and reliable. 

 Currents by motors at these points can be calculated using the ‘motor + cable’ total 

impedance or the current can be estimated using the starting motor current (Istart) and 

the rated current of a generator (Ir) (IEC 60909-0,2001; Malik et al., 2011): 

 

                       
Istart

Ir
    ∗    rated motor current                                                            (5-1) 

 

The estimates used by the CMs, from Standard IEC 60909, provide conservative protection 

current values. Nonetheless, these fault values will not be the precise fault magnitudes such 

as the ones that can be obtained by EAs at any network level. 

 

 

5.3       The computed currents 

 

The optimisation results for the computed short circuit currents are given in Tables 4.25 to 

4.30. In this research, two fault conditions were computed i.e. symmetrical three-phase faults 

and asymmetrical three-phase line-to-line faults. The symmetrical three-phase fault was 

computed because it is generally considered that symmetrical three-phase faults induce the 

highest fault currents (Sallam et al., 2011). Therefore its investigation was necessary because 

it plays a key role in equipment selection (equipment with the highest electrodynamic and 

current withstand capability). The asymmetrical three-phase line-to-line fault was computed 

to check if the proposed methodology applied to asymmetrical three-phase short circuit 

faults, which was one of the main objectives of this research.   



97 
 

 

Based on Tables 4.25 to 4.30, for faults at busbars which have a possibility of arc hazards 

(fault point X from Figure 4.10), the fault magnitudes that were obtained by all the methods 

were the same when taking the arc hazard phenomenon into account (with a magnitude factor 

of around 0.5). However, for faults at the remaining parts of the network (points W, Y and Z), 

there are some slight differences between the EAs results and the CMs results. This is mainly 

because the R/X and R/Z values used by the EAs are slightly different from the values used 

by the CMs. CMs strictly used values given by Standard IEC 60909, IEC 61313, IEC 60034 

and IEC 60076 whereas EAs stochastically computed these values. The trends presented in 

Sections 5.1 and 5.2 show the various impacts and the need for precise R/X  and R/Z 

magnitudes at all instances for all the nominal voltages. Peak fault currents were obtained 

using normal fault currents. Therefore, precise values of normal fault current lead to precise 

values of peak fault current. 

 

Nonetheless, the results obtained from the proposed methodology of using EAs and the 

results from the CMs based on the Standard IEC 60909 (alongside IEC 61313, IEC 60076 

and IEC 60034) are very similar and within an approximate range. Therefore, protection units 

that can be defined using values obtained from either of the methods would be the same (Das, 

2017). This means that the proposed methodology can be successfully used for the 

computation and evaluation of three-phase short circuit faults. The successful evaluation of a 

practical network example demonstrated in Chapter 4 highlights the strength and diverse 

applicability of EAs to power system computational problems. 

 

The strengths of the EAs during the optimisation procedures included: 

 Optimisation bounds that a user can specify. 

 Adjustments to the evolutionary algorithms and flexible parameter selection which 

leads to effective optimisation processes. 

 A population that a user can define in search for solutions with regards to the 

precision level desired and complexity of the optimisation problem. 

  

Unlike CMs and the IEC procedures (in some instances), the use of EAs for detecting short 

circuit faults does not: 

 Ignore the effects of the sources when detecting faults far away from the sources. 
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 Ignore and neglect some components e.g. non-spinning loads and protection devices. 

 Use general estimates during fault evaluations but optimises power systems with 

regards to their unique specifications (does not rely on the IEC estimated coefficients 

or the use of equation (5-1)). 

 

During fault detection, taking into consideration the above-mentioned factors leads to 

obtaining more precise values of short circuit fault current. Moreover, the procedures 

presented in Chapter 4 showed that EAs can be reliably used for the evaluation of any 

nominal voltage. The procedures also show that, unlike CMs, EAs offer a much wider 

operating capacity as they are not limited by a lot of estimations and approximations from 

Standard IEC. Their fault evaluation procedures also show that the proposed methodology 

can be used to detect much more precise fault magnitudes at various network levels. This 

makes EAs and their fault evaluation procedures to be more dependable than the CMs. This is 

because a more general rule is less reliable than a more specific one.  

 

 

5.4       The failure of MGAF 

 

Of all the algorithms, MGA and MGAF gave the least precise results but MGAF was the 

worst on computational time and the percentage deviation of its coefficient values from the 

IEC values. This led to the algorithm obtaining wayward fault point impedances which led to 

imprecise fault current magnitudes. The major reason for its failure was that, when using 

fmincon as a minimisation function, in some instances, it needs the specifications of a 

Hessian or a Jacobian or any other analytical gradients for it to function well. These help it to 

converge much easily to a feasible point (Costa et al., 2016). In this research, none of the 

above was added to the function and this probably impacted its convergence. MPSOF which 

also had the fmincon minimisation function did not suffer from such defects and proved to 

function very well regardless of not having these optional extra derivatives included. 
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CHAPTER 6 
 

                         CONCLUSIONS AND RECOMMENDATIONS 

 

6.1     Conclusions  

 

Standard IEC 61313 and IEC 60909 lay out all the asymmetrical three-phase short circuit 

fault evaluation procedures. However, in their methodologies, they use a lot of estimates. The 

commonly used estimates are R/X and R/Z ratios. During fault evaluation, these ratios play a 

key role in determining the upstream and fault point impedances. Standard IEC lays out these 

ratios over a wide range that does not sufficiently cater for every nominal voltage within 

550kV. When the need arises, the user has to estimate these values accordingly. 

 

In this dissertation, GA and PSO were proposed as optimisation techniques. These algorithms 

were used to stochastically determine R/X and R/Z values during fault computation. One of 

the objectives of this research was to minimise the weaknesses of the genetic algorithm and 

the particle swarm optimisation before using them for fault evaluation. Some innovative 

coding adjustments were made to the traditional GA and PSO to reduce premature 

convergence, loss of population diversity and trapping into suboptimal solutions. Meticulous 

parameter selection was also implemented and Fmincon and Pattern-search minimisation 

functions were added to improve the algorithms. This resulted in the development of 6 

algorithms i.e. MGA, MGAF, MGAP, MPSO, MPSOF and MPSOP.   

 

The 6 algorithms were initially tested on benchmark functions i.e. the Rastrigin and 

Rosenbrock functions. The proposed modelling of the algorithms and conscientious 

parameter selection proved to improve the algorithms significantly. The tests on the 

benchmark functions clearly showed the improvement of the algorithms. The obtained results 

on the benchmark test functions showed that the proposed algorithms were much more 

robust, fast, efficient, reliable and accurate as compared to the traditional GA and PSO. 

A model of a power system with nominal voltages within a range that is well catered for by 

Standard IEC 60909 and IEC 61313 was developed and optimised. Using the proposed 

experimental procedures in Chapter 4, the EAs managed to obtain coefficient values that 

were within an approximate range to the IEC values. MGAP, MPSO, MPSOF and MPSOP 
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coefficients deviated by not more than 6% from the IEC values. This resulted in their 

impedances deviating by less than 4% from the CMs impedances. Moreover, in determining  

R/X  and R/Z  values, the MGAP, MPSO, MPSOF and MPSOP runs had a ‘confidence 

interval’ greater than 90%. The three-phase fault currents that the EAs obtained were similar 

to the fault currents that were obtained by the CMs; with the EAs results arguably much 

better because of their efficacious and dependable fault evaluation procedures. The proposed 

methodology was also tested for its precision and reliability when there is an increase in the 

number of machines contributing to the fault current. Regardless of these uncertainties, the 

EAs still produced results within an approximate range to those produced by CMs.  

This implies that if the methodology could give comparable results to CMs within the well-

defined ranges, the proposed methodology can still go on to sufficiently satisfy nominal 

voltage regions that are not well catered for by CMs and Standard IEC. EAs can sufficiently 

sustain any nominal voltage because the proposed methodology optimises power systems on 

a case-to-case basis with regards to the parameters and unique specifications of a power 

system. The R/X  and R/Z  values that are used by EAs during fault evaluation, in all 

instances, are determined stochastically based on the properties of the power system. This 

leads to obtaining precise fault values in all instances. The proposed methodology can also be 

used to detect much more precise fault magnitudes at various network levels thereby 

designing, setting up and repairing power systems sufficiently.  

 

 The successful optimisation of the network in Chapter 4 shows that EAs can support both 

small and large networks of the radial distribution sub-systems. This means that EAs can also 

support the ring and the meshed distribution sub-systems since they are derivatives of the 

radial distribution sub-system. Henceforth, EAs can be successfully used for the complex 

problem of detecting three-phase short circuit faults for any nominal voltage within 550kV.  

 

By using evolutionary algorithms for three-phase fault evaluation, the following procedures 

(for any nominal voltage) can be executed much more swiftly and conveniently i.e.  

 Obtaining minimum and maximum fault currents. 

 Setting-up power systems equipment effectively, efficiently and adequately. 

 Determining the time requirements for the operation of various discrimination 

devices. 

 Obtaining a much-informed guide on touch voltages and over-current protection. 
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6.2       Recommendations 

 

There remains a need for more research on the depth and further applicability of evolutionary 

algorithms to the problem of computing short-circuit faults. One of the delimitations to this 

research was that not all possible operating scenarios associated with modern power systems 

could be tested. Therefore more research still needs to be done to determine the extensiveness 

of the applicability of evolutionary algorithms to this computational problem. Also, much 

research still needs to be done on finding other suitable hybrid functions to merge with the 

evolutionary algorithms. There also remains a need for further investigating how different 

network structures and sizes affect the results of EAs 

 

6.3       Publications 

 

I. Published Conference paper at ISCMI 2019 6th Intl. Conference on Soft Computing & 

Machine Intelligence. Title of the article is ‘A Survey on the Recent Development of 

Asymmetrical Three Phase Short Circuit Faults Computation in Power Systems’. 

II. Submitted Journal Paper to the International Journal of Computing. Title of the article is 

‘A Genetic Algorithm-based approach for three-phase fault evaluation in a Distribution 

Network’. 
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