40 research outputs found

    NoC Design Flow for TDMA and QoS Management in a GALS Context

    No full text
    International audienceThis paper proposes a new approach dealing with the tedious problem of NoC guaranteed traffics according to GALS constraints impelled by the upcoming large System-on-Chips with multiclock domains. Our solution has been designed to adjust a tradeoff between synchronous and clockless asynchronous techniques. By means of smart interfaces between synchronous sub-NoCs, Quality-of-Service (QoS) for guaranteed traffic is assured over the entire chip despite clock heterogeneity. This methodology can be easily integrated in the usual NoC design flow as an extension to traditional NoC synchronous design flows. We present real implementation obtained with our tool for a 4G telecom scheme

    Ring oscillator clocks and margins

    Get PDF
    How much margin do we have to add to the delay lines of a bundled-data circuit? This paper is an attempt to give a methodical answer to this question, taking into account all sources of variability and the existing EDA machinery for timing analysis and sign-off. The paper is based on the study of the margins of a ring oscillator that substitutes a PLL as clock generator. A timing model is proposed that shows that a 12% margin for delay lines can be sufficient to cover variability in a 65nm technology. In a typical scenario, performance and energy improvements between 15% and 35% can be obtained by using a ring oscillator instead of a PLL. The paper concludes that a synchronous circuit with a ring oscillator clock shows similar benefits in performance and energy as those of bundled-data asynchronous circuits.Peer ReviewedPostprint (author's final draft

    Adaptive FPGA NoC-based Architecture for Multispectral Image Correlation

    Full text link
    An adaptive FPGA architecture based on the NoC (Network-on-Chip) approach is used for the multispectral image correlation. This architecture must contain several distance algorithms depending on the characteristics of spectral images and the precision of the authentication. The analysis of distance algorithms is required which bases on the algorithmic complexity, result precision, execution time and the adaptability of the implementation. This paper presents the comparison of these distance computation algorithms on one spectral database. The result of a RGB algorithm implementation was discussed

    High-Level Design for Ultra-Fast Software Defined Radio Prototyping on Multi-Processors Heterogeneous Platforms

    Get PDF
    International audienceThe design of Software Defined Radio (SDR) equipments (terminals, base stations, etc.) is still very challenging. We propose here a design methodology for ultra-fast prototyping on heterogeneous platforms made of GPPs (General Purpose Processors), DSPs (Digital Signal Processors) and FPGAs (Field Programmable Gate Array). Lying on a component-based approach, the methodology mainly aims at automating as much as possible the design from an algorithmic validation to a multi-processing heterogeneous implementation. The proposed methodology is based on the SynDEx CAD design approach, which was originally dedicated to multi-GPPs networks. We show how this was changed so that it is made appropriate with an embedded context of DSP. The implication of FPGAs is then addressed and integrated in the design approach with very little restrictions. Apart from a manual HW/SW partitioning, all other operations may be kept automatic in a heterogeneous processing context. The targeted granularity of the components, which are to be assembled in the design flow, is roughly the same size as that of a FFT, a filter or a Viterbi decoder for instance. The re-use of third party or pre-developed IPs is a basis for this design approach. Thanks to the proposed design methodology it is possible to port "ultra" fast a radio application over several platforms. In addition, the proposed design methodology is not restricted to SDR equipment design, and can be useful for any real-time embedded heterogeneous design in a prototyping context

    Evaluation and Design Space Exploration of a Time-Division Multiplexed NoC on FPGA for Image Analysis Applications

    Get PDF
    The aim of this paper is to present an adaptable Fat Tree NoC architecture for Field Programmable Gate Array (FPGA) designed for image analysis applications. Traditional NoCs (Network on Chip) are not optimal for dataflow applications with large amount of data. On the opposite, point to point communications are designed from the algorithm requirements but they are expensives in terms of resource and wire. We propose a dedicated communication architecture for image analysis algorithms. This communication mechanism is a generic NoC infrastructure dedicated to dataflow image processing applications, mixing circuit-switching and packet-switching communications. The complete architecture integrates two dedicated communication architectures and reusable IP blocks. Communications are based on the NoC concept to support the high bandwidth required for a large number and type of data

    The Network-on-Chip Paradigm in Practice and Research

    Get PDF
    The network-on-chip paradigm is an emerging paradigm that effectively addresses and presumably can overcome the many on-chip interconnection and communication challenges that already exist in today's chips or will likely occur in future chips. Effective on-chip implementation of network-based interconnect paradigms requires developing and deploying a whole new set of infrastructure IPs and supporting tools and methodologies. This special issue illustrates how, to date, engineers have successfully deployed NoCs to meet certain very-aggressive specifications. At the same time, the articles reveal many issues and challenges that require solutions if the NoC paradigm will indeed become a panacea or quasi-panacea for tomorrow’s SoCs

    Design for Time-Predictability

    Get PDF
    A large part of safety-critical embedded systems has to satisfy hard real-time constraints. These need sound methods and tools to derive reliable run-time guarantees. The guaranteed run times should not only be reliable, but also precise. The achievable precision highly depends on characteristics of the target architecture and the implementation methods and system layers of the software. Trends in hardware and software design run contrary to predictability. This article describes threats to time-predictability of systems and proposes design principles that support time predictability. The ultimate goal is to design performant systems with sharp upper and lower bounds on execution times

    Functioning of Declarative Memory: Intersection between Neuropsychology and Mathematics

    Get PDF
    The understanding of memory has been a constant challenge for scientific research for centuries. The mnemonic processes, which determine the identity of the human being, have been investigated through multiple points of view, such as the psychological, neurophysiological and physical ones. The result is complex and multifaceted visions that should be integrated to provide a unitary and complete interpretation. A survey of the most recent scientific literature is carried out on the functioning of declarative memory, to analyse the relationship between real information coming from the outside world, the encoded event and the recovered memory. The aim of the essay is to investigate the neural correlates, which regulate the cognitive system in question, through a dual neuropsychological-mathematical interpretation. Neuropsychology sheds light on the anatomical, physiological and psychic mechanisms of memory while Mathematics associates the corresponding mathematical configurations to neural networks. The reunification process between the two disciplines is achieved  through neuromorphic computational simulation that emulates mind uploading. The assembly of artificial neurons has the potential to clarify in detail the memory processes, the functioning of neural correlates and to carry out the mapping of the biological brain. We hope that the results obtained will provide new knowledge on mnestic mechanisms to contribute to the evolution of disciplines such as General Psychology, Forensic Neuroscience, Cognitive Rehabilitation and Awake Surgery
    corecore