7 research outputs found

    Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

    Get PDF

    INVESTIGATION OF OCULAR ARTEFACTS IN THE HUMAN EEG AND THEIR REMOVAL BY A MICROPROCESSOR-BASED INSTRUMENT

    Get PDF
    The Electroencephalogram (EEG) is widely used in clinical and psychological situations, but it is often seriously obscured by ocular artefacts (OAs) resulting from movements in the ocular system (eyeball, eyelids etc). 'The work described in this thesis is concerned with the problems of OAs in the human EEG, their removal both off-line and on-line, and the design and development of an on-line OA removal system, together with a critical review of the literature on the subject. The work of Jervis and his co-workers was extended to further study OAs, to obtain improved measures of the effectiveness of OA removal, and to find the most effective model for removing OA on-line. A number of criteria were devised to compare the performance of several models, including a more reliable pictorial method. It was found unnecessary to use the vertical and horizontal EOGs for both eyes (ie. four EOGs) in a removal model, as previously reported. This was shown to be due to strong correlation between the EOGs. It was shown that the assumption of uncorrelated error terms, implicit in present removal models, is invalid. To remedy this, the error terms were modelled as an autoregressive series. New on-line removal algorithms based on numerically stable factorization algorithms were developed. Compared to the present on-line methods the algorithms are superior, requiring no subjective manual adjustments, or the co-operation of subjects which cannot always be guarranteed. The algorithms were shown to give similar results to their off-line equivalents. A simpler algorithm based on the present on-line method is also proposed as an alternative, but may lead to a reduced performance. An important part of this research lay in the application of the results to the design and development of a new automatic OA removal system utilizing the algorithms described above.Department of Neurological Sciences, Freedom Fields Hospital, Plymout

    Computer modeling and analysis of biological rhythms

    Get PDF
    Biological rhythms are an important phenomenon and feature of physiologic systems. Indirect means have to be employed for their description and exploration due to the unclear internal nature of the system. This study analyzed and developed several possible mathematical models using single or multidimensional nonlinear differential equations to approach the experimental circadian data. The numerical solutions of the models were obtained by computer simulation and the simulated and experimental acquired circadian data were analyzed in both the time and frequency domains. Phase plane plots, phase response curves and power spectrum analysis were employed to determine the nonlinearity of the system and its relation to the harmonic structure while bispectrum analysis showed the relation between the harmonics. Dynamic spectrum and frequency demodulation techniques were used to explore the dynamic transient process of the circadian rhythms when a stimulus is applied. The coherence function was examined to explore the frequency correlation between two different circadian rhythms: temperature and activity of the same subject. The study showed that a two dimensional coupled nonlinear oscillator model can be used to describe the circadian rhythm better and a model with relatively large nonlinearity closely approximated the experimental data. The research revealed the harmonic structure of circadian rhythms. This structure related to the nonlinearity of the system with the 2nd harmonic of experimental data representing bimodality in the time series. All the models developed in this research reflected this important feature. The effects of a nonperiodic stimulus to the circadian system were simulated in the model and an overshoot phenomenon was found during the frequency transient process. High values of coherence were found at the fundamental and third harmonics while no phase relation was found between harmonics of the experimental data using the bispectrum method

    Formes d'ondes avancées et traitements itératifs pour les canaux non linéaires satellites

    Get PDF
    L'augmentation de l'efficacité spectrale des transmissions mono-porteuses sur un lien de diffusion par satellite est devenu un défi d'envergure afin de pallier la demande croissante en débits de transmission. Si des techniques émergentes de transmissions encouragent l'utilisation de modulations à ordre élevé telles que les modulations de phase et d'amplitude (APSK), certaines dégradations sont encourues lors du traitement à bord du satellite. En effet, en raison de l'utilisation d'amplificateurs de puissance ainsi que de filtres à mémoires, les modulations d'ordre élevé subissent des distorsions non-linéaires dues à la fluctuation de leur enveloppe, ce qui nécessite des traitements au sein de l'émetteur ou bien au sein du récepteur. Dans cette thèse, nous nous intéressons au traitement de l'interférence non-linéaire au sein du récepteur, avec une attention particulière aux égaliseurs itératifs qui améliorent les performances du système au prix d'une complexité élevée. A partir du modèle temporel des interférences non-linéaires induites par l'amplificateur de puissance, des algorithmes de réception optimaux et sous optimaux sont dérivés, et leurs performances comparées. Des égaliseurs à complexité réduite sont aussi étudiés dans le but d'atteindre un compromis performances-complexité satisfaisant. Ensuite, un modèle des non-linéarités est dérivé dans le domaine fréquentiel, et les égaliseurs correspondants sont présentés. Dans un second temps, nous analysons et dérivons des récepteurs itératifs pour l'interférence entre symboles non linéaire. L'objectif est d'optimiser les polynômes de distributions d'un code externe basé sur les codes de contrôle de parité à faible densité (LDPC) afin de coller au mieux à la sortie de l'égaliseur. Le récepteur ainsi optimisé atteint de meilleures performances comparé à un récepteur non optimisé pour le canal non-linéaire. Finalement, nous nous intéressons à une classe spécifique de techniques de transmissions mono-porteuse basée sur le multiplexage par division de fréquence (SC-OFDM) pour les liens satellites. L'avantage de ces formes d'ondes réside dans l'efficacité de leur égaliseur dans le domaine fréquentiel. Des formules analytiques de la densité spectrale de puissance et du rapport signal sur bruit et interférence sont dérivées et utilisées afin de prédire les performances du système. ABSTRACT : Increasing both the data rate and power efficiency of single carrier transmissions over broadcast satellite links has become a challenging issue to comply with the urging demand of higher transmission rates. If emerging transmission techniques encourage the use of high order modulations such as Amplitude and Phase Shift Keying (APSK) and Quadrature Amplitude Modulation (QAM), some channel impairments arise due to onboard satellite processing. Indeed, due to satellite transponder Power Amplifiers (PA) as well as transmission filters, high order modulations incur non linear distortions due to their high envelope fluctuations which require specific processing either at the transmitter or at the receiver. In this thesis, we investigate on non linear interference mitigation at the receiver with a special focus on iterative equalizers which dramatically enhance the performance at the cost of additional complexity. Based on the time domain model of the non linear interference induced by the PA, optimal and sub-optimal receiving algorithms are proposed and their performance compared. Low complexity implementations are also investigated for the sake of a better complexity-performance trade-off. Then, a non linear frequency domain model is derived and the corresponding frequency equalizers are investigated. In the second part, we analyse and design an iterative receiver for the non linear Inter Symbol Interference (ISI) channel. The objective is to optimize an outer Low Density Parity Check (LDPC) code distribution polynomials so as to best fit the inner equalizer Extrinsic information. The optimized receiver is shown to achieve better performance compared to a code only optimized for linear ISI channel. Finally, we investigate on a specific class of single carrier transmissions relying on Single Carrier Orthogonal Frequency Division Multiplexing (SCO-FDM) for satellite downlink. The advantage of such waveforms lies in their practical receiver implementation in the frequency domain. General analytical formulas of the power spectral density and signal to noise and interference ratio are derived and used to predict the bit error rate for frequency selective multiplexers

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Nineteenth International Cosmic Ray Conference. Conference Papers: Invited Rapporteur, Highlight, Miscellaneous, Volume 9

    Get PDF
    Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions
    corecore